Numerical Analysis of Lasing Dynamics in Volume Free Electron Laser

S. Sytova

 Research Institute for Nuclear Problems,Belarusian State University

Contents

- **Nhat is Volume Free Electron Laser** (VFEL)
- **n** Mathematical model of VFEL
- **Numerical investigation of lasing** dynamics in VFEL

FEL lasing is aroused by different types of spontaneous radiation: undulator radiation, Smith-Purcell or Cherenkov radiation and so on. Using positive feedback in FELs reduces the working length and provides oscillation regime of generation. This feedback is usually one-dimensional and can be formed either by two parallel mirrors or by one-dimensional diffraction grating, in which incident and diffracted waves move along the electron beam.

Theoretical investigations show that it is one of the effective schemes with n-wave volume distributed feedback (VDFB)

What is volume distributed feedback?

Volume (non-one-dimensional) multi-wave distributedfeedback is the distinctive feature of Volume Free Electron Laser (VFEL)

Benefits provided by the volume distributed feedback

 The new law of instability for an electron beam passing through a spatiallyperiodic medium provides the increment of instability in degeneration points proportional to $\rho^{\text{1/(3+s)}}$, here s is the number of surplus waves appearing due to diffraction. This increment differs from the conventional increment for single-wave system (TWTA and FEL), which is proportional to $\rho^{1/3}.$ (**V.G.Baryshevsky, I.D.Feranchuk**, *Phys.Lett.* 102A (1984) 141)

This new law provides for noticeable reduction of electron beam current density necessary for achievement the generation threshold. In X-ray range this generation threshold can be reached for the induced parametric X-ray radiation in crystals, i.e. to create X-ray laser

(V.G.Baryshevsky, K.G.Batrakov, I.Ya. Dubovskaya, J.Phys D24 (1991) 1250)

This law is universal and valid for all wavelength ranges regardless the spontaneous radiation mechanism

$$
J_{\text{start}} \sim \frac{1}{\left((kL)^3 (k \chi_{\tau} L)^{2s} \right)}
$$

What is Volume Free Electron Laser ? *

* Eurasian Patent no. 004665

Use of volume distributed feedback makes available:

- \checkmark frequency tuning at fixed energy of electron beam in significantly wider range than conventional systems can provide
- \checkmark more effective interaction of electron beam and electromagnetic wave allows significant reduction of threshold current of electron beam and, as a result, miniaturization of generator
- \checkmark reduction of limits for available output power by the use of wide electron beams and diffraction gratings of large volumes
- \checkmark simultaneous generation at several frequencies

VFEL experimental setup (2001)

2001 - First lasing of volume free electron laser in mm-wavelength range. Demonstration of validity of VFEL principles. Demonstration of possibility for frequency tuning at constant electron energy(V.G.Baryshevsky et al. NIM 483 A (2002) 21)

The interaction of the exciting diffraction grating with the electron beam arouses Smith-Purcell radiation. The second resonant grating provides distributed feedback of generated radiation with electron beam by Bragg dynamical diffraction.

New VFEL generator (2004) :

First observation of generation in the backward wave oscillator with a "grid" diffraction grating and lasing of the volume FEL with a "grid" volume resonator*

Main features:

- volume gratings (volume "grid")
- > electron beam of large cross-section
- ≻ electron beam energy 180-250 keV
- \blacktriangleright possibility of gratings rotation
- ≻operation frequency 10 GHz
- \triangleright tungsten threads with diameter 100 μ m

* V. Baryshevsky et al., Nucl. Instr. Meth. B 252 (2006) 86V.G.Baryshevsky et al., Proceedings of FEL06, Germany (2006), p.331

Electrodynamical properties of a "grid" volume resonator *

Electrodynamical properties of a volume resonator that is formed by a periodic structure built from the metallic threads inside a rectangular waveguide depend on diffraction conditions.

Resonant grating provides VDFB of generated radiation with electron

* V. Baryshevsky, A. Gurinovich, Proceedings of FEL06, Germany (2006), p.335

VFEL in Bragg geometry

Laue geometry

Three-wave VFEL, Bragg-Bragg geometry

Additional parameters give possibility to adjust generation to more optimal region. Besides three-wave distributed feedback can be realized in region of three root degeneration. In this case all three modes are in synchronism with electron beam and interaction occurs more intensively.

Equations for electron beam

$$
\frac{d^2\theta}{dt^2} = \frac{e}{m\gamma^3}(\mathbf{e}_{\sigma}\mathbf{n}) \operatorname{Re} \{ E \exp \big(i(\mathbf{k}_{\perp}\mathbf{r}_{\perp} + k_z z - \omega t) \big) \},
$$

\n
$$
\theta(t, z, p) - \text{electron phase in a wave}
$$

\n
$$
\frac{d\theta(t, 0, p)}{dz} = k - \omega / u, \quad \theta(t, 0, p) = p,
$$

\n
$$
t > 0, \quad z \in [0, L], \quad p \in [-2\pi, 2\pi]
$$

Main equations

$$
\Delta E - \nabla(\nabla E) - \frac{1}{c^2} \frac{\partial^2 E}{\partial t} = \frac{\partial j_b}{\partial t},
$$

$$
\mathbf{E} = \mathbf{e} \ \left(E_0 e^{i(\mathbf{k} \mathbf{r} - \omega t)} + E_1 e^{i(\mathbf{k}_\tau \mathbf{r} - \omega t)} \right),
$$

$$
\mathbf{j}_b = \mathbf{e} \ \textit{je}^{i(\mathbf{k} \mathbf{r} - \omega t)}
$$

1 $\sum_{i} \rho^{i(\mathbf{k}_i \mathbf{r}-\omega t)}$ $i{=}0$ In the common n – wave case: $\boldsymbol{\mathcal{N}}$ $\sum E_i e^{i(\mathbf{k}_i \mathbf{r} - \omega t)}$ $E.e^{\prime\prime}$ ω −= $\sum E_i e^{i({\bf k}_i {\bf r} -}$ $E = e^{\sum E_i e^{i(\mathbf{k}_i)}}$

System for two-wave VFEL :

$$
=2\pi j\Phi\int_{0}^{2\pi} \frac{2\pi-p}{8\pi^{2}}\Big(e^{-i\theta(t,z,p)}+e^{-i\theta(t,z,-p)}\Big)dp,
$$

$$
\frac{\partial E_1}{\partial t} + \gamma_1 c \frac{\partial E_1}{\partial z} - 0.5 i \omega \chi_{-1} E_0 + 0.5 i \omega I_1 E_1 = 0
$$

ral form of current is ob coordinate of entrance point in interaction zone. In the mean field ses: entrance time of electro k ^ce integral form of current $m \sim f$ nografionni or canoni n approximation double integration over two initial phases can be reduced
. y
111 are finegration.
<u>Components of the dielectric susceptibility</u> of the target \sim over two initial The integral form of current is obtained by averaging over two initial phases: entrance time of electron in interaction zone and transverse to single integration.

Code VOLC for VFEL simulation

Results of numerical simulation (2002-2007):

Dependence of the threshold current on asymmetry factor β of VDFB
300 m

Current threshold for twoWave geometry in dependence on L and three- $\overline{\mathcal{L}}$ 1E+5L, cm10 15 20 25 30 35 40 45 50 55 60 65 700.010.11101E+21E+31E+4j, A/cm2 two-wave geometry, one mođe in sýńchronism 2-root degeneration point in three-wave geometry 3-root degeneration point So, threshold current can be significantly decreased when modes are degenerated in multiwavediffraction geometry $\left(kL\right)^{3+2(n-1)}$ 1 ${\dot J}_{th}$ \sim kL $\big)$ ³⁺²⁽ⁿ⁻¹) For n modes in synchronism*:

*V.Baryshevsky, K.Batrakov, I.Dubovskaya, NIM 358A (1995) 493

Dependence of electromagnetic radiation on L for experimental setup*

*V.G.Baryshevsky, N.A.Belous, A.Gurinovich et al.,Proceedings of FEL06, Germany (2006), p.331

Quasiperiodic oscillations

"Weak" chaotic regime

The largest Lyapunov exponent reconstructed with Rosenstein approach*

The largest Lyapunov exponent is a measurement of the stability of the underlying dynamics of time series. It specifies the mean velocity of divergence of neighboring points.

*M.T.Rosenstein et al. Physica D65 (1993), 117-134

Quasiperiodicity and intermittency

Root to chaotic lasing

References

- Batrakov K., Sytova S. Mathematical Modelling and Analysis, 9
(2004) 1-8 (2004) 1-8.
- ❖ Batrakov K., Sytova S. Computational Mathematics and
Mathematical Physics 45: 4 (2005) 666–676 Mathematical Physics 45: 4 (2005) 666–676
- ❖ Batrakov K., Sytova S.*Mathematical Modelling and Analysis. 10: 1*
(2005) 1–8 (2005) 1–8
- ❖ Batrakov K., Sytova S. *Nonlinear Phenomena in Complex Systems,*
R : 4(2005) 359-365 8 : 4(2005) 359-365
- ❖ Batrakov K., Sytova S. *Nonlinear Phenomena in Complex Systems,*
৪ · 1(2005) 42–48 8 : 1(2005) 42–48
- ❖ Batrakov K., Sytova S. Mathematical Modelling and Analysis. 11: 1
(2006) 13–22 (2006) 13–22
- ❖ Batrakov K., Sytova S. Proceedings of FEL06, Germany (2006), p.41
- ❖ Batrakov K., Sytova S. Proceedings of RUPAC, Novosibirsk, Russia,
(2006) mono04 (2006), mono04