

Simulation and experimental study of GAGG:Ce detector of fast neutrons

Kai-Thomas BRINKMANN¹, Valery DORMENEV¹, Georgy DOSOVITSKIY^{2,4}, **Andrei FEDOROV³**, Mikhail KORZHIK³, Dmitry KOZLOV³, Vitaly MECHINSKY³, Rainer Willi NOVOTNY¹, Hans-Georg ZAUNICK¹

¹Justus Liebig University, Giessen, Germany ²National Research Center "Kurchatov Institute", Moscow, Russia ³Research Institute for Nuclear Problems, Minsk, Belarus ⁴NRC "Kurchatov Institute" – IREA, Moscow, Russia

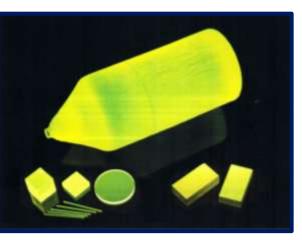
Natural mixture of gadolinium isotopes has the highest thermal neutron absorption cross section for all Re-elements - 49,000 barns. This also far exceeds that of ³He, ⁶Li, or ¹⁰B nuclei used in neutron detection.

Neutron total cross sections of ⁶Li isotope and natural mixture of Gd isotopes. *Evaluated Nuclear Data File (ENDF), https://www-nds.iaea.org/exfor/endf.htm*

- The major reaction for thermal neutrons in gadolinium is radiation capture (n,x), in which multiple gamma-quanta with total energy of about 8 MeV are emitted.
- Broad zone of resonances increases the neutron absorption efficiency for neutron energies from 1,0 eV to 10 keV.
- Starting from ~ 55 keV of the neutron energy, the process of neutron inelastic scattering is accompanied by the gamma-quanta emission, forming soft lines in the resulting gamma-quanta spectrum.

Gd-containing scintillation crystal

Gd foils or Gd-loaded plastics are well known in neutron detection. But Gd can form scintillation crystals and ceramics, such as GSO:Ce and GAGG:Ce, wich has better scintillation efficiency.

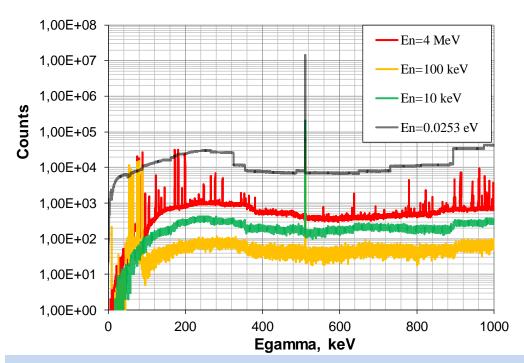

High density of such compounds plays positive role in gamma-ray absorption efficiency; however large atomic mass of Gd means less atoms per gram (many Barns per atom for fewer atoms).

The aim of this work is to study possibilities of Gd-based scintillator in neutron detection, and compare its sensitivity with Li-6 based one (Li-glass).

Gd-containing scintillation crystal

We modelled interaction of neutrons with 2 mm gadolinium metal plate (thick enough for positron thermalization) with GEANT 4.

In our experimental studies we used newest aluminum gallium garnet GAGG single crystals doped with Ce, Mg, Ti, as a scintillation material designed to overcome some drawbacks of solely Ce-doped and Ce, Mg co-doped GAGG crystals.

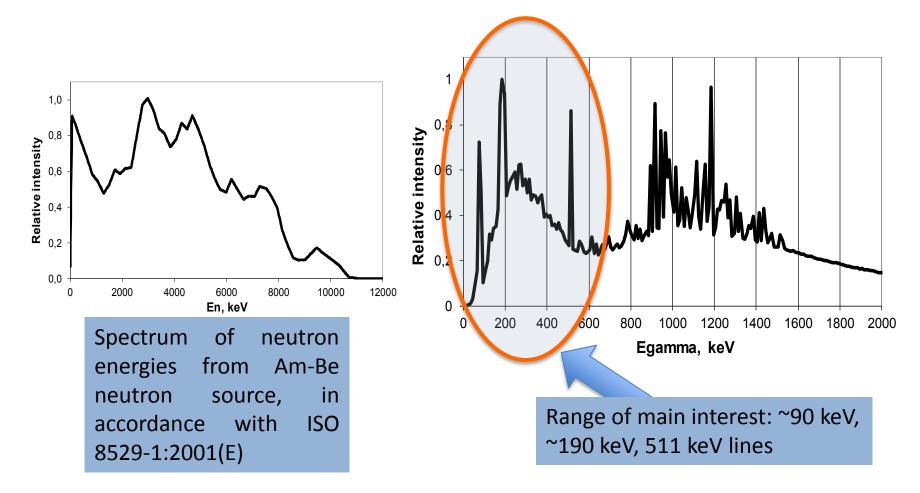


Main properties of GAGG:Ce, Mg, Ti are listed below.

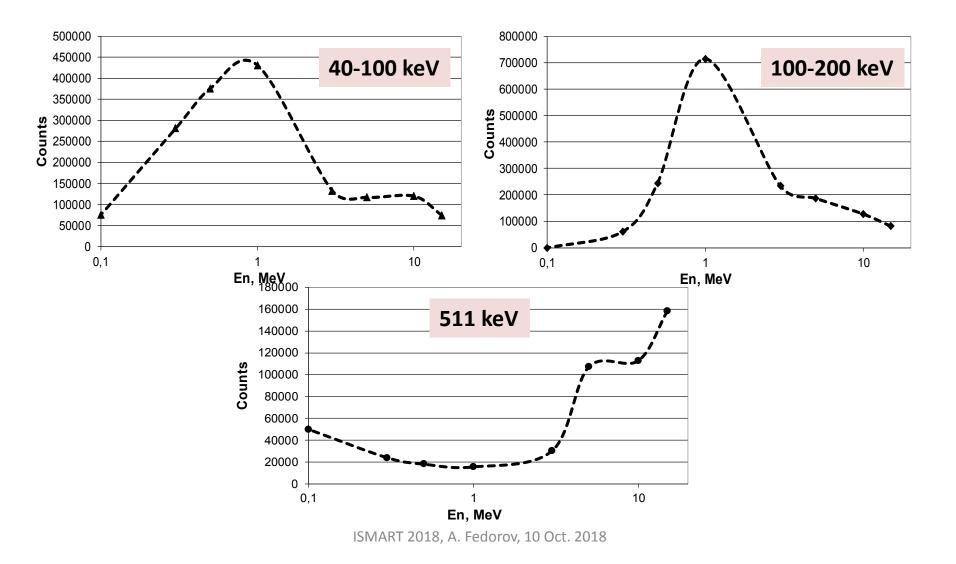
Density, g/cm ³	Ζ _{eff}	Emission maximum, nm	Light yield, ph/MeV	Decay kinetics, ns(%)	Energy resolution, % *	Time resolution (CTR), ps*
6.68	51	520	38000(RT) 46000(-45°C)	30 (25%), 80 (60%), 100- 200 ns (15%)	6,2%(511keV,-20°C) 3,6%(1270keV, -20°C)	170 (-20 to 20ºC)

*Small crystal samples coupled to a 4x4 mm SiPM

Production of γ-quanta in Gd, simulation

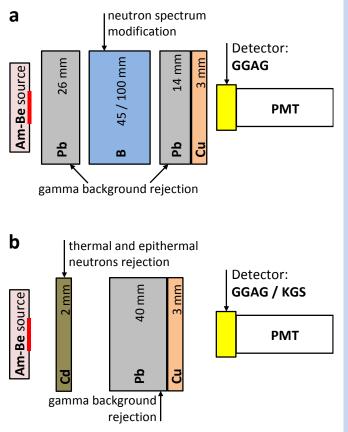


Spectra of the emitted gamma-quanta in metallic gadolinium with 2 mm thickness, irradiated with monochromatic neutrons in a broad energy range, simulated with GEANT4.


Results

- 511 keV annihilation gamma-line presents in all spectra at all neutron energies;
- There are no prominent soft γ-lines in the spectra for thermal neutrons (E_n = 0.0253 eV) and for neutrons with E_n <55 keV;
- Numerous gamma-lines present across all the gamma-spectrum for E_n > 1 MeV.
 - Relative yield of at least several soft gamma lines depends on the incident neutron energy.

GEANT4 modeled soft fraction of spectrum of γquanta born in 2 mm Gd metal plate, irradiated with fast neutrons from Am-Be source



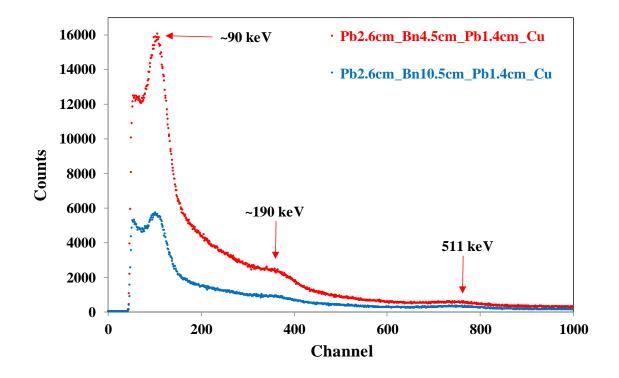
GEANT4 simulated yield of γ -lines in 40-100 keV, 100-200 keV energy ranges and for 511 keV line versus neutron energy, from $E_n=100$ keV to $E_n=15$ MeV (lines area).

Layout of the measurements schemes

- a- neutron spectrum transformation
- b- sensitivity comparison

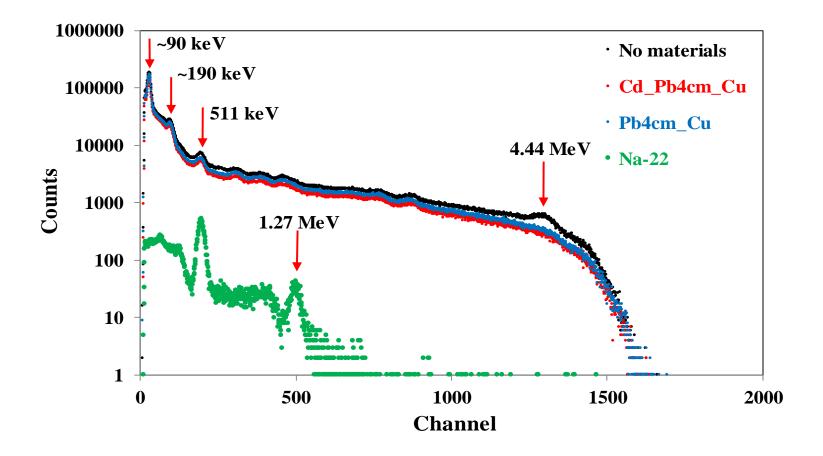
SAMPLES

GAGG:Ce sample used was

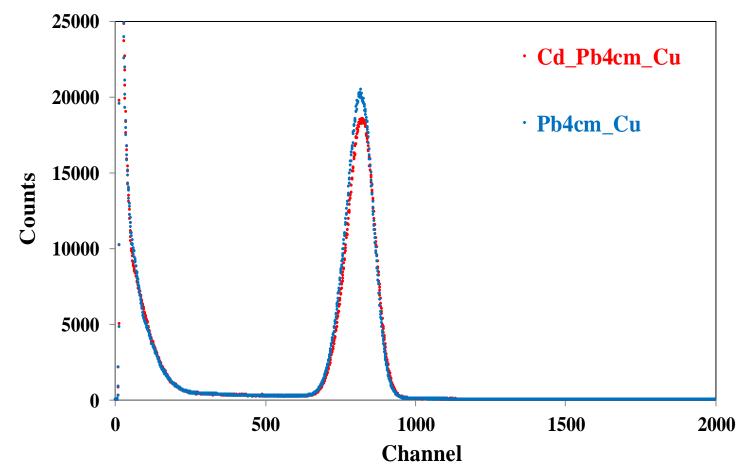

15×18×7 mm size, surface area faced to neutron source 2.70 cm², volume 1.89 cm³;

Li-glass with close dimensions was used for sensitivity comparison:

Li-based scintillator was a KGS-3 scintillation glass ceramics with ⁶Li content close to that of well-known Saint Gobain scintillation glass GS-20 with size 18×18.5×4 mm, with surface area faced to neutron source of 3.33 cm², volume 1.33 cm³


A. Nikitin, A. Fedorov, M. Korjik, Novel Glass Ceramic Scintillator for Detection of Slow Neutrons in Well Logging Applications. Nuclear Science, IEEE Transactions on 60 (2), 2013, pp. 1044-1048

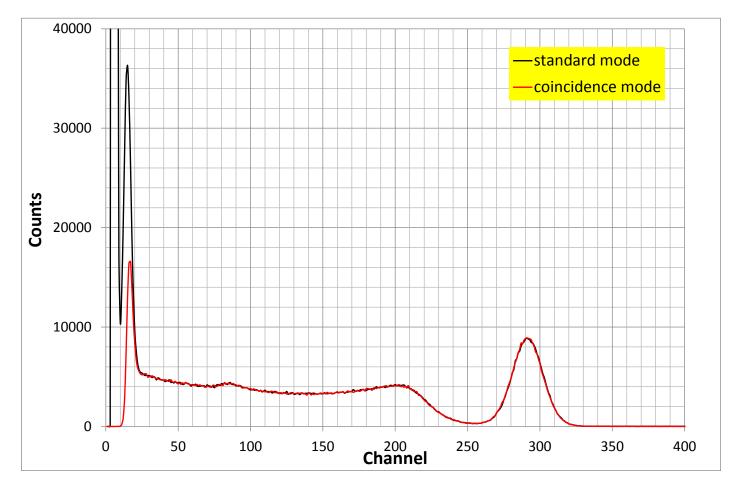
Spectra of Am-Be source measured with GAGG:Ce 15×18×7 mm at different thicknesses of boron acid absorber



Increase of the boron acid absorber thickness from 4.5 cm to 10.5 cm transforms neutron source spectrum, which results in a decrease of the area of ~90 keV line in more than 4 times, while the area of 511 keV line decreases only by a factor of 2.

γ-spectra measured with GAGG:Ce 15×18×7 mm sample irradiated by neutrons from Am-Be source.

Neutron peak from Am-Be source centered in ~800 channel, recorded with KGS-3 scintillation glass.



ISMART 2018, A. Fedorov, 10 Oct. 2018

Comparison of countrates measured with ⁶Li KGS glass ceramics (neutron peak) and GAGG: Ce,Mg,Ti crystal (90, 190, 511 keV lines) in the same position relative to Am-Be source.

Detector	Lines area, counts		Count rate per volume, Count/s*sm ³
KGS-3 18x18,5x4 mm ³	Pb+Cu	Neutron peak - 2316180	5805
	Cd+ Pb+Cu	Neutron peak - 2161030	5416
GAGG:Ce 15×18×7 mm ³	Pb+Cu	~90 keV - 1255690	2214
		~190 keV - 143108	252
		511 keV - 42031	74
		Full spectrum - 7003420	12352
	Cd+ Pb+Cu	~90 keV - 1007870	1778
		~190 keV - 130794	231
		511 keV - 35352	62
		Full spectrum – 6154690	10855

Prototyping of GAGG:Ce,Mg,Ti neutron detector with SiPM matrix readout.

Conclusions

Our modeling and experimental evaluations have shown that gamma-spectra acquired with GAGG:Ce,Mg,Ti scintillation detector under neutron irradiation contain information on the incident neutron kinetic energy, which can be used, in particular, for neutron sources identification. Sensitivity of the GAGG:Ce,Mg,Ti detector with moderate size in a wide range of neutron energies was found to be comparable or superior to that of Li-glass scintillation materials, depending on the method of gamma-quanta counting.

In addition, GAGG:Ce,Mg,Ti does not require an enrichment with neutron sensitive isotopes, which makes it even more cost-effective in comparison with ³He gas counters and ⁶Li-containing inorganic scintillators.

Authors thank the FOMOS-Materials Company (Moscow) for providing GAGG samples!

Thank you!!!