

Č R

NBC Defence Institute

University

of Defence

Thermal neutron detector based on LaOBr:Ce/LiF

LUCIE FISEROVA, JIRI JANDA

PROJECT TE01020445 IS PROVIDED WITH THE FINANCIAL SUPPORT OF THE TECHNOLOGY AGENCY OF THE CZECH REPUBLIC

ISMART 2018 CONFERENCE, MINSK, 9. – 12. 10. 2018

Introduction

► ZnS:Ag/⁶LiF

- ▶ is still the best phosphor mixture for thermal neutron detection?
- Lanthanide oxybromides
 - Cathodoluminescent and X-ray intensifying screens (1970)
 - Oxyhalides of yttrium, lanthanum and gadolinium activated by trivalent cerium or terbium
 - Sensitive for charged particles

	TNS-00147-2018.R1	
Thermal neutron detection using lanthanide oxybromides	Scintillation Powders for the Detection of Neutrons	
Lucie Fiserova ¹ , Jiri Janda ²	L. Fiserova, J. Janda	
Fiserova, L. 2018, LumDeTr 2018 Conference, Prague	Fiserova, L. 2018, IEEE TRANSACTIONS ON NUCLEAR SCIENCE	

Detector construction

- LaOBr:Ce/LiF mixture
- Different types of optical carriers
 - Cyllinder made from plastic scintillator
 - Cyllinder made from PMMA
 - End-glow optical fibers
 - Side-glow optical fibers
 - Optical glass octagon
 - Optical glass fibers

Detector dimensions and areal densities

Туре	Dimensions	Total active area [mm ²]	Scintillator area density [mg/cm²]	
Cyllinder made from plastic scintillator	Ø 24 mm, h = 40 mm	3466		
Cyllinder made from PMMA	Ø 24 mm, h = 40 mm	3466		
End-glow optical fibers	Ø 3 mm, h = 40 mm, 43 pcs in cluster	16506	50 + 5	
Side-glow optical fibers	Ø 2.6 mm, h = 40 mm, 40 pcs in cluster	13274	50 ± 5	
Optical glass octagon	Ø 2.4 mm, h = 50 mm	4480		
Optical glass fibers	Ø 4 mm, h = 40 mm, 30 pcs in cluster	15448		

4

Thermal neutron measurement instrumentation

- Probe: 1" PMT with scintillator and teflon reflection layer
- Paraffin cylinder
- Cf source at the 30 cm distance
- NUNA MCB-T Multichannel analyser (NUVIA, Czech Republic)
- GAMWIN SW: spectral analysis

Multichannel analyzer

Probe: PMT with scintillator

Results

	n _{mod} -n _{nmod} [cps]	n _{mod} /n _{nmod}	
Cyllinder made from plastic scintillator	2	1.0	ND streets
Cyllinder made from PMMA	110	1.3	thermal neutrons
End-glow optical fibers	148	10.3	i i i i i i i i i i i i i i i i i i i
Side-glow optical fibers	6	1.5	Particle sizes
Optical glass octagon	220	8.6	o ⁶ LiF particle
Optical glass fibers	42	5.0	• particle
ZnS:Ag	176	37	

Spectral analysis

Pulse shape analysis

J. Phys. E: Sci. Instrum., Vol. 11, 1978. Printed in Great Britain

Decay characteristics of inorganic scintillators

YANG, et al. Li co-doped Nal: TI (NalL) — A Large Volume Neutron-Gamma Scintillator with Exceptional Pulse Shape Discrimination. IEEE Transactions on Nuclear Science, 2017.

Pulse shape analysis

Summary

- ZnS:Ag still remains the top in the case of insensivity to gamma radiation but not in detection efficiency
- Shorter decay times of lanthanide oxybromides compared to ZnS:Ag (1000 ns vs 15 ns)
- Effective signal discrimination methods
 - Neural network

Thanks for your attention!

11

Project TE01020445 is provided with the financial support of the Technology Agency of the Czech Republic