Nanoengineered Gd3Al2Ga3O¹² scintillation materials with disordered garnet structure for novel detectors of ionizing radiation *ISMART 2018*

Tratsiak Y.*, Vasilyev M., Khabashesku V. Baker Hughes a GE Company

Main requirements to scintillators

- high stopping power
- high scintillation yield
- high energy resolution
- minimal level of afterglow
- multifunctionality

Garnet structure and its possibilities

 $Y = Lu$, Gd, Ca, Mg, Li, Zr, Hf …..

 $Al = Ga$, Sc, In, Si, Ge, Fe, Cr, Mg…..

 $n + {}^{155}Gd \rightarrow {}^{156}Gd + γ$ (8.5 MeV) $n + {}^{157}Gd \rightarrow {}^{158}Gd + γ$ (7.9 MeV). cross section of the neutron capture: ¹⁵⁵Gd - 61000 barn, ¹⁵⁷Gd 254,000 barn

Mixed Garnets scintillators properties

Enchance the ability for recombination of geminate pairs due to the local micro-nonuniformity related with modification of local structure of mixed garnets;

Diminish the thermo-activation energy of deep traps due to the shift of the bottom of the conduction band leads to covering some shallow traps located below of this band.

Influence of the synthesis approach on afterglow

• Table gives a comparison of synthesis methods in terms of particle size, required temperature, homogeneity, morphology, and afterglow time.

The development of approach for suppression of afterglow in GGAG crystals is crutial task!

We used 2 approaches: Co precipitation (CP) and Solid-state (SSS)

JSM-7800F Schottky FE-SEM

Extreme-high resolution imaging and full analytical capabilities

Specifications:

Mag: 25 to 1,000,000X kV : 10V to 30kV SEI: 1.0 nm (15kV) 0.8 nm (15kV, GB) 1.5 nm (1kV) 1.2 nm $(1kV, GB)$ 3.0 nm (0.1kV, GB) BEI: 1.5 nm $(3kV)$ STEM: 0.8 nm (30kV), 0.6 nm attainable Analytical: 3.0 nm (15kV, 5nA, WD=10mm)

Standard features:

Through the lens detector with energy filter In-chamber E/T SE detector Aperture angle control lens (ACL) Easy to use, remote-enabled GUI

Optional items:

Short WD retractable BE detector LV attachment (up to 300 Pa), LV BSE, LV SE GBSH - GB up to 5kV

Typical accessories: EDS, WDS, CL, EBSD, STEM, PCD

Line Scan – Magnification 25000X

Mapping - Magnification 50000 X

Lsec: 21.9 0 Cnts 0.000 keV Det: Octane Pro Det

Line Scan analysis

TSL measurements for SSR samples

Co-doped sample shows TSL intensity at 5 times less

LY measurements

Conclusions

CP samples show higher LY values that most probably related with lower concentration of intrinsic defects due to the lesser Ga evaporation at crystals growth in comparison with SSR samples;

The possibility of using linear EDX scanning for investigation samples inhomogeneity is shown;

The technology for co-doped samples should be improved for increase the LY;

Co-doping decrease TSL intensity only and does not impact on the traps distribution.