

Minsk. Belarus. 09-12 October 2018

http://lldm.nrcki.ru/

Towards new production technologies: 3D printing of scintillators

Sokolov P.S.^{1,2}, Dosovitsky G.A.^{1,2}, Dosovitskiy A.E.³, Korjik M.V.^{2,4}

¹ National research center "Kurchatov institute" - IREA, 107076 Moscow, Bogorodskiy val str. 3, Russia ² National research center "Kurchatov institute", 123182, Academik Kurchatov sqr. 1, Moscow, Russia

³ NeoChem JSC

⁴ Institute for Nuclear Problems of Belarusian State University

The work was financially supported by a grant Nº 14.W03.31.0004 from Ministry of Science and Education of the Russian Federation

Acknowledgments

We would like to thank

•Dr. P.V. Evdokimov and Dr. V.I. Putlyaev (MSU) for very useful comments

•D.E. Kuznetsova and P.V. Karpyuk (NRC «Kurchatov Institute» – IREA) for technical assistance

This work was financially supported by a grant № 14.W03.31.0004 from Ministry of Science and Education of the Russian Federation.

We are grateful to the NRC "Kurchatov institute" – IREA shared analytical facilities center.

Inroduction. Traditional manufacturing versus 3D printing

A. Ambrosi, M. Pumera, Chem. Soc. Rev., 2016, 45, 2740-2755.

NOTE: Casting is not AM, because use some tools and patterns!

Introduction. A brief historical review

1980s

The Birth of 3D printing and rapid prototyping as conception (makes three-dimensional parts layer by layer). First patens.

Hideo Kodama SLA

Chuck W. Hull SLA

Carl R. Deckard SLS

Scott S. Crump FDM

1

1990s

The first SLA (stereolithographic apparatus), SLS (selective laser sintering) and FDM (Fused Deposition Modelling) machines. The production of a some **plastic, wax or even metal** objects.

2000s

Open-source and open-ware movement. Democratization and cheapening. Expanding the range of available materials.

2010s

Lapse of key «hystorical» patents. Mass scale of inventive activities and common availability of <u>desktop</u> 3D printers. A lot of small start-up companies found funding through crowdfunding platforms (KickStarter *etc*).

Classification of 3D printing techniques. Basic steps

Classification of main techniques in 3D printing

SLS & SLM - Selective laser sintering (melting)

	•	•	
Coro	nrin		

Advantages

Layer formation occurs as a result of local sintering of polymer or metal powders High mechanical characteristics; there is no need for supporting structures; manufacturing of metal products; the minimum element size is 30–100 µm

Disadvantages

High temperatures upon sintering; high roughness of the surface; high cost; need to use powders with narrow particle size distribution; need to use protective atmosphere; need the post-treatment; need large amount of powder to work

FDM - Fused deposition modeling

Core principle

Forming a material layer by a filament obtained by extrusion of a thermoplastic polymers (composites) through a nozzle

Advantages

Simple; Versatile; Low cost of the materials; minimal amount of wastes; possibility of obtaining composite structures

Disadvantages

Quite low print resolution (the minimum element size is limited by the diameter of the extruder opening and is 150–700 μ m; layer thickness is 20–370 μ m); anisotropy of mechanical properties; using a supporting structure is necessary

SLA - Stereolithography. Plastics

Core principle

Advantages

Polymerization of liquid monomers upon light irradiation.

High resolution (the layer thickness is $20-100 \mu m$; the minimum element size it is $50-100 \mu m$); high speed; possibility of using a large amount of material as a photopolymer filler (up to >50% of ceramic powder); possibility of using experience on formation of phase composition and microstructure accumulated in the ceramic technology.

Disadvantages

Restricted number of photopolymers in use; Single material; high cost; using a supporting structure is necessary; light scattering on ceramic particles; high suspension viscosity;

FormLab Form 1 & 2 <u>desktop</u> SLA printer high-resolution 3D printer for professional. Funding about **3 000 000 \$** via kickstarter.com on 2014. Current price ~ 10 000 \$

Ember Autodesk

price ~ 8000 \$

milkshake3d

price < 3000 \$

SLA - Stereolithography. Plastics

SLA - Stereolithography. Ceramics (YAG & ZrO₂)

Photoinitiator - Ethyl (2,4,6-trimethylbenzoyl) phenylphosphinate

3D printing of scintillators

Inorganic polycrystalline oxide materials with complex shape - YES Some plastics and inorganic glasses - VERY POSSIBLE Single crystal - NO

+

Not direct application of new approaches:

may be create some tooling, tooling inserts etc.

Conclusions

- 3D printing is a high-tech toy with a good perspective, which allow to create the complex shape parts (details) from many materials
- 3D printing allow to complement a traditional opportunities
- 3D printing allow small lab (or just for one researcher!) to make some complex part(s) with outstanding properties

Thank you for your kind attention. Questions?