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Abstract

We study the features of cooperative parametric (quasi-Cherenkov) radiation
arising when initially unmodulated electron (positron) bunches pass through a crys-
tal (natural or artificial) under the conditions of dynamical diffraction of electro-
magnetic waves in the presence of shot noise. A detailed numerical analysis is given
for cooperative THz radiation in artificial crystals. The radiation intensity above
200 MW/cm2 is obtained in simulations.

In two- and three-wave diffraction cases, the peak intensity of cooperative radia-
tion emitted at small and large angles to particle velocity is investigated as a function
of the particle number in an electron bunch. The peak radiation intensity appeared
to increase monotonically until saturation is achieved. At saturation, the shot noise
causes strong fluctuations in the intensity of cooperative parametric radiation.

It is shown that the duration of radiation pulses can be much longer than the
particle flight time through the crystal. This enables a thorough experimental in-
vestigation of the time structure of cooperative parametric radiation generated by
electron bunches available with modern accelerators.

The complicated time structure of cooperative parametric (quasi-Cherenkov) ra-
diation can be observed in artificial (electromagnetic, photonic) crystals in all spec-
tral ranges (X-ray, optical, terahertz, and microwave).

1 Introduction

The generation of short pulses of electromagnetic radiation is a primary challenge
of modern physics. They find applications in studying molecular dynamics in biological
objects and charge transfer in nanoelectronic devices, diagnostics of dense plasma and
radar detection of fast moving objects.

The advances in the generation of short pulses of electromagnetic radiation in infrared,
visible, ultraviolet, and X-ray ranges of wavelengths are traditionally associated with the
development of quantum electronic devices — lasers. Radiation in lasers is generated via
induced emission of photons by bound electrons.

Electrovacuum devices, operating in a cooperative regime [1, 2], have recently become
considered as an alternative to short-pulse lasers, whose active medium is formed by elec-
trons bound in atoms and molecules. These are free electron lasers, cyclotron-resonance
masers, and Cherenkov radiators, whose active medium is formed by initially unmodu-
lated electron bunches propagating in complex electrodynamical structures (undulators,
corrugated waveguides and others). The feature of the cooperative operation regime lies
in the fact that the radiation power scales as the squared number of particles in the
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bunch. This allows calling this regime "superradiance" by analogy with the phenomenon
predicted by Dicke in quantum electronics [1].

It should be noted, that the initial phases of charged particles in the electromagnetic
wave are homogeneously distributed. As a result, bremsstrahlung produced by oscillating
electrons starts from incoherent sponteneous emission. This is true even if the bunch
length is much smaller than the radiation wave length. In contrast to bremsstrahlung,
Cherenkov (quasi-Cherenkov) radiation starts from coherent spontaneous emission when
such a short-length bunch is injected into a slow-wave structure, i. e. the radiation power
is proportional to the squared number of particles. The question arises whether this
dependence holds when the bunch length increases.

This paper considers cooperative radiation emitted by electron bunches when charged
particles pass through crystals (natural or artificial) under the conditions of dynamical
diffraction of electromagnetic waves. Note that a detailed analysis of the features of
incoherent spontaneous radiation of electrons passing through crystals in both frequency
[3] and time [4] domains has been carried out before. This radiation, emitted at both large
and small angles with respect to the direction of electron motion, is called the parametric
(quasi-Cherenkov) radiation. The problems of amplification of induced parametric X-ray
radiation and microwave (optical) quasi-Cherenkov radiation have also been thoroughly
studied in the literature [5], and the threshold current densities providing lasing in crystals
have been calculated [6]. Coherent spontaneous radiation produced by modulated electron
bunches in crystals has been analysed in [7, 8].

This paper is arranged as follows: In the beginning, a nonlinear theory of interaction of
relativistic charged particles and the electromagnetic field in crystals is set forth, followed
by the results of numerical calculations of the parametric radiation pulse. The dependence
of the radiation intensity on the particle number in an electron bunch and the geometrical
parameters of the system is considered. The appendix outlines the algorithm used in the
simulation. The feature of the algorithm is that it is based on the particle-in-cell method
[9], which enables studying kinetic phenomena. Let us note that in most of the existing
codes (see, e.g. [10, 11]) used for simulating the interaction of charged particles and a
synchronous wave, the motion of charged particles is considered within the framework of
the hydrodynamic approximation.

2 Nonlinear theory of cooperative radiation

A theoretical analysis of radiation can be performed only by means of a self-consistent
solution of a nonlinear set of the Newton–Maxwell equations:

d~pj
dt

= qe
(

~E(~rj, t) + ~vj × ~H(~rj , t)
)

, (1)

∇× ~E = −
1

c

∂ ~H

∂t
,

∇× ~H =
1

c

∂ ~D

∂t
+

4π

c
~j,

∇ · ~D = 4πρ,

∇ · ~H = 0, (2)

describing the electron motion in the electric ~E and magnetic ~H fields. Here ~j =
qe
∑

j ~vjδ(~r − ~rj) and ρ = qe
∑

j δ(~r − ~rj) are the current and charge densities, respec-
tively. Since the crystal is a periodic linear medium with frequency dispersion, the Fourier
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transform of the electric displacement field ~D(~r, ω) relates to the electric field ~E(~r, ω) as

D(~r, ω) =
(

1 + χ0(ω) +
∑

~τ

2χ~τ (ω) cos(~τ~r)
)

~E(~r, ω), where the summation is made over all

reciprocal lattice vectors. The dielectric susceptibilities in natural crystals in the X-ray
range and in grid photonic crystals built from metallic threads are inversely proportional
to the frequency [12]: χ0,~τ (ω) = Ω2

0,~τ/ω
2. (We should underline that, in the case of pho-

tonic crystals built from metallic threads, the equality χ0,~τ (ω) = Ω2
0,~τ/ω

2 is valid when
a thread radius is much smaller than the radiation wavelength). This permits to reduce
Maxwell’s equations (2) to the equation of the form:

1

c2
∂2 ~E

∂t2
+∇(∇ · ~E)−∆ ~E +

Ω2
0

c2
~E +

∑

~τ

2
Ω2

~τ

c2
cos(~τ~r) ~E = −

4π

c2
∂~j

∂t
. (3)

Let’s simplify the equation (3) for the case when two strong waves are excited in the
crystal: the forward wave and the diffracted wave (the so-called two-wave diffraction case).

The forward wave (its wave vector is denoted by ~k) is emitted at small angles with respect

to the particle velocity, while the diffracted one, having the wave vector ~kτ = ~k + ~τ , is
emitted at large angles to it (Fig. 1). Under the conditions of dynamical Bragg diffraction,

the following relation is fulfilled: ~k2
τ ≈ ~k2 ≈ ω2/c2.

Figure 1: The two-wave diffraction geometry.

Let us perform the following simplifications: First, we shall neglect the longitudinal
(∇ · ~D → 0) fields of the bunch, which is appropriate when the value of the Langmuir
oscillation frequency Ωb of the bunch is less than the values of Ω0,τ . In this case, the
Coulomb forces will not have an appreciable effect on electrodynamical properties of
the system. Second, we shall seek for the electric field ~E using the method of slowly
varying amplitudes. Third, we shall assume that a transversally infinite bunch executes
one-dimensional motion along the OZ-axis (this is achieved by inducing a strong axial
magnetic field in the system).

Under the conditions of two-wave diffraction, the field ~E can be presented as a sum

~E = ~e0E0(z, t)e
i(~k~r−ωt) + ~eτEτ (z, t)e

i(~kτ~r−ωt), (4)

where the amplitudes of the forward E0 and diffracted Eτ waves are slowly varying
variables. This means that for the distances comparable with the wavelength and the
times comparable with the oscillation period, the values of E0 and Eτ remain practically
the same. Substituting (4) into (1) and (3) and then averaging them over the length
l = 2jλ = 2jπ/kz, where j is a natural number, we obtain

dpzj
dt

= 2qee0zRe
(

E0e
i(kzzj−ωt)

)

, (5)
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1

c

∂E0

∂t
+ γ0

∂E0

∂z
+

iΩ2
0

2ωc
E0 +

iΩ2
τ

2ωc
Eτ = −

2π

c

∫ z+l/2

z−l/2

e0zjze
i(ωt−kzz)dz/l,

γ0 = kz/k,

1

c

∂Eτ

∂t
+ γτ

∂Eτ

∂z
+

iΩ2
0

2ωc
Eτ +

iΩ2
τ

2ωc
E0 = −

2π

c

∫ z+l/2

z−l/2

eτzjze
i(ωt−kτzz)dz/l,

γτ = kτz/k. (6)

Now let us complete the set of equations (5) and (6) with boundary conditions (the
initial conditions are reduced to the condition that all values of the fields equal zero at
t = 0): in the plane z = 0, let us specify the time dependence of function f and set the
field E0 to zero. In the case of Bragg diffraction, the boundary condition imposed on the
diffracted wave is reduced to the condition that the field Eτ equals zero at z = L, while
in the case of Laue diffraction, it equals zero at z = 0.

The difference between the two diffraction schemes is not merely kinematic, but rad-
ical. In the Bragg case, there is a synchronous wave moving against the electrons of the
beam, which gives rise to the internal feedback and absolute instability. In Laue diffraction
geometry, a backward wave is absent, and as a result absolute instability does not evolve.
It may seem that electromagnetic radiation is not generated. However, fluctuations of the
electron current (the shot noise), which always occur in real beams, are amplified when
the beam enters the crystal (due to convective instability, excited in the beam).

In analyzing multiparametric problems, to which the problem of cooperative paramet-
ric (quasi-Cherenkov) radiation refers, it is convenient to write equations (5) and (6) in
a dimensionless form. This procedure enabled transferring the calculation results from
one set of parameters to another. The substitution of variables ωt → t, ωL/c → L,
mcωE0,τ/qe → E0,τ then gives

dpzj
dt

= 2θRe
(

E0e
−i(t−kzzj+φj)

)

, (7)

∂E0

∂t
+ γ0

∂E0

∂z
+

iχ0

2
E0 +

iχτ

2
Eτ = −

∑

j

θχbj

2

ei(ωt−kzzj+φj)

Nl
,

∂Eτ

∂t
+ γτ

∂Eτ

∂z
+

iχ0

2
Eτ +

iχτ

2
E0 = 0. (8)

Here the quantity χbj = −4πq2enj/mω2 is determined at the moment when the jth particle
enters the system, nj is the corresponding electron density, θ is the angle between the

particle velocity and the wave vector ~k, φj is the initial phase of the jth particle, and
Nl is the number of particles over the length l. The set of equations with boundary
conditions contains four independent parameters: χ0,τ , ωL/c, θ that define the geometry
of the system. In addition to these parameters, we need to specify the beam profile. Let

χb = χb0 exp(−z2/L2
b), (9)

where the bunch length Lb is further assumed to be equal to 0.1L/c.
Obviously, in the three-diffraction case, the set of equations analogues to (8) should

be rewritten as follows:

∂E1

∂t
+ γ1

∂E1

∂z
+

iχ0

2
E1 +

iχτ

2
(E2 + E3) = −

∑

j

θχbj

2

ei(t−kz1zj+φj)

Nl
,

∂E2

∂t
+ γ2

∂E2

∂z
+

iχ0

2
E2 +

iχτ

2
(E3 + E1) = 0,

∂E3

∂t
+ γ3

∂E3

∂z
+

iχ0

2
E3 +

iχτ

2
(E1 + E2) = 0. (10)
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3 Simulation results

The characteristic feature of cooperative pulses is the peculiar dependence of the peak
power on the number of particles Nb in the bunch. When the particles are small in number,
the radiation power monotonically increases until saturation is achieved.
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Figure 2: The Bragg case. Quasi-Cherenkov radiation at small angles to particles’ veloc-
ities: radiation amplitude (left), amplitude dispersion (right) [θB = 67.5o, ν = 0.1 THz].
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Figure 3: The Bragg case. Quasi-Cherenkov radiation at large angles to particles’ veloci-
ties: radiation amplitude (left), amplitude dispersion (right) [θB = 67.5o, ν = 0.1 THz].

Let us see now how the dynamical diffraction of electromagnetic waves affects the
cooperative radiation in crystals. How the Bragg diffraction case is different from the
case of Laue diffraction?

We shall assume that γ = 3.0, θ = 0.33 rad, χ0/2 = χτ = 0.1, and L = 6 cm.
Let us start our consideration with the Bragg case. In this case, along with the elec-

tromagnetic wave emitted in the forward direction, one can observe the electromagnetic
wave that is emitted by charged particles in the diffraction direction and leaves the crystal
through the bunch entrance surface.

The peak radiation field emitted at small and large angles to particle velocity is inves-
tigated as a function of the peak current density j. The peak radiation intensity appeared
to increase monotonically until saturation is achieved (Fig. 2—3). At saturation, the shot
noise causes strong fluctuations in the intensity of cooperative parametric radiation. The

amplitute dispersion δ0,τ =
√

< E0,τ >2 − < E2
0,τ > is presented on fig. 2 (the brackets

< .. > denote average values).
The results of computation (Fig. 4) show that the cooperative radiation emitted at

large angles lasts much longer (trad ∼ 0.6 ns) than the particle flight time through the
crystal (tp = 0.2 ns), though that is much lower than the radiation intensity emitted in
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Figure 4: The Bragg case. Quasi-Cherenkov radiation at small (left) and (large) angles
to particles’ velocities [θB = 67.5o, j = 10 kA/cm2, ν = 0.1 THz].
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Figure 5: The Bragg case. Quasi-Cherenkov radiation at small angles to particles’ veloc-
ities: radiation amplitude (left), amplitude dispersion (right) [θB = 67.5o, ν = 1.0 THz].

forward direction. We would like to note that the long duration of parametric radiation
can be observed in sponteneous processes too [4].

Figures 2—4 correspond to the frequency ν = 0.1 THz and current density j =
10 kA/cm2. If we increase ν in ten times leaving the current density unchanged the
peak radiation field will be E ≈ 30 MV/m which corresponds to 240 MW/cm2 (fig. 5).

Now, let us consider the Laue case. In this case, the electromagnetic waves emitted
by charged particles in the forward and diffraction directions leave the crystal through
the same surface. Under Laue diffraction conditions (Fig. 6—8), the pulses of parametric
radiation emitted in forward and diffracted directions have comparable amplitudes and
durations.

We should point out that the shot noise results in strong fluctuations in radiation
intensity at saturation. Under Laue diffraction conditions, the shot noise leads to an
appreciable change in the pulse form due to the convective character of instability: in the
absence of noise, the generation occurs only at the ends of the bunch of charged particles.
As a result, the cooperative pulse posses a two-peak structure (Fig. 9). The presence
of noise leads to an appreciable change in the pulse form: the interval between the two
pulses is filled with a chaotic signal (Fig.10).

Under three-wave diffraction conditions (Fig. 11—14), the results of computation are
very similar to those of the Bragg case. Namely, the intensity of cooperative radiation
emitted at large angles lasts much longer than the particle flight time through the crystal,
though that is much lower than the radiation intensity emitted in forward direction.
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Figure 6: The Laue case. Quasi-Cherenkov radiation at small angles to particles’ veloci-
ties: radiation amplitude (left), amplitude dispersion (right) [θB = 22.5o, ν = 0.1 THz].
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Figure 7: The Laue case. Quasi-Cherenkov radiation at large angles to particles’ velocities:
radiation amplitude (left), amplitude dispersion (right) [θB = 22.5o, ν = 0.1 THz].

4 Conclusion

This paper studies the features of parametric (quasi-Cherenkov) cooperative radiation
emitted at both large and small angles to the particle velocity direction in two- and
three-wave diffraction cases. A detailed numerical analysis is given for cooperative THz
radiation in artificial crystals.

The peak intensity of cooperative radiation emitted at small and large angles to par-
ticle velocity is investigated as a function of the peak current density. The peak radiation
intensity appeared to increase monotonically until saturation is achieved. At saturation,
the shot noise causes strong fluctuations in the intensity of cooperative parametric radi-
ation.

It is shown that, the intensity of cooperative radiation emitted at large angles can last
much longer than the particle flight time through the crystal. At saturation, the shot
noise causes strong fluctuations in the intensity of cooperative parametric radiation. The
intensity of THz radiation above 200 MW/cm2 is obtained in simulations.

The complicated time structure of cooperative parametric radiation can be observed
in artificial (electromagnetic, photonic) crystals in all spectral ranges (X-ray, optical,
terahertz, and microwave).

It should be pointed out that thermal fluctuations become essential if kT ≥ h̄ω [19]
(k and h̄ is the Bolzman constant and the Plank constant, respectively); namely, when
kT ≫ h̄ω, generation starts as a stimulated emission induced by thermal quanta rather
than as a spontaneous one. This fact should be taken into account in development of
terahertz generators operating at room temperature.
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Figure 8: The Laue case. Quasi-Cherenkov radiation at small (left) and (large) angles to
particles’ velocities [θB = 22.5o, j = 10 kA/cm2, ν = 0.1 THz].
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Figure 9: The Laue case. Quasi-Cherenkov radiation in the absence of shot noise [θB =
22.5o, Lb/L = 1.0, j = 10 kA/cm2, ν = 0.1 THz].

A Particle-in-cell method

The set of equations (5) and (6) was solved using the particle-in-cell method, which
is widely used in plasma physics [13, 14]. This method implies that the solution of the
kinetic equation is modeled using a large number of macroparticles moving along the char-
acteristics of the kinetic equation. The current and charge densities are calculated from
particle velocities and positions and are further used for computations of the electric field
on a space-time mesh. The mesh values of the field are interpolated to the macroparticle
locations; then the forces acting on macroparticles are calculated. The approach described
here is close to the method described by I. J. Morey and C. K. Birdsall in [9], which was
used for travelling wave tube modeling.

Let us introduce a spatial ωz = {zn = n∆z, n = 0, 1, ..., nmax, nmax∆z = L} and a
time ωt = {ts = s∆t, s = 0, 1, ...} mesh. Specify an implicit finite-difference scheme [15]
of field equations (6) with second order accuracy in time and coordinate (the Bragg case):

Es+1
00 = 0, Es+1

τnmax = 0,

0 ≤ n < nmax :

Es+1
τn+1/2 −Es

τn+1/2

c∆t
= −γτ

E
s+1/2
τn+1 − Es

τn

∆z
−

iχ0

2
Es+1/2

τn −
iχτ

2
E

s+1/2
0n+1/2,

0 < n ≤ nmax :

Es+1
0n−1/2 − Es

0n−1/2

c∆t
= −γ0

E
s+1/2
0n − E

s+1/2
0n−1

∆z
−

iχ0

2
E

s+1/2
0n−1/2

−
iχτ

2
E

s+1/2
τn−1/2 − J

s+1/2
0n−1/2. (11)
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Figure 10: The Laue case. Quasi-Cherenkov radiation in the presence of shot noise
[θB = 22.5o, Lb/L = 1.0, j = 10 kA/cm2, ν = 0.1 THz]

Figure 11: The three-wave diffraction geometry.

Let us define the source J
s+1/2
0n on the right-hand side of (11), using the formula

J
s+1/2
0n = (Js

0n + Js+1
0n )/2,

Js+1
0n =

2π sin θeiω(t+∆t)

l

(

∑

j

Qj

zn+1 − zs+1
j

∆z
e−ikzz

s+1

j

+
∑

j

Qj

zs+1
j − zn−1

∆z
e−ikzz

s+1

j

)

. (12)

The contributions to each node come from the particles concentrated in the domain zn−1 ≤
zj < zn+1. Summation in the first and second terms is made over all particles in the
domains zn ≤ zs+1

j < zn+1 and zn−1 ≤ zs+1
j < zn, respectively. The weighting factors

zn+1−zs+1

j

∆z
and

zs+1

j −zn−1

∆z
are responsible for linear interpolation of the contributions to the

node with number n that come from each particle.
Complete the leap-frog difference scheme (11) with the discrete analogues of the equa-

tions of motion of macroparticles:

p
s+1/2
zj − p

s−1/2
zj

∆t
= 2QjθRe

(

Es
0je

ikzz
s+1/2
j −iω(t+dt/2)

)

,

zs+1
j − zsj
∆t

= v
s+1/2
zj , v

s+1/2
zj =

p
s+1/2
zj /Mj

√

1 + (p
s+1/2
zj /Mjc)2

. (13)
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Figure 12: The three-wave diffraction case. Quasi-Cherenkov radiation at small angles to
particles’ velocities: radiation amplitude (left), amplitude dispersion (right) [ν = 0.1 THz]
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Figure 13: The three-wave diffraction case. Quasi-Cherenkov radiation at large an-
gles to particles’ velocities: radiation amplitude (left), amplitude dispersion (right)
[ν = 0.1 THz].

The field Es
j at particles’ locations can be found by means of linear interpolation from

surrounding nodes:

Es
0j =

zn+1 − zsj
∆z

Es
0n +

zsj − zn

∆z
Es

0n+1,

zn ≤ zsj < zn+1. (14)

Injection and extraction of particles are performed as follows: during every time step,
we inject ∆N number of particles, whose initial phases are uniformly distributed on the
interval [0, π) [16]. It should be noted that the quantity ∆N obeys the Poisson statistics
[17]

P (∆N) =
∆N∆N

av exp(−∆Nav)

∆N !
, (15)

where Nav — is an average number of particles injected during the time interval ∆t.
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