

Pure raw materials for scintillation detectors of ionizing radiation

G. Dosovitskiy, O. Akimova, K. Bogatov, A. Dosovitskiy, A. Fedorov,E. Gordienko, P. Karpiuk, M. Korjik, D. Kuznetsova, V. Mechinsky,A. Mikhlin, V. Retivov, E. Vashchenkova, P. Volkov, O. Zhdanovich

Lab of Luminescent & Detector Materials of NRCKI george.dos@gmail.com

The work is supported by grant № 14.W03.31.0004 of Russian Federation Government.

Outline:

- Impurities, purity, purification and analysis
- Economical considerations: production and recycling
- Other factors: composition, microstructure and particle size
- Conclusions

Examples of impurities effects in scintillators

YAG:Ce photoluminescence – less strict requirements

Co-doping – impurity "homeopathy" for scintillation

Grading and pricing – large volume chemicals

Reagent grades

Technical

Grading of elements in "nines"

Example: Y₂O₃ 99,99%

99,99% = 100% - Σ(All **controlled** impurities)

ICP mass-spectrometry + atomic emission spectrometry

Product can be either better or worse then graded

Complete specs or direct analysis of impurities could be useful 7

Classification of impurities

Chemistry:

- cationic / anionic
- rare earth (La-Lu)
- 3-d (Ti-Zn)
- heavy metals (Pb, Bi)

Effect:

- coloring (Ti, Fe, Co, Ni, Cu)
- Luminescence quenching
- growth
- radioactive (create background)

Source:

- accompanying
- common (Na, K, Mg, Ca, Si, Fe, Al)
- organic carbon

Accompanying impurities

8-18-20-8-2

3-18-21-8

-18-31-8

Non-metal impurities

Anionic $H_2P_2O_7^{2-}$ in KDP (KH_2PO_4)

Usually – crucial for low-temperature growth

Growth inhibition 100 ppm causes 1,5 laser damage threshold fall

Atmosphere O^{2-} , OH^{-} , H_2O O^{2-} in BaF₂ causes self-absorption

Usually – difficult to analyze

Organic 10⁶ / cm³ (~ 5 ppm) candida parapsilosis + Al³⁺, Cr³⁺ in KDP leads to growth defects formation

Usually – crucial for low-temperature growth

T. Sasaki et al, Jap. J. Appl. Phys. 1987

10 µm Yeast

Purification

Main principles of purification

Crystallization purification example

Crystallization purification example

Rare earth elements separation and purification

Possibility of additional RE purification

Y₂O₃ (5N) Before crystallization After crystallization

0.1

Li

Na Mg

Κ

Ca Sr

Ba

Ti

V

Cr Mn Fe Co Ni Cu Zn Pb

Purification by ion exchange, example: KDP

e.g. upon glass melting in Al_2O_3 crucible melt could be enriched with up to 2% of Al_2O_3 for (50g sample)

A lot of things could go wrong, so appropriate control should be used

Chemical analysis

Spectral overlaps in atomic emission spectrometry

Mass spectrometry of Gd₂O₃ 5N

All usable **Yb** isotopes are overlapped with **Gd**O⁺ and **Gd**OH⁺

Tb and **Lu** are also overlapped

"Complicated" compounds require combination of techniques and additional probe preparation

Chemical analysis techniques

Method	Details	+	-	limit <i>,</i> ppm
Mass- spectrometry (quadrupole)	Solution, ICP (Inductively coupled plasma)	Averaged result, available samples for calibration	Multiple	0,001
Atomic emission spectroscopy		Better precision at higher concentrations	Hardly applicable for elements with rich emission spectra	0,001
MS & AES	Laser ablation	No sample preparation, local	Additional artifacts of probe preparation	
Energy dispersive X-ray analysis	SEM	Local	Depends on probe preparation and other factors	10
	XRF (stand-alone)	Simple and fast	Worse than SEM (Al+ elements)	>10
Wave dispersive X-ray analysis	SEM	Better sensitivity and selectivity compared to EDX	Slow	1

Classical methods – for cross-check or express-check

Example: Colorimetry of solutions for analysis of KDP

Fe-Phen water solutions absorption spectra

0,1 ppm of Fe detection efficiency

Detection limits:

Fe – down to 0,03 ppm Cr – down to 0,05 ppm

Economy-driven considerations

Technology influences cost Product per operation (exemplary): 50 g 5 kg 100 kg

Environmental note: Product is pure, wastes are the same

however, lower production volumes and impact can be controlled

> Product price doesn't really matter

Low price at moderate volume

Large investments in equipment are possible

Why high purity substances are expensive?

- Expensive processes
- Expensive equipment
- High qualification of personnel
- More analytical control
- Possible sorting out
- Lower production volumes

Additional factors:

- R&D
- Expensive starting materials
- Special requirements (e.g. atmosphere control)
- "Complicated" substances (corrosive – e.g. fluorides, hygroscopic – e.g. halides)

Raw materials specification freezes acceptable ratio

A separate R&D may be needed

Raw materials for PWO crystals

Developed specifications

Impurity	Limit	Negative influence	Position
Na	5 ppm	Dediction houde one	→Pb
К	2 ppm	Radiation hardness	
Mg	1 ppm		→Pb
Са	5 ppm	Scintillation kinetics	
Ва	3 ppm		
Si	5 ppm	Radiation hardness, robustness	→w
3d (Ti-Ni)	0 <i>,</i> 5ppm	Scintillation kinetics	→w
Fe	2 ppm	Radiation hardness	→w
Cd	5 ppm		→Pb
Sb	5 ppm	Scintiliation kinetics	
RE (La-Lu)	Not natural	Radiation hardness, scintillation kinetics	→Pb

Ultra pure raw materials for scintillators for lowbackground measurements

Grown by FOMOS materials, Moscow

- Very expensive raw material
- Special purification process
- Special impurities detection technique

AMoRE experiment – search for neutrinoless double βdecay, Y2L Lab, Korea

Goal specifications for raw materials:

²²⁶Ra below 2 mBq/kg (~5*10⁻¹⁵ wt.%).

In order to achieve that, U and Th impurities had to be eliminated from the raw material.

Direct element analysis: $U < 0.3*10^{-7}$ wt.% (0.3 ppb) Th < 0.9*10⁻⁷ wt.% (0.9 ppb)

Final check – by low background gamma spectrometry (Baksan Neutrino Observatory, Institute for Nuclear Research, RAS)

> More on that – in [V.V. Alenkov et al, Inorganic Materials 49(12) 2013, 1220-3]

BTW, no glassware could be used in the process!

Recycling could be a complicated process

Other requirements for raw materials

Other requirements for raw materials

Composition – main components (1% or better)

- non-stoichiometry defects
- heterophase inclusions

Microstructure (suitable)

 material formation and properties

Primary particles size and shape

Agglomerates size and strength

Mixed Gd, Ga containing garnets have wide homogeneity region \rightarrow risk of defect formation

M. Mizuno and T. Yamada, *Nagoya Kogyo Gijutsu Shikensho Hokoku*, **40** [12] 389-401 (1992).

[R.H. Lamoreaux et al, J Phys Chem Ref Data, Vol.16 No.3 1987]

Raw materials composition

In PbWO₄ deviation from stoichiometry reduces radiation hardness

Composition control of initial reagents

Titration Gravimetric analysis Known for more then 200 years, but are still the most reliable for quantitative analysis of main components

Powder microstructure - primary particles YAG particles obtained with different synthesis routes

Agglomeration in raw material powder (secondary particles) also has effect on ceramics density

Particle (secondary) size distribution

Direct methods

Microscopy of all kinds

+ WYSIWYG (more or less)
+ Some additional details
- Low statistics, could be unrepresentative

Indirect methods

laser diffraction

light scattering surface absorption sedimentation

- + Express and/or cheap
- + Representative probes
- Needs adjustment for a product

Measurement after 0-2-4-6, min.:

Summarizing notes

- Pure raw materials is a first important step in material development / production
- Other raw materials characteristics are to be considered as well
- If not available on the market, the raw material could be developed on demand
- Raw material development usually requires R&D
- Raw material requirements should consider further process of scintillator obtaining

Thank you for your attention!

Contacts: Georgy Dosovitskiy george.dos@gmail.com