Obtaining and functional characteristics of Eu²⁺-activated scintillation materials on the basis of congruent compounds of alkali and alkaline earth metal chlorides and bromides (ABX₃)

Rebrova N.V.¹, Grippa A.Yu.¹, Pushak A.S.², Vistovsky S.S.³, Gorbacheva T.E.¹, Pedash V.Yu.¹, Tarasov V.A.¹ and <u>Cherginets V.L.¹</u>

¹Institute for Scintillation Materials, National Academy of Sciences of Ukraine, ²Ukrainian Academy of Printing, ³Ivan Franko National University of Lviv,

2018

	CaI ₂	CaBr ₂	CaCl ₂	SrI ₂	SrBr ₂	SrCl ₂	BaI ₂	BaBr ₂	BaCl ₂
KX	KCaI ₃	KCaBr ₃	KCaCl ₃	KI·SrI ₂	KBr·2SrBr ₂	KCl·2SrCl ₂	KI·BaI ₂	2KBr·BaBr ₂	2KCl·BaCl ₂
RbX	RbCaI ₃	RbCaBr ₃	RbCaCl ₃	RbI·SrI ₂	RbBr·SrBr ₂	RbCl·SrCl ₂	$RbI \cdot 2BaI_2$	RbBr·BaBr ₂	RbCl·BaCl ₂
CsX	CsCaI ₃	CsCaBr ₃	CsCaCl ₃	CsSrI ₃	CsSrBr ₃	CsSrCl ₃	CsI·BaI ₂	CsBr·BaBr ₂	CsCl·BaCl ₂

- systems having been studied (literature data)

	CaBr ₂	CaCl ₂
KX	KCaBr ₃	KCaCl ₃
RbX	RbCaBr ₃	RbCaCl ₃
CsX	CsCaBr ₃	CsCaCl ₃

The choice of the matrix, example, phase diagram of CsCl – CaCl₂ system

Scheme of the charge and activator synthesis and growth furnace

I. Eu-activated CaX₂-based halides

CaBr₂ crystals

Radioluminescence spectra of $Ca_{1-y}Eu_yBr_2$ crystals (source γ -241Am)

Pulse height spectra of $Ca_{0.95}Eu_{0.05}Br_2(1)$, $Ca_{0.92}Eu_{0.08}Br_2(2)$ and NaI:Tl (3) excited by ¹³⁷Cs.

У	L, photon/MeV	R, %	τ, μs
0.005	14000		
0.01	20000		
0.03	30000		1,64
0.05	36000	8.9	2,511
0.08	39000	9.1	>

CsCa_{1-x}Eu_xBr crystal

$$\begin{array}{l} L_{\varnothing 40 \times 40} = 37\% \ (L_{\varnothing 12 \times 2} = 45.2\%) \\ R_{\varnothing 40 \times 40} = 16\% \ (R_{\varnothing 12 \times 2} = 9.9\%) \end{array}$$

Scintillation time decay of $CsCa_{0,95}Eu_{0,05}Br_3$ crystal $\varnothing 40 \times 40$, excitation γ -¹³⁷Cs

Pulse height spectra of $CsCa_{0,95}Eu_{0,05}Br_3 \varnothing 40 \times 40$ (1) and NaI:Tl (2) excited by ¹³⁷Cs.

Scintillation properties of ACa_{1-y}Eu_yX₃ (X=Cl, Br; A=K, Rb, Cs) crystals

Composition	L	R, %	τ, μs	k
$Ca_{0.92}Eu_{0.08}Br_{2}$	39000	9.1	-	1.0
CsCa _{0.92} Eu _{0.08} Br ₃	28000	9.3	6.1	1.1
$RbCa_{0.92}Eu_{0.08}Br_3$	54000	8.2	3.56	1.0
KCa _{0.995} Eu _{0.005} Br ₃	33000	bro	eaks down	
$Ca_{1-y}Eu_yCl_2$		breaks down		
CsCa _{0.9} Eu _{0.1} Cl ₃ [1]	19000	12	-	-
RbCa _{0.92} Eu _{0.08} Cl ₃	38500	9	-	1.0
$KCa_{1-y}Eu_{y}Cl_{3}$	34000	bre	eaks down	

1. Zhuravleva, M., et. al., J.Cryst. Growth. 352(1), 115–119 (2012)

II. Eu^{2+} -activated SrX_2 -based materials

CsSr_{1-y}Eu_yBr₃

Radioluminescence spectra of $CsSr_{1-y}Eu_yBr_3$ obtained at $\gamma - 241Am$ extitation, *rt*.

The dependence of light yield of $CsSr_{1-}$ _yEu_yBr₃ scintillator vs. Eu²⁺ concentration (1 – our results, 2 – the data of [1, 2]).

- 1. Zhuravleva, M., Yang, K. US Patent 2012,0273726 A1.
- 2. Gokhale, S. S., et. al. J. Cryst. Growth. 452, 89-94 (2016).

CsSr_{1-y}Eu_yCl₃ crystals

У	L, %	L, ph/MeV	R, %
0.05	8.3		-
0.01	13.5		-
0.05	38.9	33400	11.5

Pulse height spectra of $CsSr_{1-y}Eu_yCl_3$ and NaI:Tl crystals, excitation source ¹³⁷Cs.

III. Mixed solutions of CsCaBr₃-CsCaCl₃ composition

Samples of $CsCa_{0,95}Eu_{0,05}Cl_2Br$, $CsCa_{0,95}Eu_{0,05}Cl_{1,5}Br_{1,5}$ and $CsCa_{0,95}Eu_{0,05}ClBr_2$ composition (from the left to the right

Composition	L, ph/MeV	τ, μs
CsCa _{0.9} Eu _{0.1} Cl ₃ [1]	18000	5.05
CsCa _{0.95} Eu _{0.05} Cl ₂ Br	23800	4.58
CsCa _{0.95} Eu _{0.05} Cl _{1.5} Br _{1.5}	20700	4.80
CsCa _{0.95} Eu _{0.05} ClBr ₂	37000	1.48
CsCa _{0.95} Eu _{0.05} Br ₃	23000	5.28

1. Zhuravleva, M., et. al., J.Cryst. Growth. 352(1), 115–119 (2012)

Radioluminescence spectra of $CsCa_{0.95}Eu_{0.05}ClBr_2$ (1), $CsCa_{0.95}Eu_{0.05}Cl_{1.5}Br_{1.5}$ (2) and $CsCa_{0.95}Eu_{0.05}Cl_2Br$ (3) crystals, excited by ²⁴¹ Am.

The scintillation light time profile for $CsCa_{0,95}Eu_{0,05}Cl_2Br$, $CsCa_{0,95}Eu_{0,05}Cl_{1,5}Br_{1,5}$ and $CsCa_{0,95}Eu_{0,05}ClBr_2$ obtained at ¹³⁷Cs excitation.

The dependence of functional parameters of materials based on Eu^{2+} activated alkaline earth metal halides form ratio of matrix components

Perfect isomorphism,

 \longrightarrow =0.08 (Cl \rightarrow Br)

The dependences of light yield (1, L/10000), changes of crystal mass under contact with wet atmosphere (2) and energy resolution (3, R/10) forCsCa_{0.95}Eu_{0.05}Cl_{3-x}Br_x vs. x. Data for x=0 are taken from [1]

Limited isomorphism,

The dependence of light yield (1) and energy resolution (2) for $(Sr_{1-}yBa_y)_{0,995}Eu_{0,005}I_2$ crystals from y

1. Zhuravleva, M., et. al., J.Cryst. Growth. 352(1), 115–119 (2012)

Light yield for the materials based on the matrixes: individual halides and solid solutions

BX₂:Eu²⁺, BXX':Eu²⁺

LaX₃:Ce³⁺

