Белорусский государственный университет

УТВЕРЖДАЮПроректор по учеблют работе

((OB))

Регистрационный № 7Д-4473/уч.

СОВРЕМЕННЫЙ ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ

Учебная программа учреждения высшего образования по учебной дисциплине для специальности 1-31 04 06 Ядерные физика и технологии

Учебная программа составлена на основе образовательного стандарта специальности 1-31 04 06 «Ядерные физика и технологии» (ОСВО 1-31 04 06-2013), введенном с 1 сентября 2013 г., и учебного плана специальности 1-31 04 06 «Ядерные физика и технологии», утвержденном 30 мая 2013 г., регистрационный номер УП G31-142/уч.

составители:

- **А.С. Лобко**, заместитель директора по научной работе НИУ «Институт ядерных проблем» Белорусского государственного университета, доктор физико-математических наук, доцент;
- **Г.Ю. Дробышев**, инженер ООО «ДМТ Трейдинг», кандидат физикоматематических наук;
- **В.А. Мечинский**, старший научный сотрудник НИУ «Институт ядерных проблем» Белорусского государственного университета.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой ядерной физики физического факультета Белорусского государственного университета (протокол № 12 от 28 мая 2017 г.);

Советом физического факультета (протокол №11 от 8 июня 2017 г.)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа дисциплины «Современный физический эксперимент» разработана для специализации 1-31 04 06 01 «Ядерная физика и электроника» специальности 1-31 04 06 «Ядерные физика и технологии» первой ступени высшего образования. Она предназначена для обучения студентов основам экспериментальной физики высоких энергий, изучения методов экспериментальных исследований, принципов построения сложных детектирующих систем и ознакомление со всем спектром экспериментально-измерительных устройств, применяющихся в физике ядра и элементарных частиц. Настоящая программа является оригинальной и разработана с учетом соответствующих требований образовательного стандарта специальности 1-31 04 06 «Ядерные физика и технологии» (ОСВО 1-31 04 06-2013).

В настоящее время экспериментальная физика высоких энергий переживает новый период подъема, связанный с работой ряда современных ускорительных комплексов (CERN в Швейцарии, FermiLab в США, NICA в России, DESY в Германии, ...), и, в первую очередь, с работой ускорительно-накопительного комплекса (УНК) на встречных пучках протонов «Большой адронный коллайдер» (LHC) в международной лаборатории физики частиц CERN. В настоящее время, на базе этого УНК проводится ряд уникальных экспериментальных исследований. Полный цикл экспериментального исследования и последующего анализа полученных результатов в подобных экспериментах составляет порядка 15-20 лет и требует участия больших коллективов ученых-физиков. Кроме того, активно рассматриваются сейчас и будущие перспективные проекты, например комплекс FCC (Будущие кольцевые коллайдеры) и ILC (Международный линейный коллайдер). С другой стороны, научно-технические наработки, созданные в ходе подготовки экспериментов на УНК LHC, стимулировали бурное развитие физики и техники детекторов для прикладных приложений, в первую очередь, для медицинской диагностики. Глубокое понимание принципов создания современной экспериментальной установки для физики высоких энергий, включающей в себя десятки тысяч взаимосвязанных детекторов различной конструкции и назначения, равно как и многодетекторной системы для медицины и медико-биологических исследований, является важной составляющей подготовки специалиста в области ядерной физики.

Курс основывается на дисциплине «Физика ядра и элементарных частиц», завершающей общий курс физики, и на дисциплинах специальности «Взаимодействие ионизирующих излучений с веществом» и «Методы и устройства регистрации излучений».

Цель учебной дисциплины – сформировать у студентов-физиков систематические знания по методам и аппаратуре для измерения физических характеристик элементарных частиц и взаимодействий.

Задачи учебной дисциплины:

- сформировать у студентов представление о физических принципах, лежащих в основе детектирования корпускулярных излучений;
- привить и закрепить базовые навыки Монте-Карло моделирования ядерно-физического эксперимента с использованием пакета библиотек GEANT4.

Учебный материал дисциплины основан на базовых знаниях и представлениях, заложенных в дисциплинах цикла общенаучных и общепрофессиональных дисциплин «Физика атома и атомных явлений», «Физика ядра и элементарных частиц», «Электродинамика», «Квантовая механика», в дисциплинах специальности «Физика ускорителей», «Взаимодействие ионизирующих излучений с веществом», «Методы и устройства регистрации излучений».

Учебный материал дисциплины будет использован при выполнении курсовых и дипломных работ.

Перед преподавателем данной дисциплины ставятся следующие задачи:

- ознакомить студентов с физическими принципами детектирования элементарных частиц;
- систематически изложить основные сведения по регистрации элементарных частиц, их идентификации, измерении массы, энергии, импульса и других параметров;
- ознакомить обучающихся с основными подходами, применяемыми при проектировании комплексных многодетекторных экспериментальных установок и этапами современного масштабного эксперимента: научного обоснования, моделирования, разработки, эксплуатации и обработки экспериментальных данных;
 - способствовать развитию научного мировоззрения обучающихся.

Из множества эффективных педагогических методик и технологий, которые способствуют вовлечению обучающихся в поиск и управление знаниями, приобретению опыта самостоятельного решения разнообразных задач, следует выделить:

технологии проблемно-модульного обучения; технологии научно-исследовательской деятельности; проблемно-ориентированный междисциплинарный подход; интенсивное обучение;

моделирование проблемных ситуаций и их решение.

Для формирования современных социально-профессиональных компетенций выпускника вуза в практику проведения занятий целесообразно внедрять методики активного обучения и дискуссионные формы результате усвоения дисциплины обучающийся должен

знать:

особенности методов регистрации ионизирующих излучений применительно к экспериментальной физике высоких энергий;

- практическое применение технологий и методов экспериментальной физики высоких энергий в медицине, геологоразведке и системах неразрушающего контроля;
- принципы пространственных и временных измерений, идентификации элементарных частиц;

уметь:

- учитывать принципиальные физические ограничения на параметры детекторов элементарных частиц;
- подбирать тип и характеристики детекторов для решения конкретных практических задач;

владеть:

- методами компьютерного моделирования энергетических и временных спектров частиц в детекторах.
- В результате изучения учебной дисциплины «Современный физический эксперимент» у обучающегося должны быть сформированы следующие компетенции:
- уметь применять базовые научно-теоретические знания для решения теоретических и практических задач;
 - владеть системным и сравнительным анализом;
 - владеть исследовательскими навыками;
 - уметь работать самостоятельно;
- иметь навыки, связанные с использованием технических устройств, управлением информацией и работой с компьютером;
- иметь лингвистические навыки (устная и письменная коммуникация);
 - обладать качествами гражданственности;
 - быть способным к социальному взаимодействию;
 - обладать способностью к межличностным коммуникациям;
 - владеть навыками здорового образа жизни;
- применять знания теоретических и экспериментальных основ ядерной физики и ядерных технологий, ядерно-физических методов исследования, методов измерения физических величин, методов автоматизации эксперимента, методов планирования, организации и ведения научно-производственной, научно-педагогической, производственно-технической, опытно-конструкторской работы в области ядерно-физических технологий и атомной энергетики;
- применять полученные знания фундаментальных положений физики, экспериментальных, теоретических и компьютерных методов исследования, планирования, организации и ведения научно-технической работы;
- вести переговоры, разрабатывать планы сотрудничества с другими организациями;
 - пользоваться глобальными информационными ресурсами;

- пользоваться государственными языками Республики Беларусь и иностранными языками как средством делового общения;
- реализовывать методы защиты производственного персонала и населения в условиях возникновения аварий, катастроф, стихийных бедствий и обеспечения радиационной безопасности при осуществлении научной, производственной и педагогической деятельности;
- осуществлять поиск, систематизацию и анализ информации по перспективным направлениям развития отрасли, инновационным технологиям, проектам и решениям;
 - определять цели инноваций и способы их реализации;
- оценивать конкурентоспособность и экономическую эффективность разрабатываемых технологий;
- применять методы анализа и организации внедрения инноваций в научно-производственной, научно-педагогической и научно-технической деятельности.

Форма получения высшего образования — очная, дневная.

Общее количество часов -46, количество аудиторных часов -28.

Аудиторные занятия проводятся в виде лекций и управляемой самостоятельной работы (УСР). На проведение лекционных занятий отводится 24 часа, на УСР — 4 часа.

Занятия проводятся на 5-м курсе в 9-м семестре.

Формы текущей аттестации по учебной дисциплине – зачёт (9 семестр).

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

- 1. **Введение.** Предмет экспериментальной физики высоких энергий. Особенности проведения экспериментов в физике высоких энергий. Физические основы регистрации жестких излучений.
- 2. Методы ядерно-физического эксперимента в физике высоких энергий. Взаимодействия и поля в физике высоких энергий. Неускорительная физика высоких энергий. Космические лучи. Ускорители заряженных частиц. Детекторы для экспериментальной физики высоких энергий, их классификация, принципы конструкции и основные характеристики. Основные принципы и последовательность планирования эксперимента и проектирования физической установки. Анализ физической задачи. Выбор параметров и определение требуемой точности их измерения. Выбор метода измерений и состава аппаратуры.
- 3. **Пространственные измерения характеристик частиц.** Детекторы для ионизационных и трековых измерений. Регистрация частиц в жидкостях. Ядерные фотоэмульсии. Сравнение детекторов для ионизационных и трековых измерений. Проволочные камеры. Эффекты старения в проволочных камерах. Выделение пространственной информации в позиционно-чувствительном детекторе.
- 4. **Временные измерения.** Детекторы для временных измерений. Определение момента регистрации частицы в детекторе. Методы временной селекции. Методы формирования временной отметки. Методы совпадений и антисовпадений. Годоскопы.
- 5. **Измерение импульса.** Магнитные спектрометры для экспериментов с фиксированной мишенью. Магнитные спектрометры для специальных приложений.
- 6. **Идентификация частиц.** Выделение информации об энергии, потерянной частицей в детекторе. Выделение информации о типе заряженной частицы по форме импульса детектора. Идентификация нейтрино. Идентификация нейтронов.
- 7. **Калориметрия.** Электромагнитный ливень формирование и характеристики. Электромагнитные калориметры. Измерение энергии. Виды и типы калориметров. Гомогенные и негомогенные калориметры. Оптимизация светосбора из сцинтилляционных ячеек электромагнитного калориметра. Адронные калориметры. Компенсация адронного калориметра. Идентификация частиц в калориметрах. Энергетический отклик и энергетическое разрешение калориметра. Пространственное и угловое разрешение калориметра.

- 8. **Многодетекторные системы.** Многодетекторные системы. Детекторы коллайдеров. Детекторы с фиксированной мишенью. Обзор наиболее крупных современных экспериментов по физике высоких энергий (CMS, ATLAS, ALICE и др.). Особенности организации измерений в многодетекторных системах. Методы стабилизации экспериментальных установок. Калибровка и мониторирование. Особенности электронных методов измерения и отбора в задачах физики высоких энергий.
- 9. **Обработка и анализ экспериментальных данных.** Обработка сигнала. Тракт регистрации. Виртуальный эксперимент математическое моделирование процессов взаимодействия частиц высоких энергий с веществом. Пакеты GEANT4, FLUKA. Методы и средства обработки и анализа экспериментальных данных в физике высоких энергий. Пакет анализа ROOT.
- 10. Практическое применение технологий, методов и результатов экспериментальной физики высоких энергий. Ядерная медицина, методы обнаружения делящихся материалов и взрывчатых веществ, применение электронных ускорителей в комплексах неразрушающего контроля, геофизика, космические исследования.
- 11. Заключение. Некоторые направления исследований и перспективные разработки.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ

		Количество аудиторных часов						
	Название раздела, темы, занятия; перечень изучаемых вопросов	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Контролируемая (управляемая) самостоятельная работа студента	Литература	Формы контроля знаний
1	2	3	4	5	6	7	8	9
1	Введение	2						
	Предмет экспериментальной физики высоких энергий. Особенности проведения экспериментов в физике высоких энергий. Физические основы регистрации жестких излучений.	2					O[1,2,7-9] Д[1, 4]	1
2	Методы ядерно-физического эксперимента в физике вы- соких энергий	2						
	Взаимодействия и поля в физике высоких энергий. Неускорительная физика высоких энергий. Космические лучи. Ускорители заряженных частиц. Детекторы для экспериментальной физики высоких энергий, их классификация, принципы конструкции и основные характеристики. Основные принципы и последовательность планирования эксперимента и проектирования физической установки. Анализ физической задачи. Выбор параметров и определение требуемой точности их измерения. Выбор метода измерений и состава аппаратуры.	2					O[1,4,6] Д[4,7]	1
3	Пространственные измерения характеристик частиц	2				1		
	Детекторы для ионизационных и трековых измерений. Регистрация частиц в жидкостях. Ядерные фотоэмульсии.	2				1	O[1,2,6] Д[4,9]	2

	Сравнение детекторов для ионизационных и трековых из-					
	мерений. Проволочные камеры. Эффекты старения в прово-					
	лочных камерах. Выделение пространственной информации					
	в позиционно-чувствительном детекторе.					
4	Временные измерения	2				
	Детекторы для временных измерений. Определение момен-	2			O[1,2,6]	1
	та регистрации частицы в детекторе. Методы временной се-				Д[4]	
	лекции. Методы формирования временной отметки. Методы					
	совпадений и антисовпадений. Годоскопы.					
5	Измерение импульса	2				
	Магнитные спектрометры для экспериментов с фиксиро-	2			O[1,2,6]	1
	ванной мишенью. Магнитные спектрометры для специаль-				Д[4]	
	ных приложений.					
6	Идентификация частиц	2				
	Выделение информации об энергии, потерянной частицей в	2			O[1,2,6]	1
	детекторе. Выделение информации о типе заряженной час-				Д[4]	
	тицы по форме импульса детектора. Идентификация ней-					
	трино. Идентификация нейтронов					
7	Калориметрия	4		1		
	Электромагнитный ливень – формирование и характеристи-	4		1	O[1,2,6]	2
	ки. Электромагнитные калориметры. Измерение энергии.				Д[2-4]	
	Виды и типы калориметров. Гомогенные и негомогенные					
	калориметры. Оптимизация светосбора из сцинтилляцион-					
	ных ячеек электромагнитного калориметра. Адронные кало-					
	риметры. Компенсация адронного калориметра. Идентифи-					
	кация частиц в калориметрах. Энергетический отклик и					
	энергетическое разрешение калориметра. Пространственное					
	и угловое разрешение калориметра.					
8	Многодетекторные системы	2		1		
	Многодетекторные системы. Детекторы коллайдеров. Де-	2		1	O[1,2,6]	2
	текторы с фиксированной мишенью. Обзор наиболее круп-				Д[4,9]	
	ных современных экспериментов по физике высоких энер-					

	puspuooran.	24		4	H[T]	Зачёт
	Некоторые направления исследований и перспективные разработки.	2			O[1,2,4,6] Д[4]	1
11	Заключение	2				
	Ядерная медицина, методы обнаружения делящихся материалов и взрывчатых веществ, применение электронных ускорителей в комплексах неразрушающего контроля, геофизика, космические исследования.	2		1	O[1,2,6] Д[4,8]	2
10	Практическое применение технологий, методов и результатов экспериментальной физики высоких энергий	2		1		
9	зации экспериментальных установок. Калибровка и мониторирование. Особенности электронных методов измерения и отбора в задачах физики высоких энергий. Обработка и анализ экспериментальных данных Обработка сигнала. Тракт регистрации. Виртуальный эксперимент — математическое моделирование процессов взаимодействия частиц высоких энергий с веществом. Пакеты GEANT4, FLUKA. Методы и средства обработки и анализа экспериментальных данных в физике высоких энергий. Пакет анализа ROOT.	2 2		1	O[1,2,5,6] Д[4,9] Л[1]	1
	гий (CMS, ATLAS, ALICE и др.). Особенности организации измерений в многодетекторных системах. Методы стабили-					

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

Методические указания к лабораторным работам

1. А.Е. Корнеев, В.А. Мечинский Практикум по компьютерному моделированию ядерных процессов с использованием библиотеки GEANT4

Примерный перечень лабораторных работ

- 1. Ознакомление со средой моделирования GEANT4.
- 2. Моделирование энергетических спектров частиц.
- 3. Моделирование временных спектров частиц. Сцинтилляционные детекторы.
- 4. Моделирование спектров немоноэнергетического источника детекторами с оптическим съемом информации в магнитном поле.
- 5. Моделирование установок с регулярными элементами. Калориметры типа «шашлык».
- 6. Моделирование установок с регулярными элементами. Калориметры типа «спагетти».
- 7. Моделирование сложных геометрий: повороты, перенос, вычитание и объединение объёмов.
- 8. Моделирование систем со сложным источником ионизирующих частиц. Библиотека GPS.

Рекомендуемая литература

Основная

- 1. Handbook of Particle Detection and Imaging. Claus Grupen and Irene Buvat (Eds.). Springer. 2012, 1251 p.
- 2. К. Групен. Детекторы элементарных частиц. Новосибирск: Сибирский хронограф, 1999. 408 с.
- 3. C. Grupen, B. Shwartz. Particle detectors Cambridge University Press. 2008, 651 p.
- 4. Ю.К. Акимов. Фотонные методы регистрации излучений. Дубна: ОИЯИ, 2014.- 323 с.
- 5. В.А. Григорьев, А.А. Колюбин, В.А. Логинов. Электронные методы ядерно-физического эксперимента. М., Энергоатомиздат, 1988. 336 с.
- 6. К. Клайнкнехт. Детекторы корпускулярных излучений. М.: Мир. 1990. 224 с.
- 7. А. Любимов, Д. Киш. Введение в экспериментальную физику частиц. М.: Физматлит, 2001. – 272 с.
- 8. А.П. Черняев. Взаимодействие ионизирующего излучения с веществом. М.: Физматлит, 2004. 152 с.

9. М.А. Батурицкий, И.Я. Дубовская. Взаимодействие ионизирующего излучения с веществом. Минск: РИВШ, 2010. – 220 с.

Дополнительная

- 1. Д. Перкинс. Введение в физику высоких энергий. М., Энергоатомиздат, 1991. 429 с.
- 2. R. Wigmans. Calorimetry // Scientifica Acta 2, No. 1 (2008) 18–55 pp.
- 3. C.W. Fabjan, F. Gianotti. Calorimetry for Particle Physics // CERN-EP/2003-075, 96 p.
- 4. C. Leroy, P.-G. Rancoita. Principles of radiation interaction in matter and detection, World Scientific Publ. 2009, 951 p.
- 5. Ю.А. Цирлин, М.Е. Глобус, Е.П. Сысоева. Оптимизация детектирования гамма-излучения сцинтилляционными кристаллами. М: Энергоатомиздат, 1991. 152 с.
- 6. А.И. Абрамов, Ю.А. Казанский, Е.С. Матусевич. Основы экспериментальных методов ядерной физики. М.: Энергоатомиздат, 1985. 488 с.
- 7. Л.Л. Гольдин. Физика ускорителей. М.: Наука", Глав. ред. физикоматематической литературы, 1983 144 с.
- 8. Неразрушающий контроль с источниками высоких энергий / В.В. Клюев и др. М.: Энергоатомиздат, 1989. -176 с.
- 9. Ионизационные измерения в физике высоких энергий / Ю.А. Будагов и др. М.: Энергоатомиздат, 1988. 224 с.

Перечень используемых средств диагностики результатов учебной деятельности

В качестве средств диагностики и контроля знаний рекомендуется использовать:

- 1. Выборочный контроль на лекциях;
- 2. Презентация и обсуждение рефератов;
- 3. Проведение зачёта по дисциплине.

Примерный перечень мероприятий для контроля качества усвоения знаний по учебной дисциплине

Темы реферативных работ

- 1. Космические лучи и их детектирование.
- 2. Аналоговая обработка сигналов детекторов излучений.
- 3. Методы съема сигналов с детекторов излучений.

- 4. Оптимизация энергетического и временного разрешения детекторов с помощью электроники обработки сигналов.
- 5. Детекторы нейтрино.
- 6. Анализ данных и реконструкция событий.
- 7. Радиационная деградация детекторов.
- 8. Энергетический отклик и энергетическое разрешение калориметров.
- 9. Пространственное и угловое разрешение калориметров.
- 10. Виртуальный эксперимент математическое моделирование процессов взаимодействия частиц высоких энергий с веществом. Обзор основных пакетов моделирования.
- 11. Практическое применение технологий и методов экспериментальной физики высоких энергий в медицине.
- 12. Практическое применение технологий и методов экспериментальной физики высоких энергий геологоразведке.
- 13. Практическое применение технологий и методов экспериментальной физики высоких энергий для обеспечения безопасности (поиск ВВ, радиоактивных и ядерных материалов).

Рекомендации по контролю качества усвоения знаний и проведению аттестации

Текущий контроль знаний в семестре проводится как управляемая самостоятельная работа (УСР) на лекциях и осуществляется в форме устного опроса, подготовке, презентации и обсуждении реферативных работ. Форма текущей аттестации — зачёт в 9 семестре. Система оценивания — рейтинговая.

Текущая аттестация по учебной дисциплине проводится в форме зачёта.

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ ПО ИЗУЧАЕМОЙ УЧЕБНОЙ ДИСЦИПЛИНЕ С ДРУГИМИ ДИСЦИПЛИНАМИ СПЕЦИАЛЬНОСТИ

Название дисциплины, с которой требуется согласо- вание	Название кафедры	Предложения об изменениях в содержании учебной программы по изучаемой учебной дисциплине	Решение, принятое кафедрой, разработавшей учебную программу (с указанием даты и номера протокола)
«Спектрометрия и радиометрия иони- зирующих излуче- ний»	Кафедра ядерной физики	Оставить содержание учебной дисциплины без изменения	Рекомендовать к утверждению учебную программу в представленном варианте Протокол № 12 от 28 мая 2017.
«Ускорители заря- женных частиц в ядерной технике и технологиях»	Кафедра ядерной физики	Оставить содержание учебной дисциплины без изменения	Рекомендовать к утверждению учебную программу в представленном варианте Протокол № 12 от 28 мая 2017.
«Действие излучений на материалы ядерной техники»	Кафедра ядерной физики	Оставить содержание учебной дисциплины без изменения	Рекомендовать к утверждению учебную программу в представленном варианте Протокол № 12 от 28 мая 2017.

дополнения и изменения к учебной программе уво

на ____/___ учебный год

N <u>o</u> N <u>o</u>	Дополнения и изменения	Основание
ПП		
l ——		
Vиебная	программа пересмотрена и одобрен	а на заселании кафелны ялен-
ной физи		а на заседании кафедры идер
(протоко	ол № от 20_ г.)	
n	· 1 ·	
	щий кафедрой	
ядерной	±	
к.фм.н.	, доцент	А.И. Тимощенко
T/TD DDAY	ICH A IO	
УТВЕРЖ		
	изического факультета	
д.фм.н.	, профессор	В.М. Анищик