Transient phenomena in scintillation materials

<u>G. Tamulaitis,</u>

S. Nargelas, A. Vaitkevičius Vilnius University, Lithuania

M.Korjik, A.Fedorov, V.Mechinsky Research Institute for Nuclear Problems, Minsk, Belarus

E. Auffray, M.T. Lucchini CERN

Sixth International Conference ISMART 2018 Engineering of Scintillation Materials and Radiation Technologies

Outline

- Motivation
- **D** Experimental technique
- Results on GAGG:Ce
 - Experimental results on differential optical absorption in GAGG:Ce with and without Mg codoping
 - Modeling of carrier population kinetics
- Results on LSO:Ce and LYSO:Ce
- Conclusions

This research was focused on

fast scintillators

Let it be 10 ps

for high-energy physics and medical imaging

EXPERIMENTAL TECHNIQUE

subpicosecond time resolution

selective excitation

Absoption spectra of GAGG without intentional doping (courtesy of Dr. O.Sidletski), doped with Ce and codoped with Ce, Mg

Energy levels of Ce³⁺ in respect of valence (VB) and conduction (CB) bands of GAGG

revealing spectral and time features

revealing spectral and time features

MATERIALS

MULTICOMPONENT

STUDIED

Multicomponent garnet-type scintillator

GAGG:Ce

gadolinium aluminum gallium garnet

Gd₃Al₂Ga₃O₁₂

fast but might be faster

Ceres, a goddess of agriculture, grain crops, fertility and motherly relationships

garnet

Lutetium-yttrium oxyorthosilicate LYSO:Ce Lu_{2(1-x)}Y_{2x}SiO₅:Ce and probably fast enough **Results**

GAGG:Ce without and with codoping

Differential absorption of GAGG:Ce as a function of probe photon energy and delay between pump and probe pulses at pump photon energy of 2.8 eV

No DA in GAGG without intentional Ce doping Differential absorption of GAGG:Ce as a function of probe photon energy and delay between pump and probe pulses at pump photon energy of 2.8 eV

with Mg-codoping 10000 11.382 10.586 1000 Probe delay time (ps) 9.71 8,993 8.197 7.401 100 6.605 5.801 5.012 10 4.214 3.42 2.624 1.828 1.031 0.235 0.5 0 -0.5 -1 1.6 1.8 2 2.2 2.4 1.4 Probe photon energy (eV)

The differential absorption in the vicinity of 1.4 eV reflects the population of the lowest excited Ce³⁺ level

No DA in GAGG without intentional Ce doping

Differential absorption of GAGG:Ce as a function of probe photon energy and delay between pump and probe pulses at pump photon energy of 3.63 eV

with Mg-codoping

Kinetics of differential absorption at 1.4 eV in GAGG samples with different doping

Differential absorption kinetics in GAGG:Ce and GAGG:Ce,Mg at different temperatures

Pump 2.8 eV (to $Ce^{3+} 5d_1$ state) Pump 3.6 eV (to $Ce^{3+} 5d_2$ state)

Simulation of population kinetics

Simulation of population kinetics

4f

Introduction of Mg decreases the influence of traps

Simulation of population kinetics

4f

The time of intracenter $5d_2 - 5d_1$ relaxation at Ce³⁺ in GAGG:Ce equals 500 fs **Results**

LSO:Ce

Differential absorption in LSO

Conduction band

The fast component in the decay of differential absorption is caused by free electron absorption

Differential absorption of three LSO ingots

Are we able to identify a clear and reliably measurable figure of merit for fast response?

Please attend the presentation of Dr. Saulius Nargelas October 10, 10 PM Results

Nonequilibrium carrier dynamics LYSO:Ce versus LSO:Ce

LYSO

LSO

pump@5.91eV (210nm)

Comparison of DA spectra & kinetics

Comparison of DA spectra & kinetics

Comparison of DA spectra & kinetics

Comparison of DA spectra & kinetics

Absorption decay after 5.91 eV pump

Conclusions on GAGG:Ce

- □ The rise of the differential absorption at resonant intracenter excitation of Ce³⁺ ions from the ground state into the first excited level 5d¹ is instantaneous within the time resolution of 300 fs.
- □ The slow rise time component of differential absorption, observed when Ce³⁺ ions were excited into the second excited level 5d₂, is due to <u>trapping</u> of the nonequilibrium electrons moving through the crystal matrix.

$\Box \quad Intracenter 5d_2 - 5d_1 relaxation time in Ce^{3+} equals 500 fs$

Suppression of the slow component in the front of the differential absorption response is achieved by <u>codoping with Mg even at the codoping levels as small</u> <u>as 10 ppm</u>, which are insufficient to significantly change the valence state of cerium ions from Ce³⁺ to Ce⁴⁺.

Conclusions on LSO:Ce and LYSO:Ce

- The initial rise time of differential absorption due to free electrons is in subpicosecond domain for both LSO:Ce and LYSO:Ce.
- Population of the emitting level of Ce³⁺ in LYSO:Ce is delayed by several picoseconds due to migration of nonequilibrium electrons through the matrix.
- □ The decay in population of the lowest excited Ce level proceeds at the same rate both in LYSO:Ce and LSO:Ce.

Thank you for your attention

The collaboration has been facilitated by

Research at Vilnius University was funded by the European Regional Development Fund, grant no 09.3.3-LMT-K-712-01-0013.