

Progress in Fabrication of Long YAG-based Scintillation Fibers for HEP Experiments

Ia. Gerasymov^a, D. Kofanov^a, K. Lebbou^b, R. Bouaita^b, V. Kononets^a, V. Nesterkina^a, O. Sidletskiy^a, C. Dujardin^b, V. Jary^c, M. Nikl^c, A. Polesel^d, M. Lucchini^d, E. Auffray^d

^aInstitute for Scintillation Materials NAS of Ukraine, Kharkiv, Ukraine ^bInstitute of Light and Matter, UMR55306 University Claude Bernard Lyon 1-CNRS, Villeurbanne CEDEX, France ^cInstitute of Physics AS of Czech Republic, Cukrovarnická 10, 162 00 Prague 6, Czech Republic ^dEuropean Organization for Nuclear Research, Geneva 23, Switzerland

ISMART 2018, October 9-12, Minsk, Belarus

Requirements to scintillators

Long (>20 cm) crystalline fibers with good transparency (attenuation length L_{att} >40 cm) [2] LuAG:Ce fiber with length 22 cm demonstrate L_{att} = 104 cm

[1] Paul Lecoq, New crystal technologies for novel calorimeter concepts, Journal of Physics: Conference Series 160 (2009) 012016
 [2] A. Benaglia, M. Lucchini, K. Pauwels et al., Test beam results of a high granularity LuAG fibre calorimeter prototype. J. Instrum. 11, P05004 (2016)

Why YAG:Ce?

- Cost of starting Y_2O_3 is powder by ~100 times lower then Lu_2O_3
- As YAG:Ce contains light ions, its radiation hardness under high energy hadrons is better compared to PWO and other heavy scintillators [3, 4]

[3] E. Auffray, A. Barysevich, A. Fedorov et al., *Radiation damage of LSO crystals under c-and 24 GeV protons irradiation*. Nucl. Instrum. Methods Phys. Res. Sect. A 721, 76–82 (2013)
[4] E. Auffray, A. Barysevich, A. Gektin et al., *Radiation damage effects in Y2SiO5: Ce scintillation crystals under c-quanta and 24 GeV protons*. Nucl. Instrum. Methods Phys. Res. Sect. A 783, 117–120 (2015)

Previous research

Table 1 Some results on the YAG-based fibers characterization

Sample	Shape	Orientation	Growth rate, mm/min	Ce conc, ppm	Mg conc, ppm	L _{att} , cm,	Light output, photon/MeV (tail/head)	Decay time, ns fast/slow/average,	Gas
YAGCIS		111	0.3	1000	_	1.7	20,900/14,900	81/151/132 tail	Ar
YCVI	0	in	0.3	150	÷.	18	19,900/19,900	72/224/160 tail 58/178/142 head	
CV2	0	100	0.3	150	2	18	18,900/18,500	89/245/191 tail 93/244/185 head	Ar
YCV3	٥	100	0.3	150	-	16.5	20,900/19,900	70/197/143 tail 66/205/157 head	Ar
YCV4	0	111	0.3	150	100	4.5	11,900/11,900	50/126/96 tail 41/120/97 head	Ar
vevs	0	111	0.3	150	50	12	21,600/21,600	55/190/133 tail 56/198/137 head	Ar
YCV6	0	111	0.3	100	100	2.3	16,200/16,200	46/145/112 tail 44/173/132 head	Ar
YCV7	0	ш	0.3	100	50	4.4	18,300/18,300	42/139/111 tail 45/159/117 head	Ar
YCV8	0	111	0.3	100	25	6.5	20,500/20,500	49/156/114 tail 47/165/120 head	Ar
YCV9	0	ш	0.3	180	50	5.02	-l-	85/233/180 tail 84/259/196 head	Ar
YCV12	0	111	0.15	150	25	6.58	-/-	96/286/210 head	ALPHAGAS
YCV13	0	111	0.2	180	25	7.59	-/-	118/280/201 tail 119/294/226 head	ARCAL
YCV14	0	111	0.2	200	120	2.63	-/	110/275/206 tail 113/310/221 head	ALPHAGA
YCV15	0	111	0.2	150	-	10.07	-/-	120/325/271 head	ALPHAGAS
YCV16	0	111	0.2	150	-	17.96	-/-	-1-1	ARCAL

[5] V. Kononets, K. Lebbou, O. Sidletskiy, Yu. Zorenko, M. Lucchini, K. Pauwels, and E. Auffray, pp. 114-128. In: Engineering of Scintillation Materials and Radiation Technologies, M. Korzhik and A. Gektin (eds.), Springer Proceedings in Physics 200, Springer International Publishing AG 2017, 339 p.

Fabrication method of YAG fibers

m-PD furnace & crystals (ILM, Lyon, France)

Causes of attenuation length degradation

Periodical "waves" oriented perpendicular to the growth direction are formed after variation of melt meniscus shape, probably, due to supercooling at the crystallization interface and/or instable thermal conditions. Supercooling can be caused by formation of foreign phases on the crystallization interface due to Al deficiency in the melt.

Fiber crystal growth from nonstoichiometric melt

Attenuation length vs. Al excess

Optimal concentration interval of Al excess lies below 400 ppm and provides the improvement of attenuation length in the head part of the fibers.

Fibers grown by μ -PD method providing a large melt surface/bulk ratio, Al2O3 evaporation is a notable factor determining the quantity of macrodefects in fibers.

Obtaining of 22 cm long transparent fibers

- vertical thermal gradient at the crystallization interface was increased;
- melt pressure inside the capillary die was increased.

Name	C(Al _{doped}),	C(Mg),	Attenuation	
	Ррт	Ррт	length, cm	
YCD10	0	20	24.3	
YCD7	0	40	35.7	
YCD11	170	20	6.2	
YCD9	170	40	4.2	

Effect of thermal treatment of fibers

Post-growth annealing of YAG:Ce fibers in air at 1200 C did not give a reproducible positive result.

Meanwhile, for Mg-doped fibers the effect of thermal annealing is significant and increases with Mg concentration .

Decay time reducing

Summary

The significant progress in transmission of YAG:Ce-based fibers has been achieved by adding of Al³⁺ excess into the melt and optimizing thermal conditions of crystallization by the μ-PD method. As the result, the attenuation length of up to 38 cm was achieved in 22 cm long YAG:Ce fibers.
Optimization of thermal conditions and post-growth annealing provided the attenuation length enhancement up to 36 cm in YAG:Ce,Mg, which practically meets the requirement of detectors for future colliders.

- The scintillation decay time of the main fast component decreases from 130 to 80 ns with light Mg codoping.

The work is supported by the Marie Skłodowska-Curie Research, Innovation Staff Exchange Project H2020-MSCA-RISE-2014 no.644260 "INTELUM".

Thank you for the attention