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Appendix

A.1 X-ray Polarizability and Eigenwaves
for the Electromagnetic Field in a Crystal

The general expression for the tensor of the dielectric permittivity εij(k,kg, ω)
in the constitutive equation (2.4) contains the tensor of the X-ray polarizabil-
ity χij, which describes the interaction of X-ray radiation with the crystal:

εij(k,kg, ω) = δijδk,kg
+ χij(k,kg, ω), i, j = 1, 2, 3 . (A.1)

The components of χij are not phenomenological parameters but microscopic
characteristics of the crystal, which are expressed through the amplitudes of
the scattering of X-ray photons on periodically arranged atoms and nuclei
(see, for example, [6]):

χij(k,kg, ω) =
4πc2

ω2Ω

∑

a

[
f

(e)
ij,a(g, ω) + f

(n)
ij,a(k,kg, ω)

]
eigRa . (A.2)

Here Ω is the volume of a crystallographic unit cell; Ra is the coordinate of the
ath atom in the cell; f

(e)
ij,a is the amplitude of the elastic coherent scattering

of photons on atom’s electrons [8]:

f
(e)
ij,a(g, ω) = −δijr0[Fa(g) + ∆f ′(ω) + i∆f ′′(ω)]e−Wa(g) , (A.3)

where r0 = e2/mc2 is the electromagnetic radius of an electron; Fa(g) is an
atomic scattering factor; ∆f ′

a(ω), ∆f ′′
a (ω) are the real and imaginary parts

of anomalous dispersion corrections, respectively, which take into account the
absorption and resonant scattering of photons; e−Wa(g) is the Debye–Waller
factor, which quantifies the reduction of the elastic amplitude due to inelastic
scattering on the crystal phonons. The method for calculation of the X-ray
polarizability for various crystals is presented in [7].

The contribution to polarizability by the scattering of photons on resonant
nuclear transitions is essential for Mössbauer crystals [1]:
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f
(n)
ij,a(k,kg, ω) = − ñ

4ωr

2J + 1
2J0 + 1

Γ1

�(ω − ωr) + Γ
Pij(k,kg)ηae−Wa(k,kg). (A.4)

where ωr is the frequency of resonant transition of nuclei of the cell with
weight ηa; Γ1 and Γ are the elastic and total widths of the excited level,
respectively; J1 and J are the angular moments of the excited and ground
states, respectively; the polarization factor Pij(k,kg) is determined by the
multiplicity of transition:

E1 → Pij = δij , M1 → Pij =
(kkg)δij − kikgj

k2
,

E2 → Pij =
1
k2

[(kkg)δij + kjkgi − 2kikgj ] .

The Debye–Waller factor depends on the ratio of the width Γ to the phonon
energy of a crystal �ωphon:

Wa(k,kg) =
1
2
u2

a(k2 + k2
g), Γ � �ωphon,

Wa(k,kg) =
1
2
u2

ag2, Γ � �ωphon ,

where u2
a is the mean square amplitude of nuclear oscillations near an equi-

librium position.
In the X-ray domain, the X-ray polarizability is typically |χi,j| ∼

10−4−10−6. For the solution of Maxwell’s equations (2.1) with the accuracy
O(|χi,j|2), the electromagnetic field in a medium remains transverse, and the
interaction between the field and the crystal is essential at the wave vectors
k, satisfying the Bragg condition [9]:

αB =
2kg + g2

k2
≤ χ0 . (A.5)

In most cases, condition (A.5) is fulfilled for only one reciprocal lattice vector
g for fixed k, and the two-wave approximation of the dynamical diffraction
theory is valid [3]. Then, the eigenwaves of the electromagnetic field, required
for description of processes in the crystal (Sect. 3.2), are composed of the
linear combination of plane waves:

A
(s)
kω(r) = esAkseikr + egsAgseikgr, s = σ, π ,

E
(s)
kω(r) = i

ω

c
A

(s)
kω(r) , (A.6)

where the unit polarization vectors are

eσ ‖ egσ ‖ [k × g], eπ ‖ [k × [k × g]], egπ ‖ [kg × [k × g]] ,

and the amplitudes of wave (A.6) have to satisfy the algebraic equations:
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{k2 − k2
0(1 + χ

(s)
00 )}Aks − k2

0χ
(s)
01 Ags = 0 ,

{k2
g − k2

0(1 + χ
(s)
11 )}Ags − k2

0χ
(s)
10 Aks = 0 ,

k0 =
ω

c
, χ

(s)
00 = esiesjχij(k,k), χ

(s)
11 = egsiegsjχij(kg,kg) ,

χ
(s)
01 = esiegsjχij(k,kg), χ

(s)
10 = egsiesjχij(kg,k) . (A.7)

If the resonant scattering of X-rays on atoms and nuclei is negligible, then

χ
(s)
00 ) = χ

(s)
11 ) = χ0, χ

(s)
01 = χ−gCs, χ

(s)
10 = χgCs,

Cσ = 1, Cπ = cos 2θB .

The condition of zero determinant for system (A.7) delivers the effective re-
fraction indices for eigenwaves inside a crystal:

kµs = k0
k

k
nµs, nµs(1 + εµ1), µ = 1, 2 ,

εµs =
1
4

[
q ±

√
q2 + 4βχ00αB − χ00χ11 + χ

(s)
01 χ

(s)
10

]
,

q = χ00 + βχ11 − βαB, β =
γ0

γg
, γ0 = cos(k,N), γg = cos(kg,N), (A.8)

where N is a normal to the crystal surface.

A.2 Asymptotic for the Green Function
and Boundary Conditions for the Electromagnetic Field

The asymptotic of the Green function (Sect. 2.1) for Maxwell’s equations in
the medium with an arbitrary dielectric permittivity is derived here in the
limit r � r′. This function is the solution of the following equation (k0 =
ω/c, α, β = 1, 2, 3):

εαβγεγµν
∂2

∂xβ∂xµ
Gνλ(r, r′, ω) − k2

0

∫
dr1εαβ(r, r1, ω)Gβλ(r1, r

′, ω)

= δαλδ(r − r′) . (A.9)

Expressing the dielectric permittivity through the X-ray polarizability

εαβ(r, r1, ω) = δαβδ(r − r1) + χαβ(r, r1, ω) ,

Equation (A.9) is reformulated in the integral form:

Gαβ(r, r′, ω) = G
(0)
αβ(r, r′, ω)

+ k2
0

∫
dr1dr2G

(0)
αµ(r, r1, ω)χµν(r1, r2, ω)Gνβ(r2, r

′ω) . (A.10)
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The Green function G
(0)
αβ(r, r′, ω) for equation (A.9) in vacuum is represented

[12] as an expansion of eigenstates of the free electromagnetic field:

G
(0)
αβ(r, r′, ω) =

1
(2π)3

∫
dq

∑

s=1,2

e
(s)
α (q)e(s)∗

β (q)eiq(r−r′)

q2 − k2
0 (1 + iO)

, (A.11)

where e(s)(q), s = 1, 2; (q,e(s)) = 0 are two mutually orthogonal unit vectors
of polarization of the plane electromagnetic wave with the wave vector q. In
the considered case here, r � r′, the following asymptotic for the function
G

(0)
αβ is valid:

G
(0)
αβ(r, r′, ω) ≈ 1

4π

∑

s=1,2

e(s)
α (k)e(s)∗

β (k)
eik0r

r
e−ikr′

, k = k0
r

r
. (A.12)

Using (A.12), the asymptotic (A.10) can be written as

Gαβ(r, r′, ω) ≈ 1
4π

eik0r

r

∑

s=1,2

e(s)
α (k)

×
[
e
(s)
β (k)eikr′

+ k2
0

∫
dr1dr2eikr1χ∗

µν(r1, r2, ω)G∗
νβ(r2, r

′ω)
]∗
. (A.13)

If the iterative solution of (A.10) for the exact Green function is used, the
expression in the square brackets in (A.13) is represented as the series

E
(s,−)
k,β (r) = e

(s)
β (k)eikr

+ k2
0

∫
dr1dr2G

(0,∗)
νµ (r, r1ω)χ∗

βν(r1, r2, ω)e(s)
µ eikr2 + . . . , (A.14)

where the asymptotic behaviour of the function

G
(0,∗)
αβ (r, r′, ω) ≈ 1

4π

∑

s=1,2

e(s)∗
α (k)e(s)

β (k)
e−ik0r

r
eikr′

corresponds to a convergent spherical wave.
We now consider the eigenstates of the electromagnetic field in the medium

with the dielectric permittivity ε∗αβ(r, r1, ω), which are the solutions of the
homogeneous equation analogous to (A.9):

εαβνενµγ
∂2

∂xβ∂xµ
E

(s,−)
k,γ − k2

0

∫
dr1ε

∗
αβ(r, r1, ω)E(s,−)

k,β = 0 . (A.15)

The integral form of this equation, after using the Green function
G

(0,∗)
αβ (r, r′, ω) and normalizing to the unit amplitude of the incident wave, is
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E
(s,−)
k,α (r) = e(s)

α (k)eikr

+ k2
0

∫
dr1dr2G

(0,∗)
αβ (r, r1, ω)χ∗

βγ(r1, r2, ω)E(s,−)
k,β (r2) = 0 , (A.16)

and the iterative solution of this equation is delivered by series (A.15), which
confirms (2.11) in Sect. 2.1.

The matrix elements for amplitudes of the electromagnetic field in the crys-
tal are calculated (see Sect. 3.1) on the basis of the vector potential A

(s,−)
k (r)

and boundary conditions at the entrance and exit surfaces of the sample.
The conventional boundary conditions of electrodynamics (the continuity of
the tangential component of the field strength vectors and the normal com-
ponents of the induction vectors [10]) in the X-ray region are reduced [9]
with the accuracy O(|χ0|2) to the continuity of all field components and their
derivatives. Within the framework of the two-wave approximation for the dy-
namical diffraction theory, (A.6)–(A.8) have to be taken into account. Then,
the normalized vector potential, which is continuous at the sample surfaces
z = 0 and z = L, is (see 3.14)

A
(s,−)
k (r) =

√
4πeikr{esΦ(s)(z) + egsΦ(s)

g (z)eigr} . (A.17)

The explicit expressions for Φ(s)(z) and Φ(s)
g (z) in the case of different

diffraction geometries and photon observation angles are as follows:

(1a) The Bragg case (β < 0, γ0 > 0, γg < 0):

Φ(s)(z) = {D∗
s0(0)H(−z) + D∗

s0(z)H(z)H(L − z) + H(z − L)} e−ikzL ,

Φ(s)
g (z) = βξg∗

s

{
D∗

sg(z)H(z)H(L − z) + D∗
sg(L)H(z − L)

}
e−ikzL ,

Ds0(z) = ξ0
1se

−ik0ε1sz/γ0 + ξ0
2se

−ik0ε2sz/γ0 ,

Dsg(z) = e−ik0ε1sz/γ0 − e−ik0ε2sz/γ0 ,

ξ0
1,2s = ±2ε2,1s − χ00

∆s
, ξg

s =
χs

10

∆s
,

∆s = (2ε2s − χ00)e−ik0ε1sz/γ0 − (2ε1s − χ00)e−ik0ε2sz/γ0 . (A.18)

(1b) The Bragg case (β < 0, γ0 < 0, γg > 0):

Φ(s)(z) = H(−z) + D
(1∗)
s0 (z)H(z)H(L − z) + D

(1∗)
s1 (L)H(z − L) ,

Φ(s)
g (z) = −βξg∗

s

{
D(1∗)

sg (0)H(−z) + D(1∗)
sg (z)H(z)H(L − z)

}
,

D
(1)
s0 (z) = ξ0

1se
ik0(ε1sz+ε2sL)/|γ0| + ξ0

2se
ik0(ε2sz+ε1sL)/|γ0| ,

D(1)
sg (z) = eik0(ε1sz+ε2sL)/|γ0| − eik0(ε2sz+ε1sL)/|γ0|. (A.19)

(2a) The Laue case (β > 0, γ0 > 0, γg > 0):



160 A Appendix

Φ(s)(z) = D
(2∗)
s0 (L)H(−z) + D

(2∗)
s0 (L − z)H(z)H(L − z)

+e−ikzLH(z − L) ,

Φ(s)
g (z) = β

{
D(2∗)

sg (L)H(−z) + D(2∗)
sg (L − z)H(z)H(L − z)

}
,

D
(2)
s0 (z) = −ζ0

1se
ik0ε1sz/γ0 − ζ0

2se
ik0ε2sz/γ0 ] ,

D(2)
sg (z) = ζg

1se
ik0ε1sz/γ0 + ζ0

2se
ik0ε2sz)/γ0 ,

ζ0
1,2s = ∓2ε2,1s − χ00

2(ε2s − ε1s)
, ζg

1,2s = ∓ χs
01

2(ε2s − ε1s)
. (A.20)

(2b) The Laue case (β > 0, γ0 < 0, γg < 0):

Φ(s)(z) = H(−z) + D
(3∗)
s0 (z)H(z)H(L − z) + D

(3∗)
s0 (L)H(z − L) ,

Φ(s)
g (z) = β

{
D(3∗)

sg (z)H(z)H(L − z) + D(3∗)
sg (L − z)H(z − L)

}
,

D
(3)
s0 (z) = −ζ0

1se
ik0ε1sz/|γ0| − ζ0

2se
ik0ε2sz/|γ0| ,

D(3)
sg (z) = ζg

1se
ik0ε1sz/|γ0| − ζ0

2se
ik0ε2sz)/|γ0| . (A.21)

A.3 Accurate Calculation of PXR
with Multiple Scattering of Electrons

For the description of PXR fine structure and high-resolution PXR, a more
accurate calculation than that in Sect. 2.3 of the multiple scattering of charged
particles is necessary. Equation (2.16) has to be averaged over all the particle
trajectories in the crystal [4, 5]:

W (s)
nω =

q2ω2

4π2c3

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ w1(r,v, t)w2(r,v, t|r′,v′, t′)

eiω(t−t′)
(
vE

(−)
ks (r, ω)

)∗ (
v′E

(−)
ks (r′, ω)

)
, (A.22)

where w1(r,v, t) is the particle distribution function at the time t, w2

(r,v, t|r′,v′, t′) is the probability density to find a particle at the time t′

at the position r′,v′, if it was at the position r,v at the time t.
The periodic crystal structure influences the beam distribution function in

a small phase volume near the boundaries of the Brillouin zones. This case is
essential if the primary beam velocity v0 is parallel to the crystallographic axes
(planes) and particles are trapped into the channelling mode. In other cases,
the kinetic equation for a homogeneous medium can be used for averaging
the distribution function over the trajectories. The energy E and ϑ of velocity
deviation are more convenient variables to be used in w1, w2 instead of the
velocity v. In the case of relativistic particles ϑ � 1, the kinetic equation is
[4]
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∂w

∂t
+ v

∂w

∂r
= q(E)∆ϑw + K̂(E)w ;

q(E) =
c

LR

E2
s

4E2
, ∆ϑ =

∂2

∂ϑ2
x

+
∂2

∂ϑ2
y

,

K̂(E)w =
∫ ∞

0

u2 + E2 − 2uE/3
(u − E)

[
w(ϑ, u, t)

u2
H(u − E)

+
w(ϑ,E, t)

E2
H(E − u)

]
. (A.23)

Equation (A.23) uses the Bete–Gaitler [2] formula for bremsstrahlung, which
is dominant in particle energy losses; the parameter Es and LR from (1.26)
are the characteristic energy and the radiation length of the multiple scatter-
ing of electron beam on the shielded potential of crystal atoms, respectively.
The functions w1 and w2 are the solutions of (A.23) under different initial
conditions:

w1(t = 0) = δ(r − r0)δ(ϑx)δ(ϑy)δ(E − E0) ,

w2(t = t′) = δ(r − r′)δ(ϑx − ϑ′
x)δ(ϑy − ϑ′

y)δ(E − E′) , (A.24)

where r0 and E0 are the initial position and the beam energy at the time
t = 0, respectively.

To analyse the radiation spectrum in a crystal of thickness L, the expres-
sions for wave fields from Appendix A.2 have to be used. The integration area
is divided into three parts: (−∞, 0), (0, t0), (t0,∞), where t0 = L/(v0N)
corresponds to the time of the escape of the particle from the crystal and the
fluctuations of the time taken by the particle to pass through the crystal due to
multiple scattering are neglected; N is a normal to the crystal surface. Thus,
there are nine different contributions to the total radiation intensity, each
having a certain physical interpretation and depending on the experimental
geometry. The detailed analysis of (A.22) is given in [5], and an example of the
Laue geometry is presented below. For relativistic particles, the energy losses
for radiation are comparatively low, whereas multiple scattering is essential.
Then the operator K̂(E) in (A.23) can be dropped and q(E) = q(E0) ≡ q0 is
constant, and the solution of (A.23) for w1(r, ϑ, t), w2(r−r′, ϑ, ϑ′, t− t′) with
the initial conditions (A.24) are derived in [13, 14]. The contribution to the
intensity (A.22) due to the particle trajectory in the crystal is [5]

W (s)
nω =

q2ω2

2π2c3
C2

s

∣∣∣∣
χg

2(ε2s − ε1s)

∣∣∣∣

2

Re
∫ t0

0

dt

∫ t0−t

0

dτ

×
[
(egsv0)2Q1(1 + ∆) + 2q0tQ2

]
[
∑

µ=1,2

Fµs − Φs

]

, (A.25)

where the polarization factor Cs and the diffraction parameters follow from
A.2, and the multiple scattering is determined by
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Q1 =
1

cosh u(1 + ητ tanhu)
exp

[
iωτθ2

2
− ηθ2 tanhu

4q(1 + ηt tanhu)

]
,

Q2 =
Q1

cosh u(1 + ητ tanhu)
, ∆ =

1 − cosh u(1 + ητ tanhu)2

cosh u(1 + ητ tanhu)2
,

Fµs = exp

[

− icτ
Lµs

− t0 − t − τ/2

L
(a)
µs

]

,

Φs = exp

[

− icτ
L2s

+
τ

L
(a)
2s

− iω(ε∗2s − ε1s)(t0 − t)

]

+ exp

[

− icτ
L2s

− τ

L
(a)
2s

+ iω(ε2s − ε∗1s)t

]

,

u = ητ, η =
√

2iωq0 ,

Lµs =
2c

ω[γ−2 + θ2 + 2(1 − Re εµs)]
, L(a)

µs =
2c

ω Im εµs
. (A.26)

The functions Q1, Q2 and ∆ depend on the coherent length of bremsstrahlung
[14]:

LBS =
c√

2ωq0
,

and their influence on the spectral–angular characteristics of radiation is de-
termined by the ratio of LBS and PXR coherent length Lµs.

For high-energy electrons (LBS ∼ γ → ∞) or for heavy charged particles
(q0 → 0), the functions Q1,2 → 1, ∆ → 0. Then the main contribution
to the intensity is given by the first term in (A.25), which has a minimum
∼ θ2 of the photon radiation in the diffraction direction kB. The term in
(A.25) proportional to 2q0tQ2 corresponds to bremsstrahlung, which has a
maximum in the direction kB. In the case of thin crystals, these facts fit well
the results of Sect. 2.3. In general, the influence of multiple scattering results in
cumbersome expressions and has been investigated in [5]. Here we emphasize
only the expression which is useful for fitting of the HRPXR experimental data
(see Sect. 2.3). The formula used in (3.26) for the photon radiation angle,

θ2
ph = γ−2 + θ2

sc + θ2
M ,

has to be substituted for higher accuracy by

θ2
ph = γ−2 + ζθ2

sc + θ2
M ,

and the dimensionless parameter ζ is varied in the region 1.2 < ζ < 3 for
different crystal thicknesses [5].
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