

K-long and muon system for the Belle II experiment

Timofey Uglov (MIPT and LPI RAS)

Outline

- From Belle to Belle2
 - Belle: RPC option for KL/muon system
 - Belle2: Scintillator option for KL/muon system
- Production, assembly and tests
- Calibration
- Conclusion

NIM **A 789**, 134–142 (2015)

B-factory motivation

 1964, Cronin, Fitch: Discovery of CP violation in K^o system, small effect O(10⁻³)

- > 1972, Kobayashi, Maskawa:
 - CP violation possible, if there are 6 quark flavors

3

- ✓ 1974, Burton, Richter: Discovery of charm quark
- ✓ 1977, E288: Discovery of bottom quark
- ✓ 1995, CDF, D0: Discovery of top quark

CP violation?

Belle achievements

New charmonium-like states: 🗙, 🗅	Υ,	Ζ
----------------------------------	----	---

9 Oct - 12 Oct 2018

ISMART-18

Minsk

T.Uglov (MIPT/LPI) Muon system for Belle II

KEKb accelerator

9 Oct - 12 Oct 2018

ISMART-18

Minsk

Muon system for Belle II

T.Uglov (MIPT/LPI)

The Belle detector

9 Oct - 12 Oct 2018

Belle: Resistive Plate Chambers

9 Oct – 12 Oct 2018

ISMART-18

Minsk

Muon system for Belle II

T.Uglov (MIPT/LPI)

SuperKEKb luminosity plans

9 Oct - 12 Oct 2018

Minsk

9 Oct - 12 Oct 2018

ISMART-18

Minsk

Muon system for Belle II

T.Uglov (MIPT/LPI)

The Belle2 detector

9 Oct - 12 Oct 2018

Minsk

Muon system for Belle II

RPC efficiency for Belle2

	Mo	derate	Higher Iuminosity	High backg	ner round	La dea	arger ad time	Lower efficiency
	Layer		Barrel	Endcap forward		Endcap backward		
		KEKB	SuperKEKB	KEKB	SuperKI	EKB	KEKB	SuperKEKB
	0	0.91	0.70	0.91	0.0		0.90	0.0
	1	0.94	0.81	0.93	0.0		0.90	0.0
r	2	0.96	0.87	0.94	0.0		0.90	0.0
	3	0.98	0.91	0.94	0.0		0.90	0.0
	4	0.98	0.94	0.94	0.0		0.89	0.0
	5	0.99	0.95	0.92	0.0		0.88	0.0
	6	0.99	0.95	0.93	0.0		0.89	0.0
	7	0.99	0.96	0.92	0.0		0.87	0.0
	8	0.99	0.94	0.92	0.0		0.86	0.0
ň	9	0.99	0.96	0.90	0.0		0.85	0.0
	10	0.99	0.98	0.87	0.0		0.82	0.0
	11	0.99	0.97	0.82	0.0		0.80	0.0
	12	0.99	0.96	0.78	0.0		0.81	0.0
	13	0.99	0.97	0.77	0.0		0.76	0.0
	14	0.99	0.96	N/A	N/A	_		N/A
ce	ptable	RPC e	efficiency meas	ured in K	EKB and	Ina		ole o SuperKEKB.

Α

Scintillator option for KLM

Requirements for a new KLM system designed for operation at SuperKEKb luminosity:

- Low dead time: << µsec for a typical channel (strip) area 1000 cm²
- Large geometrical acceptance: > 95%
- High detection efficiency: ~99% for MIP
- Low bg (neutron bg + electronic noise)

Solution

- REPLACEMENT OF ALL ENDCAP AND 2 INNERMOST BARREL LAYERS
- Scintillator based detector with WLS readout
- Fast photodector: Si photo diode in Geiger mode (SiPM Hamamatsu MPPC)
- Independent operation of x-y layers

Scintillator - WLS - SiPM

Scintillator strip production

filling the strip groove with optical gel from the top with moving carriage

Scintillator strip lightyield

75 strips (4 cm width)/sector 16800 strips for F&B Endcap KLM the longest strip 2.8 m; the shortest 0.6 m

Layer assemble

15 strips are glued to polystyrene substrate (1.5mm, both sides)

9 Oct - 12 Oct 2018

Modules assemble and installation

Assembled module before closing the cover

Installation gaps in the magnet flux return

NIM A 789, 134–142 (2015)

Module installation

Minsk

Cosmic tracks with RPC

9 Oct - 12 Oct 2018

ISMART-18

Minsk

Muon system for Belle II

Cosmic tracks with Scintillator

9 Oct - 12 Oct 2018

First physics signal

ISMART-18

Minsk

Muon system for Belle II

T.Uglov (MIPT/LPI)

Calibration with SiPM noise

SiPM noise is linear in log scale, as rate for

 $N_{Photoelectrons} \sim (xtalk)^{(N-1)}$

Cross talk (xtalk~ 0.1-0.2) is due to after pulses, when photons from Geiger discharge in one pixel hit the neighboring pixels at SiPM. Use SIPM noise spectrum for SiPM calibration and optimal HV tuning: photoelectron peaks are well seen as steps in rate vs threshold distribution

Minsk

Muon system for Belle II

Conclusion

- RPC-based KLM system worked fine in the Belle environment, but its efficiency vanishes in SuperKEKb conditions.
- New endcap KLM system for Belle2 is based on the mixed technique: scintillator+WLS+SiPM for endcaps and 2 innermost barrel layers, RPC for others.
- Good time resolution, tiny dead time and ability to measure signal amplitudes allows to cope with higher background and be efficient in new conditions.
- All components of the system were successfully produced, tested and installed to the Belle 2 detector.
- Calibration, slow control etc software is developed and integrated into the Belle 2 DAQ.
- See muon tracks both in standalone mode and from the collisions.
- New KLM system for Belle2 is ready for data taking.

Backup

9 Oct – 12 Oct 2018 ISMART-18 Minsk Muon system for Belle II T.Uglov (MIPT/LPI) 25

Lightyield improvement

Minsk

Radiation hardness

SiPM: Irradiation at a dose equivalent to 10 years of Belle2 operation

Strips, fibers, glue etc do not degrade at estimated radiation dose

9 Oct - 12 Oct 2018

ISMART-18

Minsk

Muon system for Belle II