

NRC «Kurchatov Institute» Laboratory of luminescent and detector materials

Processing of scintillation ceramics based on complex oxides with garnet structure

<u>Karpyuk P.V.^{1,2}</u>, Dosovitskiy G.A.^{1,2}, Kuznetsova D.E.^{1,2}, Gordienko E.V.^{1,2}, Dosovitskiy A.E.³, Korzhik M.V.⁴

¹ National research center "Kurchatov institute" - IREA, 107076 Moscow, Bogorodskiy val str. 3, Russia;
 ² National research center "Kurchatov institute", 123182, Academik Kurchatov sqr. 1, Moscow, Russia;
 ³ NeoChem JSC; ⁴ Institute for Nuclear Problems of Belarusian State University

Polycrystalline form of scintillating materials in comparison to single crystal

Advantages

- composition variation
- different geometrical forms

potentially lower
 cost

Disadvantages

- obtaining process
 with several
 dissimilar stages
- fully transparent
 ceramics expensive

Main goal is obtaining of highly translucent ceramics with good scintillation properties (high light yield and short scintillation decay time).

Garnet phosphors family

$Gd_{3-x-y}Y_xCe_yAl_{5-z}Ga_zO_{12}$	Composition	Light yield, photons/MeV	Decay time, ns
	YAG:Ce	23000	90 + slow
ſY ↓ Gd	YAGG:Ce	24000	100
	GGAG:Ce	56000	13 + slow
$Y_{2,97}Ce_{0,03}Al_5O_{12}$ $Gd_{1,485}Y_{1,485}Ce_{0,03}Al_5O_{12}$	GYAGG:Ce	45000	14 + slow
	GYAG:Ce	14000	90
Y _{2,97} Ce _{0,03} Ga ₂ Al ₃ O ₁₂	LuAG:Ce	13000	39 +slow
Gd _{1,485} Y _{1,485} Ce _{0,03} Ga ₃ Al ₂ O ₁₂ Gd _{2,97} Ce _{0,03} Ga ₃ Al ₂ O ₁₂	LuAGG:Ce	20000	60
	LuGAGG:Ce	30600	67 +slow

Sidletskiy O. et al. Engineering of bulk and fiber-shaped YAGG: Ce scintillator crystals //2017.

Kamada K. et al. Growth and scintillation properties of 3 in. diameter Ce doped Gd3Ga3Al2O12 scintillation single crystal 2016 Cherepy Comparative gamma spectroscopy with SrI2(Eu), GYGAG(Ce) and Bi-loaded plastic scintillators, 2010. Kamada K. et al. Composition engineering in cerium-doped (Lu, Gd) 3 (Ga, Al) 5012 single-crystal scintillators // 2011.

Process of ceramics obtaining

Synthesis of initial substance with preset composition, Heat treatment \rightarrow Phase formation

 Fractioning, homogenizing, mechanical treatment → Particle size averaging

Powder formation into a "green body"

Obtaining of dense polycrystalline structure

Polishing to improve optical properties of sample surface, additional annealing

Required properties:

- Nano-sized primary particles
- Regular particle shape
- Composition homogeneity

Methods:

- Co-precipitation method
- Sol-gel method
- Pyrolysis
- Mixing of individual powders

	Nano-sized particles	Regular shape of particles	Composition homogeneity	Scaling possibility
Co-precipitation	+	+	+	+
Sol-gel	+	+	+	-
Pyrolysis	+	+	+	-
Mixing	+/-	+/-	-	+

General composition: Gd_{3-x-y}Y_xCe_yAl_{5-z}Ga_zO₁₂

YAG:Ce (Y, Ce, Al) YAGG:Ce (Y, Ce, Al, Ga) GYAG:Ce (Gd, Y, Ce, Al) GYAGG:Ce (Gd, Y, Ce, Al, Ga) GAGG:Ce (Gd, Ce, Al, Ga)

NH₄HCO₃ precipitant NH₃·H₂O precipitant

Primary particle size ~50 nm (after drying 100 °C)

Secondary particle size (after aggregation) ~50-100 µm

YAG:Ce (100 °C) Y_{2,97}Ce_{0,03}Al₅O₁₂

GYAGG:Ce (100 °C) Gd_{1,485}Y_{1,485}Ce_{0,03}Al₂Ga₃O₁₂

GGAG:Ce (100 °C) $Gd_{2,97}Ce_{0,03}Al_2Ga_3O_{12}$

Additional processing

Mechanical treatment (milling)

Milling was performed in planetary mill

Particle size distribution was determined by the laser diffraction method

Milling: influence of process features

Compaction methods

Method	Features
Uniaxial pressing YAG:Ce YGAG:Ce GYGAG:Ce GGAG:Ce Y _{2,3} Ce _{6,33} Al,O ₁ GYAG:Ce GYGAG:Ce GGAG:Ce GGAG:Ce Y _{2,3} Ce _{6,33} Al,O ₁ GYAG:Ce GYGAG:Ce GGAG:Ce GGAG:C	 + fast + cheap and widespread equipment - internal stresses - form of "green body" depends on geometry of pressing matrix
Slip-casting	 + absence of internal stresses + various forms of obtained "green body" - requires suspensions with large volume of solid phase - potential admixtures from material of casting form
Stereolithography	 + the most complex form of obtained "green body" - slow rate of compaction - requires special equipment

Powder synthesis & processing \rightarrow Compaction

Initial powder of GYAGG- composition after calcination was milled by 1 mm Al₂O₃ milling bodies

Calcination temperature, °C	Sample density, g/cm ³
800	1,80
850	1,95
900	2,03
950	2,20
1000	2,07

Initial powder of GYAGG- composition was calcined at 850 °C

Milling	ρ, g/cm³	2,4
-	2,12	
Planetary mill, Al ₂ O ₃ milling bodies Ø = 5 mm	2,23	b c c c c c c c c c c
Planetary mill, Al ₂ O ₃ milling bodies Ø = 1mm	2,31	not milled $\phi = 5 \text{ mm}$ $\phi = 1 \text{ mm}$

Compaction \rightarrow Sintering

Sintering in air

Precipitant	Compact density*, %	Ceramic density*, %
NH ₄ HCO ₃	25 – 30	97 – 99
NH ₃ H ₂ O	35 – 45	93 – 95

*initial composition YAG:Ce (theoretical density – 4,55 g/cm³)

GYAGG:Ce, ~ 1,0% of pores

Compaction \rightarrow Sintering

Uniaxial pressing

Slip-casting

Powder synthesis & processing \rightarrow Sintering

Initial powder of GYAGG- composition after calcination was milled by 1 mm Al₂O₃ milling bodies

Calcination temperature, °C	Ceramic density, g/cm ³	% from theoretical (6,05 g/cm³)	6 6 5,95 6	٠	٠	٠	
800	5,88	97,2	densi				
850	5,93	98,0	<u>- 0</u> 5,85 -				٠
900	5,95	98,3		850	900	950	1000
950	5,93	98,0		Tem	perature,	°C	1000
1000	5,83	96,4					

Initial powder of GYAGG- composition was calcined at 850 °C

Milling	Ceramic density, g/cm ³	% from theoretical (6,05 g/cm³)
-	5,92	97,9
Planetary mill, Al ₂ O ₃ milling bodies Ø = 5 mm	5,93	98,0
Planetary mill, Al ₂ O ₃ milling bodies Ø = 1 mm	5,98	98,9

Powder synthesis & processing \rightarrow Sintering

Initial powder of GYAGG:Ce composition was calcined at different temperatures, pressed and sintered in air atmosphere

t° = 800 °C

Scintillation properties of YAG:Ce in comparison to other scintillators

counts

Sintering

Sintering in **air**

GYAGG:Ce, ~ 1,00% of pores ~ 30% of transparency

Sintering in **vacuum** (p < 10⁻⁴ atm.)

GYAGG:Ce, ~ 0,02% of pores ~ 45% of transparency

Measurements of translucent GYAGG ceramics in transmission (normal) geometry

Ζ

α-excitation (5,5 MeV)

y-excitation (662 keV), transmission 2000 Ratio=4.3 1800 1600 Estimated LY is about 1400 12500 phot/MeV 1200 **GYAGG** 1000 ceramics * 800 Csl 8, 600 400 200 0 2000 500 1000 1500 0 counts

Conclusions

- Nature of precipitant could influence on microstructure of initial powders and density of final "green bodies" and ceramics
- Additional processing of obtained powders also influences on ceramic density
- Conditions of sintering are important for density and transparency of ceramics: sintering in vacuum could improve these parametrs
- Ceramic samples have better scintillation properties, compared to single crystal
- Composition variations could greatly improve light yield of obtained samples

Thank you for your attention!

