BelNET logo

Belarusian Nuclear Education and Training Portal - BelNET

eng

rus

Material of portal nuclear knowledge BelNET
article / document resource request "5100"
2024-08-02
В экспериментах на MST предел Гринвальда превышен в 10 раз

Используя реактор ядерного синтеза Madison Symmetric Torus, ученые впервые превысили предел Гринвальда в 10 раз. Это предел плотности, за которым плазма токамаков становится нестабильной, и который ранее был превышен только в 2 раза. Таким образом, эти результаты свидетельствуют о беспрецедентном увеличении плотности плазмы и могут иметь серьезные последствия для использования энергии термоядерного синтеза.

Токамаки — это устройства, которые чаще всего используются для получения энергии ядерного синтеза. По словам Ноа Херста, ученого из Висконсинской лаборатории физики плазмы (WiPPL) при Университете Висконсин-Мэдисон (США), "устройства токамак считаются ведущими кандидатами на создание реактора ядерного синтеза, способного производить энергию так же, как Солнце". Токамаки представляют собой полые металлические тороидальные (в форме пончика) устройства, перемешивающие ионизированную плазму с помощью магнитного поля и электрического тока. Такая схема особенно эффективна для удержания плазмы и достижения достаточно высоких плотностей и температур (до 100 миллионов градусов) для слияния атомов и получения энергии.

Однако такая конструкция подвержена нестабильности по мере увеличения плотности плазмы. Становясь нестабильной, плазма в итоге передает полученную энергию стенкам токамака до полного остывания. Чем выше плотность плазмы, тем выше концентрация атомных ядер, а потому эффективнее проходит реакция термоядерного синтеза. Около 40 лет назад физик Мартин Гринвальд определил предел плотности, за которым плазма токамака становится нестабильной. Предел Гринвальда выражается в соотношении между плотностью плазмы и произведением тока плазмы и ее размера. За десятилетия, прошедшие с момента его открытия, этот предел был превышен не более чем в 2 раза. Херст и его коллеги совершили большой прорыв, впервые превысив этот предел в 10 раз.

"Обнаруженная нами необычная способность работать далеко за пределом Гринвальда важна для увеличения производства термоядерной энергии и предотвращения повреждения установок", — говорит эксперт. Результаты исследования подробно изложены в журнале Physical Review Letters.

Для проведения экспериментов команда WiPPL использовала Мэдисонский симметричный торус (MST) - реактор ядерного синтеза, специально разработанный для изучения пинча обратного поля. В этой конфигурации плазма, движущаяся внутри тора, имеет внутреннее магнитное поле. По мере удаления от центра кольца магнитное поле меняет направление.

В отличие от обычных токамаков, MST имеет толстую стенку из высокопроводящего металла для большей стабильности плазмы. Реактор также оснащен программируемой системой питания, что позволяет легко настраивать плазму.

В новом исследовании команда Херста поставила перед собой цель проверить пределы стабильности плазмы. Для этого исследователи вводили все больше и больше газа, чтобы увеличить плотность плазмы. Источник питания был настроен на постоянный ток в 50 000 ампер для каждого плазменного цикла. При увеличении плотности плазмы требуется более высокое напряжение и ток. Плотность плазмы измеряли с помощью интерферометров, расположенных вдоль 11 различных линий видимости.

Далее читайте в Подробнее.

Download:
Новая наука.jpg7296image/jpeg2023-11-14 09:48:50

Команда была удивлена, обнаружив, что плазма остается стабильной намного дольше, чем ранее заявленные пределы. "Здесь мы представляем эксперименты на токамаке с плотностью электронов, превышающей предел Гринвальда в десять раз при стабильных условиях, что является беспрецедентным", — пишут они в своем отчете.

Однако, несмотря на присущую конструкции MST стабильность, эти результаты оказались неожиданными, и возможные объяснения все еще исследуются. Одно из них предполагает, что максимальная плотность плазмы определяется скорее материальными ограничениями, чем нестабильностью самой плазмы. Другими словами, структура реактора, по-видимому, сыграла ключевую роль в значительном превышении предела Гринвальда.

С другой стороны, это также означает, что полученные результаты, вероятно, не могут быть напрямую применимы к другим токамакам. На самом деле, "наши результаты были получены в плазме со слабым магнитным полем и низкой температурой, что не позволяет получать энергию путем термоядерного синтеза", — объясняет Херст. Тем не менее, "мы продолжим изучать эти плазмы и думаем, что полученные нами знания могут помочь более мощным термоядерным устройствам работать при более высоких плотностях, которые необходимы для успеха", — заключает он.

Sign In