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volume diffraction grating

volume diffraction grating

WhatWhat is Volume Free Electron Laser ? *is Volume Free Electron Laser ? *

* Eurasian Patent no. 004665

volume “grid” resonator X-ray VFEL



Benefits of volume distributed feedback*Benefits of volume distributed feedback*

� frequency tuning at fixed energy of electron beam in 

significantly wider range than conventional systems can 

provide

� more effective interaction of electron beam and 

electromagnetic wave allows significant reduction of 

threshold current of electron beam and, as a result, 

miniaturization of generator 

� reduction of limits for available output power by the use of 

wide electron beams and diffraction gratings of large 

volumes

� simultaneous generation at several frequencies



VFEL experimental historyVFEL experimental history
1996

Experimental modeling of electrodynamic processes 

in the volume diffraction grating made from dielectric 

threads

2001

First lasing of volume free electron laser in mm-wavelength 

range. Demonstration of validity of VFEL principles. 

Demonstration of possibility for frequency tuning at constant 

electron energy

2004

New VFEL generator with a volume “grid” resonator.

V.G. Baryshevsky et al., NIM. B 252 (2006) 86

V.G.Baryshevsky et al., NIM 483 A (2002) 21

V.G.Baryshevsky et al., NIM 393A (1997)  71



VFELVFEL generator generator with 
a "grid" volume resonator*::

Main features:

�electron beam of 

large cross-section 

� electron beam 

energy 180-250 keV

�possibility of gratings 

rotation

�operation frequency 

10 GHz

� tungsten threads 

with diameter 100 µm

* V.G. Baryshevsky et al., Nucl. Instr. Meth. B 252 (2006) 86

V.G.Baryshevsky et al., Proc. FEL06, p.331

Resonant grating provides 

VDFB of generated radiation 

with electron beam



TwoTwo--wave VFELwave VFEL
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ThreeThree--wave VFELwave VFEL
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Equations for electron beamEquations for electron beam
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System for tSystem for twowo--wave VFELwave VFEL::
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System of equations for BWT, TWT etc. *System of equations for BWT, TWT etc. *

System is versatile in the sense that they remain the same 

within some normalization for a wide range of electronic 

devices (FEL, BWT, TWB etc). 

*N.S.Ginzburg, S.P.Kuznetsov, T.N.Fedoseeva. Izvestija 

VUZov - Radiophysics, 21 (1978), 1037 (in Russian). 

Right-hand side of our system is more complicated than cited here, 

because it takes into account two-dimensional distributions with respect to 

spatial coordinate and electron phase p. So, they allow to simulate 

electron beam dynamics more precisely. This is very important when 

electron beam moves angularly to electromagnetic waves.



Code Code VOLCVOLC ((““VOLVOLumeume CCodeode””),),

forfor VFEL simulationVFEL simulation



Some cases 

of bifurcation 

points

Results of Results of numericalnumerical simulation (2002simulation (2002--2007):2007):
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All results obtained numerically are in good 

agreement with analytical predictions.



In electronic devices such as FEL, TWT, BWT etc. self-

oscillations are due to interaction of electron beam and electromagnetic 

field under distributed feedback. Investigation of chaos in nonlinear 

optical devices, accelerators, FEL etc. is of great interest in modern 

physics *. 

In VFEL simulation we faced with chaotic behaviour of 

electromagnetic field intensities too. Here chaotic dynamics is induced 

by complicated interaction of electron beam bunches with 

electromagnetic field under VDFB. Investigation of chaos in VFEL is 

important in the light of its experimental development.

Nonlinearity is necessary but non-sufficient condition for chaos 

in the system. The main origin of chaos is the exponential divergence of 

initially close trajectories in the nonlinear systems. This is so-called the 

“Butterfly effect”** (the sensibility to initial conditions).

Dynamical systemsDynamical systems

* M.E.Couprie, Nucl. Instr. Meth. A507 (2003), 1

M.S.Hur, H.J. Lee, J.K.Lee., Phys. Rev. E58 (1998), 936

N.S.Ginzburg, R.M.Rosental, A.S.Sergeev, Tech. Phys. Lett., 29 (2003) 71

** E.N. Lorenz, J. Atmos. Sci. 20 (1963), 130



Example of periodic regimes of VFEL Example of periodic regimes of VFEL 
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Quasiperiodic oscillationsQuasiperiodic oscillations
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Quasiperiodicity 

is associated 

with the Hopf 

bifurcations 

which introduces 

a new frequency 

into the system. 

The ratios 

between the 

fundamental 

frequencies are 

incommensurate

(Hahn, Lee,

Phys. 

Rev.E(1993),48, 

2162)



““WeakWeak”” chaotic regimechaotic regime

2900 3000 3100 3200 3300 3400 3500 3600 3700

3100

3200

3300

3400

3500

3600

3700

E
(t
+
d
)

E(t)

0 200 400 600 800

t, ns

0

1E+3

2E+3

3E+3

4E+3

|E|

0 200 400 600

ω

0

2

4

6

8

10

IF
T

, a.u.

3
0
0
0

3
2
0
0

3
4
0
0

3
6
0
0

3
8
0
0

3000

3200
3400

3600
3800

3000

3200

3400

3600

3800

E
(t
+
2
d
)

E(t
+d)

E(t)

Dependence 

of amplitude 

in time seems 

as 

approximate

repetition of 

equitype 

spikes close 

in dimensions 

per 

approximately 

equal time 

space.



Chaotic selfChaotic self--oscillations (hyperchaos)oscillations (hyperchaos)
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Quasiperiodicity and intermittencyQuasiperiodicity and intermittency
Intermittency is closely 

related to saddle-node 

bifurcations. This 

means the collision 

between stable and 

unstable points, that 

then disappears.

(Hahn, Lee, Phys. 

Rev.E(1993),48, 2162)
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Quasiperiodicity and intermittencyQuasiperiodicity and intermittency
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Beginning of amplification and generation Beginning of amplification and generation 

regimes are first and second bifurcation regimes are first and second bifurcation 

pointspoints
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In simulations an important 

VFEL feature due to VDFB was 

shown. This is the initiation of 

quasiperiodic regimes at 

relatively small current near 

firsts threshold points.
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Initiation of quasiperiodic regimes at Initiation of quasiperiodic regimes at 

relatively small resonator length near relatively small resonator length near 

threshold pointthreshold point
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Sensibility to initial conditionsSensibility to initial conditions for for 

generator regimegenerator regime
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The largest Lyapunov exponent is a measurement of the stability of the 

underlying dynamics of time series. It specifies the mean velocity of  

divergence of neighboring points.

Periodic regime “Weak” chaos



Map of BWT dynamical regimes with Map of BWT dynamical regimes with 

strong strong 

reflections*reflections*

*S.P.Kuznetsov. 

Izvestia Vuzov 

“Applied Nonlinear 

Dynamics”, 2006, 

v.14, 3-35

with large-scale 
and small-scale 
amplitude 
regimes



Domains with transition between Domains with transition between 

largelarge--scale and smallscale and small--scale amplitudesscale amplitudes



Root to chaotic lasingRoot to chaotic lasing

Larger number of principle frequencies for transmitted wave 

can be explained the fact that in VFEL simultaneous 

generation at several frequencies is available. Here electrons 

emit radiation namely in the direction of transmitted wave.

0 depicts a domain under beam current threshold. P – periodic regimes,  

Q – quasiperiodicity, I – intermittency, C – chaos.
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Another root to chaotic lasingAnother root to chaotic lasing

0 depicts a domain under beam current threshold. P – periodic regimes,  

Q –quasiperiodicity, A – domains with transition between large-scale and 

small-scale amplitudes, I – intermittency, C – chaos.
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ConclusionsConclusions

�� The original software for VFEL simulation The original software for VFEL simulation 

allows to obtain all main VFEL physical allows to obtain all main VFEL physical 

laws and dependencies. laws and dependencies. 

�� In simulation VFEL was considered as a In simulation VFEL was considered as a 

dynamical system. dynamical system. 

�� TwoTwo--parameter analysis shows the parameter analysis shows the 

complicated root to chaos in VFEL lasing.complicated root to chaos in VFEL lasing.
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