Generation of radiation in Volume Free Electron Lasers and problems of mathematical modeling of nonlinear processes in such generators

V.G.Baryshevsky, K.G.Batrakov, V.I.Stolyarsky, S.N. Sytova

Research Institute for Nuclear Problems, Belarus State University

Table 1: Free Electron Lasers (2004)(W.B.Colson et al. Proc. 2004 FEL Conference, 706-710)

EXISTING FELS	λ (μ m)	$\sigma_{c}(ps)$	E(MeV)	I(A)	EXISTING FELs	λ (μm)	$\sigma_{z}(\mathbf{ps})$	E(MeV)	I(A)
Italy (FEL-CAT)	760	15-20	1.8	5	Osaka (iFEL1)	5.5	10	33.2	42
UCSB (mm FEL)	340	25000	6	2	Tokyo (KHI-FEL)	4-16	2	32-40	30
Novosibirsk (RTM)	120-180	70	12	10	Nieuwegein (FELIX)	3-250	1	50	50
Korea (KAERI-FEL)	97-1200	25	4.3-6.5	0.5	Duke (MARKIII)	2.7-6.5	3	31-41.5	20
Himeji (LEENA)	65-75	10	5.4	10	Stanford (SCAFEL)	3-13	0.5-12	22-45	10
UCSB (FIR FEL)	60	25000	6	2	Orsay (CLIO)	3-53	0.1-3	21-50	80
Osaka (ILE/ILT)	47	3	8	50	Vanderbilt (FELI)	2.0-9.8	0.7	43	50
Osaka (ISIR)	40	30	17	50	- Osaka (iFEL2)	1.88	10	68	42
Tokai (JAERI-FEL)	22	2.5-5	17	200	Nihon (LEBRA)	0.9-6.5	<1	58-100	10-20
Bruyeres (ELSA)	20	30	18	100	UCLABNI (VISA)	0.8	0.5	70.0	250
Osaka (FELI4)	18-40	10	33	40	DOLL (ATTA	0.0 A 2	e	50.2	100
UCLA-Kurchatov	16	3	13.5	80	BNL (AIF)	0.0	0	50	100
LANL (RAFEL)	15.5	15	17	300	Dortmund (FELICITAI)	0.42	50	450	90
Stanford (FIREFLY)	15-80	1-5	15-32	14	BNL NSLS (DUVFEL)	0.1	0.7	300	500
UCLA-Kurchatov-LANL	12	5	18	170	Orsay (Super-ACO)	0.3-0.6	15	800	0.1
Maryland (MIRFEL)	12-21	5	9-14	100	Osaka (iFEL3)	0.3-0.7	5	155	60
Beijing (BFEL)	5-20	4	30	15-20	Okazaki (UVSOR)	0.2-0.6	б	607	10
Dresden (ELBE1)	3-22	10	40	8	Tsukuba (NIJI-IV)	0.2-0.6	14	310	10
Korea (KAERI HP FEL)	3-20	10-20	20-40	30	Italy (ELETTRA)	0.2-0.4	28	1000	150
Newport News (IR demo)	3, 6, 10	0.2	160	270	Duke (OK-4)	0.193-2.1	0.1-10	1200	35
Darmstadt (FEL)	6-8	2	25-50	2.7	ANL (APSFEL)	0.13	0.3	399	400
BNL (HGHG)	5.3	6	40	120	DESY (TTF1)	0.08-012	0.04	250	3000

Table 2: Proposed Free Electron Lasers (2004)

PROPOSED FELs	λ(μm)	σ _c (ps)	E(MeV	I(A)
		_)	
Tokyo (FIR-FEL)	300-1000	5	10	30
Netherlands (TEUFEL)	180	20	6	350
Rutgers (IRFEL)	140	25	38	1.4
Novosibirsk (RTM1)	3-20	10	50	20-100
Dresden (ELBE)	30-750	1-5	10-40	30
Daresbury (4GLS-IRFEL)	5-100	0.2-1	50	100
Novosibirsk (RTM)	2-11	20	98	100
Frascati (SPARC)	0.533	0.1	142	500
TJNAF (UVFEL)	0.25-1	0.2	160	270
Hawaii (FEL)	0.3-3	2	100	500
Harima (SUBARU)	0.2-10	26	1500	50
Shanghai (SDUV-FEL)	0.5-0.088	1	300	400
Frascati (COSA)	0.08	10	215	200
Daresbury (4GLS-VUV)	0.4-0.1	0.1-1	600	300
Daresbury (4GLS-XUV)	0.1-0.01	0.1-1	600	2000
Duke (OK-5,VUV)	0.03-1	0.1-10	1200	50
DESY (TTF2)	0.006	0.17	1000	2500
Italy (SPARX)	0.0015	0.1	2500	2500
BESSY (Soft X-ray)	0.0012	0.08	2300	3500
Trieste (FERMI)	0.001-0.1	0.1	3000	2500
RIKEN (SPring8 SCSS)	0.00036	0.5	1000	2000
MIT (Bates X-Ray FEL)	0.0003	0.05	4000	1000
SLAC (LCLS)	0.00015	0.07	14350	3400
DESY (TESLA)	0.0001	0.08	30000	5000
Pohang (PAL X-FEL)	0.0003	0.1	3000	4000

First lasing of Volume FEL (VFEL) in wavelength range $\lambda \sim 4 - 6 \text{ mm} (2001)$

V.G.Baryshevsky, K.G.Batrakov, A.A.Gurinovich, I.I.Ilienko, A.S.Lobko, V.I.Moroz, P.F.Sofronov, V.I.Stolyarsky

VFEL-10 keV (2001)

General view

Vacuum setup

VFEL-250 keV (2003)

"Grid" volume resonator

Three-wave VFEL, Bragg-Bragg geometry

Laue-Laue geometry Bragg-Laue geometry

Volume distributed feedback

- If **one mode** is in synchronism, the threshold current *j*:
- If two modes are in synchronism, the threshold current j:

 If **n** modes are in synchronism, the threshold current *j*:

We assume

kL@1

Main equations

$$\Delta \mathbf{E} - \nabla (\nabla \mathbf{E}) - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t} = \frac{\partial \mathbf{j}_b}{\partial t}$$

$$\mathbf{E} = \mathbf{e}_{\sigma} (Ee^{i(\mathbf{kr} - \omega t)} + E_{\tau} e^{i(\mathbf{k}_{\tau} \mathbf{r} - \omega t)}),$$
$$\mathbf{j}_{b} = \mathbf{e}_{\sigma} j e^{i(\mathbf{kr} - \omega t)},$$

In the common n – wave case:

$$\mathbf{E} = \mathbf{e} \sum_{i=1}^{n} E_{i} e^{i(\mathbf{k}_{i}\mathbf{r} - \omega t)}$$

System for three-wave VFEL:

$$\begin{aligned} \frac{\partial E_0}{\partial t} + \gamma_0 c \frac{\partial E_0}{\partial z} + 0.5i\omega lE_0 - 0.5i\omega\chi_1 E_1 - 0.5i\omega\chi_2 E_2 = \\ &= 2\pi j \Phi \int_0^{2\pi} \frac{2\pi - p}{8\pi^2} \Big(e^{-i\theta(t,z,p)} + e^{-i\theta(t,z,-p)} \Big) dp, \\ \frac{\partial E_1}{\partial t} + \gamma_1 c \frac{\partial E_1}{\partial z} - 0.5i\omega\chi_{-1} E_0 + 0.5i\omega l_1 E_1 - 0.5i\omega\chi_{2-1} E_2 = 0, \\ \frac{\partial E_2}{\partial t} + \gamma_2 c \frac{\partial E_2}{\partial z} - 0.5i\omega\chi_{-2} E_0 - 0.5i\omega\chi_{1-2} E_1 + 0.5i\omega l_2 E_2 = 0 \end{aligned}$$

System parameters:

$$l_{i} = \frac{k_{i}^{2}c^{2} - \omega^{2}\varepsilon_{0}}{\omega^{2}}, \quad i = 0, 1, 2$$

$$l = l_{i} + \delta \quad \delta \quad -\text{detuning from } k_{i} = 0, 1, 2$$

$l = l_0 + \delta$, δ — detuning from exact Cherenkov condition

Simple initial and boundary conditions:

$$\begin{split} E_0 \big|_{z=0} &= E_0^0, \\ E_1 \big|_{z=L_1} &= E_1^0 \\ E_2 \big|_{z=L_2} &= E_2^0, \\ E_j \big|_{t=0} &= 0 \end{split}$$

System for n-wave VFEL:

Boundary conditions including mirrors:

$$E_i\Big|_{z=L_i} = E_i^0 + \sum_{j\neq i} \alpha_j E_j\Big|_{z=L_j} \exp(i\varphi_j);$$

$$i = 1, \dots, n$$

Common boundary conditions:

$$\mathbf{B}\frac{\partial \mathbf{E}}{\partial t} + \sum_{i=2}^{n} \mathbf{P}_{i} \frac{\partial \mathbf{E}}{\partial x_{i}} + \mathbf{Q}\mathbf{E} = \mathbf{G}(\mathbf{j}, \mathbf{E}^{0})$$

Equations for electron beam

$$\frac{d^{2}\theta}{dt^{2}} = \frac{e}{m\gamma^{3}} (\mathbf{e}_{\sigma}\mathbf{n}) \operatorname{Re}\left\{E \exp\left(i(\mathbf{k}_{\perp}\mathbf{r}_{\perp} + k_{z}z - \omega t)\right)\right\},\$$

$$\theta(t, t_{0}, \mathbf{r}_{\perp}) = \mathbf{k}_{\perp}\mathbf{r}_{\perp} + k_{z}z - \omega t(z, t_{0}) -$$

electron phase in a wave

$$\frac{d\theta(t,0,p)}{dz} = k - \omega/u, \quad \theta(t,0,p) = p,$$

$$t > 0, \quad z \in [0,L], \quad p \in [-2\pi,2\pi]$$

Code VOLC - VFEL simulation

Periodic regime of VFEL intensity in three-wave geometry:

Phase space portrait

Simulation of Smith-Purcell radiation

Amplification and oscillation regimes in three-wave geometry

SASE regime simulation: IE 。 1E+6 1E+5 1E+4 1E+3 1E+2 10 1 0.1 0.01 1E-3 1E-4 1E-5 1E-6 1E-7 50 100 150 200 250 300 350 0

t, ns

Dispersion equation:

$l_0 l_1 l_2 - l_0 r_{12} - l_1 r_2 - l_2 r_1 - \chi_1 \chi_{-2} \chi_{2-1} - \chi_2 \chi_{-1} \chi_{1-2} = 0$ **Two-root degeneration case:** $\beta_1\beta_2l_1l_2 + (\beta_1l_1 + \beta_2l_2)l_0 - \beta_1\beta_2r_{12} - \beta_1r_1 - \beta_2r_2 = 0$ **Three-root degeneration case:** $\beta_1 l_1 + \beta_2 l_2 + l_0 = 0$

One-mode synchronism, dependence on detuning from exact Cherenkov condition δ

One-mode synchronism, dependence on δ and system parameter $\textbf{\textit{I}}_1$

Three-root degeneration case

Current threshold for two- and threewave geometry in dependance on *L*

References (VFEL theory and experiment)

- V.G. Baryshevsky, I.D. Feranchuk. Parametric X-rays from ultrarelativistic electrons in a crystals: theory and possibilities of practical. Journ.Phys. 44 (1983) 913–922
- V.G. Baryshevsky, I.D. Feranchuk. Parametric beam instability of relativistic charged particles in a crystal. *Phys.Let.A.* 102 (1984) 141–144
- V.G. Baryshevsky. Volume Free Electron Lasers. NIM A445 (2000) 281-283
- V.G. Baryshevsky, K.G. Batrakov et al. First lasing of a volume FEL (VFEL) at a wavelength range 4-6 mm. NIM A483 (2002) 21-24
- V.G. Baryshevsky, K.G. Batrakov. Dependance of volume FEL (VFEL) threshold conditions on undulator parameters. NIM A483 (2002) 531-533
- V.G. Baryshevsky, K.G. Batrakov, V.I. Stolyarsky. Application of Volume diffraction grating for TeraHertz lasing in Volume FEL (VFEL). NIM A507 (2003) 93-96
- Baryshevsky V.G., Batrakov K.G. Use of Dynamical Undulator Mechanism to Produce Short Wavelength Radiation in Volume FEL (VFEL). NIM A507 (2003) 35-39
- V.G. Baryshevsky, K.G. Batrakov et al. Progress of the volume FEL (VFEL) experiments in millimeter range. NIM A507 (2003) 137-140

References (VFEL simulation)

- Batrakov K., Sytova S. Modelling of free electron lasers.
 Computational Mathematics and Mathematical Physics 45: 4 (2005) 666–676
- Batrakov K., Sytova S. Nonstationary stage of quasi-Cherenkov beam instability in periodical structures. *Mathematical Modelling and Analysis.* 10: 1 (2005) 1–8
- Batrakov K., Sytova S. Nonlinear analysis of quasi-Cherenkov electron beam instability in VFEL (Volume Free Electron Laser). *Nonlinear Phenomena in Complex Systems*, 8: 1(2005) 42–48
- Batrakov K., Sytova S. Modelling of quasi-Cherenkov electron beam instability in periodical structures. Mathematical Modelling and Analysis, 9 (2004) 1-8.
- Sytova S. Finite-difference methods for generalised transport equations.
 Differential Equations, 38 (2002) 999-1000
- Sytova S. On Numerical Methods for One Problem of Mixed Type.
 Mathematical Modelling and Analysis. 6 (2001) 321-326.
- Sytova S. Numerical methods in problems of modeling of free electron lasers. Differential Equations, 37 (2001) 976-871