

Transient absorption technique as a tool for characterization of scintillator timing properties

Saulius Nargelas, Augustas Vaitkevičius, Gintautas Tamulaitis Vilnius University Marco Lucchini, Etiennette Auffray CERN Andrey Fedorov, Vitaly Mechinsky, Mikhail Korjik Belarus State University

Motivation

The current demand for faster timing of scintillation detectors used both in high luminosity high energy physics experiments and in medical imaging applications inspire deeper studies of the dynamics of excitation relaxation in scintillator materials.

Scintillator based radiation detector.

M.Nickl, phys. stat. sol. (b) 245, 1701 (2008)

Transfer of electronic excitation affecting scintillation properties; Ce³⁺ doped material

Trapping and detrapping of free carriers influences the scintillation properties (light yield, scintillation rise time)

Absorption spectra of LSO:Ce.

Quantum yield of LSO:Ce

Quantum yield of LSO:Ce

TRANSIENT ABSORPTION TECHNIQUE (1)

TRANSIENT ABSORPTION TECHNIQUE (2)

- Time resolution is limited by the laser pulse duration (in our experiments ~300fs)
- Allows selective excitation of crystal units
- Provides information about dynamics of all photo-excited carriers

Probe delay axis is divided into linear and log parts to evenly show fast and slow changes of TA signal.

TRANSIENT ABSORPTION TECHNIQUE – EXPERIMENTAL SETUP

Results – transient absorption carpets

The transient absorption spectrum centered at $^{2.2}$ eV at both excitation conditions indicates that TA signal is caused by absorption of electrons populating the first excited state of Ce³⁺.

Fast decay component appears at excitation in the vicinity of the conduction band bottom.

Results – transient absorption kinetics

- The decay time of slow TA component is the same for both excitation conditions and follows typical luminescence decay time of LSO:Ce (~40ns).
- The fast TA decay is attributed to fast trapping of free electrons, which results in reduction of quantum yield.

Results – transient absorption kinetics

• The fast TA decay is attributed to fast trapping of free electrons, which results in reduction of quantum yield.

Results - comparison of different LSO ingots

18 different samples from three LSO:Ce ingots

Conclusions

- After photoexcitation to 5d1 level of Ce³⁺, transient absorption signal decays with typical luminescence decay time (~40 ns).
- ✤ All the photoexcited electrons recombines radiativelly (QY=100%) after excitation to 5d1 level of Ce³⁺.
- The ratio between radiative and nonradiative recombination is 1:3 when electrons is excited to the third excited Ce³⁺ level, which is in the conduction band of LSO:Ce.
- Transient absorption technique could be exploited to characterize the timing properties of LSO:Ce samples.

THANK YOU FOR ATTENTION

Acknowledgment

Research at Vilnius University was funded by the European Regional Development Fund, grant No. 01.2.2-LMT-K-718-01-0041. Support from COST action FAST, Crystal Clear Collaboration and CMS at CERN is also acknowledged.