

Performance of FBK SiPMs in fast timing applications

Mazzi A., Acerbi F., Paternoster G., Zorzi N., Gola A.

Fondazione Bruno Kessler, Trento, Italy

https://www.fbk.eu/en/

mazzi@fbk.eu

Fondazione Bruno Kessler

Publicly funded research center

350 researchers working in different fields

Detector-grade clean-room, 6 inches, class 10 and 100

Silicon Photomultipliers account for a significant portion of the detectors fabricated here.

October 10, 2018

FBK expertise in SiPM technology

Presentation Outline

- 1. Introduction
 - SiPM technology in FBK
 - NUV-HD and RGB-HD: spectral sensitivity
- 2. Single Photon Time Resolution
 - Single cell and SiPM time resolution
- 3. Coincidence time resolution results at 511 keV
 - Setup and measurement technique
 - NUV-HD + LSO, LYSO
 - RGB-HD + GAGG
- 4. Summary and conclusions

The Silicon Photomultiplier (SiPM)

SiPMs are arrays of small diodes (SPADs) connected in parallel. Each SPAD is capable generating a measurable signal after the detection of a single photon!

SiPM size: 1x1 mm² to 10x10 mm²

Microcell (SPAD) pitch: 12 um to 40 um (typical)

The Silicon Photomultiplier (SiPM)

Each element is independent and gives the same signal when fired.

Output amplitude (and charge)
→ proportional to the number of triggered cells
→ proportional to the number of photons.

Silicon Photomultiplier (SiPM)

http://advansid.com/

- Composed by square SPAD e.g. 50x50 µm²
- Active area of 1x1mm² up to 10x10mm²
- Different package and connections.
- **TILE of SiPMs** to cover big areas.
- Typically coupled with scintillators for ۲ gamma-ray detection (e.g. medical imaging, high-energy physics)

High Density (HD) SiPMs: Fill Factor

SPAD Pitch	15 µm	20 µm	25 µm	30 µm	35 µm	40 µm
Fill Factor (%)	55	66	73	77	81	83
SPAD/mm ²	4444	2500	1600	1111	816	625
High Dynamic Range, Low correlated noise High PDE						

October 10, 2018

Near-UV SiPMs: NUV-HD

- p-on-n junction \rightarrow peak sensitivity at ~420 nm
- Narrow dead border region \rightarrow High Fill Factor
- Trenches between cells \rightarrow Lower Cross-Talk

Dark Count Rate

Optical Crosstalk (Correlated Noise)

Visible light sensitive SiPMs: RGB-HD

- n-on-p junction → peak sensitivity at ~550 nm
- Narrow dead border region \rightarrow High Fill Factor
- Trenches between cells \rightarrow Lower Cross-Talk

A. Gola et al. talk at NSS2017

Different cell sizes provide very different PDE at the same over-voltage. All SiPM noise measurements were carried out with scintillator:

- Increased optical crosstalk caused by the scintillator.

Single Photon Time Resolution (SPTR)

RGB SPAD/SiPM – SPTR

NUV SPAD – SPTR

Coincidence Time Resolution

Coincidence time resolution (CTR) setup

Coincidence time resolution (CTR) setup

Two identical scintillation detectors Same distance, same axis

Double stage amplifier:

- <u>1st stage</u>: γ-ray energy (charge integration)
- <u>2nd stage</u>: PZ compensation low-noise LED technique
 - A. Gola et al., *IEEE Trans. Nucl. Sci.* **60** (2013) 1296-1302

Digitizing oscilloscope with 10 GS/s sampling rate and 1 GHz analog bandwidth

State of the art: top performing NUV-HD SiPMs

- NUV-HD Peak PDE @ 400 nm
- Successful strategy to reduce crosstalk

- High PDE at peak scintillation
- Low crosstalk

Optimal conditions to maximize SNR at high operating overvoltage

CTR NUV-HD + LYSO 3x3x5 mm³

NUV-HD SiPMs 4x4mm² low crosstalk Maximum excess bias 20 V for 20 µm cell pitch

CTR FWHM 98±2 ps with LYSO 3x3x5 mm3 Single detector time resolution 70 ps FWHM (σ = 30 ps) at 511 keV

State of the art: coincidence time resolution

Current best performance reported for SiPM based TOF-PET detectors Lu-based orthosilicates coupled to NUV-HD SiPMs

Crystal	Size (mm ³)	CRT FWHM (ps)	Reference
LYSO:Ce	2x2x3	87 ± 3	
	3×3×20	137 ± 3	S. Gundacker et al.,
LSO:Ce,Ca	2x2x3	75 ± 3	<i>J. Inst.</i> H (2016) P08008
	3×3×20	126 ± 2	

State of the art: GAGG:Ce for fast coincidence timing

Scintillator	ρ (g/cm³)	Z _{eff}	LY (ph./MeV)	τ _r (ps)	τ _d (ps)	λ _{max} (nm)
LSO:Ce,Ca	7.4	66	27 k	9	33	420
LYSO:Ce	7	60	30 k	80	38	420
GAGG:Ce	6.67	50.6	46 k	497	89	520
GAGG:Ce,Mg			35 k	72	60	

P. Lecoq et al., *Inorganic Scintillators for Detector Systems*. Springer 2017 S. Gundacker et al., *NIM-A* **891** (2018) 42-52

GAGG has interesting properties for fast timing scintillation detectors

- High light yield
- High density
- Non-radioactive

But needs doping optimization to improve scintillation rise time

State of the art: GAGG:Ce for fast coincidence timing

CTR RGB-HD + GAGG 3x3x5 mm³

GAGG with different dopant concentrations to improve scintillation timing

October 10, 2018

CTR RGB-HD GAGG:Ce,Mg,Ti 3x3x5 mm³

No significant differences for all the investigated temperatures: $-20^{\circ}C \div 20^{\circ}C$

Energy resolution RGB-HD/GAGG 3x3x5 mm³

Energy resolution measurements obtained by charge integration Correction for SiPM non-linearity

Energy resolution of RGB-HD/**LYSO** detector 9.0 – 9.5% at 511 keV A. Ferri et al. *Phys. Med. Biol.* **59** (2014) 869

CRT results: final comparison

State of the art CTR measurements with different scintillation crystals Coupled to FBK SiPMs (4x4 mm², single channel)

Crystal	size (mm ³)	SiPM	CRT (ps)	Reference
LSO:Ce,Ca	2x2x3	NUV-HD 25 um	75 ± 3	S. Gundacker et al., <i>J. Inst.</i> 11 (2016) P08008
LYSO:Ce —	2x2x3	NUV-HD 25 um	87 ± 3	S. Gundacker et al., <i>J. Inst.</i> 11 (2016) P08008
	3x3x5	NUV-HD 35 um	98 ± 2	
GAGG:Ce	3x3x5	RGB-HD 25 um	193 ± 4	
Ce,Mg	3x3x5	RGB-HD 25 um	169 ± 3	
Ce,Mg,Ti	3x3x5	RGB-HD 25 um	165 ± 3	
YAP:Ce	3x3x5	NUV-HD 35 um	239 ± 6	
LuYAP:Ce	2x2x8	NUV-HD 35 um	405 ± 6	

Final remarks

- Expertise in SiPM simulation, desing, production and testing
- Development of NUV-HD and RGB-HD SiPM technology
- Measurements setups and techniques for SiPM characterization
- Top state-of-the-art timing results with SiPMs / scintillators <100 ps CTR FWHM at 511 keV

FBK SiPMs scientific collaborations

October 10, 2018

FBK SiPMs research group

Visit us at the industrial exhibition... and in Trento, Italy

iris.fbk.eu

Thank you for your attention!