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Chapter 1

Refraction and mirror reflection from
a matter–vacuum plane boundary

1.1 Radiation and Scattering of Waves and Particles

The variety of physical phenomena and processes occurring around and in-

side us on a macro and micro scale can really confuse anyone who takes first

steps, trying to understand and describe the laws they obey. Nevertheless,

this state of confusion disappears when, after some effort, numerous rela-

tions and analogies between processes and phenomena, which sometimes

seem utterly diverse, suddenly become unveiled. As a result of such unity,

the apparently different research methods, which we use to explore the

world around us, appear to be essentially the same.

The oldest method of studying physical phenomena is visual observa-

tion. This method of exploring the world seems to have nothing in common

with the investigation of the structure of elementary particles by bombard-

ing nuclei with protons accelerated to very high energies.

However, in both cases we deal with inherently the same method, actu-

ally, we conduct one and the same experiment. In both cases we have 1)

a particle (wave) source – either the Sun lighting objects or an accelerator

generating energetic protons; 2) a target – either the illuminated objects

or the bombarded nuclei; 3) a detector – the human eye and brain in one

case or a proportional chamber (photomultiplier and so on) with a data

processing system in the other (and finally – the human brain again, the

brain of the observer).

Scattering of particles (neutrons, γ-quanta, photons and others) by

atoms, molecules, and nuclei is widely used for studying physical phenom-

ena.

A typical experiment based on particle (wave) scattering is performed

as follows (Fig. 1.1)
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Fig. 1.1 Scattering of a primary wave by the target

Particles generated by source S fall on target T , interact with the target

atoms (nuclei) and, as a result, change the direction of motion and produce

new particles. Detector D situated at an angle with the incident direc-

tion of the primary beam detects deflected (scattered) particles or particles

produced through collision.

To describe scattering properties of atoms, it is convenient to introduce

the quantity dσ/dΩ, called differential scattering cross section per unit

solid angle Ω (see, for example, [Goldberger and Watson (1984); Landau

and Lifshitz (1975, 1977)]):

dσ/dΩ = j2scatr
2/j0 , (1.1)

where jscat is the flow of particles scattered by the atom (nucleus) in the

direction of the detector; j0 is the initial flux of particles incident on the

target; r is the distance between the scattering nucleus and the detector.

In the polar coordinate system, dΩ = sinϑdϑ dφ, where ϑ and φ are the

polar and azimuth angles determining the observation direction. As the

values of j0 and jscat can be measured experimentally, dσ/dΩ can also be

determined.

The question naturally arises of what information about the processes

taking place in the target (scatterer) can be obtained in such an experiment,

and whether it is worth trying to measure dσ/dΩ.

To answer this question, let us first take into consideration that due to

inherent particle–wave dualism of the quantum–mechanical description of

the behavior of micro-objects, the peculiarities of the interactions between

microparticles may be revealed in terms of pure classical wave description

of these phenomena.
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In the beginning, let us consider, by way of example, the phenomenon of

generating and scattering of γ-quanta by nuclei as the process of generating

and scattering of electromagnetic waves by a system of charges.

First analyze the work of the source. From the classical viewpoint,

reactions proceeding in the source result in the formation of charges moving

along certain trajectories, which are determined by the forces acting within

the system under consideration. Suppose that the charge motion is non-

relativistic. Assume also that each particle has a charge e and vibrates

about the equilibrium position at point R⃗n. Let a characteristic vibration

period be long in comparison with the time required for a photon to pass

the distance of the order of the vibration amplitude; the characteristic

wavelength emitted by the charge is much greater than the amplitude of

charge vibration. In this case the electric field strength E⃗n in the emitted

wave at time t at a distance longer than the wavelength is described as

follows (see e.g. [Landau and Lifshitz (1975)]):

E⃗n =
1

c2|r⃗ − R⃗n|

[
n⃗n

(
n⃗
¨⃗
dn

(
t− |r⃗ − R⃗n|

c

))
− ¨⃗
dn

(
t− |r⃗ − R⃗n|

c

)]

× θ

(
t− tn − |r⃗ − R⃗n|

c

)
, (1.2)

where

d⃗n

(
t− |r⃗ − R⃗n|

c

)
= eη⃗n

(
t− |r⃗ − R⃗n|

c

)
is the electric dipole moment produced by particle n with respect to the

equilibrium point R⃗n at time t−|r−R⃗n|/c; η⃗n is the position vector of charge

n with respect to point R⃗n; tn is the starting time of charge vibration; θ(x)

is the Heaviside unit function:

θ(x) =

{
1 when x ≥ 0 ,

0 when x < 0 .

The function θ in Eq. (1.2) indicates that a nonzero value of the electric

field strength E⃗n in a wave appears at the observation point only at times t

greater than the time required for the photon to pass the distance between

the source and the observation point.

To describe the charge motion, we adopt the damped oscillator model:

¨⃗ηn + Γn ˙⃗ηn + ω2
nη⃗n = 0 . (1.3)
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Let at time moment tn the oscillator have the coordinate η⃗n0 and ve-

locity v⃗n0. Suppose that ωn ≫ Γn. In this case the solution of Eq. (1.3)

has the form

η⃗n =
(
c⃗1ne

iωn(t−tn) + c⃗2ne
−iωn(t−tn)

)
× e−

Γn
2 (t−tn)θ(t− tn) , (1.4)

where

c⃗1n =
iωnη⃗n0 + v⃗n0

2iωn
; c⃗2n =

iωnη⃗n0 − v⃗n0
2iωn

.

Provided that ωn ≫ Γn, from Eq. (1.3) we immediately obtain for ¨⃗ηn:

¨⃗ηn ≈ −ω2
nη⃗n . (1.5)

Substitution of Eq. (1.4)–Eq. (1.5) into Eq. (1.2) gives the following expres-

sion for the field induced by the oscillator:

E⃗n =

{
a⃗1n

exp[iωn(t− tn − |r⃗−R⃗n|
c )]

|r⃗ − R⃗n|

+ a⃗2n
exp[−iωn(t− tn − |r⃗−R⃗n|

c )]

|r⃗ − R⃗n|

}
(1.6)

× exp[−Γn
2
(t− tn − |r⃗ − R⃗n|

c
)]θ

(
t− tn − |r⃗ − R⃗n|

c

)
,

where

a⃗1n = −eω
2
n

c2
[n⃗n(n⃗nc⃗1n)− c⃗1n] ;

a⃗2n = −eω
2
n

c2
[n⃗n(n⃗nc⃗2n)− c⃗2n] . (1.7)

According to Eq. (1.6), the damped oscillator generates spherical damped

waves, whose phase and amplitude depend on the oscillator coordinate R⃗n
and the starting moment tn of charge motion. The field E⃗(r⃗, t) induced

by the system of charges is a superposition of fields induced by particular

charges, i.e.,

E⃗(r⃗, t) =
∑
n

E⃗n(r⃗, t). (1.8)

Let us thoroughly examine Eq. (1.6)–Eq. (1.8). In the most common case,

the radiating atom (nucleus) appears in a source as a result of some stochas-

tic process (electron bombardment of atoms upon gas discharge, α- or β-
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decay of nuclei, and so on). In consequence, the amplitudes a⃗1(2)n, the

coordinates R⃗n, and the vibration starting times tn become random val-

ues distributed according to a certain law. The experimentally measured

value of the field in Eq. (1.8) or its degrees should be averaged over these

distributions.

According to Eq. (1.1), to determine dσ/dΩ, one needs to know the par-

ticle flux (radiation intensity). The intensity J of electromagnetic radiation

is determined by the Poynting vector, i.e.,

J(r⃗ , t) ∼ E⃗2(r⃗ , t) =

(∑
n

E⃗n(r⃗ , t)

)2

=
∑
n

E⃗2
n(r⃗ , t) +

∑
n̸=n′

E⃗n(r⃗ , t)E⃗n′(r⃗ , t) . (1.9)

The average value of intensity taken over the distribution of a⃗1(2), R⃗n, and

tn is

⟨J(r⃗ , t)⟩ = ⟨
∑
n

E⃗2
n(r⃗ , t)⟩+ ⟨

∑
n ̸=n′

E⃗n(r⃗ , t)E⃗n′(r⃗ , t)⟩ . (1.10)

When there are no correlations among the values of a⃗1(2)n, R⃗n, and tn, the

second term in Eq. (1.10) associated with interference of the fields produced

by different sources is equal to zero; the radiation intensity of the source is

the sum of radiation intensities of individual atoms (nuclei).

Under conventional conditions of particle creation in radioactive sub-

stances, reactors, and accelerators, the second term is zero with high accu-

racy. From Eq. (1.10) is seen that the presence of correlation among the

values of a⃗1(2)n, R⃗n, and t⃗n is necessary in order to get a nonzero interfer-

ence contribution. It is evident, in particular, that the correlations exist

and the second term in Eq. (1.10) is nonzero if all the sources have the same

initial vibration amplitude and velocity and are periodically distributed and

periodically excited with the time period τ : tn = nτ .

A more complicated source of correlations appears with account of the

fact that the field produced by the source located, for example, at point R⃗n′

forces vibrations of the oscillator located at point R⃗n. As a consequence,

the equation of motion for the deviation of η⃗n takes the form

¨⃗ηn + Γn ˙⃗ηn + ω2
nη⃗n =

∑
n′ ̸=n

g⃗nn′ , (1.11)

where g⃗nn′ is the force acting on n-oscillator from the fields produced by

oscillators n′.
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In this case the solution of Eq. (1.11) is the sum of the general solution of

the homogeneous equation Eq. (1.3) and the specific solution of Eq. (1.11).

Forced vibrations cause extra generation of the fields, whose amplitudes

and phases depend on the variables characterizing all the oscillators. In this

chapter we assume that all the oscillators (atoms, nuclei) radiate indepen-

dently. For this reason, when examining the processes stimulated by the

waves produced by the source in the target, it will suffice to study the in-

teraction between the wave emitted by a particular nucleus (atom) and the

target.

Qualitatively, the answer is quite obvious. Upon reaching the target

nuclei (atoms), the wave generated by the source excites vibrations of

charges–oscillators corresponding to them. These vibrations bring about

a time–varying electric dipole moment, which, according to Eq. (1.2), leads

to production of radiation. This secondary radiation is just the waves scat-

tered by the target. They are also spherical. But unlike Eq. (1.6), their

amplitude and phase are defined not only by the properties of the scatter-

ers, but also by the incident wave. As stated above, this wave can bring

about a significant correlation between the amplitudes and phases of the

waves produced by particular scatterers.

Recall that according to Eq. (1.1), the scattering cross section is deter-

mined by the relation between the flows of scattered and incident waves,

and for electromagnetic radiation it is:

dσ =
⟨dJ⟩
⟨S⟩

, (1.12)

where ⟨dJ⟩ is the energy radiated into solid angle dΩ in 1 second by the

system exposed to the incident wave with the intensity characterized by

the Poynting vector ⟨S⟩. Consequently, the scattering cross section gives

information about the properties of the scatterers.

Owing to the linear character of Maxwell equations and the Schrödinger

equation, when examining the interaction between the wave and the scat-

terers, we can first consider the process of scattering of a monochromatic

wave. The general solution can be obtained by summing the solutions for

monochromatic waves with the amplitudes determining the weight of each

monochromatic component of the incident wave packet. Detailed substan-

tiation of the procedure is given in, for example, [Goldberger and Watson

(1984)].

So let a monochromatic plane wave be incident on the oscillator. The

electric field strength in the wave is

E⃗ = E⃗0 cos(k⃗r⃗ − ωt+ α) , (1.13)
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where E⃗0 is the wave amplitude, E⃗0 = E0e⃗; k⃗ is the wave phase vector; ω

is its frequency; α is the initial phase.

Under the action of E⃗, the oscillator performs forced vibrations defined

by equation:

¨⃗ηn + Γn ˙⃗ηn + ω2
nη⃗n =

e

m
E⃗0 cos(k⃗R⃗n − ωt+ α) , (1.14)

where e is the charge of the vibrating particle; m is the particle mass.

In writing Eq. (1.14) we assume that the amplitude of forced vibrations

is much smaller than the wavelength of the incident radiation, i.e., kηn ≪ 1.

This enables us to replace r⃗ at the point of charge location by the coordinate

of the equilibrium point R⃗n on the right-hand side of Eq. (1.14) in the

expression for force. Equation (1.14) is easily solvable and has the form:

η⃗n =
eE0

2m

e⃗

ω2
n − ω2 − iωΓn

ei(k⃗R⃗n−ωt+α)

+
eE0

2m

e⃗

ω2
n − ω2 + iωΓn

e−i(k⃗R⃗n−ωt+α) . (1.15)

According to Eq. (1.2), the radiation field may be represented as follows:

E⃗n =
eE0ω

2

2mc2
[nn[nne]]

{
exp[i(k⃗R⃗n − ωt+ α)]

ω2 − ω2
n + iωΓn

×exp[ik|r⃗ − R⃗n|]
|r⃗ − R⃗n|

+
exp[−i(k⃗R⃗n − ωt+ α)]

ω2 − ω2
n − iωΓn

×exp[−ik|r⃗ − R⃗n|]
|r⃗ − R⃗n|

}
. (1.16)

Note that the second term in Eq. (1.16) is the complex conjugate of the first

term. Therefore the second term will be dropped further on. Moreover, the

factor (E0/2) exp[−i(ωt − α)] will also be dropped below as it is common

for both the incident and scattered waves.

Thus, the wave field originating in space as a result of scattering of the

plane wave has the form:

E⃗(r⃗) = e⃗eik⃗r⃗ + f⃗n
eik|r⃗−R⃗n|

|r⃗ − R⃗n|
eik⃗R⃗n , (1.17)

where

f⃗n =
e2ω2

mc2
[n⃗n[n⃗ne]]

ω2 − ω2
n + iωΓn

.
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The amplitude of the diverging spherical wave formed as a result of

the action of a unit–amplitude plane wave on the scatterer is called the

scattering amplitude. Owing to the vector character of electromagnetic

waves, f⃗n is a vector quantity in the case in question. In scattering of scalar

waves described, in particular, by the Schrödinger equation, the amplitude

f is a scalar. Using the definition of the differential scattering cross section

Eq. (1.1)–Eq. (1.12), we obtain that

dσ/dΩ = f⃗∗nf⃗n (1.18)

(for scalars dσ/dΩ = |f |2). Particularly, in the considered case we have a

well-known expression

dσ

dΩ
=

(
e2

mc2

)2
ω4

(ω2 − ω2
n)

2 + ω2Γ2
n

[1− (n⃗ne⃗)
2] . (1.19)

Now let a wave be incident on a set of scatterers (oscillators). Under the

action of the wave, each oscillator performs forced vibrations, and, as a

result, radiates. In other words, the wave is scattered by a set of scattering

centers. Due to a linear character of wave equations, the scattered wave is

formed by the superposition of the waves emitted by each oscillator, i.e., in

this case

E⃗(r⃗) = e⃗eik⃗r⃗ +
∑
n

f⃗n
eik|r⃗ − R⃗n|
|r⃗ − R⃗n|

eik⃗R⃗n . (1.20)

As in addition to the incident primary wave, each oscillator is affected by

the waves emitted by other oscillators, the amplitude f⃗n in the general case

is different from the amplitude of scattering by the oscillator Eq. (1.17) in

the absence of other centers.

However, this fact will be temporarily neglected. For simplicity, we will

next consider scattering of scalar waves. In this case the wave produced in

scattering by a set of centers (target) has the form:

Ψ(r⃗) = eik⃗r⃗ +
∑
n

fn
eik|r⃗−R⃗n|

|r⃗ − R⃗n|
eik⃗R⃗n . (1.21)

At large distances from the target, Eq. (1.21) takes the form:

lim
r→∞

Ψ(r⃗) = eikr + F
eik⃗r⃗

r
, (1.22)

where

F =
∑
n

fne
−i(k⃗′−k⃗)R⃗n , (1.23)
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k⃗′ = kr⃗/r, the origin of coordinates is located inside the target.

It is seen that at large distances from the target a diverging spherical

wave with the amplitude F is formed from a set of diverging spherical

waves. From Eq. (1.22) follows that the amplitude F of scattering by a few

centers is the sum of the amplitudes of scattering by particular centers.

Let us consider the simplest model. Suppose that identical scatterers

are continuously distributed over a certain volume with the density ρ(r⃗)

(there may be electrons in the atom, nucleons in the nucleus). Then

F (q⃗) = f

∫
e−iq⃗r⃗ρ(r⃗)d3r⃗ ,

q⃗ = k⃗′ − k⃗ . (1.24)

According to Eq. (1.24), the scattering amplitude is, in fact, the Fourier

transform of the distribution density ρ(r⃗). As a result, knowing F for all

values of the difference k⃗′ − k⃗, one can find such an essential characteristic

of the scatterer as the density ρ(r⃗). Though the situation actually often ap-

pears to be much more complicated, yet even the foregoing shows the utter

importance of knowing the scattering amplitudes. Since the scattering am-

plitude determines the scattering cross section, experimental determination

of the scattering cross section enables one to obtain information about the

scattering amplitude, i.e., measuring the scattering cross section is really

necessary. However, finding the scattering amplitude from the data refer-

ring to the scattering cross section measurements is actually an intricate

problem (when measuring dϑ/dΩ we, in fact, determine only |f |, which is

not sufficient as the scattering amplitude is a complex number). Methods

of theoretical calculation of scattering amplitudes are available from, for

example, [Goldberger and Watson (1984); Landau and Lifshitz (1977)]. In

particular, at scattering of a particle of mass m by a potential V (r⃗), the

scattering amplitude is defined by equation

f(k⃗′ , k⃗) = − m

2π~2

∫
e−ik⃗

′r⃗V (r⃗)Ψ(r⃗)d3r⃗ , (1.25)

where Ψ(r⃗) is the wave function satisfying the integral Schrödinger equation

of the form

Ψ(r⃗) = eik⃗r⃗ − m

2π~2

∫
eik|r⃗−r⃗

′|

|r⃗ − r⃗ ′|
V (r⃗ ′)ψ(r⃗ ′)d3r⃗ ′ . (1.26)

Consider a wave forward–scattered (a wave scattered at zero angle) by a

set of identical scatterers. In this case k⃗ ′ − k⃗ = 0 and [see Eq. (1.23)]

F (0) = Nf , (1.27)
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where N is the number of scatterers. As it is seen, F (0) increases with

increasing number of scattering centers and at N → ∞, the amplitude of

the scattered wave F (0) → ∞. Such a behavior of the amplitude naturally

makes us think that Eq. (1.27) is not always suitable.

1.2 Refraction and Mirror Reflection

In this regard, let us scrutinize the process of wave passage through a set

of scatterers. A detailed analysis of wave transmission through matter is

given in numerous works (see e.g. [Fermi (1950); Lax (1951); Hughes (1954);

Goldberger and Watson (1984)].

To avoid awkward mathematical calculations unnecessary for our con-

sideration, we shall treat the process under study within the framework of

a simple model.

Let a plane wave eik⃗r⃗ be incident on matter. In accordance with the

above, a divergent spherical wave is produced through the interaction be-

tween the wave and the scatterer (atom, nucleus). Suppose for simplicity

that the perturbation theory is applicable to the description of the inter-

action between the wave and a particular scatterer [Landau and Lifshitz

(1977); Goldberger and Watson (1984)]. This means that in the first order

approximation over the interaction, the wave function ψ(r⃗) in the inte-

grands of Eq. (1.25) and Eq. (1.26) should be taken as ψ(r⃗) ≈ eik⃗r⃗. In this

case the wave describing the process of elastic scattering by a single center

located at point R⃗n can be written as

ψ(r⃗) = eik⃗r⃗ +

∫
eik|r⃗−r⃗

′|

|r⃗ − r⃗ ′|
W (r⃗ ′ − R⃗n)e

ik⃗r⃗ ′
d3r⃗ ′ , (1.28)

where W (r⃗ ′ − R⃗n) = −m/2π~2V (r⃗ ′ − R⃗n); V (r⃗ ′ − R⃗n) is the interaction

potential between the incident particle and the atom (nucleus); m is the

particle mass.

At large distances from the scatterer we obtain from Eq. (1.28)

ψ(r⃗) = eik⃗r⃗ + f(k⃗′ , k⃗)
eik|r⃗−R⃗n|

|r⃗ − R⃗n|
eik⃗R⃗n , (1.29)

where

f(k⃗′ , k⃗) = − m

2π~2

∫
ei(k⃗

′−k⃗)r⃗ ′
V (r⃗ ′)d3r⃗ ′

is the amplitude of scattering by the center located at the origin of coor-

dinates, which is calculated in the first–order perturbation theory approxi-

mation.
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When a particle falls upon a set of scattering centers, the spherical waves

formed in the collision with all the atoms (nuclei) should be added to the

initial wave eik⃗r⃗ as it has already been demonstrated.

Consequently,

ψ = eik⃗r⃗ +
∑
n

∫
eik|r⃗−r⃗

′|

|r⃗ − r⃗ ′|
W (r⃗ ′ − R⃗n)e

ik⃗r⃗ ′
d3r⃗ ′ (1.30)

or

ψ = eik⃗r⃗ +
∑
n

∫
eik|r⃗−η⃗−R⃗n|

|r⃗ − η⃗ − R⃗n|
W (η⃗)eik⃗η⃗d3ηeir⃗R⃗n . (1.31)

Suppose that the nuclei are randomly distributed in plane z = z0. A

coherent wave formed through the interaction with the plane is obtained

by averaging Eq. (1.31) over the position of scatterers in this plane. As a

result, we get

⟨ψ(r⃗)⟩ = eik⃗r⃗ + ρ′
∫ ∫

eik|r⃗−η⃗−R⃗|

|r⃗ − η⃗ − R⃗|
W (η⃗)eik⃗η⃗eik⃗R⃗d3ηd2R⊥ , (1.32)

where d2R⊥ means integration over the components Rx and Ry in the

z = z0 plane; R⃗ = (Rx, Ry, z0); ρ
′ is the density of the scatterers in the z0

plane.

Evaluation of the integral over d2R⊥ gives the following expression for

⟨ψ(r⃗)⟩:

⟨ψ(r⃗)⟩ = eik⃗r⃗ +
2πρ′

|kz|
eik⃗⊥r⃗⊥

∫
ei|kz||z−ηz−z0|W (η⃗)eikzηzd3ηeikzz0 , (1.33)

If z − z0 is much larger than the radius of action of the potential W (η⃗)

and the observation point is behind the plane, e.i., z > z0,

⟨ψ(r⃗)⟩ = eik⃗⊥r⃗⊥
(
eikzz +

2πiρ′

kz

∫
W (η⃗)d3η⃗eikzz

)
, (1.34)

i.e.,

ψ(r⃗) = eik⃗⊥r⃗⊥
(
1 +

2πiρ′

kz

∫
W (η⃗)d3η⃗

)
eikzz (1.35)

(the wave is incident in the +z direction, i.e., kz > 0). If z − z0 is much

larger than the radius of action of the potential W (η⃗), but the observation

point is in front of the plate, i.e., z < z0, then

⟨ψ(r⃗)⟩ = eik⃗⊥r⃗⊥
[
eikzz +

2πiρ′

kz

∫
W (η⃗)ei2kzηzei2kzz0d3η⃗e−ikzz

]
. (1.36)
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In fact, Eq. (1.35) describes a coherent wave which has passed through

the plane, while Eq. (1.36) describes a wave mirror-reflected from the plane.

From these two equations readily follows a well-known feature of refraction

and mirror-reflection: the tangential components of a wave vector which

are parallel to the surface of matter are equal in the incident, transmitted

and reflected waves (see e.g. [Landau and Lifshitz (1984)]). It should also

be noted that, according to Eq. (1.35), the amplitude of the transmitted

wave is defined by the expression
∫
W (η)d3η, which agrees with the first

(Born) approximation for a forward scattering amplitude f(0). The same

result holds true beyond the scope of the perturbation theory.

At the same time, the amplitude of a reflected wave is defined by the

expression: ∫
W (η)ei2kzηzd3η = f(k⃗′ − k⃗), k⃗′⊥ = k⃗⊥, k

′
z = −kz ,

i.e., by the amplitude of scattering at the angle equal to the doubled mirror

reflection angle.

Now assume that we have a set of planes. Since, according to Eq. (1.35),

as the wave passes through each plane, the amplitude changes by a factor of

1 + 2πiρ′f(0)k−1
z , then after passing through m planes, the coherent wave

will take the form:

⟨ψ(r⃗)⟩ = eik⃗⊥r⃗⊥
(
1 +

2πiρ′

kz
f(0)

)m
eikzz (1.37)

or

⟨ψ(r⃗)⟩ = eik⃗⊥r⃗⊥ei
2πρ′m

kz
f(0)eikzz . (1.38)

Since the number of planes is m = z/a, where z is the distance passed

by the wave in matter; a is the distance between the planes, then

⟨ψ(r⃗)⟩ = eik⃗⊥r⃗⊥ei
2πρ
kz

f(0)zeikzz , (1.39)

where ρ = ρ′/a is the volume density of matter.

Finally, Eq. (1.39) reads

⟨ψ(r⃗)⟩ = eik⃗⊥r⃗⊥eikznz , (1.40)

where

n = 1 +
2πρ

k2z
f(0) (1.41)

is the refractive index.
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The expression obtained for n is valid when∣∣∣∣2πρk2z f(0)
∣∣∣∣≪ 1 .

If this inequality is violated, the expression for n appears to have the form:

n2 = 1 +
4πρ

k2z
f(0) . (1.42)

If the scatters of different kind are present in matter, then

n2 = 1 +
4π

k2z

∑
i

ρifi(0) , (1.43)

where ρi is the number of i-type scatterers per 1 cm3 of matter; fi(0) is the

amplitude of coherent elastic zero-angle scattering by the i-type scatterer.

Thus, the microscopic summation of the waves scattered by atoms (nu-

clei) leads to the creation of a coherent wave moving in matter according

to well-known classical laws of refraction. It is essential that in deriving

Eq. (1.39) and Eq. (1.41) the requirement that a large number of scatter-

ers be situated within the wavelength range was not used at all. Hence,

the refractive index may also be introduced for studying radiation with a

wavelength small in comparison with the distance between the scatterers.

Let us now turn to a mirror-reflected wave. According to Eq. (1.36),

when the wave eik⃗⊥r⃗⊥eikzz is incident on the plane z = z0, the amplitude

of the mirror-reflected wave has the form:

A1 =
2πiρ′

kz
f(k⃗′ − k⃗)e2ikzz0 .

If m planes fill the layer [0, z], the amplitude of the wave scattered by

these planes is equal to

A =
2πiρ′

kz
f(k⃗′ − k⃗)

∑
m

e2ikzzm . (1.44)

Proceeding to continuous distribution of planes in the layer [0, z], i.e., re-

placing summation by integration in Eq. (1.44), we finally obtain (kzz ≫ 1):

A = −πρ
k2z
f(k⃗′ − k⃗) . (1.45)
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It is seen that as a result of microscopic summation of the waves scat-

tered in matter, there appeared the wave reflected in the direction deter-

mined by the laws of classical optics. The amplitude of this wave is deter-

mined by the amplitude of scattering at the angle equal to twice the angle

of mirror reflection. Generally speaking, it cannot be obtained by conven-

tional means – matching solutions at a sharp matter–vacuum boundary.

The conclusion about the existence of the phenomenon of mirror reflec-

tion of particles from the surface of matter can be drawn from some other

considerations. For this purpose, let us pay attention to the fact that, due

to the refraction effect, the kinetic energy Ekin = ~2(k2⊥ + k2zn
2)/(2m) of a

coherent wave in a target is not equal to that Evac = ~2(k2⊥ + k2z)/(2m) of

a wave in a vacuum.

As the state of the target does not change when an elastic coherent wave

is produced, then, due to the energy conservation law, the aforesaid means

that a particle in matter also possesses some effective potential energy

U = Evac − Ekin =
~2k2z
2m

(1− n2) = −2π~2

m

∑
i

ρifi(0) . (1.46)

Depending on the sign of f(0), the energy U can be either larger or

smaller than zero, i.e., the vacuum-matter boundary may be either a po-

tential barrier (U > 0) or a well (U < 0). From the classical viewpoint, it

is clear that if the particle velocity vz satisfies the condition mv2z/2 ≤ U ,

then at U > 0 the particle will undergo elastic reflection from a poten-

tial barrier. If the particle energy E ≫ U (typical of thermal neutrons),

mv2z/2 ≈ mv2ϑ2/2, where ϑ is the glancing angle, and the phenomenon of

the reflection from the barrier in the classical case occurs when ϑ is smaller

than the critical angle

ϑcr =
√
U/E (1.47)

As we have shown above, a mirror–reflected wave is necessarily created.

The physical meaning of the angle ϑcr is that at ϑ ≤ ϑcr, when U > 0, the

coefficient of mirror reflection becomes equal to unity, i.e., total reflection

occurs.

1.3 The Optical Theorem

Let a particle beam of intensity j0 be incident normally to a plane surface

of matter. Since |⟨ψ(r⃗)⟩|2 is the probability density to find the particle at



November 24, 2011 10:53 World Scientific Book - 9in x 6in 00˙NO˙new˙complete/1

Refraction and mirror reflection from a matter–vacuum plane boundary 19

point r⃗, the intensity of the particle beam at this point is

j = j0|⟨ψ(r⃗)⟩|2 = j0e
−2kImnz . (1.48)

Let the matter have a form of a plane–parallel plate of thickness l and

input surface area S. Let the plate be so thin as to satisfy the inequality

2kImnl ≪ 1. In this case

j = j0(1− 2kImnl) . (1.49)

Multiplication of Eq. (1.49) by S gives the number of particles passing

through the plate

Npas = N0(1− 2kImnl) = N0 −N02kImnl , (1.50)

where N0 is the number of particles incident on the plate.

The difference betweenN0 andNpas is apparently caused by the decrease

in the number of particles in the initial beam occurring through scattering.

Hence, the second term in Eq. (1.50) describes, in fact, the number of

particles scattered by the plate.

There is another way to find this number. Remembering the definition

in Eq. (1.1), we obtain that the total number of particles scattered by a

particular center is equal to

N1scat =

∫
jscatr

2dΩ = j0

∫
dσ

dΩ
dΩ = j0σ , (1.51)

where

σ =

∫
dσ

dΩ
dΩ

is the total scattering cross section.

If the number of scattering centers in the plate is Nc, then

Nscat = N1scatNc .

As Nc = ρSl,

Nscat = j0σρSl , (1.52)

i.e.,

Nscat = N0σρl, (1.53)

Comparing the second term in Eq. (1.50) with that in Eq. (1.53), we get

2kImn = σρ . (1.54)

Recalling Eq. (1.41), we finally obtain

Imf(0) = kσ/4π . (1.55)
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Equation (1.55) is called the “optical theorem”. It appears to be suitable

in the general case too, when inelastic processes and reactions are present.

In this case the theorem indicates that the imaginary part of a coherent

elastic zero-angle scattering amplitude is kσtot/4π, where σtot is the total

interaction cross section, including both elastic and inelastic processes.

In view of the law of absorption Eq. (1.48), which follows from the form

of the wave function ψ(r⃗), it should be noted that in deriving it we actually

used the fact that the wave function ψ(r⃗) = eiknz describes damping of

the initial monochromatic beam with momentum k⃗ in the medium, and the

perfect detector situated on the way of the primary beam only registers

the particles with the initial momentum k⃗. Such a situation holds true

with high accuracy, for example, for low-energy neutrons when the angular

distribution of scattered particles is much greater than the angular resolu-

tion of a detector. However, in the high-energy range or for the Coulomb

scattering of charged particles (protons, mesons), an appreciable fraction of

particles is scattered at small angles and thus gets registered by the detec-

tor. In the limiting case when the angular distribution of scattered particles

is much smaller than the angular resolution of the detector, all the particles

will get into the detector and will be registered. As a consequence, no de-

crease in the number of particles in the initial beam will be registered, and

the law Eq. (1.48) will be violated. In this case the transmission through

matter of, for example, charged particles is described by the theory of mul-

tiple Coulomb scattering [Molière (1948); Bethe (1953); Bethe and Ashkin

(1953); Ter-Mikaelian (1972)].

1.4 Scattering of Waves by a Set of Scatterers

Application of the optical theorem to the analysis of the process of scatter-

ing by a set of centers gives rise to a paradox ([Baryshevskii et al. (1965d)]).

Indeed, let quite a slow particle with a wavelength much larger than both

the size of the scatterers and the distance between these centers is elastically

scattered by the two fixed identical centers. Let a denote the amplitude of

particle scattering by each of these centers in the absence of the other.

As follows from Eq. (1.29), in this case the scattering amplitude does

not depend on the scattering angle (i.e., on the direction of k⃗′). This result

is true beyond the perturbation theory. That is why the amplitude of

scattering at zero angle equals the amplitude of scattering at an arbitrary
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angle. Then the optical theorem can be written as follows:

Ima = kσ/4π = k|a|2 . (1.56)

It will be recalled that dσ/dΩ = |a|2. As a consequence, we get

σ =
∫
|a|2dΩ = 4π|a|2.

Since the wavelength of the incident particle is assumed to be much

larger than the distance between the scattering centers, it follows from

Eq. (1.38) that in any direction the total scattering amplitude F is the sum

of the amplitudes of scattering by particular centers, i.e., F = 2a. From

this follows that the cross section is

σ′ = 4π|2a|2 = 4σ , (1.57)

i.e., it is four times as large as the amplitude of scattering by a particular

center.

On the other hand, if we try to find the cross section using the optical

theorem, we obtain

σ′ =
4π

k
Im(2a) = 2σ , (1.58)

i.e., the disagreement with the result obtained above is obvious.

The reason for this disagreement is that, strictly speaking, under given

conditions we cannot consider the centers in question to have no influence

on each other even if the amplitude of scattering by a particular center is

a ≪ R. Really, let one scatterer be situated at the origin of coordinates,

while the other one, at point R. With due account of the fact that besides a

primary plane wave, the wave scattered by the second center is also incident

on the scatterer located at the origin of coordinates, the effective amplitude

of scattering by the first center differs from the amplitude a of scattering

by this center in the absence of the second scatterer and equals 1

A1 ≈ a1 + eik⃗R⃗a2
eikR

R
a1 . (1.59)

Here the phase factor eik⃗R⃗ appears due to the phase difference of the

primary plane wave at the origin of coordinates and at point R⃗; a2e
ikR/R is

the wave which appears as a result of consecutive scattering of the primary

plane wave by the second center and then by the first one.

1We used the fact that in isotropic scattering any wave is scattered with the same
amplitude as a plane wave. Such a conclusion follows from the possibility to expand
the waves in question in terms of plane waves with different momentum directions; the
scattering amplitudes of these plane wave are independent of the angle.
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With due account of the wave scattered by the first center, the amplitude

of scattering by the second center has the form

A2 ≈ a2 + eik⃗R⃗a1
eikR

R
a2 . (1.60)

Let us now calculate the imaginary part of the amplitude of forward

scattering by the two centers A(0) = A1(0) +A2(0):

ImA(0) = Im (A1 +A2) = Im

(
a1 + a2 +

2a1a2
R

cos(k⃗R⃗)eikR
)
. (1.61)

If the conditions kR≪ 1 and |a| < R are fulfilled, it is clear that Rea1,2 ≫
Ima1,2 and

ImA(0) ≈ Ima1 + Ima2 + 2kRea1Rea2 . (1.62)

If a1 = a2 = a, then Rea1Rea2 ≈ |a|2 and the imaginary part of the forward

scattering amplitude is

ImA(0) = 4Ima ,

i.e., the total cross section of scattering by the set of scatterers is really

four times as large as that of scattering by a particular center.

Thus, taking account of rescattering eliminates the reviewed paradox as

the additional terms associated with rescattering significantly change the

imaginary part of the scattering amplitude, having practically no effect on

its real part which is much larger than the imaginary one.

A more detailed analysis of scattering by two and more centers is given

in [Brueckner (1953); Watson (1957); Baryshevsky (1995b)].

In this connection, similar phenomena in classical electrodynamics can

be mentioned for comparison. Consider, for example, two neighboring oscil-

lators excited by the light with a wavelength much larger than the distance

between them. Then the equation of motion for the oscillators reads

¨⃗r1 + γ( ˙⃗r1 + ˙⃗r2) + ω2
0 r⃗1 =

e

m
E⃗e−iωt ,

¨⃗r2 + γ( ˙⃗r1 + ˙⃗r2) + ω2
0 r⃗2 =

e

m
E⃗e−iωt . (1.63)

The term γ ˙⃗r2 in the first equation describes the radiative reaction force

of the second oscillator acting on the first one, while the term γ ˙⃗r1 in the

second equation describes the effect of the first oscillator on the second one.

Introduce new coordinates R⃗ = r⃗1 + r⃗2 and r⃗ = r⃗1 − r⃗2. Then

¨⃗r + 2γ
˙⃗
R+ ω2

0R⃗ =
2e

m
E⃗e−iωt ,

¨⃗r + ω2
0 r⃗ = 0 . (1.64)
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The second equation describes the undamped motion of the oscillators vi-

brating in antiphase. As would be expected, this motion results in neither

radiation nor absorption of electromagnetic waves because in this case the

dipole moment of the system does not change.

The effect of the external field on the oscillators is described by the first

equation. Its stationary solution is:

R⃗ =

(
2e

m

1

ω2
0 − ω2 − i2ωγ

)
E⃗e−iωt . (1.65)

The term between the brackets is proportional to the amplitude of elec-

tromagnetic wave scattering by two oscillators. It is easy to notice that far

from the resonance when the imaginary part can be neglected, the real part

of the amplitude is proportional to 2e, i.e., equals the sum of the ampli-

tudes of scattering by independent oscillators. Far from the resonance, the

imaginary part of the amplitude does not equal the sum of the amplitudes

since the radiation from one of the oscillators has a significant influence on

the decay of the other one, and vice versa.

Now let us consider scattering by two centers in more detail. Assume

that scattering by each particular center is isotropic (s-scattering). The

relation between the wavelength and the distance between the scatterers is

supposed to be arbitrary. Let us first consider forward scattering. With

due account of double scattering, the amplitude is

A
(2)
1 ≈ a1 + a1a2

eikR

R
eik⃗R⃗ + a1a2a1

e2ikR

R2
. (1.66)

The term referring to the n-fold scattering has the form

a1a2a1a2 . . . a1a2
einkR

Rn
eik⃗R⃗

if n is an odd number. If n is an even number, then

a1a2 . . . a1a2a1
einkR

Rn

(in both cases the number of amplitudes in the numerator equals n+ 1).

For the second center

A
(2)
2 ∼ a2 + a2a1

eikR

R
e−ik⃗R⃗ + a2a1a2

e2ikR

R2
. (1.67)

The term referring to the n-fold scattering takes the form:

a2a1a2a1 . . . a2a1
einkR

Rn
e−ik⃗R⃗ (1.68)
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if n is an odd number. If n is an even number, it equals

a2a1 . . . a2a1a2
einkR

Rn
. (1.69)

It is quite obvious that the progressive approximations satisfy the relations

A
(n)
1 = a1 + a1A

(n−1)
2

eikR

R eik⃗R⃗ ;

A
(n)
2 = a2 + a2A

(n−1)
1

eikR

R e−ik⃗R⃗ .

 (1.70)

At n→ ∞, A
(n)
1 → A1 and A

(n)
2 → A2, so

A1 = a1 + a1A2
eikR

R eik⃗R⃗ ;

A2 = a2 + a2A1
eikR

R e−ik⃗R⃗ .

 (1.71)

Solving the system of equation, we get

A1 =
a1 + a1a2

eikR

R
eik⃗R⃗

1− a1a2
e2ikR

R2

;

A2 =
a2 + a1a2

eikR

R
eik⃗R⃗

1− a1a2
e2ikR

R2

. (1.72)

For scattering at an arbitrary angle, the effective amplitude A is associated

with A1 and A2 by a simple relation

A = A1 +A2e
−iq⃗R⃗ , (1.73)

where q⃗ is the transmitted momentum.

Equation (1.72) implies that each scatterer still scatters isotropically

with the amplitudes defined by Eq. (1.72). In deriving Eq. (1.71) we sup-

posed that the sequences A
(n)
1 and A

(n)
2 have limits. Thus, in fact, we used

the conditions a1,2 < R. However, Eq. (1.71) actually holds true for any

relation between a and R. Indeed, the sum wave incident on each of the

scatterers is composed of a primary plane wave and a certain effective wave

that appears as a result of the presence of the second center. Scattering

of a plane wave is described by the terms a1 and a2 in Eq. (1.71). The

physical meaning of the second terms in these equations becomes clear if

remembering that in isotropic scattering any wave is scattered with the

same amplitude as the plane one. Each of these terms describes the wave
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produced by one of these centers and then scattered with the amplitude a

by the other center. Since at each stage scattering is isotropic, the effective

amplitudes A1 and A2 also remain isotropic.

It follows from the above that the first equation Eq. (1.71) could be de-

rived from the following considerations: The contribution to the amplitude

from the plane wave is a1; one should add to a1 the additional term de-

scribing scattering by the first center with the amplitude a1 of the effective

wave

A2
eikR

R
eik⃗R⃗ ,

which has been produced by the second center. The second equation

Eq. (1.71) is obtained analogously. It is obvious that when deriving the

system of equations in this way, no restrictions on the relation between a

and R are imposed.

The system of equations Eq. (1.71) is easy to generalize to the case of

several scatterers [Baryshevskii et al. (1965c)]. In this case, the effective

amplitude A of scattering by many fixed centers is

A =
∑
i

Aie
−q⃗R⃗i , (1.74)

and Ai satisfies the following system of equations

Ai = ai + ai
∑
k ̸=i

Ak
eikRik

Rik
eik⃗R⃗ki , (1.75)

where R⃗ki = R⃗k − R⃗i and summation is made over all scatterers.

Let now along with elastic scattering, inelastic processes be possible. If

a≪ R, we can confine ourselves with high accuracy to taking into account

only one rescattering event. In this case the amplitudes A1 and A2 of elastic

scattering by a set of two centers are still described by relations Eq. (1.71),

but the difference is that now a stands for the amplitude including inelastic

processes too:

Ima =
k

4π
(σel + σinel) ,

σel = 4π|a|2 . (1.76)

With more rescattering events taken into account, the expressions for the

amplitudes A1 and A2 differ from those in Eq. (1.72) already in the order

of (a/R)2. The terms of the type as below appear in the amplitudes:

b1
eik

′R

R
a2
eik

′R

R
b̄1 , (1.77)
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where b1 is the amplitude of the inelastic process at the first center (for

example, inelastic scattering); b̄1 is the amplitude of the inverse process; k′

is the wave number of the inelastically scattered wave.

These terms describe the processes due to which a wave is inelastically

scattered by the first center, elastically rescattered by the second center,

and when brought back to the first center returns this center into its ini-

tial state. Since after scattering the state of the system remains the same,

such a process is to be considered as an elastic one. However, if the am-

plitude of the inelastic reaction b ∼ a ≪ R, the contribution of inelastic

channels to the amplitude of elastic scattering by a set of centers through

the above–described mechanism can also be neglected in higher orders. In

this case Eq. (1.71), as well as Eq. (1.75), holds true for inelastic processes

too, and a1 stands for the elastic scattering amplitude, which obeys the

relations Eq. (1.76). This statement immediately follows from the fact that

the elastic scattering by a set in the presence of inelastic channels can be

described, using a complex potential, which at b ∼ a ≪ R is reduced to

the sum of complex potentials of particular centers. Such substitution of a

complex potential for a real one does not violate the validity of derivation

of Eq. (1.75).

In the general case when the amplitude of the inelastic reaction is com-

parable with that of the elastic reaction, Eq. (1.75) becomes invalid.

Let us consider some particular cases. Let scattering be performed by

two identical centers (a1 = a2 = a). Suppose that the cross sections of in-

elastic processes and elastic scattering have the same order of magnitude. In

this case, at |a| ≪ R and λ≫ R, the inequality Ima≪ Rea is fulfilled auto-

matically, and we can confine ourselves to the first approximation Eq. (1.72)

and Eq. (1.73). Then

ImA ≈ Im

(
2a+

2a2

R
eikR

)
≈ 2Ima+ 2k|a|2 =

k

4π
(2σ0

tot) + 2k|a|2 , (1.78)

where σ0
tot is the total cross section of scattering by each center (σ0

tot =

σinel + 4π|a|2). From this it follows

4πImA/k = 4σ0
el + 2σ0

inel , (1.79)

i.e., the total cross section of scattering by two centers, as expected, can be

presented as

σtot = 2σ0
inel + 4σ0

el , (1.80)

Now let us assume that |a| ≈ R and the system of equations Eq. (1.71)

holds true. Then in the long–wave approximation

A ≈ 2a

1− aeikR/R
. (1.81)
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According to the optical theorem,

σtot =
4π

k
ImA ≃ 2σinel + 16π|a|2

1 + |a|2/R2 − 2Rea/R

=
2(σ0

inel + 2σ0
el)

1 +
σ0
el

4πR2
± 2

R

√
σ0
el

4π
− (kσ0

tot)
2

16π2

. (1.82)

where σ0 is the interaction cross section for a single center.

When σ0
el ≪ R2, we obtain Eq. (1.80). In the inverse limiting case when

σ0
el ≫ R2, the elastic scattering cross section is 2

σel = 16πR2 . (1.83)

If inelastic processes occur, from Eq. (1.82) follows that

σtot = 16πR2

(
1 +

σ0
inel

2σ0
el

)
. (1.84)

In particular, for scattering by absolutely black spheres (σel = σinel)

σtot = 24πR2 . (1.85)

Now let us give a more rigorous consideration of the process of creation

of a coherent wave passing in matter. For this purpose, we shall study the

problem of scattering by N centers in the general form. The corresponding

Schrödinger equation is(
Ea −H(ξ1 . . . ξN ) +

~2

2m
∆r

)
ψ(r⃗, ξ1 . . . ξN )

=
N∑
i=1

Vi(r⃗, ξi)ψ(r⃗, ξ1 . . . ξN ) , (1.86)

where H(ξ1 . . . ξN ) is the Hamiltonian of the scatters; ξ1 . . . ξN is the set

of coordinates describing the first and other scatterers (ξ also includes spin

variables); Vi(r⃗, ξi) is the energy of the interaction between the incident

particle and the i-th scatterer; r⃗ is the coordinate of the incident particle.

If G(r⃗, ξ1 . . . ξN ; r⃗ ′, ξ′1 . . . ξ
′
N ) is the Green function of the operator

Ea −H +
~2

2m
∆r ,

2Applying the optical theorem, one cannot drop the term eikR in the denominator of
Eq. (1.72), though kR ≪ 1. It is easy to see that if it is assumed that eikR ≃ 1, after
using the optical theorem we obtain the value of the elastic scattering cross section which
is half as large as the correct one.
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then Eq. (1.86) can be written in the form

ψa(r⃗, ξ1 . . . ξN ) = Φa(r⃗, ξ1 . . . ξN )

+

∫ ∫
G(r⃗, ξ1 . . . ξN ; r⃗ ′, ξ′1 . . . ξ

′
N )

N∑
i=1

Vi(r⃗
′, ξ′i)

× ψa(r⃗
′, ξ′1 . . . ξ

′
N )d3r

′d3ξ
′
1 . . . d3ξ

′
N (1.87)

[Φa are the eigenfunctions of the operator
(
− ~2

2m∆r +H
)
].

Taking into account that [Goldberger and Watson (1984); Davydov

(2010)]∑
i

Vi(r⃗, ξi)ψa(r⃗, ξ1 . . . ξN ) = T (r⃗, ξ1 . . . ξN )Φa(r⃗, ξ1 . . . ξN ) , (1.88)

where T is the operator of scattering by N centers, the following equation

can be derived for T :

T (r⃗, ξ1 . . . ξN )Φa(r⃗, ξ1 . . . ξN ) =
N∑
i=1

Vi(r⃗, ξi)Φa(r⃗, ξ1 . . . ξN )

+
N∑
i=1

Vi(r⃗, ξi)

∫ ∫
G(r⃗, ξ1 . . . ξN ; ρ⃗, η⃗1 . . . η⃗N )

×T (ρ⃗, η⃗1 . . . η⃗N )Φa(ρ⃗, η⃗1 . . . η⃗N )d3ρd3η1 . . . d
η
N . (1.89)

Let us introduce the notation T (r⃗, ξ1 . . . ξN )Φa(r⃗, ξ1 . . . ξN ) =

Ta(r⃗, ξ1 . . . ξN ). Then, it is convenient to introduce the operators T i, using

the equalities:

T (i)
a (r⃗, ξ1 . . . ξN ) = Vi(r⃗, ξi)Φa(r⃗, ξ1 . . . ξN )

+Vi(r⃗, ξi)

∫ ∫
G(r⃗, ξ1 . . . ξN ; ρ⃗, η⃗1 . . . η⃗N )

×Ta(ρ⃗, η⃗1 . . . η⃗N )d3 ρd3η1 . . . d
3ηN , (1.90)

i.e., T =
∑
i

T (i).

The system Eq. (1.89) can be represented as

T (i)
a (r⃗, ξ1 . . . ξN ) = t(i)a (r⃗, ξ1 . . . ξN )

+t(i)(r⃗, ξ1 . . . ξN )

∫ ∫
G(r⃗, ξ1 . . . ξN ; ρ⃗, η⃗1 . . . η⃗N )

×
∑
l ̸=i

T (l)
a (ρ⃗, η⃗1 . . . η⃗N )d3ρd3η1 . . . d

3ηN , (1.91)

where
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t(i)a (r⃗, ξ1 . . . ξN ) = Vi(r⃗, ξi)Φa(r⃗, ξ1 . . . ξN )

+Vi(r⃗, ξi)

∫ ∫
G(r⃗, ξ1 . . . ξN ; ρ⃗, η⃗1 . . . η⃗N )

×t(i)a (ρ⃗, η⃗1 . . . η⃗N )d3ρd3η1 . . . d
3ηN .

As is known [Goldberger and Watson (1984); Davydov (2010)],

G(r⃗, ξ1 . . . ξN ; ρ⃗, η⃗1 . . . η⃗N )

= − m

2π~2
∑
b

φb(ξ1 . . . ξN )φ∗
b(η⃗1 . . . η⃗N )

eikb|r⃗−ρ⃗|

|r⃗ − ρ⃗|
,

where φb(ξ1 . . . ξN ) are the eigenfunctions of the operator H(ξ1 . . . ξN );

k2b ≡ 2m

~2

(
EA +

~2k2a
2m

− EB

)
=

2m

~2
(Ea − EB) ;

EA and EB are the internal energies of the scattering system before and

after the collision, respectively.

If the scatterers are independent of each other, the wave function

φb(ξ1 . . . ξN ) is represented as the product of the wave functions of the

scatterers:

φb(ξ1 . . . ξN ) =
∏

φbi(ξi) .

In this case the direct substitution can verify that t(i)(r⃗, ξ1 . . . ξN ) =

t(i)(r⃗, ξi), where t
(i)(r⃗, ξi) is the operator of particle scattering by the i-th

center in the absence of other centers.

Note now that the quantities T
(i)
a can be written as follows:

T (i)
a = t(i)(r⃗, ξ1 . . . ξN )F (i)

a (r⃗, ξ1 . . . ξN ) , (1.92)

where

F (i)
a (r⃗, ξ1 . . . ξN ) = Φa(r⃗, ξ1 . . . ξN ) +

∫ ∫
G(r⃗, ξ1 . . . ξN ; ρ⃗, η⃗1 . . . η⃗N )

×
∑
l ̸=i

T (l)
a (ρ⃗, η⃗1 . . . η⃗N )d3ρd3η1 . . . d

3ηN . (1.93)

The first term in Eq. (1.93), being the function of r⃗, describes the initial

wave falling upon the i-th scatterer. The second term can be interpreted

as the contribution to the wave incident on the i-th center that is due

to scattering by other centers. Indeed, if the interaction of the incident

particle with all the centers excepting for the i-th center equaled zero, then

the second term would also equal zero.
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Let us make use of the definition Eq. (1.88) and rewrite equation

Eq. (1.87) for the wave function ψa in the form:

ψa(r⃗, ξ . . . ξN ) = Φa(r⃗, ξ1 . . . ξN )

+

∫ ∫
G(r⃗, ξ1 . . . ξN ; r⃗ ′, ξ′1 . . . ξ

′
N )

N∑
i=1

t(i)(r⃗ ′, ξ′1 . . . ξ
′
N )

× F (i)
a (r⃗ ′, ξ′1 . . . ξ

′
N )d3r′d3ξ′1 . . . d

3ξ′N . (1.94)

From Eq. (1.94) follows that the probability amplitude ψba(r⃗) = ⟨φb|ψa⟩
to find the particle at point r⃗ and the system in state b satisfies the system

of equations

ψba(r⃗) = eikar⃗δba −
m

2π~2

∫ ∫
eikb|r⃗−r⃗

′|

|r⃗ − r⃗ ′|
φ∗
b(ξ

′
1 . . . ξ

′
N )

×
∑
t

t(i)(r⃗ ′, ξ′1 . . . ξ
′
N )F (i)

a (r⃗ ′, ξ′1 . . . ξ
′
N )d3r′d3ξ′1 . . . d

3ξ′N . (1.95)

Transformation of Eq. (1.95) into a differential equation gives

(∆r + k2b )ψba(r⃗)−
2m

~2

∫ ∫
φ∗
b(ξ

′
1 . . . ξ

′
N )

×
N∑
i=1

t(i)(r⃗, ξ1 . . . ξN )F (i)
a (r⃗, ξ1 . . . ξN )d3ξ1 . . . d

3ξN = 0 (1.96)

or

(∆r + k2b )ψba(r⃗)−
2m

~2
∑
f

N∑
i=1

t
(i)
bf (r⃗)F

(i)
fa (r⃗) = 0 , (1.97)

where

t
(i)
bf (r⃗) =

∫
φ∗
b(ξ1 . . . ξN )t(i)(r⃗, ξ1 . . . ξN )φa(ξ1 . . . ξN )d3ξ1 . . . d

3ξN ;

F
(i)
fa (r⃗) =

∫
φ∗
f (ξ1 . . . ξN )F (i)

a (r⃗, ξ1 . . . ξN )d3ξ1 . . . d
3ξN .

Let us consider in more detail the equation describing the elastically

scattered wave:

(∆r + k2a)ψaa(r⃗)−
2m

~2
N∑
i=1

t(i)aa(r⃗)F
(i)
aa (r⃗)

−2m

~2
∑
f ̸=a

N∑
i=1

t
(i)
af (r⃗)F

(i)
fa (r⃗) = 0 . (1.98)
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The amplitude F
(i)
fa in the third term (unlike F

(i)
aa ) appears only as a result

of rescattering [see the general expression Eq. (1.93)]. For this reason, under

the conditions when the elastic scattering amplitude f is of the same order

of magnitude as the inelastic scattering amplitude and much smaller than

the distance between the scatterers, the third term in the relation f/R for

correlated scatterers and (f/R)2 for independent scatterers is smaller than

the second term, and can be discarded.

For simplicity, let us next study the phenomenon of refraction and reflec-

tion at the plane boundary of matter composed of scatterers independently

vibrating about certain fixed equilibrium positions. Suppose also that all

the oscillators are in the ground state [the wave function φ0(u⃗i), where u⃗i is

the displacement of the i-th center from the equilibrium position located at

point R⃗i]. Assume that ti(r⃗, ξ1 . . . ξN ) = t(r⃗−ξi). This occurs, for example,

when the first Born approximation is applicable to the scattering operator

and in the case of S–scattering when

t(r⃗, ξi) = −2π~2

m
aδ(r⃗ − ξi)

where a is the scattering amplitude.

As a result, Eq. (1.98) can be presented in the form:

(∆r + k20)ψ00(r⃗, R⃗1 . . . R⃗N ) (1.99)

−2m

~2
N∑
i=1

∫
φ∗
0(u⃗)t(r⃗ − R⃗i − u⃗i)φ0(u⃗)d

3uF
(i)
0 (r⃗, R⃗1 . . . R⃗N ) = 0 .

Now the functions ψ and F are the parametric functions of the coordinates

R .

Let the oscillators be chaotically distributed with uniform density ρ in a

half–space Rz > 0. The equation for a coherent wave ⟨ψ(r⃗)⟩ is obtained by

averaging Eq. (1.99) over the coordinates R⃗i, which in our case is reduced

to integration over R⃗i with the weight 1/V N within the volume occupied

by the medium

⟨ψ(r⃗)⟩ = 1

V N

∫ ∫
ψ00(r⃗, R⃗1 . . . R⃗N )d3R1 . . . d

3RN , (1.100)

i.e.,

(∆r + k20)⟨ψ(r⃗)⟩ −
2m

~2
N∑
i=1

1

V

∫
φ∗
0(u⃗)

×t(r⃗ − R⃗i − u⃗)φ0(u⃗)d
3uF

(i)
0 (r⃗, R⃗i)d

3Ri = 0 , (1.101)

F
(i)
0 (r⃗, R⃗i) =

1

V N−1

∫ ∫
F

(i)
0 (r⃗, R⃗1 . . . R⃗i−1 ,

R⃗i, R⃗i+1 . . . R⃗N )d3R1 . . . d
3Ri−1d

3Ri+1 . . . d
3RN .
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If there is a great number of scatterers that are randomly distributed, the

addition or elimination of one of the scattering centers hardly affects the

averaged sum wave passing in the medium [Lax (1951)]. This leads to the

fact that the value of F i0(r⃗, R⃗i) is, actually, independent of the coordinate

R⃗i and coincides with ⟨ψ(r⃗)⟩. Consequently, we can rewrite Eq. (1.101) as

follows: {
∆r + k20 −

2m

~2
ρv(z)

}
⟨ψ(r⃗)⟩ = 0 , (1.102)

where

ρv(z) = ρ

∫
Rz>0

∫
φ∗
0(u⃗)t(r⃗ − R⃗− u⃗)φ0(u⃗)d

3ud3R

does not depend on the coordinates x and y due to the homogeneity of

the medium along these coordinates. It has the meaning of the effective

potential energy of interaction between the particle and the medium.

Let us consider Eq. (1.101) for positive values of the coordinate z, which

are much larger than the oscillation amplitude a of the scatterers (the

particle moves in the interior of the matter). At the given value of the

coordinate z, the quantity∫ +∞

−∞

∫ {∫
φ∗
0(u⃗)t(r⃗ − R⃗− u⃗)φ0(u⃗)d

3u

}
dRxdRy ,

as the function of Rz is nonzero only in the layer with the thickness of the

order of a. That is why for the stated values of z, the limits of integration

with respect to Rz[0,∞] can be replaced by [−∞,∞], i.e.,

v(z) =

∫ ∫
φ∗
0(u⃗)t(r⃗ − R⃗− u⃗)φ0(u⃗)d

3ud3R .

As the amplitude f(k⃗′ − k⃗) of scattering by the center located at the

origin of coordinates is related to the scattering operator t as

f(k⃗′ − k⃗) = − m

2π~2

∫
e−ik⃗

′r⃗φ∗
0(u⃗)t(r⃗ − u⃗)eik⃗r⃗φ0(u⃗)d

3rd3u , (1.103)

then in the interior of the matter

v(z) = −2π~2

m
f(0) .

In this case Eq. (1.102) describes the particle moving in the medium with

the refractive index n2 = 1 + (4πρ/k2z)f(0).

It is obvious that for z < 0 and |z| ≫ a, Eq. (1.102) describes the

particle moving in a vacuum.
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Thus, the consideration of refraction and reflection at a matter bound-

ary came to the investigation of refraction and reflection in the transition

layer. Its degree of “diffusiveness” is determined by the vibration amplitude

of the scatterers if the amplitude is much larger than the range of action

of the potential and by the range of action of the potential if this range is

greater than the vibration amplitude [Baryshevskii (1967)].

In the example discussed above we assumed that the equilibrium posi-

tions of the oscillators are uniformly distributed even near the surface. It is

unlikely to be so for real substances. Even at an atomically clean boundary

of a perfect crystal, the interaction between two or three boundary layers

of atoms will be different from that in the interior of the crystal (it was

shown in works on resonance absorption of γ-quanta in Mössbauer effect

[Maradudin and Melngailis (1964); Bowles and Cranshaw (1965)] that the

Debye–Waller factor of the surface nuclei is really different from that of

the nuclei situated in the interior of the crystal). This causes the increase

in the “diffusiveness” of the boundary up to the size of the order of one

or two interatomic distances. Further growth of “diffusiveness” is due to

roughness on the boundary.

In this case ρv(z) in Eq. (1.102) should be replaced by

⟨V (z)⟩ =
∫ ∫

φ∗
0(u⃗)t(r⃗ − u⃗− R⃗)φ0(u⃗)ρ(R⃗)d

3ud3R ,

where ρ(R⃗) is the density of the scatterers at the matter–vacuum boundary.

As is known, the coefficient of reflection from the layer with a diffuse

edge depends significantly on the relation between the wavelength of the

radiation and the size of the transition zone, as well as on the particle

glancing angle. For example, for glancing angles and energies at which

k2z ≫ 4πρf(0) (kz is the component of the particle wave vector along the

z-axis), it is possible to apply the perturbation theory, which gives the

following expression for the reflection coefficient:

R =

∣∣∣∣∣ 4πρ

|⃗k′ − k⃗|2
f(k⃗′ − k⃗)

∣∣∣∣∣
2

, (1.104)

where k⃗′ is the wave vector of the reflected wave. Using Eq. (1.103),

Eq. (1.104) for the reflection coefficient can finally be presented as

R = R0 exp[−2W (k′ − k)] , (1.105)

where

R0 =

∣∣∣∣∣ 4πρ

|⃗k′ − k⃗|2
f0(k⃗

′ − k⃗)

∣∣∣∣∣
2
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is the coefficient of reflection from the medium with rigidly fixed nuclei;

f0(k⃗
′ − k⃗) = − m

2π~2

∫
e−i(k⃗

′−k⃗)r⃗t(r⃗)d3r

is the amplitude of scattering by a rigidly fixed center;

e−W (k⃗′−k⃗) =

∫
e−i(k⃗

′−k⃗)ξ|φ0(ξ)|2d3ξ

is the form factor (the Debye–Waller factor).

As is seen, the angular dependence of the mirror reflection coefficient

is determined by two factors: the anisotropy of scattering associated with

the intrinsic characteristics of the scatterer [given by f0(k⃗
′ − k⃗)] and the

anisotropy caused by the vibration of the scatterers.

Let us pay attention to the fact that the result obtained is significantly

different from that obtained in deriving the coefficient of mirror reflection

of the wave from the region characterized by an abrupt change in the re-

fractive index (e.g. reflection from a sharp boundary between vacuum and

matter). In the latter case, the coefficient of mirror reflection is defined

by the equality like Fresnel’s formula [Landau and Lifshitz (1984)] and, for

example, for backward mirror reflection

R =

∣∣∣∣n− 1

n+ 1

∣∣∣∣ ≈ ∣∣∣πρk2 f(0)∣∣∣2 . (1.106)

(In deriving Eq. (1.106) we used the conditions n − 1 ≪ 1, n + 1 ≈ 2.)

On the other hand, it is clear from the physical viewpoint that a neutron

(γ-quantum) wave mirror–reflected from a plane boundary of matter is a

coherent superposition of waves scattered by nuclei (atoms) in the direc-

tion of reflection ϑ. Hence, the reflection coefficient R should depend on

the amplitude of coherent elastic scattering by the center in the stated di-

rection, i.e., on f(ϑ), but not on f(0), which has actually been obtained

[see formulas Eq. (1.104)–Eq. (1.105)] allowing for real “diffusiveness” of

the boundary due to either the finite radius of action of the potential or the

“diffusiveness” of the position of the nucleus (atom) as a result of vibra-

tions. If the wavelength is much larger than the radius of the interaction

potential (e.g. in the analysis of reflection of slow neutrons, whose wave-

length is much larger than the radius of the nucleus), then the amplitude

f0(k⃗
′− k⃗) = f0 is a constant and the difference of the angular dependence of

R from that in the case of rigidly fixed nuclei is determined by the form fac-

tor (the Debye–Waller factor). If the wavelength of the incident radiation

is much larger than the nuclear vibration amplitude (much larger than the

diffusiveness of the boundary), then even at backward reflection, the form
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factor is equal to unity and relation Eq. (1.106) holds true. In particular,

the applicability of Eq. (1.106) to light follows from the fact that for dipole

scattering, the forward and backward scattering amplitudes are the same

and the atomic recoil (diffusiveness of the boundary) can be neglected as

the wavelength of light is large in comparison with a real diffusion of the

atomically clean crystal surface.

Thus, for the wavelengths comparable with the dimensions of the tran-

sition zone (this occurs in the case of thermal neutrons and γ-quanta),

the coefficient of reflection R depends on the type of this zone which is

determined by nuclear dynamics.

It should be noted that the actual, principally unavoidable diffusiveness

of the boundary can also manifest itself in the range of wavelengths of vis-

ible light in the phenomena, which arise due to the finite size of molecules

(e.g. in optical activity (gyrotropy) of matter or other phenomena as-

sociated with spatial dispersion of matter). At any rate, the method of

matching the solutions at a sharp (stepped) boundary between matter and

vacuum applied to phenomenological analysis of gyrotropy (or other effects

associated with spatial dispersion) should be analyzed from the microscopic

viewpoint discussed above. The sensitivity of the reflection coefficient to the

diffusiveness of the boundary enabled developing various research methods

based on mirror reflection of neutrons, γ-quanta, and X-rays for studying

the phenomena occurring in the transition zone between matter and vac-

uum [Felcher (1981); Deitrich and Wagner (1983); Vineyard (1982); Mazur

and Mills (1982); Andreev (1985)].




