ISMART 2018 Belarusian State University (Minsk, Belarus) October 9 - 12, 2018

Isotopically enriched scintillation single crystals of calcium molybdate ⁴⁰Ca¹⁰⁰MoO₄ for experiments on the search for neutrinoless double beta decay

V.V.Alenkov¹ O.A.Buzanov¹

V.N.Kornoukhov^{1,2}

1- JSC Fomos-Materials (Moscow)

2 - MEPhI (Moscow)

Nature of neutrino ? No charge, no mass \rightarrow if particle is own antiparticle?

Dirac neutrino (1928)

 $\nu \neq \overline{\nu}$

Majorana neutrino (1937) $v = \overline{v}$

Fomos-Materials for ISMART2018

Allowed double beta decay ...

For some nuclei single β decay is impossible But 2β decay is allowed (M.Goeppert-Mayer (Goettingen,1935))

$0\nu\beta\beta$ decay and the properties of neutrino (reason to care)

- Nature of neutrino (Majorana or Dirac particle?)
- Lepton number conservation
- Absolute scale of the neutrino mass
- Hierarchy of neutrino masses

Decay rate if $T_{1/2} \ge 10^{25}$ years : how many events?

- Probability of the process $\tau = 1/T_{1/2}$ $T_{1/2} \ge 10^{25}$ years (U-238 = 4,5*10⁹ yr)
- If 1 kg of Mo-100 then after 1 year exposure time expected
- N = 0.693* 6,02*10²³ *(1000 gr/100 g-mole)*1/10²⁵ ~ ≤ 1 events/year This is a very rare decay (expected for 31 even-even nuclei: 48 Ca, 76 Ge, 82 Se, 96 Zr, 100 Mo, 116 Cd, ... etc). Formos-Materials for ISMART2018 6

Sensitivity of DBD experiments (as $T_{1/2}^{0^{\nu}}$ and $m_{\beta\beta} \sim (T_{1/2}^{0^{\nu}})^{-1/2}$)

For sizeable background case;

For "zero" background case; # of background events ~ 0 (1)

$$T_{1/2}^{0\nu}(\exp) = (\ln 2)N_a \frac{a}{A}\varepsilon \frac{MT}{n_{CL}}$$

- Low background level (low radioactivity), b
- High energy resolution, △E
- High enrichment of working isotope,
- Big mass, M
- Low cost of enrichment of working isotope

Correlation " $T_{1/2}^{0^{\nu}} \iff$ expected number of events" (mass of an isotope is equal to 1 ton)

Nucleus	$T_{1/2}$ to reach $\langle m_v \rangle$ = 0.02 eV [1]	Detector	Number of 2β nuclei in 1 ton detector	Number of decays over 5 yr
⁴⁸ Ca	(3 – 28) ×10 ²⁷ yr	⁴⁸ CaF ₂ (20%)	1.4 × 10 ²⁷	0.2 - 1.9
⁷⁶ Ge	(3 – 17) ×10 ²⁷ yr	HP ⁷⁶ Ge	7.9 × 10 ²⁷	1.6 – 9
⁸² Se	(1 − 4) ×10 ²⁷ yr	Zn ⁸² Se	4.1 × 10 ²⁷	3 – 13
¹⁰⁰ Mo	(0.3 – 1.5) ×10² ⁷ yr	Zn ¹⁰⁰ MoO ₄ ⁴⁰ Ca ¹⁰⁰ MoO ₄ Li ₂ ¹⁰⁰ MoO ₄	$\begin{array}{c} 2.6 \times 10^{27} \\ 3.0 \times 10^{27} \\ 3.4 \times 10^{27} \end{array}$	6 - 30 7 - 34 8 - 39
¹¹⁶ Cd	(0.8 − 1.3) ×10 ²⁷ yr	¹¹⁶ CdWO ₄	1.7 × 10 ²⁷	4 – 7
¹³⁰ Te	(0.7 – 3) ×10 ²⁷ yr	¹³⁰ TeO ₂	3.8 × 10 ²⁷	4 – 18
¹³⁶ Xe	(1 − 4) ×10 ²⁷ yr	¹³⁶ Xe	4.4×10^{27}	4 - 14

Table 3 in J.D.Vergados, H.Ejiri, F.Simkovic, Rep. Prog. Phys. 75 (2012) 106301

Fomos-Materials for ISMART2018

"Imitation" of the useful signal = background events in the energy range ~ MeV)

- Cosmic rays background at the sea level
- Natural radioactivity (isotopes belong to ²³⁸U и ²³²Th series, ⁴⁰K, artificial radionuclides ⁶⁰Co, ¹³⁷Cs....)

Solution:

- To run experiments into deep underground laboratories (> several km of water equivalent)
- Passive and active shielding of detector of γ- and neutrons radiation from surrounding rocks and concrete
- > To use high purity materials:

Content of U and Th < 10⁻¹¹ g/g (< 10 ppt – part per trillion)

(just for comparison²³⁸U и ²³²Th into surrounding rockss and concrete (room walls etc..) ~ 10⁻⁶ g/g (ppm – part per million)

 $^{238}U(10^{-6} \text{ r/r}) \sim 10 \text{ decay/sec/kg} \rightarrow 3*10^8 \text{ decay/year/kg}$

Deep chemical and physics-chemical purification of the detector material and the materials of its surrounding structures is necessary!

Today best limit on $T_{1/2}$

J.D. Vergadods, H. Ejiri, F. Simkovic (ArXiv: 1612.02924. Dec 2016)

Isotope	$Q_{\beta\beta}$ [MeV]	$T_{1/2}^{0 u} \ [10^{24} \ { m y}]$	$m_{\beta\beta} \; [\mathrm{meV}]$	Experiment
76 Ge	2.039	52	160-260	GERDA Ge semiconductor ^{a}
^{100}Mo	3.034	1	900 - 300	NEMO-3 Tracking chamber ^{b}
$^{130}\mathrm{Te}$	2.528	4	760 - 270	CUORE Bolometer ^{c}
$^{136}\mathrm{Xe}$	2.459	11	450 - 190	EXO ionization-scintillation d
136 Xe	2.459	110	161-60	$\operatorname{Kam}LAND$ -Zen Scintillator ^e

The $0\nu\beta\beta$ -decay half-lives of nuclei of experimental interest (for the case NH - in blue and IH - in red)

(J.D. Vergadods, H. Ejiri, F. Simkovic (ArXiv: 1612.02924. Dec 2016)

Fomos-Materials for ISMART2018

⁴⁰Ca¹⁰⁰MoO₄ scintillation cryogenic detector as a tool for ¹⁰⁰Mo DBD search

- Detector = Source: $\varepsilon \sim 85-90\%$ efficiency
- Energy resolution R ~ a few keV (5 ÷ 10 keV) $\downarrow \downarrow$ No. 2vBB of Mo-100 background

No 2vββ of Mo-100 background

- Technology of the production \rightarrow High purity $\downarrow \downarrow$ very low ²³⁸U-, ²³²Th- intrinsic background
- Production of ¹⁰⁰Mo isotope: *centrifuges*

Fomos-Materials for ISMART2018

AMoRE (Advanced Mo-based Rare process Experiment) detector technology: ${}^{40}Ca{}^{100}MoO_4 + MMC + SQUID$ (Korea)

CaMoO₄

- Scintillating crystal
- High Debye temperature: $T_D = 438$ K, $C \sim (T/T_D)^3$
- ⁴⁸Ca, ¹⁰⁰Mo $0\nu\beta\beta$ candidates
- AMoRE uses ${}^{40}Ca{}^{100}MoO_4$ w. enriched ${}^{100}Mo$ and depleted ${}^{48}Ca$

MMC (Metallic Magnetic Calorimeter)

- Magnetic temperature sensor (Au:Er) + SQUID
- Sensitive low temperature detector with highest resolution
- Wide operating temperature
- Relatively fast signals
- Adjustable parameters in design and operation stages

AMoRE detector module

AMoRE Pilot detector tower

YangYang underground laboratory in Korea (AMoRE Pilot and AMoRE I phases of the experiment)

In Yangyang pumped storage Power Plant Minimum vertical depth : 700 m Access to the lab by car : around 2 km

Experiments

- KIMS : dark matter search experiment
- AMoRE : $0v \beta\beta$ decay search experiment

Fomos-Materials for ISMART2018

Full scale AMoRE - 200 detector

Future plans of AMoRE

Now AMoRE is fully funded for 10 years by Korean Gov.

	Mass	Start	Sensitivity to $m_{etaeta}(meV)$
AMoRE – 10	Enriched ⁴⁰ Ca ¹⁰⁰ MoO ₄ , 10 kg	After 3 years	80 - 250
AMoRE – 200	Enriched 500 g ⁴⁰ Ca ¹⁰⁰ MoO ₄ crystal × 400 = 200kg	In 10 years	20 - 50

Inverted hierarchy of neutrino mass can be tested by AMoRE – 200 experiment.

▶ 16

The construction of new underground laboratory

Fomos-Materials for ISMART2018

Production of ⁴⁰Ca¹⁰⁰MoO₄ Scintillation Elements for AMoRE Pilot and AMoRE I detectors at Fomos Materials Co

Main CaMoO₄ single crystal properties

T_{melt} = 1445 °C (Pt or Ir crucible needed!)

Technology: Czochralsky method

High Light output > 5000 photon/MeV at RT Kinetics of scintillation (main component): at room temperature = 16 μ sec at 6 K = 345 μ sec

CMO crystal growth process at JSC Fomos-Materials Co.

Process stages:

- 1. Initial powder ICP analysis
- 2. Initial pellets preparation pellets manufacturing 550g in mass each
- 3. Initial charge for crystal growing preparation including MoO_3 adds - 2 pellets + up to 3 mass % of MoO_3
- 4. Growth of the initial crystallized charge crystals up to 550 g each
- 5. Initial crystallized charge for end-crystal growing preparation
- 6. Crystallizer assembling and end crystal growing
- 7. Aftergrowing heat treatment of the end crystal heat treatment in oxidizing atmosphere
- 8. Mechanical treatment of the end crystal (cutting, lapping and polishing) manufacturing of the CMO element according to the specification.

Mechanical Treatment of the Crystal at Fomos-Materials

Fomos-Materials for ISMART2018

Synthesis of CaMoO₄ raw material (initial charge for growth)

There are two techniques to synthesize CaMoO₄ raw material (charge):

- <u>solid-phase synthesis of the oxides</u> CaO (or CaCO₃) and MoO₃ - mixed into stoichiometric ratio with compensation of volatile molybdenum oxide)
- <u>Co-precipitation reaction</u>

Synthesis of CaMoO₄ raw material at NEOKHIM company (Moscow)

Co-precipitation reaction:

 $(NH4)_{6}Mo_{7}O_{24} + \underline{7^{*}Ca(NO_{3})_{2}} + 8^{*}NH_{4}OH \rightarrow \\ \rightarrow 7^{*}CaMoO_{4} + 14^{*}NH_{4}NO_{3} + 4^{*}H_{2}O$

- guaranteed stochiomery

- additional purification in the process
- $\rm NH_4OH$ and $\rm NO_3$ are easy can removed by washing and heat treatment

Now new Ca-compound (calcium formiate):

 $(NH_4)_6Mo_7O_{24} + 7 Ca(HCOO)_2 + 8 NH_4OH \rightarrow$ $\rightarrow 7 CaMoO_4 + 14 NH_4 (HCOO) + 4 H_2O$

⁴⁰Ca¹⁰⁰MoO₄ raw material

JSC NeoChem (Moscow)

After melt at FOMOS-Material

Crucible for CMO crystal growing

- 1 growing crystal
- 2 seedholder
- 3,13 water-cooling shaft
- 4,11 ceramic plates
- 5,7,12 ceramic tubes
- 6 inductional coil
- 8 heat insulation ceramic
- 9 crucible
- 10 melt
- 14 seed

Equipment for crystal growth, heat and mechanical treatment at Fomos-Materials

Crystal growth setup KRYSTAL-3M at Fomos-Materials

New upper stock drive arrangement

Energy-saving power supply •Power - 60 kW •Stability within- ± 0.05%

Crystal growth facilities at Fomos-Materials Co.

New control •Unique soft •Modern hard

Crystal Growth Control System at Fomos-Materials

Equipment for heat treatment and optical measurement at Fomos-Materials

High Temperature Heat Treatment (Carbolite SFT 15/450)

Optical Measurement System (Cary 300 UV-Vis)

CMO crystal grown at JSC Fomos-Materials Co.

Scheme of the Parallel crystal growth process

Fomos-Materials for ISMART2018

Effective distribution coefficients for some impurities. Recrystallization technique for purification.

Element	K _{eff}
Mg	0.4
Sr	0.6
Ba	0.1
W	1.6
Pt	0.7
T1	0.6
Pb	0.1

Concentration of impurities can be substantially reduced by recrystallization technique. Only the central parts of the initial crystals were w/o upper and bottom cones were used for the final crystal growth (double crystallization)

Spassky et al., ISMART 2016:

Engineering of Scintillation Materials and Radiation Technologies pp 242-258

Specification to IBS/CUP - Fomos Material contract for production of ⁴⁰Ca¹⁰⁰MoO₄ SEs for AMoRE Pilot and AMoRE I detectors

Material	Mono-crystalline Calcium molybdate (chemical				
	formula CaMoO ₄)				
Shape	cylinder				
Length	50,0+/-0,5 mm				
Diameter	45,0+/-0,5 mm				
Weight	345+/- 30 grams				
Mechanical treatment					
- lateral surface	polished, Ra less than 0,01 µm				
- end surfaces	polished, Ra less than 0,01 μm				
- rounding of sharp edges is allowed					
- Surface finish quality	no scratches by visual inspection				
Optical quality	colorless and transparent				
Attenuation index	not worse than 0,03 cm ⁻¹ at wavelength 520 nm				
	along the axis of the Scintillation element				
Each SE to be accompanied by a pro-	tocol of an ICP-MC analysis of impurity composition,				
including uranium and the	orium, by a certified specialized laboratory				

Enrichment: >95% of Mo-100 and depletion of Ca-48 <0.002% Radioactive contamination:

Bi-214 (U-238 chain) < 100 μ Bq/kg and Rn-220 (Th-232 chain) < 50 μ Bq/kg, Total alpha activity of U and Th < 10000 μ Bq/kg Fomos-Materials for ISMART2018

Main challenge for Producer:

Radiopurity!

Potential Sources of Radioactive Contamination During Crystal Growing, Annealing and Mechanical Treatment

- Dust in the air/atmosphere of the room
- Atmosphere/Air with high concentration of ²²²Rn. emanation from floor, ceiling and walls of the room
- "Dirty" material of the insulation ceramics inside Czochralsky puller.
- Not enough radiopurity of grinding and polishing materials.
- Availability of pure water and chemicals:
 - alcohol for cleaning procedures
 - pure water (de-ionized water)

Measures to ensure "the purity condition" at FOMOS Materials

- Selected crystal growth setup (no more different crystals except CaMoO₄ can be grown)
- Selection of materials for the insulation ceramics inside puller
- Facility for production of De-ionized water (subboiling facility for purification of water and chemicals)
- Glove boxes and other purity insurance methods for manipulations with CaMoO₄ powder

An example of Protocol for SE2 (SS88): Results of ICP MS ELAN DRC-e by EKP (Lesnoy) 0,0001% = 1 ppm

Элемент	Содержание, вес.%	Элемент	Содержание, вес.%	Элемент	Содержание, вес.%	Элемент	Содержание, вес.%
Li	< 0.0001	Zn	< 0.0002	Sb	< 0.0001	Lu	<0.0001
Be	<0.0005	Ga	< 0.0001	Te	< 0.0002	Hf	< 0.0001
В	< 0.001	Ge	< 0.0001	I	<0.0005	Ta	<0.0001
Na	<0.002	As	< 0.0001	Cs	< 0.0001	W	0,0022
Mg	<0.0003	Se	<0.002	Ba	<0,0001	Re	< 0.0001
AI	< 0.0003	Br	<0.005	La	< 0.0001	Os	< 0.0001
Si	<0.005	Rb	< 0.0001	Ce	< 0.0001	lr	< 0.0001
Р	<0.005	Sr	< 0.0001	Pr	< 0.0001	Pt	< 0.0001
K	<0.005	Y	< 0.0001	Nd	< 0.0001	Au	< 0.0001
Sc	<0.0002	Zr	< 0.0001	Sm	< 0.0001	Hg	< 0.0001
Ti	< 0.0004	Nb	< 0.0001	Eu	< 0.0001	TI	<0.0001
V	<0.0003	Ru	< 0.0001	Gd	< 0.0001	Pb	<0.0001
Cr	< 0.001	Rh	< 0.0001	Tb	< 0.0001	Bi	<0.0001
Mn	< 0.0001	Pd	<0.0001	Dy	<0.0001	Th	<0.0001
Fe	<0.005	Ag	< 0.0001	Ho	< 0.0001	U	<0.0001
Co	<0.0001	Cd	< 0.002	Ēr	< 0.0001		
Ni	< 0.0001	In	<0.0001	Tm	< 0.0001		
Cu	< 0.0001	Sn	<0.0001	Yb	< 0.0001		

CONCLUSION: only limits except W (22 ppm)!

Analysis of U and Th into raw material and Ca- and Mo components: ICP MS & AES MS

• Pre-concentration (*extraction of Mo-matrix*)

a) autoclave decomposition into 1 mL HCl and 0.1 mL HNO₃ under 160 °C

b) extraction of Mo-matrix

- Analysis by an mass spectrometer with an inductively coupled plasma
- Sensitivity: <u>U-238 is up to 0,07 ppb</u> and <u>Th-232 is up 0,1 ppb</u>

¹⁰⁰Mo enriched & ⁴⁸Ca depleted materials

• ¹⁰⁰Mo isotope production:

- ECP (Electro Chemical Plant), Krasnoyarsk, Russia
- 100 MoO₃ powder:
 - ¹⁰⁰Mo Enrichment: \geq 95%
 - Radioactive impurities:

ICP-MS at CUP	U: ~0.2 ppb	Th: <~0.05 ppb
HPGe at Y2L	²²⁶ Ra: 8.3 mBq/kg	²²⁸ Ac < ~1.0 mBq/kg

• ⁴⁰Ca with depletion of ⁴⁸Ca isotope production:

- ELEKTROCHIMPRIBOR (EKP), Lesnoy, Russia
- ⁴⁰CaCO₃ powder:
- ${}^{48}Ca \le 0.001\%$

- Impurities: $U \le 0.1$ ppb, Th ≤ 0.1 ppb, Sr = 1 ppm, Ba = 1 ppm

 226 Ra = 5 mBq/kg (1.4 by NEOKHIM later), 228 Ac(228 Th) = 1 mBq/kg

HPGe measurements at Baksan Neutrino Observatory INR RAS

HPGe detectors (3 x ~1 kg) at low background underground lab (H = 660 m.w.e.) $V_{int} = 30 \times 30 \times 30 \text{ cm}^3$

Principle: Registration of γ–rays from samples The spectrometer sensitivities at the levels of $\leq 3.4*10^{-3} \text{ Bq/kg} (^{232}\text{Th})$ $\leq 5.3*10^{-3} \text{ Bq/kg} (^{238}\text{U})$

Fomos-Materials for ISMART2018

Internal background of ⁴⁰Ca¹⁰⁰MoO₄ crystals: measurements in YangYang underground lab in Korea

4π CsI(Tl) active setup with Pb shielding at Y2L

⁴⁰Ca¹⁰⁰MoO₄ Scintillation Elements for AMORE I from Fomos Materials Co

Status of SE1 – SE5 at Aug 2016: already delivered to CUP

SE1

Status of SE6 - SE9: Delivered to CUP in Nov and Dec 2016

58

Dimensions and weight of the SE1-SE9 (SE10)

Name of SE	Crystal	Length, mm	D/d, mm	Mass, gr
SE 1	81SS	50,5	45,0/42,8	352,2
SE 2	88SS	50,0	47,0/40,0	339,56
SE 3	12255	50,48	52,0/45,0	424,2
SE 4	1 3 1SS	50,36	54/47	473,38
SE 5	133 SS	50,5	47/42	373,45
SE 6	135 SS	50,3	48/40	355,45
SE 7	136SS	50,5	48,4/41	357,45
SE 8	137 SS	50,8	48/41	358,2
SE 9	140SS	50,5	40,0/48,0	354,0
TOTAL				~ 3387,9
SE 10 (reserved)	143SS	51,3	40,5/48,5	357,54

Mechanical treatment: Lateral surface - as-grown or grinding
End surfaces - optically polishedOptical quality:No cracks, colorless and transparent

Activity measurements of SE1-SE-9 at mK and SE3 - SE-9 at RT ⁴⁰Ca¹⁰⁰MoO₄ Scintillation Elements for AMORE I (Fomos Materials)

	AMoRE I	SE1	SE2	SE3	SE4	SE5	SE6	SE7	SE8	SE9	AMoRE II
	Spec	Yang-Yang	CUP/IBS	Yang-Yang	Spec						
					μB	q/kg					(?)
Bi-214 (U-238 chain)	<100	<18	60,2	6	10	10	100±10	30±5	20±5	≤11	< 24
Rn-220 (Th-232 chain)	<50	<14	25,8	35	40	10	70±10	65±10	40±6	50±6	< 1,2
Bi-211 (U-235 chain)	<500	83	103	35	30	40	35±6	80±10	40±6	50±6	
Total Alfa	≤10000	4600	2700	28000	3200	≤3200	DL 1000	DL 1000	DL 0	DL0	
Po-210		1600									
U-238		670	1700								
Tomporaturo											
measurement		mK	mK	RT							

Important note!

SE1 - SE9 crystals have been grown starting with $^{40}Ca^{100}MoO_4$ waste of different types created after R&D at NEOKHIM and Fomos Materials

SE1 ÷ SE8: Attenuation index, cm⁻¹ at 520 nm

Crystal	SE No	Attenuation index, cm ⁻¹ at 520 nm				
		Position 1 (0 ⁰)	Position 2 (90°)			
		Vertical	Horisontal			
81CC	SE1	0,0311	0,0207			
88CC	SE2	0,0231	0,0176			
122CC	SE3	0,0127	0,0105			
131CC	SE4	0,0172	0,0128			
133CC	SE5	0,0118	0,0093			
135CC	SE6	0,0119	0,0086			
136CC	SE7	0,0134	0,0099			
137CC	SE8	0,0164	0,0125			
140CC	SE9	in the process of	of treatment			
143CC	SE10	reserved				
91BB	Reference	0,0118	0,0095			

Fomos-Materials for ISMART2018

Conclusion (1)

- JSC FOMOS has developed the first in the world the technology of single crystal growing based on charge of double enriched components: ⁴⁰Ca¹⁰⁰MoO₄ crystal based on Moly enriched on ¹⁰⁰Mo and Calcium enriched on ⁴⁰Ca and depleted on ⁴⁸Ca isotopes.
 - * Mass of single crystal up to 0,6 kg
 - * Diameter up to 50 mm
- Good radiopurity of Scintillation elements *grown from waste enriched material*: Bi-214 (U-238 chain) < 100 μ Bq/kg and Rn-220 (Th-232 chain) < 50 μ Bq/kg, and total alpha activity of U and Th < 10000 μ Bq/kg
- 10⁴⁰Ca¹⁰⁰MoO₄ Scintillation Elements (3,4 kg) have been grown for AMoRE I phase of the experiment.
- Total mass of AMoRE detector is 200 kg (~ 500 crystals).

Conclusion (2)

Successful jobs done at Fomos Materials Co "stimulated" Producers of stable isotopes from RosAtom Corporation (Russia):

- A 5-years long contract for big scale production of ¹⁰⁰Mo (**120 kg**) has been concluded between CUP/IBS (AMoRE Collaboration) and ECP (Zelenogorsk, Siberia) (current productivity is 28 kg per year)
- 27 kg of ⁴⁰Ca (in the form of "primary" ⁴⁰CaCO₃ carbonate) is already available at ELEKTROKHIMPRIBOR (EKP, Lesnoy, Sverdlovsk region).

CONCLUSION (3)

- Based upon FM' experience of growing CaMoO₄ and ⁴⁰Ca¹⁰⁰MoO₄ crystals (bouls) and fabricate SE (Scintillation Elements) Fomos Materials has possibilities fabricate SE from different Mo-based crystals:
- Li₂MoO₄ (crystals are grown)
- $Na_2Mo_2O_7$
- PbMoO₄
- Double and triple molybdates of REE and others.

Two Li_2MoO_4 crystals and Li_2MoO_4 SE (just after cutting and grinding + PET band on lateral surface; no polishing)

Back up slides

Facility at FM for measurement of the LY and the energy Resolution of SEs. Geometry: SE in direct contact with PMT vis optical grease

Photocathode - green extended super S20

Facility at FM for measurement of the scintillation decay kinetics of CaMoO₄

S 35: Attenuation length, cm⁻¹

Scintillation cryogenic bolometer: how it works

Scintillating Bolometer

Width : ~1 mK Signal: few μ K Stability: ~ μ K

Fomos-Materials for ISMART2018

The most "promising" 2β nuclei from the point of view of experiment • Large $Q_{2\beta}$ > 2615 keV 2615 keV γ ²⁰⁸TI Isotopic abundance (%) Possibility of enrichment in amount of hundreds kg 30 Low background High detection efficiency 20 High energy resolution *) 82Se 100MO 10 150<mark>N</mark>ơ 116**Cd** 0 2 3 Energy of decay, $Q_{2\beta}$ (MeV)

Anisotropy of Optical Properties (dichroism) of the CaMoO₄ Single Crystals

Cube, made from "As-grown" CaMoO₄ crystal. Orientation accuracy +/- 2 angle min

Identification of C-oriented plane by conoscopy

CaMoO₄ single crystal growing in Russia: Short Recent History

• Beginning: Autumn, 2003

School of Physics, SNU (KIMS Collaboration) and ITEP/BTCP, Bogoroditsk

- <u>Project ISTC 3293 (March 2006 May 2007)</u>
 ITEP (Leading organization), MSAI (&Bogoroditsk Plant, Russia)
 IPN, Minsk (Belorussia), School of Physics, Seoul National University (Korea)
- <u>Federal Aiming Program (August 2008 October 2009)</u> JSC FOMOS-Materials (Moscow), IMTM RAS (Chernogolovka, Moscow region), ITEP (coordination)
- <u>Project ISTC 3893 (May 2009 January 2012)</u> ITEP (Leading organization) MSAI (Moscow), JSC FOMOS-Materials (Moscow), Seoul National University (Seoul, Korea), Kyungpook National University (Daegu, Korea)
- <u>Federal Aiming Program (August 2011 October 2013)</u> JSC FOMOS-Materials (Moscow)

Fomos-Materials for ISMART2018

HPGe measurements at Baksan Neutrino Observatory: the results

Sampla	Isotope					
sample,	⁴⁰ K	$^{228}Ac = (^{232}Th)$	²⁰⁸ Tl [(²³² Th)]*	214 Bi = (238 U)		
material		Specific a	ctivity, Bq/kg			
Mo oxide, ¹⁰⁰ MoO ₃	(5,3±0,8)·10 ⁻²	≤ 3,8 •10 ⁻³	≤1,0·10 ⁻³ [≤2,8·10 ⁻³]	≤2,3·10 ⁻³		
Calcium carbonate, ⁴⁰ CaCO ₃	$(7,3\pm3,1)\cdot10^{-2}$	(1,6±0,2)·10 ⁻¹	$(4,4\pm3,6)\cdot10^{-3}$ [(1,2±1,0)·10 ⁻²]	(2,6±0,2)·10 ⁻¹		
Single crystal SB-29 ⁴⁰ Ca ¹⁰⁰ MoO ₄	≤ 1,2 *10 ⁻²	≤3,1*10⁻³	$\leq 8,3*10^{-4}$ [$\leq 2,4\cdot 10^{-3}$]	≤ 6,4 *10 ⁻³		

Sensitivity at level of up ~1 mBq/kg for ~0,5 kg samples & several weeks measurements

Scheme of setup at YangYang

CsI: - 6.5x5.5x30 см (12 crystals) - 9x9x6 см (2 crystals) Trigger conditions
Threshold: 25 ADC (1V/1024 = 1ADC)
Pulse width: 200 ns
Cluster number: 6

Attenuation index vs Wavelength depend on heat treatment (annealing) duration

(horizontal position of SE reference No 91)

Attenuation index vs Wavelength depend on heat treatment (annealing) duration (vertical position of SE Reference No 91)

