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written using Hamiltonian and stationary states, or using
Lagrangian and periodic Euclidean paths. Further elucida-
tion of this duality regarding QCD monopoles [1425] shed
light on their density and the long-known absence of classical
solutions for them. All of these hint that the different faces of
“gauge topology” we discussed will “asymptotically” con-
verge into a single semiclassical theory.

6 Effective field theories

Conveners:
Franz Gross and Mike Strickland
In this second section on approximate methods, we discuss
effective field theories (EFTs), a powerful technique that
can be used when there are widely separated energy scales
appearing in a problem. A classic example of this is non-
relativistic QCD (NRQCD), which emerges in the limit of a
large quark mass M (Sect. 6.1). For v = p/M � 1, there is
a large separation between ‘hard’ modes, with energy on the
order of M ; soft modes, with energy on the order of Mv; and
ulrasoft (potential) modes, with energy/momentum on the
order Mv2. Using EFT methods, one can write an effective
NRQCD Lagrangian that includes all terms allowed by QCD
symmetries. The coefficients in this effective Lagrangian can
be computed systematically by a matching procedure, which
ensures that quantities calculated in the EFT are the same
as those computed in QCD itself up to a given order in v.
The NRQCD EFT can be extended by further integrating
out the soft scale to obtain an effective theory called poten-
tial NRQCD (pNRQCD), which is written entirely in terms
of singlet and octet quark–antiquark pairs. As a result, at
leading order in pNRQCD, the physics of heavy quarkonium
reduces to solving a Schrödinger equation for bound state
wave functions.

This is but one example. The use of EFTs applied to QCD
has allowed systematic progress on many fronts in the last
decades. These include a systematically extendable model of
low-energy hadronic physics called chiral perturbation the-
ory (Sect. 6.2), which can be used as a foundation for nuclear
physics (Sect. 6.3) giving both a successful description of
the NN interaction up to 200 MeV, and the properties of
light nuclei up to A ≤ 12. In the realm of jets, soft-collinear
effective theory implements power counting in the transverse
momentum of gluon radiation (Sect. 6.4).

EFT methods have also been used to understand high-
temperature QCD thermodynamics, in which case the hard,
soft, and ultrasoft scales are T , gT , and g2T , respectively
(Sect. 6.5). The resulting EFTs, called electrostatic QCD
(EQCD) and magnetostatic QCD (MQCD) allow one to
systematically calculate the equation of state of a high-
temperature quark–gluon plasma. Together with other finite-
temperature resummation schemes such as hard-thermal-

loop perturbation theory these methods have provided a
way to calculate the QCD equation state that agrees well
with lattice calculations down to temperatures just above the
quark–gluon plasma phase transition temperature. Finally,
Sect. 6.6 describes how EFTs have recently been applied to
non-equilibrium QCD physics such as the quantum transport
of bottomonium through the quark–gluon plasma.

6.1 Nonrelativistic effective theory

Antonio Vairo
In QCD, quarks may be divided into two fundamental sets:
heavy quarks (charm, bottom, top) whose masses mh are
much larger than the typical hadronic scale ΛQCD and light
quarks (up, down, strange) whose masses m! are much
smaller than ΛQCD. Both the hierarchies, mh � ΛQCD and
m! � ΛQCD, allow for an effective field theory (EFT) treat-
ment of hadrons that exploits the symmetries that the hadrons
manifest in the large and small mass limits. Because these
symmetries are not manifest in QCD, the EFT is typically
simpler and more predictive than the full QCD treatment, at
least at the lowest orders in the effective expansion. At higher
orders in the effective expansion the original symmetries of
QCD are restored. We discuss EFTs for heavy quarks in this
section, while EFTs for light quarks, i.e., chiral EFTs, are
reviewed in the following sections.

In general, an effective field theory of QCD is constructed
as an expansion in the ratio Λ!/Λh of a low energy scale Λ!,
e.g. ΛQCD, and a high energy scale Λh , e.g. mh . Each term
in the expansion is made of the fields describing the system
at the low-energy scale; these terms may have any form con-
sistent with the symmetries of QCD. The low-energy fields
are the effective degrees of freedom. The resulting scatter-
ing matrix is the most general one consistent with analyticity,
perturbative unitarity, cluster decomposition and the symme-
try principles [1426].

It is said that the large energy scale “has been integrated
out” from QCD. Analytic terms in the expansion parameter
Λ!/Λh are accounted for by the operators of the EFT. Non-
analytic terms, carrying the contributions of the high-energy
modes in QCD, which are no longer dynamical in the EFT,
are encoded in the parameters multiplying the EFT operators.
These parameters are the Wilson coefficients of the EFT,
also called matching coefficients, or low-energy constants
in the chiral EFT. Hence, EFTs automatically factorize, for
any observable, high-energy from low-energy contributions.
The Wilson coefficients of the EFT Lagrangian are fixed by
matching to the fundamental theory, i.e., by requiring that the
EFT and the fundamental theory describe the same physics
(observables, Green functions, scattering matrices,…) at any
given order in the expansion parameter Λ!/Λh .
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The advantage of dealing with heavy quarks is that the
matching coefficients associated with the heavy quark mass
scale are guaranteed to be computable in perturbative QCD,
i.e., order by order inαs(mh), as a consequence of asymptotic
freedom. This is not the case for matching coefficients associ-
ated with lower energy scales or for the low-energy constants
that need to be computed either numerically in lattice QCD
or fixed on experimental data.

To allow for controlled calculations based on the effective
Lagrangian, operators, as well as the quantum corrections,
are organized according to their expected importance. Oper-
ators in the Lagrangian are counted in powers of the small
expansion parameter Λ!/Λh , whereas quantum corrections
are either computed exactly or counted in powers of the cou-
pling constant. For example, a strict expansion in terms of
the coupling is possible, as remarked above, when integrating
out the heavy quark mass.

EFTs are renormalizable at each order in the expansion
parameter. Hence, the EFT produces finite and controlled
expansions for any observable of the effective degrees of
freedom that may be computed respecting the energy scale
hierarchy upon which the EFT is based. The power counting
of the EFT, i.e., the way to assess the size of the different
terms in the effective expansion, may or may not be obvious.
The power counting turns out to be obvious if the system is
characterized by just one dynamical energy scale. Reducing
the description of a system to that one of an effective one
scale system is the ultimate goal of any effective field theory.

In this section, we restrict ourself to EFTs for heavy
quarks, where the heavy quark mass is the largest scale. These
EFTs are called nonrelativistic EFTs, because requiring the
heavy quark mass to be the largest scale implies that it is also
larger than the momentum p of the heavy quark in the hadron
reference frame: the conditionmh � p qualifies the quark as
nonrelativistic. The presentation of this section follows the
one of Ref. [1427].

For hadrons made of one heavy quark, like heavy-light
mesons and baryons, the proper nonrelativistic EFT is
called Heavy Quark Effective Theory (HQET). Heavy-light
hadrons are systems characterized by just two relevant energy
scales, mh and ΛQCD. HQET follows from QCD by integrat-
ing out modes associated with the heavy quark mass and
exploiting the hierarchy mh � ΛQCD. In the context of
HQET one deals with heavy-light hadrons made of either
a charm or a bottom quark (the top quark has no time to form
a bound state before decaying weakly into a b quark). HQET
is discussed in Sect. 6.1.1.

Systems made of more than one heavy quark, like quarko-
nia (e.g. charmonium and bottomonium) or quarkonium-like
states or doubly-heavy baryons are characterized by more
energy scales. The typical distance between the heavy quarks
is of the order of 1/(mhv), v � 1 being the relative velocity
of the heavy quark, which implies that the typical momen-

tum transfer between the heavy quarks is of order mhv, and
the typical binding and kinetic energy is of order mhv

2. The
inverse of mhv

2 sets the time scale of the bound state. These
systems are to some extent the QCD equivalent of positro-
nium in QED. In a positronium, an electron and a positron
move with a relative velocity v ∼ α, where α is the fine
structure constant, at a typical distance given by the Bohr
radius, which is proportional to 1/(mα), and are bound with
the energy given by the Bohr levels, which are proportional
to mα2.

At each of the energy scales one can construct an
EFT, specifically, nonrelativistic QCD (NRQCD) at the
scale mhv, which is discussed in Sect. 6.1.2, and potential
NRQCD (pNRQCD) at the scale mhv

2, which is discussed
in Sect. 6.1.3.

6.1.1 Heavy quark effective theory

Heavy Quark Effective Theory was the first nonrelativis-
tic EFT of QCD with a fully developed nonrelativistic
expansion, computation of higher-order radiative correc-
tions, renormalization group equations, and a wide range
of physical applications [704,1047,1250,1428] (for an early
review see, for instance, Ref. [1429], for a textbook see Ref.
[711]). This despite the fact that nonrelativistic QCD and
QED, the EFTs for two nonrelativistic particles that we dis-
cuss in Sect. 6.1.2, were suggested before [1430].

In a sense, HQET describes QCD in the opposite limit of
the chiral EFT, however, it is important to realize that HQET
is not the large mass limit of QCD, but the EFT suited to
describe heavy-light hadrons, i.e., hadrons made of one heavy
particle and light degrees of freedom. The heavy particle may
be taken to be a heavy quark, but also a composite particle
made by more than one heavy quark when the internal modes
of the composite heavy particle can be ignored. The light
degrees of freedom are made by light quarks and gluons.
Among the light quarks we may distinguish between valence
quarks and sea quarks, where the first ones are those that
establish, together with the heavy degrees of freedom, the
quantum numbers of the heavy-light hadron.

The HQET Lagrangian is made of low-energy degrees of
freedom living at the low-energy scale ΛQCD. These are the
low-energy modes of the heavy quark (antiquark), described
by a Pauli spinor ψ (χ ) that annihilates (creates) the heavy
quark (antiquark), and low-energy gluons and light quarks.
The HQET is constructed as an expansion in 1/mh : the heavy
quark expansion. Matrix elements of operators of dimension
d are of order Λd

QCD, hence the higher the dimension of the
operator the higher the suppression in ΛQCD/mh . In the rest
frame of the heavy-light hadron, the HQET Lagrangian den-
sity for a heavy quark reads up to order 1/m2

h and including
the 1/m3

h kinetic operator (HQET up to order 1/m4
h can be

found in Refs. [1431,1432])
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LHQET = Lψ + L!, (6.1)

with

Lψ = ψ†
{

i D0 + D2

2mh
+ D4

8m3
h

− cF
σ · gB
2mh

− cD
[D·, gE]

8m2
h

− icS
σ · [D×, gE]

8m2
h

}

ψ, (6.2)

L! =− 1

4
F A
μνF

Aμν + d2

m2
h

F A
μνD

2F Aμν

− d3

m2
h

g fABC F
A
μνF

B
μαF

C
να

+
n!∑

!=1

q̄!
(
i /D − m!

)
q!, (6.3)

where iD = i∇ − gA, i D0 = i∂0 + gA0, [D·, gE] =
D · gE − gE · D and [D×, gE] = D × gE − gE × D,
Ei = Fi0 is the chromoelectric field, Bi = −εi jk F jk/2
the chromomagnetic field, and σ are the Pauli matrices. The
fields q! are n! light-quark fields. The heavy-quark mass,mh ,
has to be understood as the heavy quark pole mass, hence not
the mass that is in the QCD Lagrangian. The coefficients cF ,
cD , cS , d2, and d3 are Wilson coefficients of the EFT. They
encode the contributions of the high-energy modes that have
been integrated out from QCD. Since the high-energy scale,
mh , is larger thanΛQCD, the Wilson coefficients may be com-
puted in perturbation theory and organized as an expansion
in αs at a typical scale of order mh . The coefficients cF , cD ,
and cS are 1 at leading order, while the perturbative series
of the coefficients d2 and d3 starts at order αs . The one-loop
expression of the coefficients may be found in Ref. [1433].
Some of the coefficients are known far beyond one loop. For
instance, the Fermi coefficient cF , which plays a crucial role
in the spin splittings, is known up to three loops [1434]. In
Eq. (6.3) we have not considered 1/m2

h suppressed operators
involving light quarks [1435,1436] since their impact is neg-
ligible in most hadronic observables. The HQET Lagrangian
for a heavy antiquark may be obtained from Eqs. (6.1) and
(6.2) by charge conjugation.

The HQET Lagrangian provides a description of heavy-
light hadrons that is the same as QCD order by order in
ΛQCD/mh . Because QCD is a Lorentz invariant theory, this
symmetry must be somehow maintained in HQET, although
HQET breaks manifest Lorentz invariance by the nonrela-
tivistic expansion. Indeed, Lorentz invariance is realized in
HQET by constraining the Wilson coefficients [1433,1437–
1439]. For instance, Lorentz invariance relates cF and the
spin–orbit coefficient cS : cS = 2cF − 1. This relation is
exact, which means that it holds to any order in αs .

The impact of HQET on the physics involving heavy-
light hadrons and, in particular, their weak decays has

been enormous. The reason is that the leading-order HQET
Lagrangian,

L(0)
HQET = ψ†i D0ψ − 1

4
F A
μνF

Aμν +
n!∑

!=1

q̄!
(
i /D − m!

)
q!,

(6.4)

makes manifest a hidden symmetry of heavy-light hadrons.
This symmetry is the heavy-quark symmetry and stands for
invariance with respect to the heavy-quark flavor and spin.
A consequence of the heavy-quark symmetry is that elec-
troweak transitions in the heavy-light meson sector depend
on only one form factor, the Isgur–Wise function ξ(w), whose
absolute normalization is ξ(0) = 1 [1250,1428]. Moreover,
the leading-order HQET Lagrangian is exactly renormaliz-
able.

Higher-order operators in Eq. (6.1) break the heavy-quark
symmetry (and exact renormalizability), however, they do it
in a perturbative way controlled by powers of ΛQCD/mh .
Hence, observables computed up to some order in the HQET
expansion depend on fewer and more universal nonperturba-
tive matrix elements than they would in a full QCD calcula-
tion. This makes the heavy quark expansion more predictive
than a full QCD calculation.

As an application, let us consider the heavy-light meson
masses. Expressed in the HQET as an expansion up to order
1/mh , they read [1440]

MH (∗) = mh + Λ̄+ μ2
π

2mh
− dH (∗)

μ2
G(mh)

2mh
+O

(
1

m2
h

)

,

(6.5)

where MH (∗) is the spin singlet (triplet) meson mass, mh

the heavy quark pole mass, Λ̄ the binding energy in the
static limit, of order ΛQCD, μ2

π/2mh the kinetic energy of
the heavy quark (μ2

π is the matrix element of ψ†D2ψ),
of order Λ2

QCD/mh , dH (∗) is 1 for H and −1/3 for H∗,
and dH (∗)μ2

G(mh)/2mh is the matrix element of cF ψ†σ ·
gB/(2mh)ψ , of order Λ2

QCD/mh . The heavy quark symme-
try manifests itself through the universality of the leading
term MH (∗) − mh ≈ Λ̄, and of the matrix elements μ2

π

and μ2
G(mh)/cF (mh), which depend neither on the heavy

quark flavor nor on the heavy quark spin. The flavor depen-
dence of μ2

G(mh) comes entirely from the Wilson coefficient
cF , which depends on mh through the running of the strong
coupling. Equation (6.5) can be used to extract the heavy
quark masses from the measured meson masses. One can
also use lattice QCD data to determine meson masses for fic-
titious heavy quarks of any mass mh , so to reconstruct MH (∗)
as a function of mh . One general difficulty in this kind of
study is that the relation between the MS mass, which is the
short distance quantity that appears in the renormalized QCD
Lagrangian, and the pole mass, which is the quantity that
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appears in the HQET Lagrangian, is plagued by a poorly con-
vergent perturbative series (at present, the relation between
the MS mass and the pole mass is known up to four loops
[1441,1442]). The large terms in the perturbative series trace
back to a renormalon singularity in the Borel plane of order
ΛQCD. This singularity may be subtracted from the pole mass
and reabsorbed into a redefinition of the other nonperturba-
tive parameters appearing in Eq. (6.5). There are many pos-
sible subtraction schemes [1443–1448]. For illustration, we
present the heavy quark masses and matrix elements appear-
ing in (6.5) obtained from lattice QCD data set to reproduce
the physical Ds and Bs masses in Ref. [1449]:

mc = 1273(10) MeV,

mb = 4195(14) MeV,

Λ̄ = 555(31) MeV,

μ2
π = 0.05(22) GeV2,

μ2
G(mb) = 0.38(2) GeV2,

where mh is the MS mass of the quark h at the scale of its MS
mass, Λ̄ is in the renormalon subtraction scheme adopted in
Ref. [1448,1449] and the quantity μ2

G has been evaluated for
the b quark. Note the approximate scaling of the nonpertur-
bative parameters according to the power counting of HQET
(with a somewhat smaller μ2

π ).
Equation (6.5) can be immediately extended to heavy-light

baryons. What changes is the explicit value of the nonpertur-
bative matrix elements, as the light degrees of freedom are
different from the mesonic case. Also doubly-heavy baryons
may be described by the same mass formula if the typi-
cal distance between the two heavy quarks is much smaller
than the typical size of a heavy-light meson, which is of
order 1/ΛQCD. In this case, at a distance of order 1/ΛQCD

one cannot resolve the inner structure of the heavy diquark
system, which effectively behaves as a pointlike particle
in an antitriplet color configuration, i.e., as a heavy anti-
quark of mass 2mh ; under some conditions, effects due to
the heavy quark–quark interaction my be added perturba-
tively in the framework of the nonrelativistic EFTs devel-
oped in the following sections [796,1450–1459]. Finally,
the heavy quark symmetry may be also applied to link
doubly-heavy tetraquarks (tetraquarks made of two heavy
and two light quarks) with heavy-light baryons sharing the
same light-quark content [1455,1460,1461]. Many of the
new charmonium- and bottomonium-like states observed at
colliders in the last decades have a doubly-heavy tetraquark
content [1427].

6.1.2 Nonrelativistic QCD

Hadrons made of two or more nonrelativistic particles, like
two heavy quarks or a heavy quark and a heavy antiquark, or

Fig. 132 Hierarchy of energy scales and EFTs for systems made of a
heavy quark and (anti)quark pair near threshold

more generally just heavy quark–antiquark pairs near thresh-
old, are multiscale systems characterized by a hierarchy of
dynamically generated scales:

mh � mhv � mhv
2. (6.6)

We discussed the origin of these energy scales at the begin-
ning of the section. The nonrelativistic energy scales are cor-
related. To reach a situation like in HQET, i.e. an EFT with
just one dynamical low-energy scale, we need to construct at
least two nonrelativistic EFTs: one following from integrat-
ing out from QCD modes associated with the energy scale
mh and one following from integrating out modes associ-
ated with the energy scale mhv, ending up with an ultimate
EFT at the energy scale mhv

2 [1462]. An illustration of the
tower of energy scales and corresponding EFTs is in Fig. 132.
In the last 20 years, the development of such nonrelativistic
EFTs of QCD has been the major theoretical breakthrough
in the description of quarkonium and quarkonium-like sys-
tems [1463–1465]. For a more historical perspective, see Ref.
[1466].

NRQCD is the EFT suited to describe systems made of
a heavy quark and (anti)quark pair near threshold that fol-
lows from QCD by integrating out the energy scale asso-
ciated with the heavy quark mass, mh [1430]. In a heavy
quark–antiquark bound state, the virial theorem constrains
the kinetic energy of the heavy particles to be of the same
order as the binding energy. As a consequence, the power
counting of NRQCD must be such that the leading-order
NRQCD Lagrangian includes the kinetic energy operators,
ψ† ∇2/(2mh) ψ − χ†∇2/(2mh)χ , making the NRQCD
Lagrangian, even at leading order, non renormalizable. This
is different from HQET.

NRQCD posed initially also some difficulties in finding
a computational scheme to integrate consistently over the
different momentum and energy regions in dimensional reg-
ularization. NRQCD or its QED equivalent were therefore
used for a long time either for analytical calculations in QED
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with a hard cut off [1467,1468] or for lattice QCD calcu-
lations involving heavy quarks [289,1469]. The advantage
for lattice NRQCD calculations is that, once the heavy quark
mass has been integrated out, the lattice spacing, a, is not
constrained, as in full lattice QCD calculations, to be smaller
than 1/mh , which would amount to requiring a very fine lat-
tice if the quark is heavy. In lattice NRQCD the constraint
is relaxed to a < 1/(mhv). Since at the same time the lat-
tice size has to be large enough to include distances of the
order of 1/ΛQCD for quenched calculations and 1/Mπ for
full calculations, simulations with heavy quarks in full QCD
are computationally quite demanding. Lattice NRQCD has
been, for a long time, the sole way to compute nonperturba-
tively observables involving bottom quarks in full QCD (see,
for instance, Refs. [281,1470–1473]). Only recently the first
full lattice QCD calculations of bottomonium-like systems
have become available [1474].

After the development of HQET, NRQCD became a
systematic tool for analytical calculations of quarkonium
observables. NRQCD is well suited to the description of
heavy quark–antiquark annihilation, because this happens at
the scale mh , which is the energy scale that has been inte-
grated out from QCD to construct NRQCD. In NRQCD, the
information about annihilation goes into the (imaginary part)
of the Wilson coefficients associated with the four-fermion
operators. These four fermion operators, a novel feature of
NRQCD with respect to HQET, are not only essential to the
description of the annihilation processes, but also to the cor-
rect description of all short-distance interactions between the
heavy particles. In NRQCD, annihilation processes factorize
therefore into a short-distance part, which may be computed
in perturbative QCD and is encoded in the Wilson coeffi-
cients, and into matrix elements of the NRQCD operators
that encode the low-energy dynamics of the heavy quark–
antiquark bound state. Processes involving heavy quark–
antiquark annihilations are quarkonium inclusive and elec-
tromagnetic decay [1475,1476] and quarkonium production
[1476]. The large amount of data on quarkonium production
in hadron and lepton colliders, together with the predictive
power of NRQCD and its success in most of the predic-
tions, has established NRQCD as a standard tool for studying
quarkonium annihilation [1463–1465,1477–1479].

Because four-fermion operators projecting onto color
octet quark–antiquark states are possible, NRQCD naturally
allows for production and decay of quark–antiquark states
in a color octet configuration. These states constitute a sup-
pressed, in v, component of the Fock state describing a phys-
ical quarkonium, but are necessary in the quarkonium phe-
nomenology [1463–1465]. They are also necessary for the
consistency of the theory, as they cancel infrared divergences
in quarkonium decay and production observables and even-
tually provide finite, physical results [1475,1476]. It should
be noted, however, that the NRQCD factorization has been

rigorously proved only for quarkonium decay but not for
quarkonium production [1275,1313,1480–1482].

A last crucial progress in establishing NRQCD as a valu-
able tool for analytical calculations came when it was shown
that the computation of the Wilson coefficients of NRQCD in
dimensional regularization requires expanding in the heavy
quark mass to avoid integrating over the high momentum
region. This means that, even if the power countings of
NRQCD and HQET are different, the matching to QCD pro-
ceeds in the same way, leading to the same operators and Wil-
son coefficients in the two-fermion and gauge sectors [1433].

The NRQCD Lagrangian density for systems made of a
heavy quark and a heavy antiquark of equal masses mh up
to order 1/m2

h , and including the 1/m3
h kinetic operator, is

given by

LNRQCD = Lψ + Lχ + Lψχ + L!, (6.7)

where Lψ and Lχ are the HQET Lagrangian densities for
the quark (see Eq. 6.2) and antiquark, respectively, L! is the
Lagrangian density (6.3) for the light degrees of freedom,
and Lψχ is the four-fermion sector, which up to order 1/m2

h
reads

Lψχ = f1(1S0)

m2
h

ψ†χχ†ψ + f1(3S1)

m2
h

ψ†σχ · χ†σψ

+ f8(1S0)

m2
h

ψ†TAχχ†TAψ + f8(3S1)

m2
h

ψ†TAσχ · χ†TAσψ.

(6.8)

As in the HQET case, mh is the pole mass. The four-fermion
Lagrangian in Eq. (6.8) is made of all possible four-fermion
operators of dimension 6. The corresponding Wilson coef-
ficients are f1(1S0), f1(3S1), f8(1S0), and f8(3S1). The
the first (second) four-fermion operator projects on a heavy
quark–antiquark pair in a color singlet configuration with
quantum numbers 1S0 (3S1), whereas the third (fourth) four-
fermion operator projects on a heavy quark–antiquark pair in
a color octet configuration with quantum numbers 1S0 (3S1).
The matrices TA are the SU(3) generators λA/2. The four-
fermion Wilson coefficients have been computed in Refs.
[1476,1483]. They have a real part that starts at order αs
for f8(3S1) and at order α2

s for the other coefficients, and
they have an imaginary part, coming from one loop or higher
annihilation diagrams, which is of order α2

s for Im f1(1S0),
Im f8(1S0), and Im f8(3S1), and of order α3

s for Im f1(3S1).
A list of imaginary parts of four-fermion Wilson coeffi-
cients in NRQCD and related bibliography can be found in
Ref. [1484].

The four-fermion sector of the NRQCD Lagrangian has
been derived up to order 1/m4

h (complete) and orders
1/m5

h and 1/m6
h (partial) in Refs. [1485–1487]. Like for

the Wilson coefficients in the two-fermion sector, also the
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coefficients in the four-fermion sector are not all inde-
pendent: some are related by Poincaré invariance [1486,
1487].

Sometimes it is useful to isolate the electromagnetic com-
ponent of the four-fermion operator and its corresponding
Wilson coefficient. This is the case when computing electro-
magnetic decay widths and photoproduction cross sections
in NRQCD. The electromagnetic operators are obtained by
projecting on an intermediate QCD vacuum state, |0〉, e.g.,
ψ†χχ†ψ → ψ†χ |0〉〈0|χ†ψ .

Unlike in HQET, the power counting of NRQCD is not
unique. The reason is that, while HQET is a one-scale EFT,
its only dynamical scale being ΛQCD, NRQCD is still a mul-
tiscale EFT. The dynamical scales of NRQCD are, at least,
mhv, mhv

2, and ΛQCD. In more complicated settings even
more scales may be relevant. Hence, one can imagine differ-
ent power countings: some more conservative, like assuming
that the matrix elements all scale according to the largest
dynamical scale, i.e., mhv, [1488], and some less conserva-
tive or closer to a perturbative counting [1476]. All the power
countings have in common that the kinetic energy scales like
the binding energy and that therefore ψ†i∂0ψ is of the same
order as ψ†∇2/(2mh)ψ , and analogously for the antiquark.
As we have mentioned above, this reflects the virial theorem,
an unavoidable consequence of the dynamics of a nonrela-
tivistic bound state.

The leading-order NRQCD Lagrangian reads in Coulomb
gauge [1476]

L(0)
NRQCD = ψ†

(

i D0 + ∇2

2mh

)

ψ + χ†
(

i D0 − ∇2

2mh

)

χ

− 1

4
F A
μνF

Aμν +
n!∑

!=1

q̄!
(
i /D − m!

)
q!. (6.9)

Note that this Lagrangian contains the heavy quark mass, and
therefore violates the heavy-quark flavor symmetry; hence
the bottomonium binding energy is different, even at lead-
ing order, from the charmonium one. In the power count-
ing of Ref. [1476] one further assumes: D0 ∼ mhv

2 (when
acting on ψ or χ ), D ∼ mhv (when acting on ψ or χ ),
gE ∼ m2

hv
3, and gB ∼ m2

hv
4. A consequence is that the

heavy-quark spin symmetry is a symmetry of the leading-
order NRQCD Lagrangian. Another consequence is that the
order 1/m3

h kinetic energy operator ψ†D4/(8m3
h)ψ and its

charge conjugated are of the same order as the 1/mh and
1/m2

h operators in Lψ and Lχ . Matrix elements of octet
operators on quarkonium states are further suppressed by
the fact that they project on subleading components of the
quarkonium Fock state, the ones made of a heavy quark–
antiquark pair in a color octet configuration and gluons. The
amount of suppression depends on the adopted power count-
ing.

6.1.3 Potential nonrelativistic QCD

Nonrelativistic bound states involve energy scales, mhv,
mhv

2, and ΛQCD, that are still dynamical and entangled in
NRQCD. A consequence of this is that, although the equa-
tions of motion that follow from the NRQCD Lagrangian
(6.9) resemble a Schrödinger equation for nonrelativistic
bound states, they are not quite that. They involve gauge fields
and do not supply a field theoretical definition and derivation
of the potential that would appear in a Schrödinger equation.
Nevertheless, we expect that, in some nonrelativistic limit,
a Schrödinger equation describing the quantum mechanics
of the nonrelativistic bound state should emerge from field
theory, since field theory may be understood as an extension
of quantum mechanics that includes relativistic and radiative
corrections. Another consequence already remarked in the
previous section is that the power counting of NRQCD is not
unique.

Since the scalesmhv andmhv
2 are hierarchically ordered,

they may be disentangled by systematically integrating
out modes associated with scales larger than the smallest
scale, mhv

2, and matching to a lower energy EFT, where
only degrees of freedom resolved at distances of order
1/(mhv

2) are left dynamical [1462]. This EFT is pNRQCD
[1489,1490]. Because the scale mhv has been integrated
out, the power counting of pNRQCD is less ambiguous than
the one of NRQCD. In situations where we can neglect the
hadronic scale ΛQCD, the power counting of pNRQCD is
indeed unique, as its only dynamical scale is mhv

2.
Having integrated out the scale mhv associated with the

inverse of the distance r between the heavy quark and anti-
quark, implies that pNRQCD is constructed as an expansion
in r , with Wilson coefficients encoding non-analytic contri-
butions in r . This is analogous to how HQET and NRQCD
are constructed; there the heavy quark mass,mh , is integrated
out and the EFTs are organized as expansions in 1/mh , with
Wilson coefficients encoding the non-analytic contributions
in the form of logarithms of mh . Some of the Wilson coeffi-
cients of pNRQCD may be identified with the potentials in
the Schrödinger equation of quarkonium.

The specific form of pNRQCD depends on the scale
ΛQCD. If ΛQCD � mhv

2, then one deals with weakly-
coupled bound states and the EFT is called weakly-coupled
pNRQCD. At distances of the order of or smaller than
1/(mhv

2), one may still resolve colored degrees of free-
dom (gluons, quarks, and antiquarks), as color confinement
has not yet set in. Hence gluons, quarks, and antiquarks
are the degrees of freedom of weakly-coupled pNRQCD.
Weakly-coupled pNRQCD is well suited to describe tightly
bound quarkonia, like bottomonium and (to a less extent)
charmonium ground states, the Bc ground state, and thresh-
old effects in t t̄ production. If ΛQCD � mhv

2, then one
deals with strongly-coupled bound states and the EFT is
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called strongly-coupled pNRQCD. At distances of the order
of 1/(mhv

2), confinement has set in and the only avail-
able degrees of freedom are color singlets. These are, in
principle, all, ordinary and exotic, heavy, heavy-light and
light hadrons that we might have in the spectrum. Strongly-
coupled pNRQCD is suited to describe higher states in the
bottomonium and charmonium spectra, as well as quarko-
nium exotica. If mhv � ΛQCD � mhv

2, the matching to
pNRQCD may be done in two steps, first integrating out
(perturbatively)mhv then (nonperturbatively)ΛQCD. Contri-
butions coming from these two scales will be automatically
factorized in pNRQCD observables.

Weakly-coupled pNRQCD
The degrees of freedom of weakly-coupled pNRQCD are
heavy quarks and antiquarks of momentum mhv and energy
mhv

2, gluons of momentum and energy mhv
2 (sometimes

called ultrasoft gluons), and light quarks of momentum and
energy mhv

2; these remain after gluons (sometimes called
soft gluons) and light quarks of energy or momentum mhv

have been integrated out from NRQCD. Because a single
heavy quark and antiquark cannot be resolved at the scale
mhv

2, it is useful to cast heavy quark and antiquark fields
into bilocal fields that depend on time, t , the center of mass
coordinate, R, and the relative coordinate, r . We call the color
singlet component of the quark and antiquark field S, and its
color octet component O, normalized to S = 13×3S/

√
3

and O = √
2OAT A. The distance r scales like 1/(mhv),

while the center of mass coordinate, R, and the time, t ,
scale like 1/(mhv

2), because the quark–antiquark pair may
only recoil against ultrasoft gluons. To ensure that gluons are
ultrasoft in the pNRQCD Lagrangian, gauge fields are mul-
tipole expanded in r . Hence gauge fields in the pNRQCD
Lagrangian only depend on time and the center of mass coor-
dinate. The pNRQCD Lagrangian is organized as a double
expansion in 1/mh and r . At order r in the multipole expan-
sion, the weakly-coupled pNRQCD Lagrangian density has
the form [1489,1490]

Lweak
pNRQCD =LS,O + L!, (6.10)

with

LS,O =
∫

d3r Tr
{

S†(i∂0 − hs)S+ O†(i D0 − ho)O
}

− VATr
{

O†r · gE S+ S†r · gE O
}

− VB

2
Tr

{
O†r · gE O+ O†Or · gE

}
, (6.11)

where, up to order 1/m2
h , and including the 1/m3

h terms in
the kinetic energies,

hs = p2

mh
+ P2

4mh
− p4

4m3
h

+ · · · + Vs, (6.12)

ho = p2

mh
+ P2

4mh
− p4

4m3
h

+ · · · + Vo. (6.13)

The covariant derivative acting on the octet field is defined as
i D0O = i∂0O + g[A0(R, t),O], P = −iDR is the (gauge
covariant) center of mass momentum, p = −i∇r is the
relative momentum, and hs and ho may be interpreted as
the Hamiltonians of the color singlet and color octet heavy
quark–antiquark fields. The dots in Eqs. (6.12) and (6.13)
stand for higher-order terms in the nonrelativistic expansion
of the kinetic energy. The trace in Eq. (6.11) is in spin and
in color space. The Lagrangian L! is the Lagrangian of the
light degrees of freedom (6.3) inherited from NRQCD.

The quantities Vs , Vo, VA, and VB are Wilson coeffi-
cients of pNRQCD. They encode contributions from the
soft degrees of freedom that have been integrated out from
NRQCD. Because (under the hierarchy of weakly-coupled
pNRQCD) the soft scale, mhv, is larger than ΛQCD, the
Wilson coefficients may be computed in perturbation the-
ory, order by order in αs . They are, in general, functions of
r , as well as of the spin and momentum. At leading order,
VA and VB are 1; they get possible corrections at order α2

s
[1491]. The coefficients Vs and Vo may be identified with
the color singlet and octet potentials, respectively. To lead-
ing order V (0)

s = −4αs/(3r) and V (0)
o = αs/(6r), which are

the Coulomb potentials in the color SU(3) fundamental and
adjoint representation, respectively. The potentials Vs and Vo
contain, however, also momentum- and spin-dependent cor-
rections. For the singlet case (the octet case is analogous) we
can write, up to order 1/m2

h :

Vs = V (0)
s (r)+ V (1)

s (r)

mh
+ V (2)

SI

m2
h

+ V (2)
SD

m2
h

, (6.14)

where, at order 1/m2
h we have distinguished between spin-

independent (SI) and spin-dependent (SD) terms. In turn,
they can be organized as

V (2)
SI = V (2)

r (r)+ 1

4
V (2)
p2,CM

(r)P2 + 1

4

V (2)
L2,CM

(r)

r2 (r × P)2

+ 1

2

{
V (2)
p2 (r), p2

}
+ V (2)

L2 (r)

r2 L2, (6.15)

V (2)
SD = 1

2
V (2)
LS,CM(r) (r × P) · (S1 − S2)+ V (2)

LS (r) L · S
+ V (2)

S2 (r) S2 + V (2)
S12

(r) S12, (6.16)

where { , } stands for the anticommutator,

S = S1 + S2 = (σ 1 + σ 2)/2

is the total spin (Si = σ i/2 is the spin of the particle i),
L = r × p is the relative orbital angular momentum, and

S12 = 3(r̂ · σ 1)(r̂ · σ 2)− σ 1 · σ 2.
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The potential V (0)
s is the static potential, the potential propor-

tional to V (2)
LS may be identified with the spin–orbit potential,

the potential proportional to V (2)
S2 with the spin–spin poten-

tial and the potential proportional to V (2)
S12

with the spin tensor
potential. The potentials that contribute in the center of mass
reference frame are, at leading (non-vanishing) order in per-
turbation theory (see, e.g., Ref. [1462]):

V (1)
s (r) = −2α2

s

r2 , (6.17)

V (2)
r (r) = 4

3
παsδ

(3)(r), V (2)
p2 (r) = −4αs

3r
, (6.18)

V (2)
L2 (r) = 2αs

3r
, V (2)

LS (r) =
2αs
r3 , (6.19)

V (2)
S2 (r) = 16παs

9
δ(3)(r), V (2)

S12
(r) = αs

3r3 . (6.20)

Potentials that depend on the center of mass momentum are
relevant only if the quarkonium is recoiling, like in hadronic
and electromagnetic transitions.

Beyond leading order, the static potential is known up to
three-loop accuracy [1492–1494], and also subleading loga-
rithms showing up at four loops have been computed [1495];
the 1/mh potential is known up to order α3

s [1496], and 1/m2
h

potentials up to order α2
s (these potentials have a long history,

see Ref. [1497] and references therein). We have assumed
that the heavy quark and antiquark have equal masses; for
the case of a quark and an antiquark of different masses, we
refer, for instance, to Refs. [1438,1462,1498–1500].

The Wilson coefficients of pNRQCD inherit the Wil-
son coefficients of NRQCD. Hence, some of the couplings
appearing in the expansion of the Wilson coefficients are nat-
urally computed at the scale of NRQCD, mh , while others,
encoding the soft contributions, are naturally computed at the
soft scale, mhv. In weakly-coupled pNRQCD, because the
leading potential is the Coulomb potential, the Bohr radius
is proportional to 1/(mhαs) and v ∼ αs . Finally, like in
any non relativistic EFT, also the Wilson coefficients of
pNRQCD are related through constraints imposed by the
Poincaré invariance of QCD, as we have seen at work in
HQET and NRQCD. These constraints set the coefficients
of the kinetic terms appearing in Eqs. (6.12) and (6.13) to
be the ones coming from expanding the relativistic kinetic
energies of a free quark and antiquark. Furthermore they fix
the potentials depending on the center of mass momentum
by expressing them in terms of the static potential,

VLS,CM = − 1

2r

dV (0)
s

dr
, VL2,CM = −

r

2

dV (0)
s

dr
,

Vp2,CM =
r

2

dV (0)
s

dr
− 1

2
V (0)
s .

These and other constraints have been derived in Refs. [1438,
1487,1499,1501,1502]. These relations are exact, i.e., valid

at any order in perturbation theory and, when applicable, also
nonperturbatively.

In the pNRQCD Lagrangian the relative coordinate r plays
the role of a continuous parameter labeling different fields.
The dynamical spacetime coordinates of the Lagrangian den-
sity are the time t and the coordinate R, which, in the case of
the fields S and O, is the center of mass coordinate. Having
written the Lagrangian in terms of singlet and octet fields has
made each term in Eq. (6.11) explicitly gauge invariant.

The power counting of weakly-coupled pNRQCD is
straightforward. We have already found that r ∼ 1/(mhv)

and t , R ∼ 1/(mhv
2). Momenta scale like p ∼ mhv and

P ∼ mhv
2. Gluon fields and light quark fields are ultrasoft

and scale likemhv
2 orΛQCD to their dimension. The leading-

order singlet Hamiltonian, p2/mh + V (0)
s , scales like mhv

2

(and analogously in the octet case), which is the order of
the Bohr levels. The potentials listed in Eqs. (6.17)–(6.20)
contribute to Vs at order mhv

4, as αs ∼ v.
The first correction to a pure potential picture of the

quarkonium interaction comes from the chromoelectric
dipole interaction terms in the second line of Eq. (6.11).
These operators are of order g(mhv

2)2 /(mhv) ∼ gmhv
3.

In order to project on color singlet states, the chromoelectric
dipole interaction may enter only in loop diagrams, which at
leading order is a self-energy diagram with two chromoelec-
tric dipole vertices. Such a self-energy diagram is of order
g2(mhv

2)3/(mhv)
2 ∼ g2mhv

4. The coupling g2 is com-
puted at the ultrasoft scale. Hence, if ΛQCD � mhv

2, the
coupling is perturbative and the self-energy diagram with two
chromoelectric dipole vertices is suppressed with respect to
the contributions coming from the potentials in Eqs. (6.17)–
(6.20). Elsewhere, if ΛQCD ∼ mhv

2, it is of the same order.
At leading order in the multipole expansion, the equation

of motion for the singlet field is

i∂0S = hsS, (6.21)

which is the Schrödinger equation that in quantum mechan-
ics describes the evolution of a nonrelativistic bound state.
Potential NRQCD provides therefore a field theoretical foun-
dation of the Schrödinger equation, a rigorous QCD def-
inition and derivation of its potential, and the range of
validity of the quantum mechanical picture. Ultrasoft glu-
ons start contributing, and therefore correcting the potential
picture, at order mhv

4 (for ΛQCD ∼ mhv
2) or mhv

5 (for
ΛQCD � mhv

2) in the spectrum.
Not only the static potential is derived from first prin-

ciples in pNRQCD, but all higher-order corrections in the
nonrelativistic expansion, including the spin–orbit, spin–spin
and Darwin term as well. In general, the potentials factor-
ize soft contributions from radiative corrections at the scale
mh . These last ones are encoded in the matching coeffi-
cients inherited from NRQCD, e.g., all 1/m2

h spin-dependent
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potentials contain the Fermi coefficient cF . Since the poten-
tials are Wilson coefficients of an EFT, they are regularized,
undergo renormalization and satisfy renormalization group
equations that allow to resum potentially large logarithms in
their expressions [1491,1492,1503–1509]. The scale depen-
dence of the Wilson coefficients cancels in physical observ-
ables. For instance, the QCD static potential is infrared sen-
sitive at three loops [1510], a sensitivity that stems from the
fact that a static quark–antiquark pair may change its color
status by emitting an ultrasoft gluon. The infrared sensitivity
of the static potential cancels in the computation of the static
energy against the self-energy diagram with two chromoelec-
tric dipole vertices considered above, in a sort of non-Abelian
Lamb shift mechanism [1492].

Weakly-coupled pNRQCD requires the fulfillment of the
condition ΛQCD � mhv

2. The condition ΛQCD � mtv
2 is

certainly fulfilled by top–antitop quark pairs near threshold.
The production of t t̄ pairs near threshold is expected to be
measured with precision at future linear colliders, provid-
ing, among others, a determination of the top mass with an
uncertainty well below 100 MeV, which is a crucial input to
test the Standard Model. This requires a comparable theo-
retical accuracy, which has led in the last decades to several
high-order calculations of the near threshold cross section
in the framework of nonrelativistic EFTs of QCD [1511–
1517]. The condition ΛQCD �mhv

2 is also fulfilled by com-
pact and Coulombic quarkonia. Examples are the bottomo-
nium ground state, the ground state of the Bc system, and,
to a somewhat lesser extent, the charmonium ground state,
and the first bottomonium excited states. We recall that in a
Coulombic system the size is proportional to the inverse of
the mass and to the principal quantum number. A review on
applications of weakly-coupled pNRQCD to several tightly
bound quarkonia can be found in Ref. [1518].

Weak-coupling determinations of the bottomonium gro-
und state masses are typically used to extract the charm
and bottom masses [1446,1519–1527]. Hence, they pro-
vide alternative observables for the extraction of the heavy
quark masses to the heavy-light meson masses discussed in
Sect. 6.1.1. The results are consistent with the ones presented
in Sect. 6.1.1. The present precision is N3LO; the determina-
tion of the bottom mass includes the effects due to the charm
mass at two loops. Once the heavy quark masses have been
established for one set of spectroscopy observables, they can
be used for others like the Bc mass or the Bc spectrum (see
Ref. [1498] for an early work and Ref. [1500] for a state of
the art calculation at N3LO). Fine and hyperfine splittings of
charmonium and bottomonium have been computed pertur-
batively in Refs. [1528,1529] and to NLL accuracy in Ref.
[1530], similarly for the B∗c -Bc hyperfine splitting in Ref.
[1531]. After more than one decade of work the whole per-
turbative heavy quarkonium spectrum has been computed
at N3LO [1504,1532–1537]. Recently, this result has been

further improved reaching N3LL accuracy up to a missing
contribution of the two-loop soft running [1508,1509]. The
N3LL order represents the presently achievable precision of
these calculations. Going beyond this precision will require a
major computational effort, like the four-loop determination
of the static potential. Electromagnetic decays of the bot-
tomonium lowest levels have been computed including N2LL
corrections in Refs. [1513,1538]. A different power count-
ing that includes at leading order the exact static potential has
been used for these quantities in Ref. [1539]. Corrections to
the wave function and leptonic decay width of the Υ (1S) at
N3LO have been computed in Refs. [1540,1541]. Nonper-
turbative corrections in the form of condensates have been
included in Refs. [1542,1543]. Radiative quarkonium decays
have been analyzed in Refs. [1544–1549]. Radiative and
inclusive decays of the Υ (1S) may also serve as a determi-
nation of αs at the bottom mass scale [1550]. Radiative tran-
sitions, M1 and E1, at relative order v2 in the velocity expan-
sion have been computed in Refs. [1551–1554]; noteworthily,
pNRQCD may explain the observed tinyΥ (2S)→ γ ηb(1S)
branching fraction. Finally, the photon line shape in the radia-
tive transition J/ψ → γ ηc(1S) has been studied in Ref.
[1555].

Strongly-coupled pNRQCD
When the hierarchy of scales is ΛQCD � mhv

2, pNRQCD is
a strongly-coupled theory. This condition may be appropriate
to describe higher quarkonium states, and quarkonium exot-
ica. Strongly-coupled pNRQCD is obtained by integrating
out the hadronic scale ΛQCD, which means that all colored
degrees of freedom are absent [1462,1488,1556–1559].

Let us consider the case of strongly-coupled pNRQCD
for ordinary quarkonia. Lattice QCD shows evidence that
the quarkonium static energy is separated by a gap of order
ΛQCD from the energies of the gluonic excitations between
the static quark–antiquark pair [1560]. If, in addition, the
binding energies of the states that can be constructed out of
the quarkonium static energy are also separated by a gap of
order ΛQCD from the binding energies of the states that can
be constructed out of the static energies of the gluonic excita-
tions, and from open-flavor states, then one can integrate out
all these latter states. The resulting EFT is made of a quark–
antiquark color singlet field, whose modes are the quarko-
nium states, and light hadrons. The coupling of quarkonia
with light hadrons has been considered in the framework
of pNRQCD in Ref. [1561]. It impacts very mildly spec-
tral properties (masses, widths) of quarkonia that lie well
below the open-flavor threshold. For such quarkonia we may
neglect their couplings with light hadrons and the pNRQCD
Lagrangian density assumes the particularly simple form:

Lstrong
pNRQCD =

∫
d3r Tr

{
S† (i∂0 − hs)S

}
. (6.22)
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The Hamiltonian, hs , has the same form as in Eqs. (6.12)
and (6.14)–(6.16). The equation of motion is the Schrödinger
equation (6.21).

The nonperturbative dynamics is encoded in the poten-
tials, which at order 1/mh is V (1)

s and at order 1/m2
h are

the spin-independent and spin-dependent terms identified in
Eqs. (6.15) and (6.16). What distinguishes the EFT from phe-
nomenological potential models can be summarized as fol-
lows:

(i) The potentials are products of Wilson coefficients, fac-
torizing contributions from the high-energy scale, mh ,
and low-energy matrix elements, encoding contribu-
tions coming from the scalesmhv andΛQCD. The exact
expressions follow from matching pNRQCD with its
high-energy completion, which is NRQCD.

(ii) The high-energy Wilson coefficients of pNRQCD are
inherited from NRQCD. These are the Wilson coeffi-
cients in the NRQCD Lagrangian (6.7). Because the
NRQCD Wilson coefficients have a real and an imag-
inary part, also the pNRQCD potentials develop a real
part, responsible for the quarkonium binding, and an
imaginary part, responsible for the quarkonium anni-
hilation. At higher orders, also contributions coming
from the scale

√
mhΛQCD may become relevant [1559].

(iii) The low-energy matrix elements are nonperturbative.
Their field-theoretical expressions, relevant for poten-
tials up to order 1/m2

h , are known.

The static potential is equal to limT→∞ i ln W/T , where
W is the expectation value of a rectangular Wilson loop
of spatial extension r and temporal extension T [97,1562–
1564]. Similarly, the low-energy real parts of the other poten-
tials can be expressed in terms of Wilson loops and field inser-
tions on them [803,1556,1557]. These Wilson loops may be
computed in weakly-coupled QCD giving back the weak-
coupling potentials listed at leading order in Eqs. (6.17)–
(6.20) [1565] or nonperturbatively via lattice QCD. Indeed,
the computation of these potentials has a long history that
begins with the inception of lattice QCD. Their most recent
determinations can be found in Refs. [804,1566,1567], see
also Ref. [1568]. Noteworthily the long-distance behaviour
of the potentials agrees with the expectations of the effective
string theory [1565,1569–1571].

The low-energy contributions to the imaginary parts of the
potential are matrix elements of the NRQCD four-fermion
operators. Hence they are local terms proportional to δ3(r) or
derivatives of it. Nonperturbative contributions are encoded
into constants that may be expressed in terms of momenta of
correlators of chromoelectric and/or chromomagnetic fields
[1488,1558], and eventually fixed on data or computed with
lattice QCD.

(iv) Finally, pNRQCD is renormalizable order by order
in the expansion parameters in both its weak-coupling and

strong-coupling versions. In particular, quantum-mechanical
perturbation theory can be implemented at any order without
incurring uncanceled divergences like in purely phenomeno-
logical potential models.

Strongly-coupled pNRQCD has been used to compute
quarkonium inclusive and electromagnetic decay widths
[1463,1488,1558,1559], and hadronic and electromagnetic
production cross sections [1572–1576]. The advantage with
respect to the NRQCD approach is that, while the NRQCD
four-fermion matrix elements depend on the quarkonium
state, their pNRQCD expression factorizes all the quarko-
nium dependence into the wave function at the origin (or its
derivatives) squared. The wave function at the origin squared
gets multiplied by momenta of correlators of field-strength
tensors, F , that are universal, quarkonium independent, con-
stants. Schematically, one obtains for the expression of a
generic NRQCD four-fermion matrix element in pNRQCD,
entering either quarkonium production or decay, that

〈4-fermion〉 ∼|wave-function(0)|2

×
∫
dt · · · 〈F(t) · · · F(0)〉. (6.23)

This leads to a significant reduction in the number of nonper-
turbative parameters and allows to use information gained in
the charmonium sector to make predictions in the bottomo-
nium sector. Finally, pNRQCD combined with the multipole
expansion has been used to compute quarkonium hadronic
transitions in Ref. [1577].

pNRQCD for systems other than quarkonia
Potential NRQCD can be used to describe systems with three
valence quarks, two of them heavy [1451,1452,1458,1459,
1578,1579]. This is because the nonrelativistic hierarchy of
scales given in Eq. (6.6) is preserved, which allows to sys-
tematically integrate out these scales to describe eventually
the baryon with a suitable EFT. If the heavy quark–quark
distance is of the order of 1/ΛQCD, then the valence light-
quark affects the quark–quark potential. Elsewhere, if the
heavy quark–quark distance is smaller than 1/ΛQCD, then
we may disentangle the quark–quark dynamics, described
by a perturbative quark–quark potential, from the coupling
of the heavy-quark pair with the light quark. Since in this last
case, the light quark sees the heavy-quark pair as a pointlike
particle, its interaction with the heavy-quark pair is described
by HQET.

One can devise EFTs for describing low-energy modes of
baryons made of three heavy quarks. These states have not
been discovered yet in experiments, but they offer a unique
tool to study confinement and the transition region from the
Coulombic regime to the confined one in non-trivial geomet-
rical settings [1578], using, for instance the three-quark static
potential computed in lattice QCD [1580–1582].
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Possible bound states made of two quarkonia or of a
quarkonium and a nucleon (hadroquarkonium) may be char-
acterized by even lower energy scales than those characteriz-
ing the binding in quarkonia or baryons made of at least two
heavy quarks. These lower energy scales are those associated
with pion exchanges responsible for the long-range interac-
tion. One can treat these systems in an EFT framework by
starting from the pNRQCD description of the quarkonium
and the heavy-baryon chiral effective theory description of
the nucleon. The long-range pion exchange interaction sets
the scale of the typical size of the system to be of the order of
1/Mπ , i.e., much larger than the size of the quarkonium and
even larger than its typical time scale, which is of the order
of the inverse of the binding energy.

Once modes associated with the quarkonium binding
energy and Mπ have been integrated out, the quarkonium–
quarkonium or the quarkonium–nucleon interaction is
described by a potential that, in this way, has been system-
atically computed from QCD. The coupling of quarkonium
with the pions is encoded in a Wilson coefficient that may
be identified with the quarkonium chromoelectric polariz-
ability [1583]. In the quarkonium–quarkonium system, the
lowest energy EFT describing modes of energy and momen-
tum of order M2

π/(2mh) is called van der Waals EFT (WEFT)
[1561,1584]. The resulting potential is, in fact, the van der
Waals potential. In the quarkonium–nucleon system, the low-
est energy EFT describing modes of energy and momentum
of order M2

π/(2Λχ) has been dubbed potential quarkonium–
nucleon EFT (pQNEFT) [1585]. Such frameworks may be
relevant to describe heavy pentaquarks.

Quarkonium-like multiparticle systems, where the light
degrees of freedom remain adiabatically in a stationary
state with respect to the heavy quark motion, can be stud-
ied within the Born–Oppenheimer approximation that may
be implemented in a suitable version of pNRQCD called
Born–Oppenheimer effective field theory (BOEFT) [414,
1586,1587]. This framework has been applied to quarko-
nium hybrids, quarkonium tetraquarks and to heavy-meson
threshold effects [1461,1588–1591]. Finally, nonrelativistic
EFTs like pNRQCD are also advantageous in describing the
propagation of quarkonium in a thermal medium either in
equilibrium [1592–1597] or out of equilibrium [1598–1602];
see also Sect. 6.6.

6.2 Chiral perturbation theory

Stefan Scherer and Matthias Schindler
Chiral perturbation theory (ChPT) is an effective field theory
that describes the properties of strongly-interacting systems
at energies far below typical hadron masses. The degrees
of freedom are hadrons instead of the underlying quarks and
gluons. ChPT is a systematic and model-independent approx-
imation method based on an expansion of amplitudes in terms

of light-quark masses and momenta. The following is a brief
overview of ChPT that is largely based on Ref. [1603], which
can be referred to for a more detailed introduction.

6.2.1 QCD and chiral symmetry

The QCD Lagrangian, obtained by applying the gauge prin-
ciple with respect to the SU(3) color group to the free
Lagrangians of six quark flavors with masses m f , reads

LQCD =
∑

f=u,...,t
q̄ f

(
i /D− m f

)
q f − 1

2
Trc

(
FμνFμν

)
.

(6.24)

For each quark flavor f , the quark field q f is a color triplet,
transforming in the triplet representation,

q f (x) #→ U (x)q f (x), (6.25)

where U (x) denotes a smooth space-time-dependent SU(3)
matrix. Using the Gell-Mann matrices [1604], the eight gluon
fields AA

μ are collected in a traceless, Hermitian, 3×3 matrix
Aμ = λAAA

μ/2 (summation over repeated indices implied),
transforming inhomogeneously under a gauge transforma-
tion,

Aμ(x) #→ U (x)Aμ(x)U
†(x)+ i

gs
∂μU (x)U †(x), (6.26)

where gs denotes the SU(3) gauge coupling constant. In terms
of Aμ, the covariant derivative of the quark fields is defined
as

Dμq f =
(
∂μ + igsAμ

)
q f . (6.27)

Finally, the field strength tensor is given by

Fμν = ∂μAν − ∂νAμ + igs[Aμ,Aν]. (6.28)

By construction, the Lagrangian of Eq. (6.24) is invari-
ant under the combined transformations of Eqs. (6.25) and
(6.26). From the point of view of gauge invariance, the strong-
interaction Lagrangian could also involve a term of the type
(c.f. Eq. (1.6) from Sect. 1.1)

Lθ = g2
s θ̄

32π2 εμνρσ Trc
(
FμνFρσ

)
, ε0123 = 1, (6.29)

where εμνρσ denotes the totally antisymmetric Levi-Civita
tensor. The so-called θ term of Eq. (6.29) implies an explicit
P and CP violation of the strong interactions. The present
empirical information on the neutron electric dipole moment
[1605] indicates that the θ term is small and, in the following,
we will omit Eq. (6.29) from our discussion.

Since the covariant derivative of the quark fields is flavor
independent, the Lagrangian of Eq. (6.24) has additional,
accidental, and in this case global, symmetries aside from
the gauge symmetry. Both the dynamics of the theory (via
spontaneous symmetry breaking) and the values of the quark
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masses impact how these symmetries are (approximately)
realized in nature. Dynamical chiral symmetry breaking
introduces the scale Λχ = 4πF0 (see below) of the order
of 1 GeV [1606]. In this context it is common to divide
the six quark flavors into the three light quarks u, d, and
s with ml < Λχ and the three heavy flavors c, b, and t
with mh > Λχ (as discussed in the previous subsection).
As a theoretical starting point, one may consider two limits,
namely, sending the light-quark masses to zero (chiral limit)
and the heavy-quark masses to infinity. In Ref. [1607], this
situation is referred to as a “theoretician’s paradise.” In the
following, we exclusively concentrate on the chiral limit for
either two (u, d) or three (u, d, s) light quarks and omit the
heavy quarks from our discussion. Introducing left-handed
and right-handed quark fields (color and flavor indices omit-
ted) as

qL = 1

2
(1− γ5) q, qR = 1

2
(1+ γ5) q, γ5 = iγ 0γ 1γ 2γ 3,

(6.30)

the QCD Lagrangian in the chiral limit decomposes into

L0
QCD =

∑

l=u,d,s

(
q̄L ,l i /DqL ,l + q̄R,l i /DqL ,R

)

−1

2
Trc

(
FμνFμν

)
. (6.31)

In the massless limit, the helicity of a quark is a good quantum
number which is conserved in the interaction with gluons.
Moreover, the classical Lagrangian in the chiral limit has a
global U(3)L × U(3)R symmetry, i.e., it is invariant under
independent unitary flavor transformations of the left-handed
and the right-handed quark fields,

qL #→ ULqL , qR #→ URqR .

At the classical level, this chiral symmetry results in 2×(8+
1) = 18 conserved currents:

Lμ
a = q̄Lγ

μ λa

2
qL , Rμ

a = q̄Rγ
μ λa

2
qR, a = 1, . . . , 8,

Vμ = q̄Rγ
μqR + q̄Lγ

μqL , Aμ = q̄Rγ
μqR − q̄Lγ

μqL .

Here, the Gell-Mann matrices act in flavor space, since qR
and qL are flavor triplets.64 Because of quantum effects the
singlet axial-vector current Aμ = q̄γ μγ5q develops a so-
called anomaly, resulting in the divergence equation

∂μA
μ = 3g2

s

16π2 εμνρσ Trc
(
FμνFρσ

)
. (6.32)

The factor of three originates from the number of flavors.
In the large Nc (number of colors) limit of Ref. [1162] the

64 Lower case Roman letters denote SU(3) flavor indices.

singlet axial-vector current is conserved, because the strong
coupling constant behaves as g2

s ∼ N−1
c .

In the quantized theory, the spatial integrals over the
charge densities of the symmetry currents give rise to the
charge operators QLa , QRa (a = 1, . . . , 8), and QV . They
are generators of the group SU(3)L×SU(3)R×U(1)V , acting
on the Hilbert space of QCD, and satisfy the commutation
relations

[QLa, QLb] = i fabcQLc, (6.33a)

[QRa, QRb] = i fabcQRc, (6.33b)

[QLa, QRb] = 0, (6.33c)

[QLa, QV ] = [QRa, QV ] = 0, (6.33d)

where the fabc are the totally antisymmetric structure con-
stants of the Lie algebra of SU(3) [1604]. In the chiral limit,
these operators are time independent, i.e., they commute with
the Hamiltonian in the chiral limit,

[QLa, H
0
QCD] = [QRa, H

0
QCD] = [QV , H

0
QCD] = 0. (6.34)

It is convenient to consider the linear combinations QAa ≡
QRa − QLa and QVa ≡ QRa + QLa , which transform as
QAa #→ −QAa and QVa #→ QVa under parity. The hadron
spectrum can be organized in multiplets belonging to irre-
ducible representations of SU(3)V with a given baryon num-
ber. If not only the vector subgroup, but the full group were
realized linearly by the spectrum of the hadrons, one would
expect a so-called parity doubling of mass-degenerate states.
The absence of such a doubling in the low-energy spectrum
is an indication that the SU(3)L × SU(3)R chiral symmetry
is dynamically broken in the ground state. One then assumes
that the axial generators QAa do not annihilate the ground
state of QCD,

QAa |0〉 �= 0. (6.35)

As a consequence of the Goldstone theorem [12], each axial
generator QAa not annihilating the ground state corresponds
to a massless Goldstone-boson field φa with spin 0, whose
symmetry properties are tightly connected to the generator
in question. The Goldstone bosons have the same transfor-
mation behavior under parity as the axial generators,

φa(t, �x) P#→ −φa(t,−�x), (6.36)

i.e., they are pseudoscalars. From Eqs. (6.33a) and (6.33b)
one obtains [QVa, QAb] = i fabcQAc and thus the Goldstone
bosons transform under the subgroup SU(3)V , which leaves
the vacuum invariant, as an octet:

[QVa, φb(x)] = i fabcφc(x). (6.37)

The members of the pseudoscalar octet (π, K , η) of the real
world are identified as the Goldstone bosons of QCD and
would be massless for massless quarks.
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After turning on the quark masses in terms of the mass
term

LM = −q̄Mq = −
(
q̄RMqL + q̄LM†qR

)
,

M = diag(mu,md ,ms),

the Goldstone bosons will no longer be massless (see below).
Moreover, the symmetry currents are no longer conserved.
In terms of the vector currents Vμ

a = Rμ
a − Lμ

a and the
axial-vector currents Aμ

a = Rμ
a − Lμ

a , the corresponding
divergences read

∂μV
μ
a = i q̄

[

M,
λa

2

]

q, ∂μA
μ
a = i q̄γ5

{
λa

2
,M

}

q.

(6.38)

The properties of the currents corresponding to the
approximate chiral symmetry of QCD can be summarized
as follows:

1. In the limit of massless quarks, the sixteen currents Lμ
a

and Rμ
a or, alternatively, Vμ

a = Rμ
a +Lμ

a and Aμ
a = Rμ

a −
Lμ
a are conserved. The same is true for the singlet vector

current Vμ, whereas the singlet axial-vector current Aμ

has an anomaly (see Eq. (6.32)).
2. For any values of quark masses, the individual flavor cur-

rents ūγ μu, d̄γ μd, and s̄γ μs are always conserved in the
strong interactions reflecting the flavor independence of
the strong coupling and the diagonal form of the quark–
mass matrix. Of course, the singlet vector current Vμ,
being the sum of the three flavor currents, is always con-
served.

3. In addition to the anomaly, the singlet axial-vector current
has an explicit divergence due to the quark masses:

∂μA
μ = 2i q̄γ5Mq + 3g2

s

16π2 εμνρσ Trc
(
FμνFρσ

)
.

4. For equal quark masses, mu = md = ms , the eight vector
currents Vμ

a are conserved, because [λa,1] = 0. Such a
scenario is the origin of the SU(3) symmetry originally
proposed by Gell-Mann and Ne’eman [1608]. The eight
axial-vector currents Aμ

a are not conserved. The diver-
gences of the octet axial-vector currents of Eq. (6.38) are
proportional to pseudoscalar quadratic forms. This can be
interpreted as the microscopic origin of the PCAC rela-
tion (partially conserved axial-vector current) [19,1609]
which states that the divergences of the axial-vector cur-
rents are proportional to renormalized field operators rep-
resenting the lowest-lying pseudoscalar octet.

5. Taking mu = md �= ms reduces SU(3) flavor symmetry
to SU(2) isospin symmetry.

6. Taking mu �= md leads to isospin-symmetry breaking.

Besides the conservation properties of the currents, one may
also calculate their commutators (current algebra), which
may then be used to derive certain relations among QCD
Green functions analogous to the Ward identities of Quan-
tum Electrodynamics. The set of all QCD Green functions
involving color-neutral quark bilinears is very efficiently col-
lected in a generating functional,

exp
(
i ZQCD[v, a, s, p]

) = 〈0|T exp

[

i
∫

d4x Lext(x)

]

|0〉0,
(6.39)

where [69,1610]:

Lext =
8∑

a=1

vμa q̄γμ
λa

2
q + v

μ

(s)
1

3
q̄γμq +

8∑

a=1

aμa q̄γμγ5
λa

2
q

−
8∑

a=0

sa q̄λaq +
8∑

a=0

pa i q̄γ5λaq

= q̄γμ

(

vμ + 1

3
v
μ

(s) + γ5a
μ

)

q − q̄(s − iγ5 p)q,

(6.40)

where λ0 =
√

2
31. A particular Green function is then

obtained through a partial functional derivative with respect
to the corresponding external fields. Note that both the quark
field operators q in Lext and the ground state |0〉 refer to
the chiral limit, indicated by the subscript 0 in Eq. (6.39).
The quark fields are operators in the Heisenberg picture and
have to satisfy the equation of motion and the canonical anti-
commutation relations. From the generating functional, we
can even obtain Green functions of the “real world,” where
the quark fields and the ground state are those with finite
quark masses. To that end one needs to evaluate the func-
tional derivative of Eq. (6.39) at s = diag(mu,md ,ms). The
chiral Ward identities result from an invariance of the gen-
erating functional of Eq. (6.39) under a local transformation
of the quark fields and a simultaneous transformation of the
external fields [69,1610],

qL #→ exp

(

−iΘ(x)

3

)

VL(x)qL , (6.41a)

qR #→ exp

(

−iΘ(x)

3

)

VR(x)qR, (6.41b)

where VL(x) and VR(x) are independent space-time-depen-
dent SU(3) matrices, provided the external fields are subject
to the transformations

lμ #→ VLlμV
†
L + iVL∂μV

†
L , (6.42a)

rμ #→ VRrμV
†
R + iVR∂μV

†
R, (6.42b)

v(s)μ #→ v(s)μ − ∂μΘ, (6.42c)
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s + i p #→ VR(s + i p)V †
L , (6.42d)

s − i p #→ VL(s − i p)V †
R . (6.42e)

The derivative terms in Eqs. (6.42a)–(6.42c) serve the same
purpose as in the construction of gauge theories, i.e., they
cancel analogous terms originating from the kinetic part of
the quark Lagrangian.

6.2.2 Chiral perturbation theory for mesons

Effective field theory (EFT) is a powerful tool for describing
the strong interactions at low energies. The essential idea
behind EFT was formulated by Weinberg in Ref. [1426] as
follows:

“…if one writes down the most general possible
Lagrangian, including all terms consistent with assu-
med symmetry principles, and then calculates matrix
elements with this Lagrangian to any given order of
perturbation theory, the result will simply be the most
general possible S–matrix consistent with analyticity,
perturbative unitarity, cluster decomposition and the
assumed symmetry principles.”

In the present context, we want to describe the low-energy
dynamics of QCD in terms of its Goldstone bosons as effec-
tive degrees of freedom rather than in terms of quarks and
gluons. The resulting low-energy approximation is called
(mesonic) chiral perturbation theory (ChPT). Its founda-
tions are discussed in Ref. [1611]. Since the interaction
strength of the Goldstone bosons vanishes in the zero-energy
limit and the quark masses are regarded as small pertur-
bations around the chiral limit, the mesonic Lagrangian is
organized in a simultaneous derivative and a quark–mass
expansion. This Lagrangian is expected to have exactly eight
pseudoscalar degrees of freedom transforming as an octet
under flavor SU(3)V . Moreover, taking account of spon-
taneous symmetry breaking, the ground state should only
be invariant under SU(3)V × U(1)V . Finally, in the chiral
limit, we want the effective Lagrangian to be invariant under
SU(3)L × SU(3)R × U(1)V .

Our goal is to approximate the “true” generating func-
tional ZQCD[v, a, s, p] of Eq. (6.39) by a sequence

Z (2)
eff [v, a, s, p] + Z (4)

eff [v, a, s, p] + · · · ,
where the effective generating functionals are obtained using
the effective field theory. The rationale underlying this
approach is the assumption that including all of the infi-
nite number of effective functionals Z (2n)

eff [v, a, s, p] will,
at least in the low-energy region, generate a result which is
equivalent to that obtained from ZQCD[v, a, s, p]. Because of
spontaneous symmetry breaking, the chiral group SU(3)L ×
SU(3)R is realized nonlinearly on the Goldstone-boson fields

[1426,1612]. We define the SU(3) matrix

U (x) = exp

(

i
φ(x)

F0

)

, (6.43)

where the field matrixφ is a Hermitian, traceless 3×3 matrix,

φ(x) =
8∑

a=1

φaλa ≡
⎛

⎜
⎝

π0 + 1√
3
η

√
2π+

√
2K+√

2π− −π0 + 1√
3
η

√
2K 0

√
2K−

√
2K̄ 0 − 2√

3
η

⎞

⎟
⎠ ,

(6.44)

and the parameter F0 is the chiral limit of the pion-decay con-
stant. Under local chiral transformations,U (x) transforms as
[69]

U (x) #→ VR(x)U (x)V †
L (x). (6.45)

In particular, Eq. (6.45) implies for the field matrix φ the
transformation behavior φ(x) #→ Vφ(x)V † under global
flavor SU(3)V , i.e., the Goldstone bosons indeed form an
SU(3) octet [see Eq. (6.37)]. The most general Lagrangian
with the smallest (nonzero) number of external fields is given
by [69]

L2 = F2
0

4
Tr[DμU (DμU )†] + F2

0

4
Tr(χU † +Uχ†), (6.46)

where

DμU ≡ ∂μU − irμU + iUlμ #→ VRDμUV †
L , (6.47a)

χ ≡ 2B0(s + i p) #→ VRχV
†
L . (6.47b)

If we denote a small four momentum as ofO(q), the covariant
derivative counts as O(q) and χ as O(q2) (see below), such
that the lowest-order Lagrangian is of O(q2), indicated by
the subscript 2. Using the cyclic property of the trace, L2

is easily seen to be invariant under the transformations of
Eqs. (6.42a)–(6.42e) and (6.45). Moreover, L2 is invariant
under the simultaneous replacements U ↔ U †, lμ ↔ rμ,
and χ ↔ χ†. It is said to be of even intrinsic parity.

At lowest order, the effective field theory contains two
parameters F0 and B0. In order to pin down the meaning of
F0, we consider the axial-vector current Jμ

Aa associated with
L2:

Jμ
Aa = −i

F2
0

4
Tr

(
λa{U, ∂μU †}

)
. (6.48)

Expanding U in terms of the field matrix φ, and using
Tr(λaλb) = 2δab results in

Jμ
Aa = −F0∂

μφa +O(φ3), (6.49)

from which we conclude that the axial-vector current has a
nonvanishing matrix element when evaluated between the
vacuum and a one-Goldstone-boson state:

〈0|Jμ
Aa(x)|φb(p)〉 = i pμF0 exp(−i p · x)δab. (6.50)
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Equation (6.50) holds at leading order (LO) in ChPT. It is
the current–density analog of Eq. (6.35), i.e., a nonvanishing
value of F0 is a necessary and sufficient criterion for sponta-
neous symmetry breaking in QCD.

The expansion of the first term of Eq. (6.46) in the field
matrix φ yields

1

4
Tr

(
∂μφ∂

μφ
)+ 1

48F2 Tr
([φ, ∂μφ][φ, ∂μφ]

)+ · · · .
(6.51)

The first term of Eq. (6.51) describes the kinetic term of
the eight Goldstone bosons and the second term contributes
to the scattering of Goldstone bosons. The second term of
Eq. (6.46) is an example how the explicit symmetry breaking
by the quark masses is transferred from the QCD level to the
EFT level. Both,L0

QCD+Lext andL2 are invariant under local
chiral transformations. Inserting Lext = LM corresponds to
s = diag(mu,md ,ms) and it is the same s that is to be used in
the effective Lagrangian. The expansion of the χ term gives
rise to

F2
0 B0(mu + md + ms)− B0

2
Tr

(
φ2M

)

+2B0Tr
(
Mφ4

)
+ · · · . (6.52)

Even though the first term of Eq. (6.52) is of no dynamical
significance for the interaction among the Goldstone bosons,
it represents an interesting effect. Its negative is the energy
density of the vacuum, 〈Heff 〉min, which is shifted relative
to the chiral limit because of the nonzero quark masses. We
compare the partial derivative of 〈Heff〉min with respect to
(any of) the light-quark masses ml with the corresponding
quantity in QCD,

∂〈0|HQCD|0〉
∂ml

∣
∣
∣
∣
mu=md=ms=0

= 1

3
〈0|q̄q|0〉0 = 1

3
〈q̄q〉0,

(6.53)

where 〈q̄q〉0 is the scalar singlet quark condensate. Within
the framework of the lowest-order effective Lagrangian, the
constant B0 is thus related to the scalar singlet quark con-
densate by

3F2
0 B0 = −〈q̄q〉0. (6.54)

For an overview of recent lattice QCD determinations of
〈q̄q〉0 see Ref. [1613]. Because of the second term of
Eq. (6.52), the Goldstone bosons are no longer massless. If,
for the sake of simplicity, we consider the isospin-symmetric
limit mu = md = m̂ (so that there is no π0-η mixing), we
obtain for the masses of the Goldstone bosons, to lowest order
in the quark masses (O(q2), denoted by the subscript 2),

M2
π,2 = 2B0m̂, (6.55a)

M2
K ,2 = B0(m̂ + ms), (6.55b)

M2
η,2 =

2

3
B0

(
m̂ + 2ms

)
. (6.55c)

These results, in combination with Eq. (6.54), correspond
to relations obtained in Ref. [1614] and are referred to as
the Gell-Mann, Oakes, and Renner relations. Because of the
on-shell condition p2 = M2, Eqs. (6.55a)–(6.55c) justify
the assignment χ = O(q2). Inserting the empirical values
Mπ = 135 MeV, MK = 496 MeV, and Mη = 548 MeV for
the lowest-order predictions provides a first estimate for the
ratio of the quark masses,

M2
K

M2
π

= m̂ + ms

2m̂
⇒ ms

m̂
= 25.9, (6.56a)

M2
η

M2
π

= 2ms + m̂

3m̂
⇒ ms

m̂
= 24.3. (6.56b)

A remarkable feature of Eq. (6.46) is the fact that, once
F0 is known (from pion decay), chiral symmetry allows us to
make absolute predictions about other processes. For exam-
ple, the lowest-order results for the scattering of Goldstone
bosons can be derived straight-forwardly from the O(φ4)

contributions of Eqs. (6.51) and (6.52). In particular, the s-
wave ππ -scattering lengths for the isospin channels I = 0
and I = 2 are obtained as [1610]

a0
0 =

7M2
π

32πF2
π

= 0.160, a2
0 = −

M2
π

16πF2
π

= −0.0456,

(6.57)

where we replaced F0 by the physical pion-decay constant
and made use of the numerical values Fπ = 92.2 MeV and
Mπ = Mπ+ = 139.57 MeV. These results are identical
with the current–algebra predictions of Ref. [22]. Actually,
they serve as an illustration of the fact that the results of
current algebra can (more easily) be reproduced from lowest-
order perturbation theory in terms of an effective Lagrangian
[1615] – in the present case the lowest-order mesonic ChPT
Lagrangian.

However, ChPT is much more powerful than the effec-
tive Lagrangians of the 1960s, which, by definition, were
meant to be applied only in lowest-order perturbation theory
(see, e.g., the second footnote in Ref. [1616]). In ChPT, a
systematic improvement beyond the tree-level of the lowest-
order Lagrangian of Eq. (6.46) is accomplished by calculat-
ing loop corrections in combination with tree-level contri-
butions from Lagrangians of higher order. For a long time
it was believed that performing loop calculations using the
Lagrangian of Eq. (6.46) would make no sense, because it is
not renormalizable (in the traditional sense [813]). However,
as emphasized by Weinberg [1426,1617], the cancellation of
ultraviolet divergences does not really depend on renormal-
izability; as long as one includes every one of the infinite
number of interactions allowed by symmetries, the so-called
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non-renormalizable theories are actually just as renormaliz-
able as renormalizable theories [1617]. This still leaves open
the question of how to organize a perturbative description of
observables. For that purpose, one needs a power-counting
scheme to assess the importance of various diagrams cal-
culated from the most general effective Lagrangian. Using
Weinberg’s power counting scheme [1426], one may ana-
lyze the behavior of a given diagram of mesonic ChPT under
a linear re-scaling of all external momenta, pi #→ tpi , and a
quadratic re-scaling of the light-quark masses, ml #→ t2ml ,
which, in terms of the Goldstone-boson masses, corresponds
to M2 #→ t2M2. The chiral dimension D of a given diagram
with amplitude M(pi ,ml) is defined by

M(tpi , t
2ml) = t DM(pi ,ml), (6.58)

where, in n dimensions,

D = nNL − 2NI +
∞∑

k=1

2kN2k (6.59)

= 2+ (n − 2)NL +
∞∑

k=1

2(k − 1)N2k (6.60)

≥ 2 in 4 dimensions.

Here, NL is the number of independent loops, NI the num-
ber of internal Goldstone-boson lines, and N2k the number of
vertices originating from L2k . A diagram with chiral dimen-
sion D is said to be of orderO(qD). Clearly, for small enough
momenta and masses, diagrams with small D, such as D = 2
or D = 4, should dominate. Of course, the re-scaling of
Eq. (6.58) must be viewed as a mathematical tool. While
external three-momenta can, to a certain extent, be made
arbitrarily small, the re-scaling of the quark masses is a the-
oretical instrument only. Note that, for n = 4, loop diagrams
are always suppressed due to the term 2NL in Eq. (6.60).
In other words, we have a perturbative scheme in terms of
external momenta and masses which are small compared to
some scale (here 4πF0 ≈ 1 GeV).

The most general Lagrangian atO(q4)was constructed by
Gasser and Leutwyler [69] and contains twelve low-energy
constants (LECs) (L1, . . . , L10, H1H2),

L4 = L1

{
Tr[DμU (DμU )†]

}2 + · · · + H2Tr
(
χχ†

)
.

(6.61)

The numerical values of the low-energy constants Li are not
determined by chiral symmetry. In analogy to F0 and B0 of
L2 they are parameters containing information on the under-
lying dynamics. For an extensive review of the status of these
coupling constants, see Ref. [1618] as well as [1613].

As an example of a one-loop calculation let us consider the
O(q4) corrections to the masses of the Goldstone bosons. For

Fig. 133 Self-energy diagrams at O(q4). Vertices derived from L2n
are denoted by 2n in the interaction blobs

that purpose one needs to evaluate the self-energy diagrams
shown in Fig. 133.

The corresponding expressions for the masses were first
given in Ref. [69], of which we show the squared pion mass
as a representative example:

M2
π,4 = M2

π,2

{

1+ M2
π,2

32π2F2
0

ln

(
M2

π,2

μ2

)

− M2
η,2

96π2F2
0

ln

(
M2

η,2

μ2

)

+ 16

F2
0

[
(2m̂ + ms)B0(2L

r
6 − Lr

4)+ m̂B0(2L
r
8 − Lr

5)
]
}

.

(6.62)

Because of the overall factor M2
π,2, the pion stays massless as

ml → 0. This is, of course, what we expected from QCD in
the chiral limit, but it is comforting to see that the self inter-
action in L2 (in the absence of quark masses) does not gener-
ate Goldstone-boson masses at higher order. The ultraviolet
divergences generated by the loop diagram of Fig. 133 are
cancelled by a suitable adjustment of the parameters of L4.
This is Weinberg’s argument on renormalizability at work;
as long as one works with the most general Lagrangian all
ultraviolet divergences can be absorbed in the parameters of
the theory. At O(q4), the squared Goldstone-boson masses
contain terms which are analytic in the quark masses, namely,
of the form m2

l multiplied by the renormalized low-energy
constants Lr

i . However, there are also nonanalytic terms of
the type m2

l ln(ml) – so-called chiral logarithms – which do
not involve new parameters. Such a behavior is an illustra-
tion of the mechanism found by Li and Pagels [1619], who
noticed that a perturbation theory around a symmetry, which
is realized in the Nambu–Goldstone mode, results in both
analytic as well as nonanalytic expressions in the perturba-
tion. Finally, by construction, the scale dependence of the
renormalized coefficients Lr

i entering Eq. (6.62) is such that
it cancels the scale dependence of the chiral logarithms [69].
Thus, physical observables do not depend on the scale μ.

In terms of Fig. 133 and the result of Eq. (6.62), we can also
comment on the so-called chiral-symmetry-breaking scale
Λχ to be Λχ = 4πF0 [1606]. In a loop correction, every
endpoint of an internal Goldstone-boson line is multiplied by
a factor of 1/F0, since the SU(3) matrix of Eq. (6.43) contains
the Goldstone-boson fields in the combination φ/F0. On the
other hand, external momenta q or Goldstone-boson masses
produce factors of q2 or M2 (see Eqs. (6.51) and (6.52)).
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Together with a factor 1/(16π2) remaining after integration
in four dimensions they combine to corrections of the order
of [q/(4πF0)]2 for each independent loop. Strictly speaking,
this particular integral generates an additional factor of 2, and
the factor of 1/(16π2) should be considered an estimate.

The Lagrangians discussed so far are of even intrinsic
parity. At O(q4), they are incomplete, because they do
not describe processes such as K+K− → π+π−π0 or
π0 → γ γ . The missing piece is the effective Wess–Zumino–
Witten (WZW) action [1620,1621], which accounts for the
chiral anomaly. The chiral anomaly results in the so-called
anomalous Ward identities that give a particular form to the
variation of the generating functional [1610,1620]. At lead-
ing order, O(q4), and in the absence of external fields, the
WZW action reads [1620,1621],

S0
ano = Nc S

0
WZW,

S0
WZW = − i

240π2

∫ 1

0
dα

∫
d4xεi jklmTr(U L

i U L
j U L

k U L
l U L

m ).

(6.63)

For the construction of the WZW action, the domain of def-
inition of U needs to be extended to a (hypothetical) fifth
dimension,

U (y) = exp

(

iα
φ(x)

F0

)

, (6.64)

where yi = (xμ, α), i = 0, . . . , 4, and 0 ≤ α ≤ 1.
Minkowski space is defined as the surface of the five-
dimensional space for α = 1. The indices i, . . . ,m in
Eq. (6.63) run from 0 to 4, y4 = y4 = α, εi jklm is
the completely antisymmetric (five-dimensional) tensor with
ε01234 = −ε01234 = 1, and U L

i = U †∂U/∂yi .
In contrast to L2 and L4, S0

ano is of odd intrinsic parity,
i.e., it changes sign under φ → −φ. Expanding the SU(3)
matrix U (y) in terms of the Goldstone-boson fields, U (y) =
1 + iαφ(x)/F0 + O(φ2), one obtains an infinite series of
terms, each involving an odd number of Goldstone bosons.
For example, after some rearrangements, the term with the
smallest number of Goldstone bosons reads

S5φ
WZW = 1

240π2F5
0

∫
d4x εμνρσ Tr(φ∂μφ∂νφ∂ρφ∂σφ).

(6.65)

In particular, the WZW action without external fields
involves at least five Goldstone bosons [1620]. Again, once
F0 is known, after inserting Nc = 3 one obtains a parameter-
free prediction for, e.g., the process K+K− → π+π−π0.

In the presence of external fields, the anomalous action
receives an additional term [1621–1623]

Sano = Nc(S
0
WZW + Sext

WZW) (6.66)

given by

Sext
WZW = − i

48π2

∫
d4xεμνρσ Tr

[
Zμνρσ (U, l, r)

−Zμνρσ (1, l, r)
]
. (6.67)

where the explicit form of Zμνρσ (U, l, r) can be found in
[1622,1623]. At leading order, the action of Eq. (6.67) is
responsible for the two-photon decays of the π0 or the η.
Quantum corrections to the WZW classical action do not
renormalize the coefficient of the WZW term. The counter
terms needed to renormalize the one-loop singularities at
O(q6) are of a conventional chirally invariant structure.
In the three-flavor sector, the most general odd-intrinsic-
parity Lagrangian at O(q6) contains 23 independent terms
[1624,1625]. For an overview of applications in the odd-
intrinsic-parity sector, we refer to Ref. [1623].

6.2.3 ChPT for baryons

ChPT was first extended to the baryon sector in Ref. [1626],
which considered a variety of matrix elements with single-
nucleon incoming and outgoing states. While the general
approach is analogous to that in the mesonic sector, i.e.,
one considers the most general Lagrangian consistent with
the symmetries of QCD and expands observables in a
quark-mass and low-momentum expansion, the baryon sec-
tor exhibits some new features. In particular, unlike the
Goldstone-boson masses, the baryon masses do not van-
ish in the chiral limit. This has important consequences for
obtaining a proper power counting of diagrams containing
baryon lines and for the regularization and renormalization
of loop diagrams. In the following we restrict the discus-
sion to SU(2)L × SU(2)R chiral symmetry; for the exten-
sion to SU(3)L × SU(3)R see, e.g., the reviews of Refs.
[1627,1628] and references therein. To construct the pion-
nucleon Lagrangian, the proton (p) and neutron (n) fields are
combined into an SU(2) doublet Ψ ,

Ψ =
(
p
n

)

. (6.68)

The nucleon fields are chosen to transform under local
SU(2)L × SU(2)R transformations as

Ψ → K (VL , VR,U )Ψ, (6.69)

where the SU(2) matrix K depends on the left- and right-
handed transformations as well as on the pion fields collected
in U ,

K (VL , VR,U ) =
√
VRUV †

L

−1

VR
√
U . (6.70)
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The baryon Lagrangian also contains the covariant derivative
of the nucleon field given by

DμΨ = (∂μ + Γμ − iv(s)μ )Ψ, (6.71)

with the connection [1626,1629]

Γμ = 1

2

[
u†(∂μ − irμ)u + u(∂μ − ilμ)u

†
]
, (6.72)

where u2 = U , and the isoscalar vector field v
(s)
μ . Further, it

is convenient to define

uμ = i
[
u†(∂μ − irμ)u − u(∂μ − ilμ)u

†
]
. (6.73)

The LO Lagrangian can be written as [1626]

L(1)
πN = Ψ̄

(
i /D − m+ gA

2
γ μγ5uμ

)
Ψ. (6.74)

It contains two LECs: m and gA. These correspond to the
nucleon mass (m) and the nucleon axial-vector coupling con-
stant (gA), both taken in the chiral limit. The corresponding
physical values will be denoted as mN and gA in the fol-
lowing. The superscript (1) in Eq. (6.74) denotes that the
Lagrangian is of first order in the power counting. While nei-
ther the nucleon energy nor the chiral-limit nucleon mass are
small parameters, the combination i /D−m can be assumed to
be a small quantity as long as the nucleon three-momentum
is O(q).

This Lagrangian can be used to calculate the first loop con-
tribution to the nucleon mass. The power counting predicts
this contribution to be of O(q3). However, the application
of dimensional regularization and the minimal subtraction
scheme of ChPT (M̃S) as used in the meson sector results
in terms that are of lower order than predicted by the power
counting. Analogous issues also arise for other observables
and higher-order contributions. The authors of Ref. [1626]
pointed out that the failure of the power counting is related
to the regularization and renormalization schemes and that
the “same phenomenon would occur in the meson sector, if
one did not make use of dimensional regularization.” Sev-
eral methods to address the power counting issue have been
proposed [1630–1635].

One commonly used method is Heavy Baryon ChPT
(HBChPT) [1630], which was inspired by Heavy Quark
Effective Theory [704,1252] (see the discussion in Sect. 6.1).
Because the nucleon mass is large compared to the pion mass,
an additional expansion of the pion-nucleon Lagrangian is
performed in inverse powers of the nucleon mass. In this for-
malism, application of dimensional regularization in com-
bination with M̃S to loop diagrams, as in the meson sector,
leads to a consistent power counting, connecting the chiral
to the loop expansion. The heavy-baryon Lagrangian up to
and including order q4 is given in Ref. [1636]. For an intro-
duction to, and applications of, this method see, e.g., Refs.
[1627,1637].

While the heavy-baryon formalism makes it possible to
use techniques from the meson sector, the additional expan-
sion in powers of the inverse nucleon mass results in a large
number of terms in the higher-order Lagrangians. Some of
the higher-order terms are related to those at lower orders
by Lorentz invariance [1437]. Calculated amplitudes can be
expressed in Lorentz-invariant forms, but Lorentz invariance
is not manifest throughout intermediate steps of the calcula-
tions. Further, issues with analyticity arise in some specific
cases because the heavy-baryon expansion results in a shift
of the poles in the nucleon propagator [1632].

A manifestly Lorentz-invariant approach to baryon ChPT
that addresses these issues was formulated in Ref. [1632],
referred to as infrared regularization. While infrared regular-
ization also uses dimensional regularization, the renormal-
ization procedure is different from minimal subtraction. Loop
integrals are separated into infrared-singular and infrared-
regular parts. The infrared-singular parts contain the same
infrared singularities as the original integral and they sat-
isfy the power counting. The infrared-regular parts are ana-
lytic in small parameters for arbitrary spacetime dimensions
and contain the power-counting-violating terms. Since the
infrared-regular parts are analytic, they can be absorbed in
the LECs of the baryon Lagrangian. Infrared regularization
in its original formulation was applicable to one-loop dia-
grams. It has been widely used in the calculation of baryon
properties, see, e.g., Ref. [1638] for a review.

The expansion of the infrared-regular parts in small
parameters contains not only the terms violating the power
counting, but also an infinite set of terms that satisfy
the power counting. The extended on-mass-shell (EOMS)
scheme [1635] provides a method to isolate the terms that
violate the power counting and to absorb only these terms
in the LECs of the Lagrangian. The EOMS scheme was also
shown to be applicable to multi-loop diagrams [1639] and
diagrams containing particles other than pions and nucleons
[1640]. By reformulating infrared regularization analogously
to the EOMS scheme [1641], it can be applied beyond one-
loop pion-nucleon diagrams [1639]; see also Ref. [1642] for
a different extension of infrared regularization.

The nucleon mass presents an example of the application
of baryon ChPT. It has been determined to one-loop order
in several approaches, including HBChPT [1643], infrared
regularization [1632], and the EOMS scheme [1635]. Up to
and including order q3, the chiral expansion of the nucleon
mass is given by

mN = m− 4c1M
2 − 3g2

A

32πF2 M
3 + · · · , (6.75)

where F denotes the pion-decay constant in the two-flavor
chiral limit, Fπ = F[1 + O(m̂)] = 92.2 MeV and M2 =
2Bm̂ is the lowest-order expression for the squared pion
mass.
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The result of Eq. (6.75) exhibits some general features of
baryon ChPT: The expansion contains not just even powers
in the small parameter q like the meson sector, but also odd
powers. As a result, the convergence of chiral expansions
is expected to be slower in the baryon sector. The second-
order contribution is proportional to the LEC c1 from the
second-order Lagrangian. On the other hand, the coefficient
of the nonanalytic term proportional to M3 is given entirely in
terms of the LO LEC gA and F . Similar features also appear
at higher orders. The general form of the chiral expansion of
the nucleon mass to higher orders is given by

mN = m+ k1M
2 + k2M

3 + k3M
4 ln

(
M

μ

)

+ k4M
4

+ k5M
5 ln

(
M

μ

)

+ k6M
5

+ k7M
6 ln2

(
M

μ

)

+ k8M
6 ln

(
M

μ

)

+ k9M
6 + · · · ,

(6.76)

where μ is the renormalization scale and the ellipsis denotes
higher-order terms. The coefficients ki are linear combina-
tions of various LECs. k1 through k4 can be determined by
considering at most one-loop diagrams, while k5 through k9

receive contributions from two-loop diagrams. Using esti-
mates of the LECs entering the ki , Ref. [1644] estimated the
nucleon mass in the chiral limit from an EOMS calculation
to order q4 to be

m = [938.3− 74.8+ 15.3+ 4.7− 0.7]MeV

= 882.8 MeV.
(6.77)

Two-loop contributions to order q5 were considered in Ref.
[1645], while Refs. [1646,1647] determined mN to order
q6. Because several currently undetermined LECs enter the
expressions for several of the higher-order ki , no reliable
estimate of the complete two-loop contributions is possi-
ble. However, the coefficient k5 of the leading nonanalytic
contribution at order q5 only depends on gA and the pion-
decay constant F and can therefore be compared to lower-
order terms. At the physical pion mass and with μ = mN ,
k5M5 ln(M/mN ) = −4.8 MeV.

Chiral expansions like that of Eq. (6.76) are also impor-
tant at nonphysical pion masses in the extrapolation of lattice
QCD results (for an introduction see, e.g., Ref. [1648]). The
fifth-order term k5M5 ln(M/mN ) becomes as large as the
third-order term k2M3, where k2 also only depends on gA

and F , for a pion mass of about 360 MeV. While this com-
parison includes only one part of the two-loop contributions,
it indicates a limit to the applicability of the power count-
ing. This estimate agrees with others found using different
methods in Refs. [1649,1650].

Even though the nucleon mass is a static quantity, it is not
entirely surprising that a combined chiral and momentum
expansion in the baryon sector does not converge well for

energies beyond about 300 MeV. This roughly corresponds
to the mass gap between the nucleon and the Δ(1232) res-
onance. At the physical point, treating the Δ as an explicit
degree of freedom has limited impact on the nucleon mass
[1651,1652]. However, the Δ(1232) also couples strongly to
the πN channel and has relatively large photon decay ampli-
tudes, resulting in important contributions to processes such
as pion-nucleon scattering, Compton scattering, and electro-
magnetic pion production. These issues were already pointed
out in Ref. [1630], which advocated for treating Δ degrees
of freedom as dynamic. In baryon ChPT with only pions
and nucleons as degrees of freedom, effects of the Δ(1232)
enter implicitly through the values of the LECs. However,
these contributions can be proportional to powers of M/δ,
where δ = (mΔ−m). This ratio is small as the quark masses
approach the chiral limit, but it is a rather large expansion
parameter at the physical values, especially when combined
with the strong coupling of the Δ. By formulating a the-
ory that also includes the Δ as an active degree of freedom,
one hopes to improve the convergence of the perturbative
expansion and potentially to increase the kinematic range of
applicability.

The inclusion of Δ degrees of freedom poses additional
challenges to the construction of the most general Lagrangian
and to the power counting. The covariant description of spin-
3
2 , isospin- 3

2 fields introduces unphysical degrees of freedom
[1653,1654]. For the free Lagrangian, these can be elimi-
nated by subsidiary equations and projection operators. The
correct number of degrees of freedom also has to be preserved
when including interactions with pions, nucleons, and exter-
nal fields. Various approaches addressing this issue have been
considered, see, e.g., Refs. [1655–1660].

The main issue for the power counting is how to count the
Δ-nucleon mass difference δ. In one version of the power
counting [1657], it is a small quantity of the same order as
the pion mass, δ ∼ O(q). In a different approach [1661], it
is argued that (for physical quark masses) Mπ < δ and that
Mπ/δ ∼ δ/Λ, where Λ ∼ 1 GeV is the breakdown scale of
the EFT. Denoting δ̄ ≡ δ/Λ implies that Mπ/Λ ∼ δ̄2, i.e.,
the pion mass is of higher order than the Δ-nucleon mass
difference in this power counting.

6.2.4 Conclusions

Over the last few decades, ChPT has developed into a mature
and comprehensive approach to the low-energy interactions
between Goldstone bosons, nucleons, and external fields,
with numerous successful applications. ChPT has played an
important role in interpreting lattice QCD calculations per-
formed at unphysical pion masses. It has also served as a
prototype for semi-phenomenological approaches in other
systems. The application of ChPT methods to the interac-
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tions between two and more nucleons is discussed in the
contribution by Epelbaum and Pastore.

6.3 Chiral EFT and nuclear physics

Evgeny Epelbaum and Saori Pastore
As explained in the previous section, ChPT allows one to
describe the low-energy interactions between hadrons in the
Goldstone-boson and single-baryon sectors by means of a
perturbative expansion in light-quark masses and particle
momenta in line with the symmetries of QCD. In this section
we briefly review the extension and application of this sys-
tematic and model-independent method to systems with sev-
eral baryons, focusing on the non-strange sector. This exten-
sion goes beyond strict perturbation theory and is commonly
referred to as chiral effective field theory, or ChEFT, in order
to make the distinction with ChPT clear.

6.3.1 The foundations of ChEFT

EFT methods enjoy increasing popularity in nuclear
physics.65 A unified description of few-nucleon systems,
medium mass and heavy nuclei as well as nuclear matter
up to the saturation density calls for an EFT applicable at
nucleon momenta p ∼ Mπ , which must include pions as
dynamical DoF. The corresponding framework, commonly
referred to as chiral EFT (ChEFT), was pioneered by Wein-
berg [1666,1667] and represents the most widely used EFT
approach in nuclear physics applications. The method relies
on the spontaneously broken approximate chiral symme-
try of QCD and makes use of the effective Lagrangian for
pions and nucleons already introduced in the previous sec-
tion. Specifically, theO(q2) andO(q4)mesonic Lagrangians
are given in Eqs. (6.46) and (6.61), respectively, while the
LO pion–nucleon (πN) Lagrangian is written in Eq. (6.74).
Most of the applications to few-nucleon systems are car-
ried out using the heavy-baryon (HB) Lagrangian for the
velocity-dependent nucleon field N (x) = eimv·x P+v Ψ (x),

65 In the past decades, a variety of EFTs utilizing different degrees
of freedom (DoF) have been developed to describe phenomena char-
acterized by specific energy scales. For example, an EFT description
of rotational bands of deformed heavy nuclei with excitation energies
E � 1 MeV can be efficiently achieved in terms of collective coordi-
nates with no need to resolve the internal structure of a nucleus under
consideration [1662]. Low-energy properties of nuclei consisting of a
dense core, surrounded by weakly bound nucleons, have been studied
in halo-EFT [1663]. This framework treats the core nucleus as a point-
like particle and utilizes the expansion in powers of p/pcore, with p
and pcore denoting the binding momenta of the nucleons and of the core
nucleus, respectively. Another EFT approach, the so-called pion-less
EFT, is formulated in terms of nucleons as the only dynamical DoF
and is well suited to describe the dynamics of few-nucleon systems at
momenta p � Mπ . This framework has proven to be particularly effi-
cient for uncovering universal features of few-body systems around the
unitary limit [1664,1665].

with P+v = (1+ v · γ )/2 being the velocity projection oper-
ator [1630]. The LO HB πN Lagrangian obtained from the
covariant expression in Eq. (6.74) takes the form

L(1)
πN = N †(iv · D + gAS · u)N , (6.78)

where Sμ = −γ5[γμ, γν]vν/4 is the covariant spin-operator
that is given by the usual Pauli matrices Sμ = (0, �σ/2)
in the rest-frame system of the nucleon with vμ = (1, �0).
Higher-order terms in the HB πN Lagrangian can be found
in Refs. [1627,1636]. Finally, one also needs to include in
the effective Lagrangian terms with more than two nucleon
fields. The corresponding LO Lagrangian has the form [1666,
1667]

L(0)
NN = −

1

2
CS(N

†N )2 + 2CT N
†SμN N †SμN , (6.79)

with CS , CT being low-energy constants (LECs).
While both ChPT and ChEFT rely on the same effec-

tive Lagrangian, the two frameworks are applied to describe
rather different phenomenological situations. Contrary to the
meson and single-baryon sectors, the scattering amplitudes
for few-nucleon systems exhibit low-lying poles correspond-
ing to bound (and virtual) states, which signal the breakdown
of perturbation theory at very low momenta. For example, in
the 3S1 and 1S0 channels of neutron–proton scattering, the
poles are located at pcms ∼ 45i MeV and pcms ∼ −8i MeV,
respectively, which is well within the validity domain of
chiral (and even pion-less) EFT. This is in strong contrast
to pion–pion scattering, where the lowest-lying resonances
reside at momenta of the order of the breakdown scale of
ChPT, and the scattering amplitude admits a perturbative
expansion in powers of momenta for p ∼ Mπ . It is worth
emphasizing that while the spontaneously broken chiral sym-
metry of QCD leads to a strong suppression of the interactions
between Goldstone bosons (pions) at low energy, which is at
the heart of ChPT, it does not constrain the strength of the
interaction between the nucleons for | �p | → 0, see Eq. (6.79).

So how can ChEFT be reconciled with the nonperturba-
tive nature of the two-nucleon interaction? To answer this
question one needs a power-counting scheme that determines
the importance of renormalized contributions to the scatter-
ing amplitude. The power counting of mesonic ChPT was
already given in Eqs. (6.58)–(6.60). Using the HB framework
to avoid the appearance of positive powers of the nucleon
mass in renormalized expressions as explained in the pre-
vious section, the power counting can be straightforwardly
extended to single- and few-nucleon scattering amplitudes.
A connected contribution to the scattering amplitude for N
nucleons with generic momenta | �p | ∼ Mπ involving NL

independent loop integrals is found to scale as M ∼ qD ,
where q ∈ {| �p |/Λb, Mπ/Λb}with Λb being the breakdown
scale of ChEFT. In four space-time dimensions, the power D
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Fig. 134 Diagrams contributing to the two-, three- and four-nucleon forces up to fifth order O(q5) in ChEFT. Solid and dashed lines denote
nucleons and pions, respectively. Solid dots, filled circles, filled squares, crossed circles and filled diamonds denote vertices with Δ = 0, 1, 2, 3
and 4, respectively

is given by [1666,1667]

D = 2− N + 2NL +
∑

i

ViΔi , (6.80)

where Vi denotes the number of vertices of type i , whose
dimension Δi is given by

Δi = −2+ 1

2
ni + di . (6.81)

Here, ni is the number of nucleon fields while di refers to
the number of derivatives and/or insertions of Mπ . Using
Eq. (6.80), one can draw the relevant Feynman diagrams con-
tributing to the multi-nucleon scattering amplitude at increas-
ing orders in chiral EFT, see Fig. 134. The terms LO, NLO,
N2LO, N3LO and N4LO refer to the ChEFT orders q0, q2,
q3, q4 and q5, respectively. Notice that contributions at order
q1 are forbidden by parity conservation. However, the above
classification of Feynman diagrams implies a perturbative
nature of multi-nucleon scattering amplitudes, which is in
contradiction with the empirical evidence. The key insight
of Weinberg was the observation that certain contributions to
the amplitude are enhanced beyond what is expected based
on Eq. (6.80) [1666,1667]. Consider, for example, the two-
pion exchange planar box diagram (the last diagram in the
second line of Fig. 134):

M = i
∫

d4l1
(2π)4 l

i
1l

j
1 l

k
2l

l
2 Ôi jkl

i

l21 − M2
π + iε

i

l22 − M2
π + iε

× 2im

(p1 − l1)2 − m2 + iε

2im

(p2 + l1)2 − m2 + iε
,

(6.82)

where pμ1 = (
√ �p 2 + m2, �p) and pμ2 = (

√ �p 2 + m2, − �p)
are the initial four-momenta of the nucleons, l1 and l2 =
p′1− p1+l1 are pion momenta and we have used the relativis-
tic rather than the strict HB expressions for the nucleon prop-
agators for reasons to be given below. The spin-isospin oper-
ator Ôi jkl with i, j, k, l = 1, . . . , 3 emerges from four πN
vertices∝ gA with Δ = 0. Assuming | �p |, l1, l2 ∼ Mπ � m
and applying naive dimensional analysis (NDA) to the inte-
grand in Eq. (6.82), the renormalized amplitude for the box
diagram is expected to be of the order of M ∼ M2

π in
agreement with the power counting formula in Eq. (6.80).
On the other hand, performing the integration over l01 using
the residue theorem, one obtains

M =
∫

d3l1
(2π)3 Ôi jkl

[
li1l

j
1

ω2
1

m

�p 2 − ( �p − �l1)2 + iε

lk2l
l
2

ω2
2

+ω2
1 + ω1ω2 + ω2

2

2ω3
1ω

3
2(ω1 + ω2)

li1l
j
1 l

k
2l

l
2 +O

(
1

m

)]

, (6.83)

where ωi =
√
�l 2
i + M2

π are the energies of the exchanged
pions. Remarkably, the first term in the square brackets
is enhanced by the factor m/Mπ compared to the power
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counting estimation. The origin of this enhancement can be
traced back to the pinch singularity in the m → ∞ limit
[1666,1667], which is why we used the relativistic expres-
sions for the nucleon propagators.66 Notice that infrared
divergences of this kind do not appear in the single-baryon
sector of ChPT.

To identify all enhanced types of contributions to the
amplitude it is useful to recall that performing the inte-
gration over l0 leads to a decomposition of Feynman dia-
grams into a sum of diagrams emerging in old-fashioned
time-ordered perturbation theory (TOPT). Indeed, the first
(enhanced) term in the square brackets in Eq. (6.83) stems
from two-nucleon-reducible TOPT diagrams which have an
intermediate state involving two nucleons and no pions.
Energy denominators associated with such purely nucleonic
intermediate states of TOPT diagrams involve only nucleon
kinetic energies ∼ M2

π/m � Mπ and are smaller than what
is expected from NDA. This leads to the enhancement of
reducible-type diagrams beyond the power counting esti-
mation in Eq. (6.80).67 In contrast, the second term in the
square brackets of Eq. (6.83) emerges from irreducible two-
pion exchange diagrams with intermediate states involving
at least one pion and results in the contribution M ∼ M2

π in
agreement with Eq. (6.80).

In his seminal work [1666,1667], Weinberg has argued
that the breakdown of perturbation theory for the scattering
amplitude in the few-nucleon sector of ChEFT can be traced
back to the enhancement of reducible diagrams, which need
to be resummed to all orders. He also noticed that ladder-
type reducible TOPT diagrams automatically get resummed
by solving the Lippmann–Schwinger-type integral equations
for the amplitude

M = V + VG0M = V + VG0V + VG0VG0V + · · · .
Indeed, the terms on the right-hand side of Eq. (6.83) can be
easily identified with the iterated one-pion exchange poten-
tial (OPEP) and the leading two-pion exchange potential
(TPEP), M = V1πG0V1π + V2π + · · · . Thus, low-energy
processes involving several nucleons can be calculated in a
systematically improvable way by applying ChPT to the ker-
nel of the dynamical equation, defined as a sum of all pos-
sible few-nucleon-irreducible time-ordered diagrams, rather
than to the scattering amplitude. The contributions to the
nuclear forces depicted in Fig. 134 are to be understood as
(sums of) the corresponding few-nucleon-irreducible time-
ordered-like graphs rather than Feynman diagrams. Switch-
ing on external classical sources in the effective Lagrangian
as explained in the previous section, the same framework

66 This singularity is the basis of the covariant spectator theory dis-
cussed in Sect. 5.2.
67 Reducible and irreducible diagrams also play a central role in the
derivation of the Bethe–Salpeter equation; see Sect. 5.2.

can be used to derive nuclear current operators and to ana-
lyze low-energy electroweak processes (see the discussion
below).

It is worth emphasizing that the enhancement of reducible
diagrams mentioned above is insufficient to justify the need
for a non-perturbative resummation of the amplitude if one
counts m ∼ Λb as done in ChPT. For example, the iterated
OPEP contributes at order V1πG0V1π ∼ mMπ/Λ

2
b (assum-

ing that all intermediate momenta are ∼ Mπ after renor-
malization) and is thus suppressed relative to the tree-level
term V1π = O(1). To have a self-consistent non-perturbative
approach, Weinberg proposed an alternative counting scheme
for the nucleon mass by assigning m ∼ Λ2

b/Mπ � Λb,
which is supported by the large-Nc arguments given that
Λb ∼ Mρ = O(1)whilem = O(Nc). On the other hand, it is
shown in Ref. [1668] that Weinberg’s power counting can be
realized via a suitable choice of renormalization conditions
with no need to depart from the standard ChPT counting for
the nucleon mass, see also Ref. [1669] for a related discus-
sion.

Weinberg’s power counting suggests that the LO poten-
tial stemming from the derivativeless contact interactions
∝ CS,T , see Eq. (6.79), and the OPEP as shown in Fig. 134
has to be iterated to all orders. For the contact interactions
alone, the scattering amplitude resulting from solving the
Lippmann–Schwinger (LS) equation can be calculated ana-
lytically and is renormalizable in the usual sense.68 In con-
trast, iterations of the OPEP in spin-triplet channels lead to
ultraviolet divergences whose cancellation requires countert-
erms with an increasing power of momenta. This feature,
along with the numerical nature of the calculations in the
presence of the OPEP, make renormalization of chiral EFT a
complicated matter; see Ref. [1670] for a collection of per-
spectives.

Notice that the existence of shallow bound states alone
does not necessarily imply a nonperturbative nature of the
OPEP, but merely indicates a fine tuning of the LECs CS,T

[1667,1671]. An alternative approach based on a perturba-
tive treatment of the OPEP was proposed by Kaplan, Sav-
age and Wise (KSW) in the late nineties of the last century
[1672,1673]. This framework allows one to compute the NN
scattering amplitude analytically and to implement the renor-
malization program in a straightforward way with no need
to introduce a finite cutoff. However, extensive calculations
performed in the KSW approach have revealed poor conver-
gence (at least) in certain spin-triplet channels [1674,1675],
see also [1676–1678] for a related discussion, indicating that
the OPEP should indeed be treated nonperturbatively in low
partial waves.

68 That is, all ultraviolet divergences emerging from the iterations of
the LS equation can be absorbed into a redefinition of CS,T .
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The most advanced applications of chiral EFT to nuclear
systems are carried out utilizing the finite-cutoff formulation
of Ref. [1679]. In essence, it amounts to solving the quantum-
mechanical A-body problem using the nuclear potentials cal-
culated in ChPT and regularized with some finite cutoff Λ

taken of the order of Λ ∼ Λb. The calculated scattering
amplitudes are implicitly renormalized by tuning the bare
LECs CS(Λ), CT (Λ), etc., of multi-nucleon vertices to low-
energy observables. The resulting (renormalized) scattering
amplitudes depend on the physical parameters and the cut-
off Λ. The residual Λ-dependence of the calculated observ-
ables is expected to introduce an uncertainty beyond the order
one is working at and offers a nontrivial a posteriori consis-
tency check. For more details on the foundations and applica-
tions of the finite-cutoff formulation of chiral EFT see Refs.
[1679,1680]. Finally, a first step towards a formal renormal-
izability proof of the finite-cutoff scheme to all orders in
the iterated OPEP using the Bogoliubov–Parasiuk–Hepp–
Zimmermann (BPHZ) subtraction technique can be found
in Ref. [1681].

6.3.2 Nuclear interactions from ChEFT

In ChPT, the S-matrix is usually obtained by applying the
Feynman graph technique to the effective chiral Lagrangian.
To derive nuclear forces, it is more natural and convenient
to employ non-covariant old-fashioned perturbation theory
as already mentioned above. This approach is based on the
Hamiltonian rather than Lagrangian, so the first step amounts
to using the canonical formalism for constructing the Hamil-
tonian H = H0 + HI for interacting pions and nucleons
from the effective chiral Lagrangian [1666,1667]. The NN
scattering amplitude between the initial and final states |i〉
and | f 〉, respectively, can be written as

〈 f |M|i〉 = 〈 f |HI

∞∑

n=0

(
1

Ei − H0 + iε
HI

)n

|i〉, (6.84)

where Ei is the energy of the nucleons in the state |i〉. Notice
that the intermediate states in the above equation include
both pions and nucleons. Let η and λ denote the projection
operators on the purely nucleonic subspace and the rest of
the Fock space, respectively. Eq. (6.84) can be cast into the
form of the LS equation

〈 f |M|i〉 = 〈 f |V
∞∑

n=0

(
η

Ei − H0 + iε
V

)n

|i〉, (6.85)

where the potential V can e.g. be chosen in the energy-
dependent form as done in Refs. [1666,1667,1682,1683]:

V (Ei ) = ηHI

∞∑

n=0

(
λ

Ei − H0 + iε
HI

)n

η. (6.86)

The explicit energy dependence of V is a higher-order effect,
see e.g. Eq. (6.83), and can be eliminated yielding an energy
independent hermitian NN potential. The method can be
applied to many-body forces and has also been used to derive
nuclear currents starting from the effective Lagrangian with
external sources.

It is important to keep in mind that nuclear potentials, in
contrast to the on-shell amplitude 〈 f |M|i〉, are not directly
observable and represent scheme-dependent quantities. This
intrinsic ambiguity reflects the arbitrariness in making off-
shell extensions of the scattering amplitude. Clearly, such off-
shell ambiguities cannot lead to measurable effects. Being a
quantum-field-theory-based method, chiral EFT by construc-
tion maintains consistency between many-body interactions
and current operators and ensures that calculated observables
are independent of the off-shell ambiguities (up to higher-
order corrections).

The method of deriving nuclear forces and currents by
matching to the scattering amplitude as outlined above was
used e.g. in Refs. [1684–1688] and is usually referred to as
TOPT. Another closely related approach amounts to block-
diagonalizing the pion–nucleon Hamiltonian via a suitable
unitary transformation [1689]

H → H ′ = U †HU =
(
ηH ′η 0

0 λH ′λ
)
. (6.87)

Both the unitary operator U and the nuclear potential V =
η(H ′−H0)η are calculated perturbatively using the standard
power counting of ChPT as explained in Ref. [1690]. The
method of unitary transformation (MUT) to derive nuclear
forces and currents was applied e.g. in Refs [1691–1699].
A pedagogical discussion of methods outlined above can be
found in Ref. [1700].

So far, we have left out renormalization of nuclear poten-
tials. In contrast to the scattering amplitude, renormalizabil-
ity of nuclear forces and currents derived in ChPT is not
guaranteed by construction and was shown to impose severe
constraints on their off-shell behavior starting from N3LO
[1690,1695,1697–1699,1701].

Having introduced various methods to derive nuclear
potentials from the effective chiral Lagrangian, we are now
in the position to discuss the ChEFT expansion of the long-
range NN force. The one- and two-pion exchange contribu-
tions up to N2LO depend solely on the momentum transfer
�q and are, therefore, local. The resulting potentials have a
clear and intuitive interpretation in coordinate space. Using
the decomposition

V (�r ) = VC (r)+ VS(r)�σ1 · �σ2 + VT (r)S12

+[
WC (r)+WS(r)�σ1 · �σ2 +WT (r)S12

]�τ1 · �τ2,

(6.88)
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where S12 = 3�σ1 · r̂ �σ2 · r̂ − �σ1 · �σ2 is the tensor operator
while �τi refer to the isospin Pauli matrices of the nucleon i ,
the LO contribution due to the OPEP is given by

W (0)
T, 1π (r) =

g2
A

48πF2
π

e−x

r3 (3+ 3x + x2),

W (0)
S, 1π (r) =

g2
AM

2
π

48πF2
π

e−x

r
, (6.89)

where the superscript of the potentials gives the ChEFT order.
Further, x ≡ Mπr while gA and Fπ denote the physical
values of the nucleon axial-vector coupling and pion decay
constant, respectively. Notice that only the W (0)

T, 1π (r) ∝ r−3

part of the tensor potential survives in the chiral limit of
Mπ → 0. It is precisely this singular interaction that leads to
the already mentioned non-renormalizability of the OPEP in
all spin-triplet channels of NN scattering. The NLO contri-
butions to the long-range NN interaction stem from the TPEP
and are given by [1682,1684,1689,1702]:

W (2)
C, 2π (r) =

Mπ

128π3F4
π

1

r4

{
K1(2x)

×[
1+ 2g2

A(5+ 2x2)− g4
A(23+ 12x2)

]

+xK0(2x)
[
1+ 10g2

A − g4
A(23+ 4x2)

]}
,

V (2)
T, 2π (r) = −

g4
AMπ

128π3F4
π

1

r4

×{
12xK0(2x)+ (15+ 4x2)K1(2x)

}
,

V (2)
S, 2π (r) =

g4
AMπ

32π3F4
π

1

r4

×{
3xK0(2x)+ (3+ 2x2)K1(2x)

}
, (6.90)

where K0,1(x) denote the modified Bessel functions. To
arrive at these expressions, one first needs to evaluate the
three-dimensional loop integrals for the corresponding TOPT
diagrams69 using e.g. dimensional regularization. The result-
ing p-space potentials cannot be Fourier transformed to r -
space directly since the Fourier integrals diverge at high
momenta. Eq. (6.90) is obtained by Fourier transforming the
regularized momentum-space potentials and subsequently
removing the regulator.

Similarly, at N2LO, the TPEP receives contributions given
by [1684,1689]

V (3)
C, 2π (r) =

3g2
A

32π2F4
π

e−2x

r6

{
2c1x

2(1+ x)2

+c3(6+ 12x + 10x2 + 4x3 + x4)
}
,

69 E.g., the second term in the square brackets in Eq. (6.83) gives the
TPEP ∝ g4

A stemming from the last diagram in the second row of
Fig. 134 (planar box diagram).

W (3)
T, 2π (r) = −

g2
Ac4

48π2F4
π

e−2x

r6 (1+ x)(3+ 3x + x2),

W (3)
S, 2π (r) =

g2
Ac4

48π2F4
π

e−2x

r6 (1+ x)(3+ 3x + 2x2), (6.91)

where ci are LECs accompanying the subleading ππNN ver-
tices with Δ = 1.

The expressions for the OPEP and TPEP, Eqs. (6.89) to
(6.91), illustrate the general features of the chiral expansion
of the long-range nuclear interactions:

– The chiral expansion of the N -pion exchange poten-
tial generally corresponds to the expansion in powers
of Mπ/Λχ , where the chiral symmetry breaking scale
Λχ is given by 4πFπ and/or the scale that governs the
πN LECs starting from the subleading ones. The expan-
sion pattern is the same as for ChPT in the meson and
single-baryon sectors. The chiral expansion for V (�r) is
expected to converge at distances r � 1/Mπ and larger.
In contrast, at short distances r � 1/Mπ , the expan-
sion diverges yielding highly singular van der Waals-like
behaviour V (s)

Nπ (�r) ∼ 1/r3+s ; see also Ref. [1703] for
further insights and examples. In the finite-cutoff for-
mulation of chiral EFT, this unphysical short-distance
behavior is removed by the regulator.

– Since all relevant πN LECs can nowadays be reli-
ably determined from the pion–nucleon scattering ampli-
tude in the subthreshold region, obtained from the
dispersive Roy–Steiner-equation analysis [1704–1706],
ChEFT yields parameter-free predictions for the long-
range behavior of the nuclear forces and currents. These
predictions are model-independent and represent non-
trivial manifestations of the spontaneously broken chiral
symmetry of QCD.

– Eqs. (6.89)–(6.91) also point towards some limitations of
ChPT, which relies on NDA and cannot capture possible
enhancements due to large dimensionless prefactors. In
the NN sector, this especially affects the N2LO contribu-
tions to the TPEP. The corresponding triangle diagram,
see Fig. 134, leads to the contribution enhanced by a
factor of 4π relative to what is expected based on the
power counting, so that Λχ is in this case better esti-
mated as Λχ ∼

√
4πFπ than Λχ ∼ 4πFπ . Enhance-

ments of this kind are also not uncommon in the single-
nucleon sector of ChPT. For the subleading central poten-
tial V (3)

C, 2π (r), this enhancement combines with the large
numerical coefficients and a large value of the LEC c3

driven by the intermediate Δ(1232) excitation [1707].
Altogether, this results in V (3)

C, 2π (r) being by far the dom-
inant TPE component, whose strength is comparable to
that of the OPEP even at r ∼ 2 fm. The strongly attrac-
tive nature of the isoscalar central potential at intermedi-
ate distances is supported by phenomenology and often
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Fig. 135 Diagrams contributing to the single-, two- and three-nucleon
electromagnetic current operators at lowest orders of chiral EFT using
the counting scheme with m ∼ Λ2

b/Mπ . Wiggly lines denote photons.

Blue and red diagrams depict the contributions to the current and charge
densities, respectively. An open circle shows an insertion of the kinetic
energy term with Δ = 2. For remaining notations see Fig. 134

attributed to the σ -meson exchange in traditional nuclear
physics jargon. The chiral expansion of the TPEP has
been extended to N4LO [1708–1710] and even beyond
and was shown to yield converged results [1711,1712].

The current status of the derivation of nuclear potentials
in ChEFT is visualized in Fig. 134,70 see Refs. [1713,1714]
for comprehensive review articles. On the qualitative level,
ChEFT provides a justification of the observed hierarchy of
nuclear forces with V2N � V3N � V4N � . . . [1666,1667].

The leading contributions to the three-nucleon force (3NF)
at N2LO have been known for a long time [1715,1716]. The
expressions for the N3LO and (most of the) N4LO corrections
have been worked out in Refs. [1691–1694,1717–1719]. The
four-nucleon force is further suppressed relative to the 3NF
and appears first at N3LO [1690,1701]. Isospin-breaking as
well as parity- and time-reversal-violating nuclear potentials
have also been worked out, see Refs. [1713,1720] and refer-
ences therein.

The first application of ChEFT to study nuclear current
operators goes back to the pioneering papers by Park et al.
[1721,1722]. In the past decade, the vector [1685–1687,
1695,1696,1698], axial-vector [1688,1697], pseudoscalar
[1697] and scalar [1699,1723] current operators have been

70 In some approaches, NN contact interactions are promoted to orders
different than those derived by NDA.

worked out to the leading one-loop-order accuracy for the
two-body contributions (i.e., to N3LO using the counting
scheme with m ∼ Λ2

b/Mπ ). As an example, the ChEFT
expansion of the electromagnetic nuclear currents is shown in
Fig. 135. Similarly to the case of the nuclear forces, the chiral
power counting leads, in general, to a suppression of many-
body operators. On the other hand, the leading contributions
to the single- and two-nucleon current density both appear at
NLO. In contrast, the exchange charge density contributions
are strongly suppressed relative to the LO term (the charge
operator of the nucleon), with both two- and three-nucleon
contributions appearing at N3LO. A comprehensive review
of nuclear currents in ChEFT, including a detailed compar-
ison of results obtained by different groups and a thorough
discussion of the differences between them, can be found in
Ref. [1724].

All results described above are based on the effective
chiral Lagrangian involving pions and nucleons as the only
explicit DoF. As already emphasized in the previous section,
given the low excitation energy of the Δ-resonance and its
strong coupling to theπN system, it might be advantageous to
also treat the Δ DoF as dynamic. This formulation of ChEFT
was already applied to derive the NN force and most of the
3NF contributions up through N3LO [1683,1725–1728]. The
explicit treatment of the Δ leads to a reshuffling of certain
contributions to lower orders in the EFT expansion. In par-
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ticular, a part of the unnaturally strong N2LO TPEP is shifted
to NLO, and the LECs c3,4 take more natural numerical val-
ues [1706]. These results indeed support the expected better
convergence pattern of ChEFT with explicit Δ DoF.

Last but not least, ChEFT has also been extended to the
SU(3) sector and applied to study the interactions between
nucleons and hyperons, see e.g. Refs. [1729–1731] and Ref.
[1732] for a recent review article.

6.3.3 Applications

As already pointed out, nuclear interactions derived in
ChEFT are singular at short distances and need to be regular-
ized prior to solving the dynamical equation. A broad range
of regulators featuring different functional dependence on
momenta and relative distances have been proposed in the
literature, see Refs. [1712,1733–1737] for some examples
and Ref. [1738] for a related discussion. For the long-range
OPEP and TPEP, it is advantageous to use a local regulariza-
tion in order to preserve the analytic structure of the ampli-
tude [1712,1736]. For short-range terms, angle-independent
nonlocal regulators maintain a one-to-one correspondence
between the plane-wave and partial-wave bases, which sim-
plifies the determination of the corresponding LECs. This
choice is utilized in both available N4LO implementations
of the NN potentials [1712,1739] which, however, differ
in their way of regularizing the long-range terms. In both
cases, the LECs accompanying the NN short-range inter-
actions were determined solely from the neutron–proton
and proton–proton data. Alternative fitting strategies, which
include information about light and medium-mass nuclei and
even nuclear matter, are also being explored [1740].

The very accurate and precise NN potentials of [1712,
1741], derived in chiral EFT with pions and nucleons as the
only active DoF, provide an outstanding description of NN
data up to the pion production threshold.71 In fact, the results
of Ref. [1741] comprise a full-fledged partial wave analysis
of NN scattering data based solely on chiral EFT. For more
details and comparison between different NN potentials see
Ref. [1742].

To give an impression about the convergence pattern of
ChEFT consider the total cross section for neutron–proton
scattering at Elab = 100 MeV as a representative example.
Using the potentials from Ref. [1741] one obtains for the
cutoff Λ = 450 MeV (in mb)

σtot = 84.0[q0] − 10.2[q2] + 0.4[q3]
−0.4[q4] + 0.6[q5] − 0.0[q6],

where the last term gives the contribution of the order-
q6 F-wave contact interactions. Given that the expansion

71 This requires the inclusion of four order-q6 contact interactions that
contribute to F-waves [1712,1739].

parameter is q = pcms/Λb ∼ 1/3, where we have used
Λb = 650 MeV [1736,1743,1744], one observes that the
order-q3 and q4 contributions appear to be smaller, while the
order-q5 correction is somewhat larger than naively expected.
The truncation error of the calculated value can be estimated
using a Bayesian approach by inferring the information about
the convergence pattern of the ChEFT from the results at all
available orders [1743]; see also Ref. [1736] for a related
earlier work. Using the Bayesian model from Ref. [1745],
the N4LO truncation error for the case at hand is estimated
to be δσtot = 0.14 mb at 68% confidence level. The final
result then reads σtot = 74.35(14)(17)(1) mb, where the last
two errors refer to the statistical error and uncertainty in the
πN LECs.

The sub-percent accuracy level of ChEFT has also been
reached for other low-energy observables in the NN sec-
tor [1742]. In particular, the charge and quadrupole form
factors of the deuteron were analyzed to N4LO in Refs.
[1746,1747]. The predicted value for the deuteron struc-
ture radius, rstr = 1.9729+0.0015

−0.0012 fm, was used, in com-
bination with the very precise measurement of the charge
radius difference between 2H and the proton [1748], to
determine the neutron radius. The obtained value of the
quadrupole moment Qd = 0.2854+0.0038

−0.0017 fm2 [1747] is in
a very good agreement with the spectroscopy determination
Qd = 0.285699(15)(18) fm2 [1749].

The spontaneously broken approximate chiral symmetry
of QCD, together with the experimental information about
the πN system, allow one to predict the long-range behav-
ior of the nuclear forces. In the NN sector, these predic-
tions have been verified from experimental data. For exam-
ple, the only order-q3 contribution to the NN force comes
from the TPEP in Eqs. (6.91) (since the contact interac-
tions contribute at orders q2i , i = 0, 1, 2, . . .). Adding these
parameter-free contributions to the potential was demon-
strated to very significantly improve the description of the
data [1736,1750,1751]. A similar improvement is observed
by adding the order-q5 TPEP [1710,1712,1752]. It is also
worth mentioning that the potentials of [1712] achieve a com-
parable precision to that of the available high-precision phe-
nomenological potentials while having a much smaller num-
ber of adjustable parameters72 This is yet another evidence
of the important role played by chiral symmetry. Finally,
the convergence of the chiral EFT expansion can be further
improved by the inclusion of Δ’s as explicit DoF of the the-
ory. This is supported by the recently developed Norfolk chi-
ral many-body interactions [1753]; see also Ref. [1754] for
a related discussion.

72 The N4LO potentials of [1712] depend on 27 LECs fitted to NN
data, while the realistic potentials typically involve 40-50 adjustable
parameters.
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Fig. 136 Predictions for ground state energies of selected p-shell
nuclei at NLO and N2LO using the chiral EFT NN potentials from
Ref. [1712] together with the consistently regularized 3NF for Λ =
450 MeV. Black error bars indicate the uncertainties from the employed
many-body method, while shaded bars refer to the EFT truncation errors
(not shown for incomplete N2LO calculations based on the NN force
only). Figure adapted from Ref. [1755]

Beyond the two-nucleon system, the results are presently
limited to the N2LO accuracy level due to the lack of con-
sistently regularized many-body interactions and exchange
currents starting from N3LO. As discussed in Refs. [1680,
1724,1742], using dimensional regularization in the deriva-
tion of nuclear interactions in combination with a cutoff reg-
ularization of the Schrödinger equation leads, in general, to
violations of chiral symmetry. This issue affects all loop con-
tributions to the 3NF and exchange current operators, which
therefore need to be re-derived using symmetry-preserving
cutoff regularization.

At the N2LO level, the results for three-nucleon scatter-
ing observables [1745,1755–1757] and the spectra of light-
and medium-mass nuclei [1755,1757–1764] are mostly con-
sistent with experimental data within errors; see also Refs.
[1765,1766] for review articles. As a representative example,
we show in Fig. 136 the calculated ground state energies of
p-shell nuclei from Ref. [1755].

ChEFT interactions and associated currents have been vig-
orously utilized in the past 10 years to study both static and
dynamical electroweak properties of nuclei, including elec-
tromagnetic form factors [852,1747,1768], electromagnetic
moments [1768–1770], electroweak decays [1771,1772],
and low-energy reactions such as electroweak captures[1773,
1774]. ChEFT currents were first used in calculations of
nuclei with A > 3 in Ref. [1775] where they are used to
study magnetic moments and electromagnetic transitions in

Fig. 137 Magnetic moments in nuclear magnetons for A ≤ 9 nuclei
from Ref. [1767]. Black stars indicate the experimental values while
blue dots (red diamonds) represent Green’s Function Monte Carlo cal-
culations which include the LO one-body currents (one-body plus two-
body currents at N3LO) from ChEFT. For more details and references
to the experimental data see [1767]

A ≤ 10 systems. Two-body currents were found to improve
the agreement between experimental data and theoretical
calculations. For example, a long standing under-prediction
[1776] of the measured 9C magnetic moment by less sophisti-
cated theoretical calculations is explained by the∼ 40% cor-
rection generated by two-body electromagnetic currents in
Ref. [1775]. This enhancement can be appreciated in Fig. 137
by comparing blue dots (representing calculations based on
the single nucleon paradigm) and red diamonds (representing
calculations with two-body electromagnetic currents).

Axial currents are tested primarily in beta decays and
electron capture processes for which data are readily avail-
able and known for the most part with great accuracy. The
long-standing problem of the systematic over-prediction of
Gamow–Teller beta decay matrix elements [1778] in sim-
plified nuclear calculations, also known as the ‘gA prob-
lem’, has been recently addressed by several groups [1772,
1777,1779]. The authors of Refs. [1772,1777] calculated the
Gamow–Teller matrix elements in A = 6–10 nuclei account-
ing systematically for many-body effects in nuclear inter-
actions and coupling to the axial current, both derived in
ChEFT. The agreement of the calculations with the data is
excellent for A = 3, 6 and 7 systems, with two-body cur-
rents providing a small (∼ 2%) contribution to the matrix
elements. Decays in the A = 8 and 10 systems, instead,
require further developments of the nuclear wave functions
[1777,1779]. The ‘gA-problem’ can be resolved in light
nuclei largely by correlation effects in the nuclear wave func-
tions. A summary of these calculations is reported in Fig. 138.
Similar results for these light nuclei obtained using the No-
core shell model are reported in Ref. [1779].
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Fig. 138 Ratios of Green’s function Monte Carlo calculations to exper-
imental values of the Gamow–Teller reduced matrix elements in the
3H, 6He, 7Be, 8B, 8Be, 8He and 10C weak transitions from Refs.
[1772,1777]. Theory predictions correspond to the ChEFT axial current
at LO (empty symbols) and up to N3LO (filled symbols)

The ChEFT approach is also being implemented in stud-
ies of medium-mass nuclei [1779]. As a representative of
this class of electroweak calculations we show the results
of Ref. [1779] on beta decay matrix elements visualized in
Fig. 139. Here, the authors demonstrate that the quench-
ing in the nuclear matrix elements arises primarily from
ChEFT axial two-body currents and strong correlations in
the nucleus. Nuclei from A = 3 to 100Sn are calculated based
on ChEFT in agreement with experimental data.

To summarize, there has been exceptional progress in
studying nuclear physics using ChEFT. In the last two
decades this framework, rooted in the symmetries of QCD
and their breaking pattern, has allowed for the calculation
of many low-energy nuclear processes, such as electromag-
netic reactions and β decays in both light and medium-mass
nuclei, has reached a remarkable agreement with experiment,
and has contributed to solving long-standing anomalies in
nuclear theory. As chiral interactions and currents are being
refined and pushed to higher orders, we have entered the
precision era of this powerful framework.

6.3.4 Connections to lattice QCD

Lattice QCD (LQCD) offers a first-principles approach
to study hadronic and nuclear systems. Several LQCD
groups have studied baryon-baryon systems as well as light
(hyper-) nuclei at unphysically heavy pion masses using dif-
ferent methods. For non-strange nuclear systems, the cur-
rent status of LQCD remains controversial, see [1780] for a
review. On the EFT side, efforts concentrated on extrapolat-
ing lattice QCD results as follows:

Fig. 139 Comparison of experimental (y-axis) and theoretical (x-axis)
Gamow–Teller matrix elements for medium-mass nuclei. The theoret-
ical results were obtained using (i) a bare Gamow–Teller one-body
operator, (ii) Gamow–Teller one-body operator consistently evolved
with the Hamiltonian [1779], and (iii) a consistently-evolved Gamow–
Teller operator that includes both one- and two-body currents. See Ref.
[1779] for details

– Chiral extrapolations of few-nucleon observables have
been studied using a variety of ChEFT formulations, see
e.g. Refs. [1781–1786]. Currently, the main limiting fac-
tor for constraining the quark mass dependence of the
nuclear interactions is the lack of reliable LQCD results
for not-too-heavy quark masses within the applicability
domain of ChEFT.

– Extrapolations of the NN scattering amplitude in energy
at fixed values of the quark masses were performed [1787,
1788] by exploiting the knowledge of the longest-range
interaction due to the OPEP.

– Infinite-volume extrapolations of LQCD results for heavy
pion masses were carried out in both pion-less [1789–
1791] and chiral [1792] EFT.

– Finally, extrapolations of LQCD results to heavier sys-
temswere considered in Ref. [1793] using the framework
of pion-less EFT and in Ref. [1794] utilizing a discretized
formulation of ChEFT.

These studies demonstrate remarkable synergy between
LQCD and EFT. In the future, LQCD is expected to provide
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valuable input for EFT calculations of systems and processes
where scarce experimental data exist such as e.g. strange
multi-baryon systems and nuclear matrix elements for BSM
searches [1780].

6.3.5 Challenges and outlook

To summarize, ChEFT has revolutionized the field of nuclear
physics over the past three decades by providing a system-
atically improvable and theoretically well founded approach
to low-energy nuclear interactions, which relies on the sym-
metries of QCD (and their breaking pattern). The method
has proven to be phenomenologically successful and has led
to new research directions such as e.g. nuclear lattice simu-
lations [1795–1797]. In the two-nucleon sector, ChEFT has
already reached maturity to become a precision tool.

One of the most pressing remaining challenges is the
development of accurate and precise three-nucleon interac-
tions needed to shed light onto the long-standing discrep-
ancies in the three-nucleon continuum [1765]. Pushing the
ChEFT expansion for many-body forces and exchange cur-
rents to N3LO and beyond calls for a symmetry preserving
regularization [1742], and it will also require new ideas to
overcome computational challenges related to the determi-
nation of LECs; see Refs. [1798–1800] for recent steps along
these lines. Other frontiers include the derivation of consis-
tently regularized electroweak currents, better understanding
of renormalization in ChEFT, precision studies of nuclear
structure, reactions and the equation of state of nuclear mat-
ter as well as applications to searches for BSM physics in
processes involving nuclear systems.

6.4 Soft collinear effective theory

Iain Stewart

6.4.1 Introduction

Effective field theory is a powerful tool which enables
the organization of QCD dynamics at different momentum
scales. The most well known examples of EFTs involve the
dynamics of massive particles, like integrating out the heavy
electroweak W and Z bosons to obtain the Electroweak
Hamiltonian, or systematically treating the mass scale of
heavy quarks like the t , b, and c in HQET or NRQCD. On the
other hand, much of our knowledge about strong interactions
comes from hard scattering interactions of light quarks and
gluons, which are the most important processes in pp, e− p,
or e+e− colliders. Such processes are the way we search for
new particles or fundamental interactions at short distances,
and indeed were key to the discovery of the c, b, and t quarks,
the W and Z bosons, and the Higgs H . In these processes we
must simultaneously deal with perturbative QCD dynamics

at the hard interaction scale Q governing the dynamics of the
high energy collision, as well as nonperturbative physics at
the scale Λ � Q, which is responsible for the confinement
and hadronization of partons. Many processes studied at col-
liders also have additional important intermediate scales Δ,
with Λ � Δ � Q. Examples of Δ include the transverse
momentum of particles inside an energetic jet produced from
the collimated shower of a high energy quark or gluon, or the
measurement of differential distributions of a kinematic vari-
ableΔ, where the largest cross section contributions typically
arise from the Λ� Δ� Q kinematic situation. The appro-
priate effective field theory for these processes is the Soft
Collinear Effective Theory (SCET) [1801–1804]. Traditional
QCD methods, outside the framework of EFT, have a long
tradition for describing the physics of hard processes, includ-
ing the Brodsky–Lepage/Efremov–Radyushkin formalism
[225,226,1805] for exclusive hadronic processes, and the
Collins–Soper–Sterman formalism [242,1280,1347,1806]
for inclusive cross sections. SCET builds naturally on this
foundation.

SCET is an effective theory which systematically descr-
ibes the infrared QCD dynamics in hard collisions, includ-
ing the associated dynamics of soft and collinear degrees of
freedom. Its popularity stems in part from the fact that it
enables the description of a huge variety of collider pro-
cesses [1807]. This includes processes that involve ener-
getic hadrons such as large Q2 form factors γ ∗γ → π0,
γ ∗π+ → π+, or fragmentation to one or more hadrons
hi in processes like e+e− → h1h2X and pp → h1X .
Other examples include energetic hadronic collisions like
at the Large Hadron Collider, including Higgs production
pp → HX and Drell–Yan pp → X!+!−, Deep Inelas-
tic Scattering (DIS) e− p → e−X or e−-ion → e−X , and
Semi-Inclusive DIS e− p → e−hX (for the latter see Ref.
[1808]). SCET also describes processes that produce ener-
getic jets instead of (or in addition to) energetic hadrons,
such as e+e− → 2-jets [302,1809–1812], pp→ H + 1-jet
[1813,1814], or pp→ 2-jets [1815,1816]. In addition it can
be used to describe jet-substructure, the dynamics of particles
and sub-jets inside an identified jet [1817–1830]. Finally, it
can also be used to describe the dynamics of heavy particle
production and decay. Indeed some of the original applica-
tions of SCET were to processes like B → π!ν [1802,1831–
1833], B → Dπ [1834,1835], B → ππ [1832,1836],
and B → Xsγ [1801,1803,1837–1841] (where SCET is
combined with HQET), as well as e+e− → J/Ψ X [1842–
1845] and Υ → Xγ [1545,1546,1846–1849] (where SCET
is combined with NRQCD). Recent applications of SCET
include its extension to forward scattering and Regge phe-
nomena [1850–1853], heavy-ion collisions [1854–1859],
gravitational effects [1860–1865], the resummation of large
electroweak logarithms [1866–1872], large logs in dark mat-
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ter annihilation cross sections [1873–1877], and radiative
corrections in neutrino-nucleon scattering [1878,1879].

Features of SCET that people find useful include: the uni-
versal steps in deriving factorization, whereby observables
split themselves into independent functions governing the
hard, collinear and soft dynamics of a process, the trans-
parency in carrying out higher order resummation of large
logarithms, the ability to generalize factorization to more
complicated processes and multiscale observables, and the
capability to systematically study power corrections.

6.4.2 Degrees of freedom

SCET describes collinear particles that are constituents of
energetic hadrons or jets and have a large momentum along a
particular light-like direction nμi . For each collinear direction
we have two reference vectorsnμi and n̄μi such thatn2

i = n̄2
i =

0 and ni ·n̄i = 2. A common choice is nμi = (1, n̂i ) and n̄μi =
(1,−n̂i ), with n̂i a unit three-vector in the collinear direction.
Any four-momentum p can be decomposed in terms of these
as

pμ = n̄i · p nμi
2
+ ni · p n̄μi

2
+ pμni⊥. (6.92)

Particles with pμ close to nμi are referred to as ni -
collinear and have (ni · p, n̄i · p, pni⊥) = (p+, p−, p⊥)
∼ Q (λ2, 1, λ), where λ � 1 is the small SCET power
counting parameter, determined by scales and kinematics
or by measurements restricting QCD radiation. SCET also
describes particles with soft momenta

pμ ∼ Q(λ, λ, λ)

and with ultrasoft (usoft) pμ ∼ Q(λ2, λ2, λ2).
Examples are shown in Fig. 140. In the B → Dπ process,

Q = {mb,mc,mb − mc} and λ = Λ/Q, with the B and
D composed of a heavy quark, light soft quarks, and soft
gluons. The pion has Eπ = 2.3 GeV = Q � Λ, and has
collinear quark and gluon constituents. In the e+e− → 2-jets
process, we have back-to-back jets with energy Q, where Q2

is the invariant mass of the e+e− pair, and λ = Δ/Q with
Λ � Δ � Q. Here Δ is a scale that characterizes the
transverse size of the jet, and associated to measurements
made on the jets. For example, if a hemisphere jet mass mJ

is measured, then Δ = mJ , while if thrust 1−τ is measured,
Δ2 = Q2τ .

To ensure that collinear directions ni and n j are distinct,
we must have ni ·n j � λ2 for i �= j . Since distinct refer-
ence vectors, ni and n′i , with ni · n′i ∼ λ2 both describe the
same collinear physics, one can label a collinear sector by
any member of an equivalence class of vectors, {ni }. This
freedom manifests as a symmetry of the effective theory
known as reparametrization invariance (RPI) [1880,1881].
Three classes of RPI transformations are

Fig. 140 Example processes B → Dπ and e+e− → 2-jets

RPI-I RPI-II RPI-III
niμ → niμ+Δ⊥μ niμ → niμ niμ → eαniμ
n̄iμ → n̄iμ n̄iμ → n̄iμ+ε⊥μ n̄iμ → e−α n̄iμ,

(6.93)

where α ∼ λ0 and infinitesimal parameters Δ⊥ ∼ λ and
ε⊥ ∼ λ0. These parameters satisfy ni · Δ⊥ = n̄i · Δ⊥ =
ni · ε⊥ = n̄i · ε⊥ = 0.

The effective theory is constructed by separating collinear
momenta into large (label) p̃ and small (residual) pr compo-
nents

pμ = p̃μ + pμr = n̄i · p̃ nμi
2
+ p̃μni⊥ + pμr , (6.94)

with n̄i · p̃ ∼ Q, p̃ni⊥ ∼ λQ. The small pμr ∼ λ2Q describes
fluctuations about the label momentum. To simultaneously
describe different regions of momentum space with operators
that have manifest power counting, it is necessary to have
multiple fields for the same fundamental particle. Namely,
for each collinear direction we have collinear quark fields
ξni ∼ λ and collinear gluon fields Aμ

ni ∼ (λ2, λ0, λ), as well
as soft quark qs ∼ λ3/2 and soft gluon Aμ

s ∼ λ fields, and/or
usoft quark qus ∼ λ3 and usoft gluon Aμ

us ∼ λ2 fields. These
power counting assignments ensure that the corresponding
kinetic terms in the action are O(λ0).

The precise degrees of freedom depend on the process.
Often only usoft or soft fields are present, in which case
the theories are referred to as SCETI and SCETII respec-
tively [1832]. SCETI is relevant for measurements sensi-
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Fig. 141 Degrees of freedom for jet mass in e+e− → 2-jets

tive to the small ni · p ∼ Qλ2 momentum, such as jet
mass in e+e− → 2-jets, see Fig. 141; while SCETII is rel-
evant for measurements that involve transverse momenta or
collinear and soft modes with the same invariant mass. Exam-
ples also exist that require mixed soft-collinear modes with
pμ ∼ Q′(λ2, 1, λ) where Q′ � Q, in which case the the-
ory is referred to as SCET+; see Ref. [1827]. Independent
collinear, soft, and usoft gauge symmetries are also enforced
for each set of fields [1804]. A general SCET λ power count-
ing formula can be used to determine the order of any diagram
entirely from operators inserted at its vertices plus topologi-
cal factors [1850,1882].

To fully expand in λ one must carry out a multipole expan-
sion for the fields in SCET. There are two equivalent ways
that this expansion has been constructed in the literature,
either in a combination with momentum space for large label
momenta and position space for the residuals, with fields
written as ξni , p̃(x) [1803], or with the multipole expansion
carried out entirely in position space [1831]. We will use the
former, and facilitate the expansion by defining two deriva-
tive operators, a label momentum operator Pμ

ni giving large
momentum components, such as Pμ

ni ξni , p̃ = p̃μ ξni , p̃, and
a residual momentum operator giving residual small compo-
nents, such as i∂μξni , p̃(x) ∼ Qλ2ξni , p̃(x). The shorthand
P̄ = n̄i · Pni is used for the largest O(λ0) label momentum.
Useful covariant derivatives include

i n̄ · Dn = P̄ + gn̄ · An, iDμ
n⊥ = Pμ

⊥ + gAμ
n⊥

in · Dn = in · ∂ + gn · An, iDμ
us = i∂μ + gAμ

us

in · D = in · ∂ + gn · Aus + gn · An, (6.95)

where Aμ
n ≡ AAμ

n T A and igF Aμν
n T A = [iDμ

n , iDν
n] =

igFμν
n . This is the standard sign convention for g used in

the SCET literature. It differs from the QCD summary above
(g→−g).

6.4.3 SCET Lagrangian and factorization

The SCET Lagrangian is

LSCET = Lhard+Ldyn =
∑

i≥0

(
L(i)

hard+L(i)
dyn

)
+L(0)

G , (6.96)

where the superscript (i) indicates terms suppressed byO(λi )

relative to the leading power Lagrangian. Here the hard short
distance interactions are encoded in L(i)

hard with only one of
these appearing in each amplitude (unless we study multiple
hard scatterings). They contain multiple types of collinear
(and soft) fields. The dynamic Lagrangians L(i)

dyn describe the
evolution and interactions of collinear and (u)soft particles.
We have singled out the so-called Glauber Lagrangian L(0)

G
for special treatment since it is the only term that violates
factorization of collinear and (u)soft modes [1850].

At leading power the dynamic SCETI and SCETII

Lagrangians are [1804]

LI(0)
dyn =

∑

n

L(0)
n + L(0)

us ,

LII(0)
dyn =

∑

n

L(0)
n + L(0)

s , (6.97)

where the first terms sum over all needed independent
collinear sectors. In SCETII each of L(0)

n and L(0)
s only

involves collinear or soft fields, so the sectors are imme-
diately factorized by the power expansion. In SCETI the
n · Aus fields still interact with collinear fields since they
are O(λ2) just like n · ∂ and n · An , and do not knock the
collinear particles offshell (meaning that initial and final par-
ticles have momenta satisfying the collinear power counting).
These n ·Aus interactions can be decoupled by the BPS field
redefinition [1804]

ξn(x)→ Yn(x)ξn(x), Aμ
n (x)→ Yn(x)Aμ

n (x)Y
†
n (x),

(6.98)

where Yn is an ultrasoft Wilson line

Yn(x;−∞, 0) = P exp
(
ig

∫ 0

−∞
ds n ·Aus(x + ns)

)
, (6.99)

and P is path ordering of color matrices with s. This trans-
formation moves usoft interactions into the hard scattering
operators, and leaves factorized Lagrangians L(0)

n and L(0)
us ,

which only depend on collinear or usoft fields respectively.
For example, for collinear quarks in SCETI we have

LI(0)
nξ = e−i x ·P ξ̄n

(
in ·D+ i /Dn⊥

1

i n̄ ·Dn
i /Dn⊥

) /̄n

2
ξn
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Fig. 142 O(λ0) Feynman rules for collinear quarks (dashed) interact-
ing with a soft gluon (spring) or collinear gluon (spring with a line
through it). Rules with more collinear gluons are not shown

→ e−i x ·P ξ̄n

(
in ·Dn + i /Dn⊥

1

i n̄ ·Dn
i /Dn⊥

) /̄n

2
ξn .

(6.100)

The first few Feynman rules prior to the field redefinition are
shown in Fig. 142, and the one in the second line is removed
from LI(0)

nξ after implementing Eq. (6.98). After the transfor-

mation the L(0)
n Lagrangian has the same form in SCETI and

SCETII.
The construction of SCET hard scattering Lagrangians

L(i)
hard requires integrating out offshell fields, which have

larger p2 than the collinear and (u)soft fields (see Fig. 141
for example). When collinear particles in two different sec-
tors interact, the resulting particles are hard and offshell
with p2 ∼ Q2. Likewise when collinear and soft particles
interact this results in offshell hard-collinear particles with
p2 ∼ Q2λ. Systematically integrating out the correspond-
ing offshell fields results in collinear and soft Wilson lines
appearing in operators [1802–1804]. This involves an infi-
nite number of gluon attachments and can be carried out
analytically with background field techniques [1804,1807].
In label momentum space the resulting collinear Wilson lines
are defined as

Wni (x) =
[ ∑

perms

exp
(
− g

P̄
n̄ ·Ani (x)

) ]

. (6.101)

Note that it is the n̄i · An ∼ λ0 component of the gluon
field that appears in these Wilson lines. In general all O(λ0)

gluon components can be traded for Wilson lines using
i n̄i · Dni = Wni P̄W †

ni . Unlike Yn , the subscript on Wni
refers to the collinear fields it is built out of, not the Wil-
son line direction (which is n̄i ). For zero residual momentum
x = (0, x−, x⊥), the Wn(x) is simply the Fourier transform
(b+ ↔ p−) of a standard position-space Wilson line ending
at b = (b+, x−, x⊥):

Wn(b;−∞, 0) = P exp
(
ig

∫ 0

−∞
ds n̄ ·An(b + n̄s)

)
. (6.102)

Since the construction of hard-collinear interactions in
SCETII can be facilitated by matching QCD→SCETI →
SCETII [1832], it suffices to primarily focus on matching for
SCETI. The definition for the soft Wilson line Sn(x;−∞, 0)
appearing in SCETII is identical to Eq. (6.99) with Aus →
As .

Hard interactions involving collinear fermions provide a
frame of reference that allows us to simplify the Dirac struc-
tures that appear, since so-called good fermion components
dominate over bad components in the λ expansion. In SCET
this is encoded by the projection relations (n/i n̄/i/4)ξni = ξni ,
which also implies n/iξni = 0. The same formulae also hold
for χni . Only the good components are needed to construct
operators in SCET at any order in the power expansion, and
indeed we have already written L(0)

nξ in Eq. (6.100) using
them. Note that on its own, Eq. (6.100) is equivalent to a QCD
Lagrangian for collinear quarks (indeed it has the same form
as the light-cone QCD Lagrangian [1883]), with a distinction
made only by which fermion components are sourced in the
path integral.

Integrating out offshell fluctuations also results in Wil-
son coefficients that depend on the large O(λ0) momenta
of collinear fields. It is straightforward to see why this is the
case, since if we annihilate or produce two collinear particles
with pμn = ω1nμ/2 and pμn̄ = ω2n̄μ/2, then q = pn+ pn̄ has
q2 = ω1ω2 ∼ Q2. Thus offshell fluctuations that depend on
Q2 also depend on the large momenta ωi ∼ λ0 of collinear
fields. Two other constraints on the form of hard operators are
SCET gauge invariance and the ability to use the equations of
motion to reduce the operators basis to a minimal set. This is
summarized by the fact that all operators can be constructed
out of a minimal set of building blocks, formed from com-
binations of fields and Wilson lines [1802,1803,1884]. The
collinearly gauge-invariant quark and gluon building block
fields are defined as

χni ,ω(x) =
[
δ(ω − P̄ni )W

†
ni (x) ξni (x)

]
,

Bμ
ni⊥,ω(x) =

1

g

[
δ(ω + P̄ni )W

†
ni (x) iD

μ
ni⊥Wni (x)

]
.

(6.103)

The Wilson lines Wni (x) are localized with respect to the
position x , and we can therefore treat χni ,ω(x) and Bμ

ni ,ω(x)
as local quark and gluon fields from the perspective of ultra-
soft derivatives ∂μ that act on x . Our conventions for χni ,ω

have ω > 0 for an incoming quark and ω < 0 for an out-
going antiquark at lowest order. For Bni⊥,ω, ω > 0 (ω < 0)
corresponds to outgoing (incoming) gluons at lowest order.

For SCETI the complete set of building blocks and their
power counting is summarized in Table 7.

Both the χn and Bn⊥ building block fields scale as O(λ).
For the majority of jet processes there is a single collinear
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Table 7 Power counting for building block operators in SCETI

Operator Bμ
ni⊥ χni Pμ

⊥ qus Dμ
us

Power counting λ λ λ λ3 λ2

field operator for each collinear sector at leading power. For
exclusive processes that directly produce energetic hadrons
at the hard interaction (rather than by fragmentation) there are
multiple building blocks from the same sector in the leading
power operators, since we must form a color singlet in each
sector in order to directly produce a color singlet hadron. The
P⊥ ∼ λ is not typically present at leading power. At sublead-
ing power, operators for all processes can involve multiple
collinear fields in the same collinear sector, as well as P⊥
operator insertions. The power counting for an operator is
obtained by simply adding up the powers for the building
blocks it contains. To ensure consistency under renormaliza-
tion group evolution the operator basis in SCET must be com-
plete, namely all operators consistent with the symmetries of
the problem must be included. The counting of subleading
power operators is greatly facilitated by spinor-helicity SCET
techniques [1885–1889].

A few examples of hard scattering operators can help
clarify the above points. For SCETI processes like thrust,
jet mass, or other dijet event shapes in e+e− collisions, or
for threshold resummation in Drell–Yan or DIS, the leading
power Lagrangian from the electromagnetic current is

LI(0)
hard(0) =

ie2

Q2 J
μ

!̄!

∫
dω1dω2 C

(0)
f (ω1ω2, μ)

× [
(χ̄

f
n̄,ω2

) (Y †
n̄ Yn)γ

⊥
μ (χ

f
n,ω1)

]
μ
, (6.104)

where C (0)
f is the Wilson coefficient encoding virtual hard

interactions at any order in αs , and renormalization is carried
out in the MS scheme, inducing dependence on the renormal-
ization scale μ. In Eq. (6.104) the usoft Wilson lines Y †

n̄ Yn
appear from the BPS field redefinition in Eq. (6.98). Also, the
leptonic vector current is Jμ

!̄!
= (−1)!̄γ μ!, and we sum over

quark flavors f . At any order in αs the Wilson coefficient
C (0)

f (ω1ω2) encodes virtual corrections from the hard scale

ω1ω2 ∼ Q2. For hard Lagrangians with only a single field
in a given collinear direction, the large collinear momentum
factors ωi are fixed by the overall kinematics of the hard pro-
cess, and thus remain unchanged by perturbative corrections.
For example, ω1 = ω2 = Q for e+e− → 2-jets. At tree level
C (0)

f = Q f + O(αs), where the quarks have charge Q f |e|.
To calculate C (0)

f at higher orders we carry out loop level
matching calculations, comparing hard scattering Feynman
diagrams separately computed and renormalized in full QCD
and in SCETI, while using the same states and infrared (IR)
regulators. Since SCET captures all the IR physics, the dif-

ference between these calculations determines C (0)
f order by

order, and implies it encodes hard effects. For the particular
example in Eq. (6.104), C (0)

f is related to the IR finite part of

the MS massless quark form factor with Q2 � Λ2. (In gen-
eral when carrying out loop calculations in SCET with both
(u)soft and collinear loops, one must include 0-bin subtrac-
tions which ensure there is not double counting of IR regions
[1890]. For some choices of IR regulators these subtractions
are scaleless in dimensional regularization, and hence can be
dropped, up to interpreting the divergence structure.)

For SCETII processes like the broadening event shape for
e+e− → 2-jets, or transverse momentum dependent (TMD)
distributions for Drell–Yan, SIDIS, or e+e− → h1h2X , the
leading hard scattering Lagrangian is

LII(0)
hard (0) =

ie2

Q2 J
μ

!̄!

∫
dω1dω2 C

(0)
f (ω1ω2, μ)

× [
(χ̄

f
n̄,ω2

) (S†
n̄ Sn)γ

⊥
μ (χ

f
n,ω1)

]
μ
, (6.105)

with the same Wilson coefficient C (0)
f as Eq. (6.104). The

only difference is the appearance of soft Wilson lines S
instead of usoft Y . This operator can be obtained immedi-
ately from Eq. (6.104) by matching SCETI →SCETII.

As a final example we consider B̄0 → D+π−mediated by
the weak W -boson flavor changing transition b→ cūd. Here
the matching is from the electroweak Hamiltonian HW =
2
√

2GFV ∗udVcb
∑

i=0,8 C
F
i Oi , with 4-quark operators O0 =

[c̄γ μPLb][d̄γμPLu] and O8 = [c̄γ μT APLb][d̄γμPLT Au],
onto coefficients and operators in SCET. The heavy quark
fields are matched onto HQET fields h(Q)

v for Q = b, c,
while the light quarks become collinear. The leading power
hard scattering Lagrangian in SCET is [1834]

LII(0)
hard =

∫
dω1dω2 C

j (0)
BDπ (ω1, ω2,mb,mc, μ)

× {[
h̄(c)
v′ Γ

j
h h

(b)
v

][
(χ̄ d̄

n,ω2
) Γξ (χ

u
n,ω1

)
]}

μ
, (6.106)

where we sum over j = 1, 5 with Dirac structures Γ 1,5
h = n/

{1, γ5}/2 and Γξ = n̄/(1 − γ5)/4. Here the hard coefficients

C j (0)
BDπ depend on multiple hard scales as in Eq. (6.106). There

are no soft Wilson lines because the n-collinear quark pair is
a color singlet and S†

n Sn = 1. An analogous SCET operator
with color structure T A ⊗ T A exists and does involve soft
Wilson lines. Since it can be factorized into a product of soft
and collinear octet operators, it does not contribute to the
physical process: a factorized octet collinear bilinear operator
can not produce a color singlet pion.

Let us return to the leading power Glauber Lagrangian. It
involves interactions between soft and collinear modes in the
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form of potentials, and has the form [1850]

L(0)
G =

∑

n,n̄

Oi B
n

1

P2⊥
OBC

s
1

P2⊥
O jC

n̄ +
∑

n

Oi B
n

1

P2⊥
O jn B

s ,

(6.107)

in both SCETI and SCETII. Further details and the definitions
for the operators O can be found in Ref. [1850]. Many of
the steps involved in deriving factorization at leading power
are manifest in the construction of SCET; in particular we
arrive at hard scattering Lagrangians L(0)

hard that can be writ-
ten as products of gauge invariant collinear and soft opera-
tors, and we have a direct sum of independent Lagrangians
for soft and collinear fields in L(0)

dyn. With just these terms
the SCET Hilbert space of states factorizes as direct prod-
ucts, and matrix elements of collinear and soft operators with
their Wilson coefficients define independent collinear, soft
and hard functions (examples given below). Since L(0)

G can
be inserted any number of times without power suppression,
and couples different sectors, it breaks factorization.

Thus proving factorization reduces to demonstrating that
contributions from L(0)

G either cancel out, or can be absorbed
into other interactions. Both of these occur. For example, in
e+e− → 2-jets the non-trivial interactions from L(0)

G can be
absorbed into the direction of the (u)soft and collinear Wil-
son lines, which in that case then run from [0,∞) rather than
(−∞, 0], see Ref. [1850]. The same absorption is true for
the exclusive B → Dπ process, with the common feature
being that these processes involve only active partons and
do not involve forward scattering configurations (see also
Refs. [1891,1892]). In a process like Drell–Yan the cancel-
lation of L(0)

G is much more complicated due to interactions
involving spectator partons in the initial protons, but these
still cancel out. Low order demonstrations can be found in
Refs. [1850,1893,1894], while the all order statement was
made in the classic CSS proof of Glauber region cancella-
tions in Ref. [1806]. For cases where factorization is known
to be violated [1892,1895–1899], it is not possible to absorb
or cancel the effects of L(0)

G in this manner. The factorization
of Glauber effects in SCET can also be used to sum so-called
superleading logarithms [1900].

It is worth noting that in SCET the proof of factorization
for cross sections and decay rates at subleading power follows
the same steps as at leading power. Higher power L(i≥1)

hard sim-
ply involve more complicated products of factorized soft and
collinear operators. While terms in L(i≥1)

dyn also involve prod-
ucts of soft and collinear fields, they are always inserted only
a finite number of times at any given order in the power count-
ing, and hence still lead to factorized matrix elements, albeit
with time ordered products of operators. For a gauge invari-
ant description of power suppressed SCETI operators see
Refs. [1901,1902]. Many of these observations go back to the
beginnings of SCET, since the processes that people focused

on at the time involved exclusive B decays that only start at
subleading power [1831–1833,1835–1837,1903–1907], pri-
marily because the soft spectator quark in the B had to be
converted into a collinear quark, a subleading power process.

Finally, we remark that L(0)
G is interesting in its own right,

because for processes involving forward scattering rather
than hard scattering, it does not cancel but instead provides
the dominant contributions, yielding Reggeization, BFKL
evolution, and the shockwave picture. For more work in this
direction see Refs. [1850–1853]. It is also worth noting that
this implies that SCET can potentially provide a framework
to parameterize and describe spectator factorization violat-
ing contributions to certain hard scattering processes from
first principles, though so far very little work has been done
in this direction.

6.4.4 Examples of factorization

To connect theory and experiment, consider a few examples
of factorization formulae that have been derived or studied
with SCET. A key attribute of these formulas is that they
are determined using only the SCET power expansion, and
do not rely on any αs expansion. First consider e+e− → 2-
jets, with a measurement of τ = 1 − T where T is thrust,
working in the dijet limit τ � 1. We can relate τ to the sum
of the two hemisphere jet masses, τ = (m2

Ja + m2
Jb)/Q

2,
where m2

Ja and m2
Jb are each determined by the particles on

one side of the plane perpendicular to the thrust axis. Thus
τ � 1 restricts the invariant mass of the radiation in both
hemispheres and forces us into a dijet configuration. Squar-
ing the SCETI leading power amplitudes obtained fromL(0)

hard
in Eq. (6.104), Fierzing the fields of distinct types into inde-
pendent matrix elements, integrating over phase space with
the measurement function, and renormalizing the resulting
factorized functions, gives [302,1809–1812]

dσ

dτ
= σ0H(Q, μ)Q

∫
d!d!′ JT (Q2τ − Q!, μ)

× ST (!− !′, μ)F(!′,Λ). (6.108)

Here H(Q, μ) = |C (0)(Q, μ)|2 is a hard function encoding
virtual corrections (magenta line in Fig. 141), the thrust jet
function JT = J ⊗ J combines two jet functions J obtained
from the n-collinear or n̄-collinear matrix elements (dots
on the blue line in Fig. 141), and the full soft function is
defined from a vacuum matrix element of usoft Wilson lines.
This soft function can be further factorized into two parts,
ST ⊗ F , where ST is perturbative (green line in Fig. 141) and
F is nonperturbative (brown line in Fig. 141) [1840,1908].
Renormalization group evolution of HT , JT , and ST enables a
summation of large Sudakov double logarithms,αs ln2 τ . The
state-of-the-art for this resummation is next-to-next-to-next-
to-leading logarithmic order (N3LL), and was first achieved
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with SCET [1812]. For Λ � Qτ � Q the nonperturba-
tive effects from F are power corrections, so the spectrum is
dominated by perturbation theory, and is used to obtain high
precision fits for αs(MZ ) [302,303,1909].

DIS, e− p → e−X , provides another useful SCET fac-
torization example [1807]. It is simplest to consider in the
Breit frame where the virtual photon has qμ = (0, 0, 0, Q).
Here the factorization theorem is between hard and collinear
modes with λ = Λ/Q, and soft contributions cancel out.
A feature of this process is that the hard contributions come
from both virtual effects as well as real radiation in X . There-
fore matching onto Wilson coefficients Ci(0)

jDIS(ωi , Q, μ)

takes place at the level of the amplitude squared, and so does
the construction of the appropriate SCET operators. These
operators involve collinear quarks in χ̄

q
n,ω1 n̄/χ

q
n,ω2 with flavor

q, or collinear gluons in Bν
n⊥,ω1

Bn⊥,ω2ν . The proton matrix
elements 〈p| · · · |p〉 of these operators define the well known
quark parton distribution functions (PDFs) fq/p(ξ, μ) and
gluon PDFs fg/p(ξ, μ), respectively. Carrying out the same
steps listed above to arrive at Eq. (6.108) now gives factor-
ization theorems for DIS structure functions. For example

W1(x, Q
2) = −1

x

∫ 1

x
dξ H (i)

1 (ξ/x, Q, μ) fi/p(ξ, μ
2),

(6.109)

where we sum over parton types i , and the hard function
H (i)

1 = (1/π) Im Ci(0)
1DIS. There is a similar formula for

W2(x, Q2). Equation (6.109) factorizes perturbative short
distance contributions in H (i)

1 at the scale Q from the nonper-
turbative PDFs fi/p at the scale Λ. Here the renormalization
group evolution (RGE) sums up single logs αs ln(Q/μ0), for
a hadronic scale μ0 � 1 GeV > Λ. Thus SCET reproduces
classic DIS results in a very simple manner. For example,
the fact that χ̄q

n,ω1 n̄/χ
q
n,ω2 ∼ λ2 is related to the PDFs being

built from twist-2 operators. The operator with Wilson lines
in SCET captures the full tower of twist-2 operators simul-
taneously.

To provide a SCETII example, we consider the Higgs
transverse momentum qT in pp → H + X in the region
where Q = mH � qT � Λ. Due to the measure-
ment of qT ∼ Qλ there is a restriction on the final state
X . It can involve collinear and soft particles which indi-
vidually have pT ∼ Qλ, but can no longer involve hard
particles. Due to this restriction, the hard matching takes
place at the amplitude level in this case, giving L(0)

hard ∝
C (0)
H (ωi , μ)tr[Bν

n⊥,ω1
ST
n Sn̄Bn̄⊥,ω2ν]μ, where S are soft Wil-

son lines in the adjoint representation. Since this only
involves one field of each collinear type, the ωi momenta
are fixed by Q and the Higgs rapidity Y to be ω1 = QeY and
ω2 = Qe−Y . Here the factorization is simplest in Fourier

space

dσ

dQdYd2 �pHT
= 2HggH (Q, μ)

∫
d2 �bT ei

�bT · �pHT SH (bT , μ, ν)

× Bαβ
g/p(xa, �bT , μ, ζa/ν

2)Bg/pαβ(xb, �bT , μ, ζb/ν
2)

= HggH (Q, μ)

∫
d2 �bT ei

�bT · �pHT

× [
f1g/p(xa, bT , μ, ζa) f1g/p(xb, bT , μ, ζb)

+ h⊥1g/p(xa, bT , μ, ζa)h
⊥
1g/p(xb, bT , μ, ζb)

]
, (6.110)

where xa = QeY /
√
s, xb = Qe−Y /

√
s, s is the invariant

mass of the colliding protons, and ζa,b are Collins–Soper
parameters satisfying ζaζb = Q4. Here the hard function is
HggH ∝ |C (0)

H |2 (leaving out simple kinematic prefactors),
the squared 〈p| · · · |p〉 matrix element of n-collinear fields
yields the beam function Bαβ

g/p (and likewise for n̄), and the
squared vacuum matrix element of soft Wilson lines yields
the soft function SH . In the final line of Eq. (6.110) we did
two things in one step: (i) grouped a

√
SH together with

each beam function to absorb the soft function symmetri-
cally, and (ii) decomposed the Lorentz indices αβ into two
possible structures, gαβT f1g/p and (bαT b

β
T + �b2

T g
αβ
T /2)h⊥1g/p.

This yields definitions for the TMD PDFs f1g/p (unpolarized
gluon TMD PDF) and h⊥1g/p (linearly polarized gluon TMD
PDF).

A novel feature of this factorization theorem is the appear-
ance of the rapidity scale ν in the collinear and soft func-
tions, which is associated to the need to regulate rapidity
divergences in many SCETII processes [1890,1910–1913],
and the presence of the associated rapidity renormalization
group equations [1912,1914]. The result in the first line of
Eq. (6.110) is presented with the rapidity regulator defined in
[1912] and may look somewhat different with other choices
of the rapidity regulator, such as in the original Collins con-
struction [1267]. However the result in the final line will be
the same. Evolution in both μ and ν is needed to sum the
large logs, αs ln2(Q/qT ), in this process, and the state of the
art is resummation at N3LL. This resummation may also be
done at the level of the TMD PDFs, where the rapidity RGE
is replaced by the Collins–Soper evolution in ζa,b [1347].

As our final example, we consider the measurement of jet
mass in inclusive jet production, pp→jet+X , where the jet
has radius R and is defined with the anti-kT algorithm. To
make this example more interesting (and more phenomeno-
logically relevant) we also carry out jet grooming to remove
soft contaminating radiation in the jet, using the soft drop
algorithm [1915,1916]. Examples of contaminating radia-
tion in the jet include initial state radiation from the protons,
underlying event effects due to radiation from spectator par-
tons, and pileup effects due to radiation from the interaction
among other protons in the colliding beams. The soft-drop
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grooming is defined by iteratively applying a test on trans-
verse momentum pT and angular separationsΔR of branches
i and j in an angular ordered tree formed from particles in
the jet: min(pT i , pT j )/(pT i+pT j ) > zcut(ΔRi j/R0)

β where
zcut,β, and R0 are soft drop parameters. Branches that fail this
test are removed from the tree, thus grooming soft radiation.
This causes the soft function for this process to split itself
into two parts [1826]: a global soft function sensitive to the
scale Qzcut associated with the groomed soft radiation, and a
collinear-soft function, Sκc , that describes soft radiation that
is collimated enough with the jet axis to have been retained
by the grooming. The groomed jet mass cross section can be
factorized as [1826,1917,1918]

dσ

dm2
JdΦJ

= Nκ(ΦJ , R, zcut, β, μ)Q
1

1+β

cut

∫
d!

× Jκ(m
2
J − Q!, μ)Sκc

[
!Q

1
1+β

cut , β, μ
]
, (6.111)

with a sum on κ = q, g for quark and gluon jets and Qcut =
pT Rzcut(R/R0)

β . Here Jκ is the usual jet function since
the collinear radiation is not affected by the grooming. The
normalization factor Nκ is a short hand for a combination of
terms that include PDFs, a hard-collinear function describing
the production of the parton κ , and the global soft function.
This is an example of a SCET+ factorization formula due to
the presence of soft-collinear modes that make up the Wilson
lines that appear in Sκc . Groomed observables have become
widely used in predictions at hadron colliders due to the fact
that they are much more robust to contamination, and have
reduced hadronization corrections. Other examples of soft
drop groomed calculations with SCET are found in Refs.
[1828,1830,1918–1933].

6.4.5 State-of-the-art and attractive directions

The nature of a short review is that key ideas can be high-
lighted, but it is hard to do credit to the depth of work in the
field. Let me close by giving a brief overview of some of the
interesting centers of activity currently going on with SCET,
with an eye to the future.

SCET continues to have a significant impact on the field
of high precision calculations for collider cross sections,
in particular for the resummation of large logarithms. This
activity is motivated by the clear universality of anoma-
lous dimensions and factorized functions in SCET, giv-
ing results of broad utility. Below I summarize the highest
order results achieved to date for various processes which
exploit these perturbative achievements, referring to ref-
erences therein for further background and details. This
list includes: e+e− thrust to N3 LL′ [302,1812] and mas-
sive thrust to N3LL [1934], e+e− heavy jet mass to N3LL
[1935], e+e− C-parameter to N3 LL′ [1936], e+e− Energy-

Energy-Correlator (EEC) to N3 LL′ [1937], e+e− oriented
event shapes to N3LL [1938], e+e− groomed jet mass to
N3LL [1939], e+e− → t t̄ thrust to N3LL [1940], e− p DIS
thrust to N3LL [1941–1944], the Drell–Yan p!!T spectrum
to N3 LL′ [1945,1946], the pp Higgs pHT spectrum [1947–
1949] and rapidity spectrum [1950] to N3 LL′, and LHC pro-
cesses with a jet-veto [1813,1951–1956]. Recently the first
N4LL resummed calculation has been carried out for the EEC
[1957] (with an approximation for the 5-loop cusp anoma-
lous dimension). Key ingredients are the four-loop hard
(collinear) anomalous dimensions [1958,1959], the four-
loop rapidity anomalous dimension for TMDs [1957,1960],
the four-loop cusp anomalous dimension [1961] and five-
loop approximation [1962], and calculations of three loop
boundary conditions [1963–1966]. Many more processes
have been resummed to NNLL or NNLL′ order with SCET;
for example in Refs. [1514,1814,1815,1818,1918,1931,
1963,1967–1999]. Factorized functions remain important
targets for future perturbative calculations, with the antic-
ipated reward of simultaneously impacting multiple pro-
cesses.

Power corrections are another lively topic in SCET,
from the continued activity around B-decays, to recent
significant results for collider physics. A key strength of
SCET is its systematic nature, ensuring one can target
the desired terms without missing contributions. Recent
collider physics literature on subleading power results in
SCET includes: formalism such as enumerating operator
bases [1886–1888,2000,2001], hard renormalization and
evolution [2000,2002–2004], collinear and soft renormal-
ization and evolution [2005–2008], subleading power fac-
torization [1808,2009–2013], and resummation for collider
observables, including for event shapes [2005,2014,2015],
for threshold resummation [2016–2018], and for the EEC
[2019]. These results provide bright prospects for the future,
with the ultimate goal of building a complete story for the
structure of gauge theories like QCD beyond leading power,
and thus generalizing the leading power picture of collinear
splittings and soft eikonal radiation.

One popular method for carrying out fixed order cal-
culations at higher orders, is that of slicing, whereby a
resolution variable is used to act as a physical regulator
for infrared divergences, enabling analytic and numerical
calculations to be combined in a systematic way. SCET
has contributed to this program with the invention of N-
jettiness subtractions [2020,2021] based on the N-jettiness
event shape variable [1816]. It has also been used to calcu-
late power suppressed large logarithms, enabling order-of-
magnitude improvements to slicing techniques [1889,2006,
2022–2029]. Further improvements to such techniques will
be important as theorists continue to move towards calculat-
ing experimentally accessible fiducial cross sections.
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Other interesting applications of SCET include: the gen-
eralization of threshold factorization formulae to include
collinear limits [2030,2031], the computation of non-global
logarithms and associated effects [1824,2032–2045], the
parametrization of hadronization corrections with field the-
ory matrix elements [2046–2048], studying fragmentation
inside a jet [1921,1925,1997,2049–2061], and to studying
double parton distributions and fragmentation [2062–2065].
A particularly interesting direction with many connections to
other fields is the study of EECs. Results from SCET include
deriving factorization for the back-to-back limit [2066], and
collinear limit [2067,2068], jet analyses with charged tracks
[2069], generalizing factorization to the back-to-back limit
at hadron colliders [2070], and deriving factorization for-
mula for jet substructure applications of the EEC [2071]. The
prospects for new applications of SCET technology remain
bright.

A final hallmark of SCET is the use of the physical pic-
ture it provides to construct novel observables. Past exam-
ples of this type include: beam thrust and functions [1844,
2072,2073], N-jettiness [1816], N-subjettiness [2074], jet
substructure for disentangling color and spin in J/Ψ pro-
duction [2054,2075], D2 and related jet-substructure observ-
ables [1821,2076–2078], the winner-takes-all-axis for jets
[1929,2079–2081], track functions [2082–2085], the XCone
jet algorithm [2086], collinear drop [1927,2087], an EEC
probe of top mass [2088], and measuring initial state tomog-
raphy with a Nuclear EEC [2089]. I look forward to many
more examples of such new observables in the future.

6.5 Hard thermal loop effective theory

Michael Strickland
In this section we review progress in understanding QCD at
finite temperature and density. Unlike QCD in vacuum new
classes of physical infrared divergences appear which cause
naive perturbation theory to break down. Luckily, at least
at leading order in the coupling constant, it is possible to
identify a class of diagrams that must be resummed in order
to cure these divergences.

6.5.1 The breakdown of naive perturbation theory at finite
temperature

There are two fundamental formalisms for computing the
properties of QCD at high temperature: (1) the real-time for-
malism and (2) the imaginary-time formalism [2090–2092].
The former is necessary when considering systems that are
out of equilibrium, while the second is more convenient
for computing bulk thermodynamic quantities. Here we will
focus on the imaginary-time formalism and progress that has
been made in understanding how to reorganize the perturba-
tive expansion of finite temperature QCD in order to deal with

infrared singularities which emerge in this case using self-
consistent inclusion of Debye screening and Landau damp-
ing. This is accomplished through an all-orders resummation
of a class of diagrams referred to as the hard-thermal-loop
(HTL) diagrams. For an introduction to the real-time formal-
ism and applications to real-world calculations we refer the
reader to Sect. 6.6 and Ref. [2091].

In thermal and chemical equilibrium with temperature
T and quark chemical potentials μi with πT � μi , one
finds that the naive loop expansion of physical quantities is
ill-defined and diverges beyond a given loop order, which
depends on the quantity under consideration. In the calcula-
tion of QCD thermodynamics, this stems from uncanceled
infrared (IR) divergences that enter the expansion of the par-
tition function at three-loop order. These IR divergences are
due to long-distance interactions mediated by static gluon
fields and result in contributions that are non-analytic in
αs = g2/4π , e.g., α

3/2
s and log(αs), unlike vacuum per-

turbation expansions which involve only powers of αs .
A simple way to understand at which perturbative orders

terms non-analytic in αs appear is to start from the con-
tribution of non-interacting static gluons to a given quan-
tity. For the pressure of a gas of gluons one has Pgluons ∼∫
d3 p p nB(Ep), where nB denotes a Bose–Einstein distri-

bution function and Ep is the energy of the in-medium glu-
ons. The contributions from the momentum scales πT , gT
and g2T can be expressed as

P p∼πT
gluons ∼ T 4nB(πT ) ∼ T 4 +O(g2), (6.112)

P p∼gT
gluons ∼ (gT )4nB(gT ) ∼ g3T 4 +O(g4), (6.113)

P p∼g2T
gluons ∼ (g2T )4nB(g

2T ) ∼ g6T 4, (6.114)

where we have using the fact that nB(E) ∼ T/E if E � T .
This fact is of fundamental importance since it implies that
when the energy/momentum are soft, corresponding to elec-
trostatic contributions, psoft ∼ gT , one receives an enhance-
ment of 1/g compared to contributions from hard momenta,
phard ∼ T , due to the bosonic nature of the gluon. For ultra-
soft (magnetostatic) momenta, pultrasoft ∼ g2T , the contri-
butions are enhanced by 1/g2 compared to the naive pertur-
bative order. As the Eqs. (6.112)–(6.114) demonstrate, it is
possible to generate contributions of the order g3 ∼ α

3/2
s

from soft momenta and, in the case of the pressure, although
perturbatively enhanced, ultrasoft momenta only start to play
a role at order g6 ∼ α3

s .
Note that the expansion parameters in Eqs. (6.112)–

(6.114) are of order g2nB(πT ) ∼ g2, g2nB(gT ) ∼ g, and
g2nB(g2T ) ∼ 1, implying in particular that the contribu-
tion of magnetostatic gluons to the pressure is fundamentally
non-perturbative in nature at O(α3

s ), which for the pressure
corresponds to four-loop order. This complete breakdown of
the loop expansion at the ultrasoft scale is called the Linde
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problem [2093,2094]. The specific order at which the expan-
sion breaks down depends on the quantity under considera-
tion and is not universal. For example, in Ref. [2095], the
authors demonstrated that a certain second-order transport
coefficient,λ1, receives a leading-order contribution from the
ultrasoft scale. We also note that, in the case of theO(α3

s ) con-
tribution to the pressure it is possible to isolate the purely non-
perturbative contribution and compute this numerically using
a three-dimensional lattice calculation [2096]. Paradoxically,
the difficult part then becomes computing the perturbative
contributions at this order [2097]. Beyond four-loop order,
all contributions are once again perturbatively computable.

As a result of the infrared enhancement of electrostatic
contributions it was shown that a class of diagrams called
hard-thermal-loop (HTL) graphs which have soft external
and hard internal momenta need to be resummed to all orders
in the strong coupling coupling [2098–2100]. In the high
temperature limit, there exist several schemes for carrying
out such resummations, see e.g. [2101–2119]. Here we will
briefly review the method of dimensionally reduced effective
theories (EFTs), which take advantage of the scale hierar-
chies and the manifestly gauge-invariant hard thermal loop
perturbation theory (HTLpt) resummation. This makes use
of the HTL effective action to reorganize the perturbative
expansion of finite temperature and density QCD [2120].

6.5.2 Dimensional reduction and QCD EFT

The method of dimensional reduction is based on the fact
that, at weak-coupling, there is a hierarchy of scales between
the three energy scales (hard, soft, and ultrasoft or, equiva-
lently, hard, electric, and magnetic) which contribute to bulk
thermodynamic observables. Specifically, if g � 1, one has

mmagnetic ∼ g2T � melectric ∼ gT � mhard ∼ πT .

(6.115)

Above we have denoted the magnetostatic and electrostatic
screening scales by mmagnetic and melectric, respectively, and
the hard or thermal one, corresponding to the lowest non-zero
Matsubara frequency, by mhard. To leading order, the electro-
static screening mass can be computed from the IR limit of
the A0 one-loop self energy, however, the magnetic screening
mass cannot be computed perturbatively [2104,2105]. In the
high temperature limit with πT � μi ,mi ,ΛQCD, the above
three scales are the only ones appearing and the two non-
trivial scalesmmagnetic andmelectric are connected to the static
sector corresponding to the zero Matsubara mode (n = 0).
As a result, in the effective field theory language it is natural
to integrate out the hard scale, yielding a three-dimensional
effective field theory which is valid for long-distance static
field modes. Another way to see this is recognize that, in
four-dimensional Euclidean space, a system in thermal equi-

librium has its time direction compactified to a circle of radius
1/T [2090]. In the high-temperature limit, the Euclidean time
direction has zero extent and the parent field theory becomes
effectively three dimensional. Since fermionic modes have
odd Matsubara frequencies, they become super massive and
decouple from the theory in this limit, as do all non-zero
gluonic Matsubara modes.

The construction of dimensionally reduced effective theo-
ries for high-temperature field theory began with the work of
Ginsparg [2121] and was quickly followed by Appelquist and
Pisarski [2122]. In the mid-1990s, Kajantie et al. were the
first to apply this formalism to the study of the electroweak
phase transition [2123]. Around the same time Braaten and
Nieto demonstrated how to apply these ideas to thermal QCD
[2104,2105]. Recently, these methods have been extended to
the computation of the thermodynamics ofN = 4 supersym-
metric Yang–Mills theory to order λ2, where λ = g2Nc is
the t‘Hooft coupling [2124].

In the EFT technique, the Lagrangian densities of the
three- and four-dimensional theories can be obtained by writ-
ing down the most general local Lagrangians respecting all
necessary symmetries. One then orders all operators in terms
of their dimensionality and truncates the Lagrangians at the
desired order. For electrostatic QCD (EQCD), this procedure
results in [2104,2105]

LE = 1

2
TrF2

i j + Tr[Di ,A0]2 + m2
ETrA2

0

+λ
(1)
E (TrA2

0)
2 + λ

(2)
E TrA4

0

+iλ(3)
E TrA3

0 + · · · , (6.116)

where the adjoint fields Ai ≡ AA
i T

A, A0 ≡ AA
0 T

A are three
dimensional, F A

i j = ∂i AA
j − ∂ j AA

i + gE f ABC AB
i AC

j , Fi j ≡
F A
i j T

A, and Di = ∂i − igEAi . Integrating out the temporal
gauge field, one can obtain the magnetostatic effective theory
(MQCD) withLM = 1

2 TrF2
i j+· · · and F A

i j = ∂i AA
j −∂ j AA

i +
gM f ABC AB

i AC
j [2104,2105].

At leading order in g, the degrees of freedom in the above
effective theories are the n = 0 Matsubara modes of the
four-dimensional Ai and A0 fields. The former transforms
as a three-dimensional adjoint gauge field and the latter as a
scalar in the adjoint representation of SU(Nc). By computing
the contributions from the hard scale in the four-dimensional
theory (non-resummed), the massless two-loop self-energy
in the four-dimensional theory, and the massive three-loop
vacuum graphs and matching the two theories, one obtains
the following result for the QCD free energy throughO(α

5/2
s )

FQCD

Fideal
= 1− 15

4

αs

π
+ 30

(αs

π

)3/2
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Fig. 143 Naive weak-coupling expansion of the scaled QCD pressure
for N f = 3. Shaded bands show the result of varying the renormaliza-
tion scale Λ by a factor of 2 around the central renormalization scale
Λ = 2πT

+135

2

(

log
αs

π
− 11

36
log

Λ

2πT
+ 3.51

)(αs

π

)2

+495

2

(

log
Λ

2πT
− 3.23

)(αs

π

)5/2 + O(α3
s logαs),

(6.117)

where Fideal = −(8π2/45)T 4 is the free energy of an ideal
gas of massless gluons and αs = αs(Λ) is the running cou-
pling constant in the MS scheme. Note, importantly, the
appearance of non-analytic terms in αs . Logarithms of αs
appear as ratios of the electric screening scale over the tem-
perature. In order to avoid notational overlap with the chemi-
cal potential μ, here Λ is used to indicate the renormalization
scale. There is also a residual dependence on the renormal-
ization scale Λ at orders α2

s and α
5/2
s . The result obtained

when this expression is truncated at various orders in the
coupling constant is shown in Fig. 143. As can be seen from
this figure, at phenomenologically relevant temperatures the
resulting weak coupling expansion shows poor convergence
and an increasing sensitivity to the renormalization scale as
the perturbative truncation order is increased. The reason for
this poor convergence is that one is expanding around the
T = 0 QCD vacuum, which does not include the effects of
Debye screening and Landau damping. In order to improve
the convergence of this series, HTLpt was introduced to reor-
ganize the calculation instead around the T →∞ limit. We
will discuss this reorganization in the next subsection.

6.5.3 Hard-thermal loop perturbation theory

Hard-thermal-loop perturbation theory is a reorganization of
perturbative QCD. The HTLpt Lagrangian density is written

as [2114,2115]

L = (LQCD + LHTL)
∣
∣
g→√δg +ΔLHTL, (6.118)

where ΔLHTL collects all necessary renormalization coun-
terterms and δ is a formal expansion parameter, which will
be taken to be unity in the end of the calculation. The HTL
improvement term appearing above is

LHTL = (1− δ)im2
q ψ̄γ μ

〈
yμ
y ·D

〉

ŷ
ψ

−1

2
(1− δ)m2

DTr

[

Fμα

〈
yα yβ

(y ·D)2

〉

ŷ
Fμβ

]

. (6.119)

Above yμ = (1, ŷ) is a light-like four-vector with ŷ being a
three-dimensional unit vector and the angular bracket indi-
cates an average over the direction of ŷ. The parameters
mD and mq can be identified with the gluonic screening
mass and the thermal quark mass. In HTLpt one treats δ

as a formal expansion parameter. By including the HTL
improvement term (6.119) HTLpt shifts the perturbative
expansion from being around an ideal gas of massless par-
ticles to being around a gas of massive quasiparticles. This
shift dramatically improves the convergence of the succes-
sive loop approximations to QCD thermodynamics [2107–
2109,2114–2119].

The HTLpt Lagrangian (6.118) reduces to the QCD
Lagrangian when δ = 1. Physical observables are calculated
in HTLpt by expanding in powers of δ, truncating at some
specified order in δ, and then setting δ = 1. This defines a
reorganization of the perturbative series in which the effects
of m2

D and m2
q terms in (6.119) are included to leading order

but then systematically subtracted out at higher orders in
perturbation theory by the δm2

D and δm2
q terms in (6.119).

To obtain leading order (LO), next-to-leading order (NLO),
and next-to-next-leading order (NNLO) results for the QCD
pressure, one expands to orders δ0, δ1, δ2, respectively. Note,
importantly, that HTLpt is gauge invariant order-by-order in
the δ expansion.

In order to obtain analytically tractable sum-integrals, in
addition to the δ expansion, one must also make a Taylor
expansion in the mass parameters scaled by the tempera-
ture, mD/T and mq/T . The final result obtained at NNLO
is completely analytic, however, it is too lengthy to list here,
instead we refer the reader to the most recent works using
HTLpt, which apply this technique at finite temperature and
quark chemical potentials [2118,2119,2131]. In Fig. 144 we
compare the NNLO EQCD and HTLpt results for the scaled
pressure (negative of the free energy). As can be seen from
this figure, for the central choice of the renormalization scale,
namely Λg = 2πT and Λq = πT , there is excellent agree-
ment between HTLpt and the lattice data. The same is true
to a lesser extent for EQCD. Both, however, have a large
uncertainty related to the variation with respect to the renor-
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Fig. 144 The resummed QCD pressure for μB = 0. We compare
the three-loop EQCD and HTLpt results with lattice data from the
Wuppertal–Budapest (WB) collaboration [2125]

Fig. 145 The second-order light quark (and baryon) number sus-
ceptibilities. Lattice data are from the Wuppertal–Budapest (WB)
[2126,2127] and BNLB collaborations [2128]

malization scale. This sensitivity is particularly large for the
free energy; however other quantities show much less renor-
malization scale dependence. From the NNLO results, one
can obtain predictions for various quark and baryon number
susceptibilities.

In Figs. 145, 146, 147 we present the NNLO resummed
perturbative predictions for the second-order baryon number
susceptibility, the fourth-order baryon number susceptibility,
and the fourth-order light quark susceptibility, respectively.
As these figures demonstrate HTLpt and EQCD to a only
slightly lesser extent, have reasonable agreement with lattice
extractions of these susceptibilities down to temperatures on
the order of T ∼ 250 MeV which is only slightly higher
than the QCD phase transition temperature of Tc ∼ 155
MeV. The lone exception isχ B(u)

2 where EQCD seems to per-

Fig. 146 The 4th baryon number susceptibility. Lattice data sources
are the same as Fig. 145

Fig. 147 The 4th light quark number susceptibility. Lattice data
sources are the same as Fig. 145

form better than HTLpt, although the results are consistent
within the scale uncertainties. Finally, in Figs. 148 and 149
we present results recently presented in Ref. [2131] for the
second- and fourth-order curvatures of the QCD phase tran-
sition line obtained from the analytical NNLO HTLpt result
and the world’s compiled lattice QCD data. We display three
different physical cases which correspond to (1) equal quark
chemical potentials, (2) zero strange quark chemical poten-
tial, and (3) the case 〈S〉 = 0 and Q/B = 0.4, which cor-
responds to the case appropriate to heavy-ion collisions. As
can be seen from these figures, NNLO HTLpt agrees quite
well with the existing lattice data in each case. The horizon-
tal error bars (which are sometimes not even visible) indicate
the renormalization scale dependence of these curvatures.

To close this section, we have demonstrated that although
naive perturbative expansions applied to QCD thermody-
namics fail dramatically, it is possible reorganize the cal-
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Fig. 148 Filled circles are lattice calculations of κ2 [485–487,2129,
2130], from top to bottom, respectively. Red filled circles are results
obtained using the imaginary chemical potential method and blue filled
circles are results obtained using Taylor expansions around μB = 0.
Black open circles are the NNLO HTLpt predictions. The error bars
associated with the HTLpt predictions result from variation of the
assumed renormalization scale

Fig. 149 Filled circles are lattice calculations of κ4 from Refs. [487,
2130], from top to bottom, respectively. The color coding etc. for the
symbols is the same as in Fig. 148

culation of the QCD free energy in such a way as to achieve
improved convergence at phenomenologically relevant tem-
peratures. Interestingly, we find excellent agreement between
the resummed approaches and lattice data down to rather low
temperatures and are even able to predict the curvature of the
QCD phase transition line using perturbation theory.

6.6 EFT methods for nonequilibrium systems

Miguel Escobedo

6.6.1 Introduction

There are many situations in which we are interested in
describing non-equilibrium phenomena that involve the
strong interaction. An example is the study of the medium

Fig. 150 Schwinger–Keldysh contour of the real time formalism

created when colliding heavy ions at ultrarelativistic speeds.
This kind of experiment is nowadays performed at facilities
like the Large Hadron Collider (LHC) in Geneva and the
Relativistic Heavy Ion Collider (RHIC) in Brookhaven. The
motivation is to study a new state of matter that appears at
high temperatures and densities, the Quark Gluon Plasma
(QGP). More details are given in Sect. 4.4. The medium cre-
ated in heavy ion collisions can be regarded as an out-of-
equilibrium system. Soft particles in the medium are able to
approximately thermalize [2132,2133]; however, this ther-
malization is only local. Looking at length and time scales
much larger than the inverse of the temperature the bulk prop-
erties of the medium are well described by relativistic hydro-
dynamics [2134–2136].

One important way to obtain information about the QGP
created in heavy ion collisions is by studying its effects on
hard probes, for example, heavy quarkonium suppression and
jet quenching [1601,2137]. We can regard these particles as
out-of-equilibrium probes interacting with a thermal equilib-
rium environment of soft particles. Precisely because they do
not have time to thermalize inside of the medium, they allow
us to characterize the QGP in a way that would not be possible
otherwise. For example, they are sensitive to transport prop-
erties of the medium such as the heavy quark diffusion coeffi-
cient [2138] and the jet broadening parameter q̂ [2137]. Note
also that the problem of a hard probe interacting with a soft
medium is one in which a hierarchy of well-separated energy
scales appear. This is precisely the situation in which EFTs
are useful. In summary, the study of hard probes in heavy ion
collisions provides a clear motivation to study EFTs far from
equilibrium.

The theoretical description of a QFT out of equilibrium
requires the use of the real-time formalism [2139]. When
dealing with T = 0 scattering process, we are used to assum-
ing that the system is in the ground state both at the remote
past and in the distant future. This is what is done to obtain
the LSZ reduction formula [2140]. The consequence of this
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is that, when computing amplitudes, all field insertions are
chronologically ordered. The situation is completely differ-
ent when the initial state of the system is described by a
given density matrix. In this case, the state of the system
in the distant future is unknown, so we have to average
over all the possible outcomes imposing that the system is
described by the initial density matrix in the remote past.
For this reason, the real-time formalism is sometimes called
an in–in formalism while the formalism leading to the LSZ
reduction formula is called an in–out formalism. As a con-
sequence, the path integral needs to go from the remote past
to the distant future and back again around a path called the
Schwinger–Keldysh contour (see Fig. 150) [2139]. Fields in
the upper (lower) branch of the contour are chronologically
(anti-chronologically) ordered and are customary labelled
fields of type 1 (2).73

The doubling of degrees of freedom discussed in the pre-
vious paragraph can affect the construction and use of an EFT
in two different ways depending on whether or not medium
degrees of freedom are integrated out when going from the
full theory to the EFT. If the matching is not affected by the
medium, then we can apply the real time formalism in exactly
the same way as it is done for a normal QFT. However, if the
matching is affected by the medium, we can not assume that
the EFT does not contain terms mixing the two branches
of the Schwinger–Keldysh contour. Recently, this issue has
been discussed in detail in the context of the construction of
an EFT for hydrodynamics [2141–2144]. However, regard-
ing the study of hard probes, the complications arising from
the doubling of degrees of freedom are substantially dimin-
ished when we take into account that only few of them are
created in each heavy ion collision. We will discuss in detail
how the dilute nature of heavy quarks and high-energy par-
tons simplify their study in the real time formalism.

Lastly, there is another aspect of the application of EFTs
to the study of hard probes out of equilibrium that we would
like to highlight. This is the connection that naturally appears
with the formalism of open quantum systems (OQSs) [2145].
The OQS formalism studies the evolution of quantum sys-
tems interacting with an environment, that at the same time
is also a quantum system. The central object of study is the
reduced density matrix, obtained from the density matrix of
the combination of the system plus the environment after per-
forming a trace over the degrees of freedom of the environ-
ment. The evolution of the reduced density matrix is not nec-
essarily of the quantum Liouville type as there might appear
terms that increase its von Neumann entropy. It happens that,
when studying hard probes interacting with a medium using
EFTs, one typically finds equations that are well known in
the context of OQSs. This is not surprising since when we

73 From a complementary point of view, fields of type 1 (2) act on the
left (right) of the density matrix.

compute how thermal propagators influence the evolution of
a hard probe we are actually making a trace over environment
degrees of freedom.

In summary, in this section we are going to discuss the
application of EFTs to study nonequilibrium phenomena. In
particular, we will focus on interesting problems that appear
in the study of heavy ion collisions in which a large separa-
tion of energy scales appear. First, we will review the open
quantum system formalism. This will allow us to discuss the
Lindblad equation, which will play a key role in the later
discussion. Then, we will discuss the application of EFTs
to the study of quarkonium suppression. More specifically,
we will study the evolution of the reduced density matrix of
heavy quarks using pNRQCD. In another subsection, we will
review the description of jet broadening based on the study
of the reduced density matrix using SCET. Finally, we will
review applications of the EFT to study hydrodynamics and
the interesting structure regarding the doubling of degrees of
freedom that have been discovered in this context.

6.6.2 Open quantum systems

Let us consider a universe formed by a system plus an envi-
ronment. Let us assume that at some initial time the density
matrix of the universe ρU (t0) fulfills

ρU (t0) = ρS(t0)⊗ ρE (t0), (6.120)

where S corresponds to the system and E to the environment.
The motivation for this assumption is twofold. On one hand,
when studying a dilute hard probe interacting with a medium,
it is natural to assume that the medium acts as a thermal
reservoir that is not affected by the probe. On the other hand,
even if the assumption is not true, any density matrix for the
universe can be decomposed as a sum of density matrices that
do fulfil this structure. The reduced density matrix at time t0
is also ρS(t0).

ρS(t0) = TrE (ρU (t0)). (6.121)

Let us now look at what happens at t > t0. If U (t, t0) is the
time evolution operator of the universe, then

ρU (t) = U (t, t0)ρU (t0)U
†(t, t0), (6.122)

and it follows that

ρS(t) = TrE (U (t, t0)ρU (t0)U
†(t, t0)). (6.123)

However, in general it is not true that

ρS(t) �= US(t, t0)ρS(t0)U
†
S (t, t0), (6.124)

so in this sense we can say that the evolution is non-unitary.
The equation that describes the time evolution of ρS is

called a master equation. In general, it is not trivial to deter-
mine the form of this equation. However, an important result

123



 1125 Page 228 of 636 Eur. Phys. J. C          (2023) 83:1125 

of the OQS formalism is that the master equation of a Marko-
vian evolution that preserves the fundamental properties of
a density matrix (Hermitian positive-definite operator with
trace equal to 1) takes the form of a GKSL or Lindblad equa-
tion [2146,2147]

dρS
dt

= −i[H, ρS] +
∑

i

(

CiρSC
†
i −

1

2
{C†

i Ci , ρS}
)

,

(6.125)

where Ci are the collapse or Lindblad operators. They are
operators that encode the dissipative part of the Lindblad
equation and will depend on the problem we are studying.
Let us note that it is very computationally expensive to solve
the GKSL equation, as it is generally the case for any master
equation. The reason is that the cost scales with N 2, where N
is the dimension of the Hilbert space. This means that, if we
discretize the QCD system in a lattice, doubling the lattice
size multiplies the numerical cost by four. This problem can
be solved by using techniques called unravelling of the mas-
ter equation. Examples of unravellings used to study quarko-
nium suppression are the Quantum State Diffusion [2148]
and the Quantum Trajectories method [1602,2149–2151].

6.6.3 EFTs for quarkonium suppression

Quarkonium suppression was proposed as a probe of the for-
mation of a QGP in the pioneering work of Matsui and Satz
[2152]. The original proposal was based on the phenomenon
of color screening. Chromoelectric fields are screened at large
distances in the presence of a QGP. This modifies the heavy
quarkonium potential and, if the screening length is smaller
than the size of the bound state, inhibits bound state for-
mation. Later on, it was realized that the potential develops
an imaginary part in the presence of a QGP [2153]. This is
related to the appearance of a thermal induced decay width
which can dissociate quarkonium in many cases more effi-
ciently than screening. However, before asking which phe-
nomenon more substantially modifies the heavy quarkonium
potential, we should understand whether quarkonium’s evo-
lution follows a Schrödinger equation at all in the presence
of a medium and what is the definition of the potential. In
Sect. 6.1, we have seen that similar issues can be addressed
using non-relativistic EFTs such as NRQCD and pNRQCD
at T = 0. Therefore, it is reasonable to expect that the finite
temperature versions of these EFTs will allow us to answer
the previous questions.

In order to construct an EFT, we should first discuss the
energy scales and the symmetries of the problem. In addition
to the hard, soft and ultrasoft scales that already appear when
studying quarkonium at T = 0, we should also consider the
energy scales induced by the presence of the medium. One of
the energy scales that obviously appears is the temperature

itself. However, in a weakly-coupled plasma (g � 1), other
dynamically generated energy scales appear. For example,
the Debye mass (of order gT ) and the non-perturbative mag-
netic mass (of order g2T ). More details about these scales can
be found in Sect. 6.5. Depending on the relation between the
medium induce energy scales and those that already appear at
T = 0, we will find different physical situations. For exam-
ple, if the Debye mass is much larger than the inverse of
the Bohr radius, there would be no bound state formation
due to screening. On the other hand, if the temperature is
smaller than the inverse of the Bohr radius, thermal effects
are a perturbation compared with the binding energy because
the medium sees quarkonium as a small color dipole.

Regarding the symmetries of the problem, we will focus
on the scenario in which quarkonium is co-moving with the
medium. Note, however, that there are EFT studies consid-
ering the finite velocity case [2154,2155]. In the co-moving
case, the medium only breaks Lorentz symmetry. Note that
in T = 0 NRQCD and pNRQCD, Lorentz symmetry is not
explicit. It manifests through relations between the Wilson
coefficients of different operators [1437,1438]. These rela-
tions are broken in the presence of a medium [2156].

Now, let us discuss how the doubling of degrees of free-
dom influences the use of non-relativistic EFTs. First, con-
sider the thermal equilibrium case. Since the mass of the
heavy quark M is much larger than the temperature T , it
follows that the thermal modifications of the heavy quark
propagator in NRQCD or the singlet propagator in pNRQCD
are suppressed by the Boltzmann factor e−M/T . This reflects
the fact that physically heavy particles are dilute in a ther-
mal equilibrium medium that has a temperature much lower
than M . We are interested in the more general case in which
the heavy particles are not in thermal equilibrium. However,
we will still consider that heavy particles are dilute. This
is clearly the case for bottom quarks at LHC since only a
few of them are produced in each heavy ion collision.74 A
direct consequence of the dilute limit is that the 12 prop-
agator of a heavy particle is suppressed. This corresponds
to a propagator involving a field of type 1 (upper branch of
the Schwinger–Keldysh contour) and a field of type 2 (lower
branch). Therefore, if we are interested in Green’s functions
involving only heavy quark fields of type 1, we can ignore
the doubling of degrees of freedom and proceed in the same
way as we would do at T = 0 (the doubling of degrees of
freedom still affects the propagators of light particles). The
reason is that, in any Green’s function in which they appear at
the same time heavy fields of type 1 and 2, there will appear
at least one 12 propagator. In conclusion, if we are interested
in spectroscopy at finite temperature, we can ignore the dou-
bling of degrees of freedom. This is what we will do for the

74 The situation could be different for charm quarks. For pNRQCD
studies of the non-dilute limit for charmonium see [2157,2158].
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moment. Later on, we will discuss the evolution of reduced
density matrix of quarkonium that involves discussing the 12
propagator.

The first applications of NRQCD and pNRQCD at finite
temperature can be found in Refs. [1592,1593]. Refer-
ence [1592] considers the infinite mass limit while Ref.
[1593] discusses the Abelian analogue of quarkonium, the
hydrogen atom. In both works the issue of the doubling of
degrees of freedom is discussed in detail. Later on, the results
were generalized to the case of real quarkonium [2159]. Let
us summarize the main results found by studying quarkonium
spectroscopy at finite temperature using EFTs

– The leading thermal effect can only be encoded as a modi-
fication of the potential when the Debye massmD is much
larger than E . In the EFT framework, we only talk about
a potential when we are dealing with an interaction that is
non-local in space but local in time. When the condition
mD � E is not fulfilled, thermal corrections are sensi-
tive to E in a non-polynomial way and this signals that
the interaction is non-local in time. In summary, potential
models are suitable when mD � E .

– We can consider thermal effects a perturbation if 1/r �
T (where r is the radius). In this case, the medium does
not modify the matchings from QCD to NRQCD and
from NRQCD to pNRQCD. The medium sees quarko-
nium as a small color dipole. This manifests in the
pNRQCD Lagrangian in the following way. The coupling
between the singlet fields and the ultrasoft gluons of the
medium is proportional to r. This implies that thermal
effects are always multiplied by a factor of rT .

– In a qualitative way, we can say that quarkonium disso-
ciates at the temperature at which thermal effects are of
the same order of magnitude as the binding energy. The
logic behind this statement is the following. If thermal
effects are smaller than the binding energy, then they are
a perturbation. If thermal effects are much larger than
the binding energy it is impossible for a bound state to
exist. Therefore, the transition between these two regimes
must be found when the thermal effects and E are of the
same size. In the weakly-coupled scenario, the imaginary
part of the potential is larger than the screening correc-
tions to the real part. Therefore, dissociation occurs when
T ∼ Mg4/3. At this temperature, screening is a pertur-
bation as it only becomes important when T ∼ mg. This
is at odds with the original proposal of Matsui and Satz
[2152] in which the mechanism responsible for quarko-
nium suppression was believed to be color screening.

– There are two processes that contribute to the thermal
decay width of quarkonium: gluo-dissociation and inelas-
tic scattering with medium partons. Gluo-dissociation is
the process in which a singlet state absorbs a medium
gluon and becomes an octet state. It was first computed

in Ref. [2160] using the Operator Product Expansions
and the large-Nc limit. Within pNRQCD, this process
was studied in detail in Ref. [1595], where the expres-
sion of Ref. [2160] was generalized to a finite number of
colors. Inelastic scattering with medium partons is a pro-
cess in which a singlet scatters with a medium quark or
gluon through the exchange of an off-shell gluon [1596].
Gluo-dissociation is a leading-order process in the cou-
pling constant expansion but it has a smaller phase space
since the gluon is required to be on-shell. The pNRQCD
power counting correctly predicts that gluo-dissociation
is the dominant process if E � mD . On the contrary, if
mD � E , it is inelastic parton scattering that dominates.

6.6.4 The master equation in pNRQCD

Previously, we have discussed the information that can be
obtained from the time-ordered propagator of quarkonium.
This includes the values of the binding energies and decay
widths. However, since we were using the dilute limit, we did
not obtain any information about how the density of heavy
quarkonium evolves inside of a medium. This is needed in
order to compute the probability that a bound state is detected
in a heavy-ion collision.

The information about the density of heavy quarkonium
is contained in the 12 singlet propagator of pNRQCD. This
is zero at leading order in the dilute limit; therefore, we need
to go to next-to-leading order in this expansion; i.e. we need
to consider all diagrams in which the 12 propagator appears
only once.

Until now, all of the studies concerning the evolution of
the density of heavy quarkonium inside a medium using non-
relativistic EFTs have focused on the 1/r � T regime. In this
case, we can use theT = 0 pNRQCD Lagrangian as a starting
point. It has been demonstrated that computing the evolution
of the 12 singlet and octet propagator gives a system of cou-
pled equations that resembles very closely the master equa-
tions that appear in the OQS framework [1599,1600]. This
is not surprising, because we can regard 〈S1(t, r1)S

†
2(t, r2)〉

as the reduced density matrix of heavy quarks projected into
the sub-space in which there is a singlet state. In general,
the master equation is a complex non-Markovian equation.
However, there are two limits in which simpler Markovian
equations can be obtained. These limits are the ones that have
been studied up to now in phenomenological applications.

In the limit 1/r � T,mD � E , we obtain a Lindblad
equation in which all of the information about the medium is
encoded in two non-perturbative parameters, κ and γ . This
equation has been used to predict the nuclear modification
factor in heavy ion collisions using as additional input the
initial distribution of heavy quarkonium previous to the for-
mation of the QGP and how the temperature evolves with
time. However, early studies were limited due to the high
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computational cost. This problem was solved by the appli-
cation of the Monte Carlo wave function method [2149].
Thanks to this, it was possible to combine the solution of the
master equation with state-of-the-art modelling of the time
evolution of the medium to obtain results compatible with
the observations at LHC [1602,2149].

Another interesting limit is the one in which thermal
effects are much smaller than the binding energy. In this
case, we can use the rotating wave approximation,which
assumes only the diagonal elements of the density matrix
in the basis that diagonalizes the leading order Hamiltonian
need be considered. Using this, the master equation simplifies
into a Boltzmann equation [2157,2158]. Moreover, using the
molecular chaos assumption, it is possible to use the derived
formulas outside of the dilute limit. Thanks to this, the authors
of Refs. [2157,2158] were able to successfully reproduce
experimental data for charmonium suppression at LHC.

The application of pNRQCD to the computation of the
nuclear modification factor has been a very active and suc-
cessful approach in recent years. However, at the moment,
all of the studies have focused on the case 1/r � T for the
reasons discussed in the introduction. This limits the appli-
cability of the approach to excited states that are expected
to be of larger size. In Sect. 6.6.6 we are going to discuss
some recent developments that might be used to improve the
situation.

6.6.5 EFT description of jet broadening

A jet is a collimated ensemble of particles with a large
momentum and a small opening angle. They are useful in the
context of QCD because the definition of a jet is constructed
in such a way that the sensitivity to non-perturbative low-
energy physics is minimized. More details can be found in
Sects. 6.4 and 11. The interest in jets in heavy-ion collisions
is due to a phenomenon called jet quenching [2137]. Jets lose
energy when traversing a QGP. Therefore, by observing how
opaque the medium is to high-energy particles allows us to
infer some of its properties.

Jets might lose energy due to two different mechanisms:
collisional and radiative energy loss. In the first case, the jet
loses energy because it collides with the particles forming the
medium. In the case of radiative energy loss, the collisions
in the medium provide the high energy parton with addi-
tional transverse momentum and virtuality (a process called
jet broadening). Due to this increase, the high energy par-
ton is more likely to radiate energy outside of the jet cone.
The amount of virtuality that a parton gains while travers-
ing a given length in the medium is controlled by the trans-
port coefficient q̂ . At the moment, it is generally believed
that radiative energy loss is the dominant mechanism at high
momentum while at low momentum both processes have to
be taken into account.

The problem of a high-energy parton traversing a medium
is one in which widely separated energy scales appear. First,
we have the energy Q of the high energy particle. This is the
highest energy scale that appears in the problem. Addition-
ally, we have the transverse momentum of the particle p⊥.
If we use light-cone coordinates, with p± = (p0± p3)/

√
2,

and we choose the 3 direction such that p+ ∼ Q, then an on-
shell particle must have p− ∼ p2⊥/Q � p⊥. On top of this,
we have to consider the energy scales induced by the pres-
ence of the medium, which by construction are always much
smaller than Q. The EFT that is suitable to study this problem
is SCET (see Sect. 6.4). Note that Glauber gluons (those with
momentum p = (p+, p−, p⊥) of order (T, T 2/Q, T )) play
a prominent role in the physics of a jet traversing a medium.
Inclusion of Glauber gluons in the SCET formalism was dis-
cussed in Refs. [1855,2161]. A more recent and extended
discussion can be found in Ref. [1850].

There have been many studies of jet quenching using
SCET [2162] and jet broadening [1854,1857]. In contrast
to the case of quarkonium suppression, at the moment all
applications use SCET as a starting point, without construct-
ing an EFT in which medium degrees of freedom have been
integrated out. This may be due to the fact that there is no
information relevant to jet quenching in the time ordered
propagator of a high energy particle. Instead, we need to focus
on the distribution of high-energy particles that requires an
approach similar to the study of the 12 propagator of heavy
quarkonium. Some of the results that have been obtained
from the application of SCET to the study of jet quenching
are the following:

– The non-perturbative expression of q̂ in terms of an
expectation value of gauge fields was re-obtained in Ref.
[1854] for the case of a Feynman or Coulomb gauge and
generalized to a gauge invariant expectation value in Ref.
[1857]. This result is important because it allows one to
compute q̂ using non-perturbative approaches such as
lattice QCD.

– The use of SCET including Glauber gluons made it pos-
sible to derive a medium-modified parton shower in a
model in which the medium is approximated as an ensem-
ble of static scattering centers [1855,2161].

In recent years, SCET has been combined with the OQS
approach to study jet quenching [1858,2163] similarly to
how pNRQCD was combined with OQS to study quarko-
nium suppression. In this case, one considers a high-energy
particle (system) that is interacting with the soft particles
that comprise the medium (environment). The interaction
between the two is mediated by the Glauber part of the SCET
Hamiltonian [1850]. The evolution of the reduced density
matrix of the system (high-energy particle) has been studied
first ignoring all radiation (only considering jet broadening)
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[1858] and, later on, incorporating the leading-order radiative
corrections [2163]. In both cases, a master equation of the
Lindblad type is found. The advantages of proceeding in this
way is that the information about the medium is encoded in
expectation values of gauge invariant operators of soft fields.
This allows separating the physics of jet-medium interaction
from the way in which the medium is modeled. In addition,
it opens the way for future determinations of the influence of
the medium using lattice QCD.

6.6.6 EFTs for hydrodynamics

We have previously discussed the difficulties encountered
when constructing an EFT in which medium degrees of free-
dom are integrated out. In a few words, terms that mix the
two branches of the Schwinger–Keldysh contour appear and
this changes the properties of the EFT in a profound way in
comparison with the EFT at T = 0. Let us summarize how
this challenge has been avoided until now in the study of hard
probes of the QGP:

– In the case of quarkonium we could use the dilute limit
and focus on the time-ordered propagator. In this case,
we know that the terms that mix the two branches of the
SK contour give a small contribution and proceed as it
is done at T = 0. The problem with this is that there
is valuable information that can not be obtained from
the time-ordered propagator in the dilute limit, as for
example, the nuclear modification factor.

– We can choose to integrate out only the energy scales
higher than the temperature. This is what has been done
to study quarkonium suppression in the limit 1/r � T
and jet quenching using SCET. However, this limits the
applicability of the approach. Moreover, many of the sim-
plifications introduced by the EFT framework come from
being able to threat each energy scale separately from the
others. This can not always be done if we are unable to
integrate out medium-induced energy scales.

Recently, this issue has been addressed in the context of
the construction of an EFT for hydrodynamics [2141–2144].
Going from a T = 0 EFT to an EFT living in the SK contour
implies a doubling of degrees of freedom, but this is compen-
sated by the fact that additional symmetries must be fulfilled.
There are two symmetries that have been largely discussed:

– The SK symmetry. This symmetry must be fulfilled by
any system, in or far from thermal equilibrium. It implies
that the largest time equation [2164] must be fulfilled.
This means that the difference of two Green’s functions
that only differ in the SK sub-index of the field evaluated
at the latest time must be zero. It is obvious that this must
be the case because the trace of a commutator is zero. For

example, in the case of a two-point Green’s function

〈φ1(t)φ1(0)〉 − 〈φ2(t)φ1(0)〉 = Tr([φ(t), φ(0)ρ]) = 0.

(6.126)

One consequence of this symmetry is that in the limit of
exactly classical fields (φ1 = φ2) the action of the EFT
must be zero [2141].

– The KMS symmetry. This is a symmetry that must
be fulfilled by system in thermal equilibrium. A well-
known consequence of this symmetry is the fluctuation-
dissipation theorem. It is akin to an earliest time equation
in which, if t is the earliest time, a Green’s function in
which the operator that appears just at the right of the den-
sity matrix is evaluated at time t−i/T is equal to another
Green’s function that is equal except that the operator
appears now just at the right of the density matrix and
evaluated at time t . For the case of a two-point Green’s
function

〈φ1(t2)φ1(t)〉 − 〈φ1(t2)φ2 (t − i/T )〉
= Tr (φ(t2) (φ(t)ρ − ρφ (t − i/T ))) = 0.

(6.127)

Note that the previous equation is only valid if ρ =
e−H/T .

At tree level it is relatively easy to write an EFT that fulfills
these conditions. However, it is more difficult to ensure them
when higher-order quantum loops are involved. A solution
to this is to expand the theory by introducing ghost fields and
using the BRST formalism.

We note that, apart from the theoretical importance as an
example of an EFT in which medium degrees of freedom are
integrated out, hydrodynamics is also very important in the
field of heavy ion collisions. Among other important predic-
tions, it describes the evolution of the soft medium in which
the hard probes discussed in this subsection evolve [2134–
2136].

7 QCD under extreme conditions

Conveners:
Johanna Stachel and Eberhard Klempt
In nucleus–nucleus collisions at ultra-relativistic energies a
new kind of matter is created, the Quark–Gluon Plasma. Peter
Braun-Munzinger, Anar Rustamov and Johanna Stachel
report on the phase diagram of hadronic matter at high tem-
perature and low net baryon density. A connection is made
between the experimentally determined chemical freeze-out
points and the pseudo-critical temperature for the chiral cross
over transition computed in lattice QCD. The role of fluctu-
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ations giving experimental access to the nature of the chiral
phase transition will be summarized. Azimuthal anisotropies
of hadron distributions show that the Quark–Gluon Plasma
formed in high energy collisions is strongly coupled, allow-
ing to deduce bulk and shear viscosities. In the hot and dense
plasma partons lose a large fraction of their energy and this
observation leads to the determination of another medium
parameter, a jet transport coefficient. Quarkonia and their
role as a probe of deconfinement form the final topic of their
contribution.

The phase structure of strongly interacting matter a
low temperature and high density is discussed by Kenji
Fukushima. In this region of the phase diagram that is probed
e.g. in neutron stars, different phases and phase transitions
are expected on theoretical grounds. Astrophysical obser-
vations and the observation of gravitational waves lead to
important constraints for calculations modeling the transi-
tions into a quarkyonic regime, into quark matter or color-
superconducting states. The theoretical challenges to locate
a conjectured critical end point in the QCD phase diagram
are discussed.

7.1 QGP

Peter Braun-Munzinger, Anar Rustamov and Johanna
Stachel

7.1.1 Introduction

The infrared slavery and asymptotic freedom properties of
QCD, discussed in previous sections, form the theoretical
basis that strongly interacting matter at finite temperature
and/or density exists in different thermodynamic phases. This
was realized [463,464] already shortly after these proper-
ties of QCD were introduced. The term quark–gluon plasma
(QGP) was coined soon after by Shuryak [1392] for the high
temperature/density phase where confinement is lifted and a
global symmetry of QCD, the chiral symmetry, is restored.
The first lattice QCD (lQCD) calculations of the equation of
state were performed soon thereafter [470]. Already in early
lQCD calculations a close link between deconfinement and
restoration of chiral symmetry was found [462].

7.1.2 Lattice QCD

For deconfinement there is an order parameter for the phase
transition, the so-called Polyakov loop, in the limit without
dynamical quarks. For chiral symmetry restoration the chiral
condensate 〈ψ̄ψ〉 forms an order parameter for vanishing but
also for finite quark masses. Indeed, recent numerical lQCD
calculations [478] provide, in the limit of massless u and d
quarks, strong indications for a genuine second-order chi-
ral transition between a hadron gas and a QGP at a critical

Fig. 151 Susceptibility of the chiral u, d- and s-quark condensate as a
function of temperature computed in 2+1 flavor lQCD (Fig. from [484])

Fig. 152 The interaction measure or trace anomaly normalized to the
fourth power of the temperature as a function of temperature, computed
in 2+1 flavor lQCD (Fig. from [502])

temperature of Tc ≈ 132+3
−6 MeV. For realistic u,d,s-quark

masses, chiral symmetry is restored in a crossover transition
at vanishing net-baryon density and a precisely determined
pseudo-critical temperature of Tpc = 156.5±1.5 MeV [484].
Consistent with this result, a transition temperature of 158.0
± 0.6 MeV was recently reported in [487]. This pseudo-
critical temperature is found as a maximum in the suscep-
tibility (derivative with respect to mass) of the chiral con-
densate as displayed in Fig 151. Contrary to early ideas, the
system remains strongly coupled over a rather large tempera-
ture range above Tpc. This is reflected in the interaction mea-
sure computed in lQCD as the difference between the energy
density and three times the pressure, I = ε − 3P , which
by definition vanishes for an ideal gas of massless quarks
and gluons. Figure 152 shows that this interaction measure,
normalized to the fourth power of the temperature, peaks at
about 20% above Tpc and falls off only slowly towards higher
temperature values.

The lQCD calculations have been extended into the region
of finite net baryon density quantified by a baryon chemical
potential μB [484,487]. Current lQCD expansion techniques
are valid in the regime of μB/T ≤ 3. The so obtained line of
pseudo-critical temperatures is shown in the QCD phase dia-
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gram displayed in Fig. 159 below. Because of the sign prob-
lem, the lQCD technique cannot be applied for still larger
values of μB , see e.g. [2165], and one has to resort to mod-
els of QCD for theoretical guidance in the high net baryon
density region.

7.1.3 Hadron production, nuclear stopping and global
observables

Experimentally, this regime of the QCD phase transitions
is accessible by investigating collisions of heavy nuclei at
high energy. It was conjectured already in [467] that, in such
hadronic collisions, after some time local thermal equilib-
rium is established and all properties of the system (fireball)
are determined by a single parameter, the temperature T ,
depending on time and spatial coordinates. This is exactly
the regime probed by collisions of nuclei at the Large Hadron
Collider (LHC), as will be outlined in the following. The
region of finite to large μB is accessed by nuclear collisions
at lower energies.

In the following, we describe the experimental efforts,
principally at the LHC and at RHIC (Relativistic Heavy Ion
Collider), to provide from analysis of relativistic nuclear col-
lision data quantitative information on the QCD phase dia-
gram by studying hadron production as a function of the
nucleon–nucleon center of mass energy

√
sNN. We can only

touch a small fraction of the physics of the quark–gluon
plasma (QGP) in this brief review. Excellent summaries of the
many other interesting topics can be found in recent review
articles [2166–2169].

In the early phase of the collision, the incoming nuclei
lose a large fraction of their energy leading to the creation
of a hot fireball characterized by an energy density ε and a
temperature T . This stopping is characterized by the average
rapidity shift of the incident nucleons, withΔy =− ln(E/E0).
Quantitative information is contained in the experimentally
measured net-proton rapidity distributions (i.e. the difference
between proton and anti-proton rapidity distributions). These
distributions are presented for different collision energies
from the SPS to RHIC energy range in [2170]. There it can
be seen that the rapidity shift saturates at approximately two
units from

√
sNN ≈ 17.3 GeV upwards, implying a frac-

tional energy loss of 1 − exp(−Δy) ≈ 86%. In fact, the
same rapidity shift was already determined for p-nucleus col-
lisions at Fermilab for 200 GeV/c proton momentum [2171].
With increasing collision energy, the target and projectile
rapidity ranges are well separated, leaving at central rapid-
ity a net-baryon depleted or even free high energy density
region. Figure 153 shows the distribution of slowed down
beam nucleons, after subtracting the tail of the target distri-
bution and plotted against rapidity minus beam rapidity. It is
apparent that up to

√
sNN = 62.4 GeV the concept of limit-

ing fragmentation [2172] is well realized. At higher energies,

Fig. 153 Normalized net-baryon rapidity densities for
√
sNN = 17.3

GeV [2173] and 62.4 GeV [2174] after subtracting the correspond-
ing target contributions using the limiting fragmentation concept. Here
ysh = y − yb with yb the beam rapidity

this rapidity region is very hard to reach experimentally for
identified particles.

The rapidity shift of the incident nucleons leads to high
energy densities at central rapidity, i.e., in the center of
the fireball. These initial energy densities can be estimated,
after fixing the kinetic equilibration time scale τ0, using the
Bjorken model [2175]:

εBJ = 1

Aτ0

dη

dy

dET

dη
, (7.1)

where A = πr2 is the overlap area of two nuclei. Eq. (7.1) is
evaluated at a time τ0 = 1 fm and the resulting energy densities
are displayed in Table 8 for central Au–Au and Pb–Pb colli-
sions. For central Pb–Pb collisions (A = 150 fm2) at

√
sNN =

2.76 TeV this yields an energy density of about 14 GeV/fm3

[2176], more than a factor of 30 above the critical energy
density for the chiral phase transition as determined in lQCD
calculations. In fact, for all collision energies shown the ini-
tial energy density significally exceeds the energy density
computed in lQCD at the pseudo-critical temperature, indi-
cating that the matter in the fireball is to be described with
quark and gluon degrees of freedom rather than as hadronic
matter. The corresponding initial temperatures can be com-
puted using the energy density of a gas of quarks and gluons
with two quark flavors, ε = 37π2

30 T
4, yielding T ≈ 307

MeV. Temperature values for lower collision energies are
also quoted in the Table.75 It can be seen that already at AGS

75 The values reported in the table are all for vanishing chemical poten-
tials. We have evaluated the differences if one assumes values for chem-
ical potentials as determined at chemical freeze-out, see below. The
resulting temperature values differ by less than 5% from those reported
in Table 8. Owing to the proportionality of energy density to the fourth
power of temperature, inclusion of a bag pressure only mildly changes
the calculated temperature values.
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Table 8 Collision energy, measured transverse energy pseudo-rapidity
density at mid-rapidity [2176–2179], energy density, and initial temper-
ature estimated as described in the text for central Pb–Pb and Au–Au
collisions at different accelerators

√
sNN [GeV] dEt/dη [GeV] εBJ [GeV/ f m3] T [GeV]

AGS 4.8 200 1.9 0.180

SPS 17.2 400 3.5 0.212

RHIC 200 600 5.5 0.239

LHC 2760 2000 14.5 0.307

energies the estimated values of ε and T are significantly
above the values for the chiral cross over transition.

7.1.4 Hydrodynamic flow and QGP transport parameters

Depending on energy, collisions of heavy ions populate dif-
ferent regimes falling into two categories: (i) the stopping or
high baryon density region reached at

√
sNN ≈ 3–20 GeV

and (ii) the transparency or baryon-free region reached at√
sNN > 100 GeV. The net-baryon-free QGP presumably

existed in the early Universe after the electro-weak phase
transition and up to a few microseconds after the Big Bang.76

On the other hand, a baryon-rich QGP could be populated in
neutron star mergers or could exist, at very low temperatures,
in the center of neutron stars[2180,2181].

For the system considered to come into local thermal equi-
librium and, more importantly, for the development of a phase
transition, the presence of interactions is necessary. In fact,
close to the phase transition, the system has to be strongly
coupled. As mentioned above, quarks and gluons under the
extreme conditions reached in nuclear collisions are indeed
strongly coupled. The large values of the interaction measure
from lQCD calculations (ε − 3P)/T 4, introduced above in
Fig. 152, lend support to the strong coupling scenario. Fur-
ther, the energy and entropy densities ε/T 4 and s/T 3, as
calculated in lQCD, fall significantly short (by about 20 %)
of the Stefan-Boltzmann limit for an ideal gas of quarks and
gluons up to a few times the pseudo-critical temperature. The
conclusion about a strongly coupled QGP close to Tpc also
follows from experimental results at the colliders, and even
at the SPS, on the coefficients of azimuthal anisotropies of
hadron distributions in combination with a viscous hydrody-
namic description.

For non-central nuclear collisions the distributions in
transverse momentum pT of hadrons exhibit modulations
with respect to the azimuthal angle φ in the reaction plane.
These anisotropies can be characterized by pT dependent
Fourier coefficients. The dominant term is the 2nd order

76 In the QGP of the early universe, particles interacting via the strong
and electro-weak force are part of the system, while an accelerator-made
QGP only contains strongly interacting particles.

Fourier coefficient v2, also called the elliptic flow coeffi-
cient. This modulation has been predicted to arise from the
anisotropy of the gradient of the pressure P in the early phase
of the collision due to the geometry of the nuclear overlap
region, leading to correspondingly larger expansion veloci-
ties in the reaction plane and hence large v2 coefficients.

The strength of the coupling can be quantified by intro-
ducing transport parameters for the QGP such as the shear
viscosity η, which is related to the mean free path of quarks
and gluons inside the QGP, and the bulk viscosity ζ , with its
connection to QGP expansion dynamics and speed of sound.
The smaller the transport coefficients the stronger the cou-
pling. Larger values of the shear viscosity, e.g., suppress the
magnitude of the elliptic flow.

For a strongly coupled system with small enough values
of mean free path (comparable to or lower than the corre-
sponding de Broglie wavelength of particles), treatment as
a fluid is more appropriate. One then describes its proper-
ties by solving hydrodynamic equations. The shear viscosity
enters the hydrodynamic equations as η/(ε + P) = η/(T s),
hence the quantity characterizing the medium isη/s. By com-
paring flow observables measured in experiments at RHIC
[2184,2185] and LHC [2186] to the corresponding calcu-
lations in viscous hydrodynamics, accompanied with con-
verting the fluid into thermal distributions of hadrons at the
freeze-out hyper-surface, remarkably low values for η/s are
obtained. Figure 154 shows as an example the elliptic flow
coefficients v2 for different identified hadrons at the LHC. A
mass ordering characteristic for a hydrodynamically expand-
ing medium is observed very clearly. And indeed, the mass
ordering and its pT dependence are described quantitatively
by a relativistic viscous hydrodynamic calculation [2182] as
indicated by the lines in Fig. 154 employing a small ratio of
η/s.

In fact, a lower bound of η/s = 1/(4π) (in units of
h̄ = kB = 1) can be obtained for a large class of strongly cou-
pled field theories from the quantum mechanical uncertainty
principle [2187] and using the AdS/CFT correspondence
[2095,2188,2189]. Recently, the values and the temperature
dependence of the shear and bulk viscosities employed in
hydrodynamic codes were extracted by fitting spectra and
azimuthal anisotropies of hadrons measured at the LHC and
RHIC using Bayesian estimation methods [2183,2190]. An
example is shown in Fig. 155. Inspection of this figure indi-
cates that, at Tpc, the estimated value of η/s is close to the
lower bound of 1/(4π ) , indicating that the observed matter
is a nearly perfect fluid. Above the transition temperature,
the extracted band for η/s is rising, reflecting a weakening
of the coupling, although even at twice Tpc the medium is
still strongly coupled. On the other hand, as presented in
Fig. 152, near the phase transition the lQCD results exhibit a
maximum in the interaction measure, which is an indication
for interactions in the system. In the hydrodynamic calcu-
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lations the breaking of scale invariance is accounted for by
introducing a bulk viscosity ζ along with the shear viscos-
ity. While increasing sheer viscosity reduces the momentum
anisotropy, hence lowering the elliptic flow coefficients, the
bulk viscosity reduces the overall rate of the radial expansion.
The right panel of Fig. 155 shows the temperature depen-
dence of ζ/s, which exhibits a peak just above the transition
temperature [2183]. This location of the maximum is con-
sistent with the temperature dependence of the interaction
measure from lQCD.

We also note here that signatures for collective behavior
such as anisotropic azimuthal distributions have rather sur-
prisingly also been found in small collision systems such
as pp or pPb [2191,2192]. A detailed understanding of this
rather unexpected result is currently debated in the literature,
in particular since another signature of a dense, strongly cou-
pled and colored medium, significant parton energy loss, is
not observed for such small systems, see, e.g., [2193].

7.1.5 Jet quenching and parton energy loss

Important information on the structure of the QGP is also
obtained by studying the interaction of high-momentum par-
tons with the thermalized quarks and gluons in the QGP.
A strongly coupled QGP is opaque to high momentum par-
tons, leading to the phenomenon of ‘jet quenching’ [2169].
In fact, the theoretical foundation for strong jet quenching
by QCD bremsstrahlung was laid by [2194]. There it was
shown that, for sufficiently energetic quarks and gluons, such
that the radiation does not decohere, the radiative energy loss
scales quadratically with the length traversed, leading to very
large values. An important experimental observable linked to
jet quenching is the observed suppression (’quenching’) of
high-momentum hadrons in central nuclear collisions at high
collision energy. This suppression is quantified by the pT
dependence of the ratio RAA of inclusive hadron production
in collisions of nuclei with mass number A to that in proton–
proton collisions, taking into account the collision geometry
by scaling to the number of binary collisions [2169].

In Fig. 156 we present the evolution with cm energy of the
transverse momentum dependence of RAA for leading parti-
cles as obtained from measurements at the SPS, RHIC, and
LHC accelerators. Note that, by construction, RAA = 1 for
hard binary collisions in the absence of nuclear effect such as
jet quenching. At very low pT one observes RAA values less
than unity and increasing with pT since soft particle produc-
tion scales with the number of participating nucleons and not
the number of binary collisions. For RHIC and LHC energies
the jet quenching is born out by a decreasing trend observed
for pT > 2.5 GeV/c reaching a broad minimum near pT = 7
GeV/c of RAA = 0.1−0.2: high momentum hadrons are
quenched by about a factor of 5 or more. At LHC energies
RAA increases again for higher pT values until a plateau is

Fig. 154 Elliptic flow coefficient v2 for identified hadrons as a function
of transverse momentum measured by ALICE and compared to results
from viscous hydrodynamics calculations [2182]

Fig. 155 Temperature dependence of the shear (left panel) and bulk
(right panel) viscosity to entropy density ratios. Figure taken from
[2183]

reached above pT ≈ 100 GeV/c. Measurements for fully
reconstructed jets have been performed by the ATLAS col-
laboration. The results demonstrate [2196] that the quench-
ing by about a factor of 2 persists to the highest available jet
pT values of 1 TeV/c. Recently, also detailed measurements
became available from measurements of heavy flavor jets,
where for the first time in-medium transport coefficients for
charm quarks were determined [2197].

The data on jet quenching have been modeled in terms of
elastic and inelastic collisions of partons in the dense QGP,
taking into account important coherence effects [2198,2199].
For a recent summary see [2200] and Ref. cited there.

To model experimental data with QCD-based jet quench-
ing calculations one has to take into account that the jet is
created as a product of an initial hard parton–parton collision
with large momentum transfer Q. That implies that the par-
ton initiating the jet is highly virtual. The magnitude of its
4-momentum Q as reflected in the total jet energy E can be
hundreds of GeV (or even a few TeV at the LHC) while, for
a real parton, Q2 ≈ 0. The highly virtual parton will evolve
into a parton shower which eventually hadronizes to form
a collimated jet of hadrons. During the entire evolution the
highly virtual initial parton and the parton shower compo-
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Fig. 156 Evolution of the transverse momentum dependence of RAA
for leading particles for central nuclear collisions with collision energy
[2195]

Fig. 157 QGP jet transport parameter q̂/T 3 obtained by the
JETSCAPE collaboration [2200]

nents lose energy by interactions with the QGP constituents,
resulting in a medium-modification of the entire parton frag-
mentation pattern, i.e. the jet [2198]. The most modern jet
quenching analyses take into account the different regimes
of parton virtuality as described in [2200]. The calculations
have as leading input parameter a jet transport coefficient q̂
that is determined by the differential mean squared momen-
tum transfer 〈k2

t 〉between jet parton and the QGP constituents
with respect to the length traversed, i.e. q̂ = d〈k2

t 〉/dL .
The recent analysis by the JETSCAPE collaboration

[2200] uses data on inclusive hadron suppression from cen-
tral Au–Au collisions at RHIC and Pb–Pb collisions at LHC,
applying a Bayesian parameter estimation to determine the
temperature dependence of the dimensionless, renormalized
jet transport parameter q̂/T 3. The calculations are based on
two different models for parton energy loss, called MATTER

and LBT, to effectively cover the large range of parton vir-
tualities. A switch-over between the virtuality-ordered split-
ting dominated regime and the time-ordered transport dom-
inated regime happens at low virtualities of Q0 = 2−2.7
GeV. The results are shown in Fig. 157. Note that the plot
is for a parton momentum of 100 GeV/c, but as demon-
strated in [2200] the momentum dependence is rather mild.
To put the results into context, a value of q̂/T 3 = 4 implies
that, at temperature T = 0.4 GeV, q̂ ≈ 1.3 GeV2/fm. This
value should be compared to what was determined for par-
ton energy loss in cold nuclear matter. Analysis of data for
deep inelastic scattering off large nuclei [2201] yielded a
value of q̂ = 0.024 ± 0.008 GeV2/ f m. A global analysis
of the jet transport coefficient for cold nuclear matter was
performed recently in [2202]. These authors obtain values of
q̂ < 0.03 GeV2/ f m over a wide range of (xB,Q2) values
(here, xB is the Bjorken x parameter). We conclude that, for
high energy partons, the stopping power of a QGP formed at
RHIC or LHC energy is increased by more than a factor of
40 compared to that for cold nuclear matter. The dramatic jet
quenching observed experimentally as displayed in Fig. 156
finds its natural explanation in the large values of the trans-
port coefficient q̂ of the QGP.

7.1.6 The statistical hadronization model and the QGP
phase diagram

Direct experimental access to the QCD phase diagram is
obtained from the measurement of the yields of hadrons pro-
duced in (central) high energy nuclear collisions. Analysis
of these data in terms of the Statistical Hadronization Model
(SHM), see [2203] and Refs. given there, established that,
at hadronization, the fireball formed in the collision is very
close to a state in full (hadro-)chemical equilibrium.

The essential idea in the SHM is to approximate the parti-
tion function of the system by that of an ideal gas composed
of all stable hadrons and resonances, hence also referred to as
the Hadron Resonance Gas (HRG) model, see [2203]. From
this partition function one can calculate the first moments
(mean values) of densities of hadrons as a function of a
pair of thermodynamic parameters, the temperature Tchem
and the baryon chemical potential μB at chemical freeze-
out. To go beyond the ideal gas approximation, attractive
and repulsive interactions between hadrons can be taken into
account in the S-matrix formulation of statistical mechan-
ics [2204] by including the first term in the virial expansion.
Ideally, the relevant coefficients are obtained from measured
phase shifts. For the pion–nucleon interaction this was imple-
mented in [2205] and the proton yield for LHC energy was
corrected accordingly [2206]. The predictions of the SHM
for hadron yields are compared to experimental data at LHC
energy for Tchem = 156.5 MeV in Fig. 158. The agreement
is excellent for the yields of all measured hadrons, nuclei

123



Eur. Phys. J. C          (2023) 83:1125 Page 237 of 636  1125 

Fig. 158 Primordial and total (anti-)particle yields, normalized to the
spin degeneracy, as calculated within the SHMc [2203]

and hyper-nuclei and their anti-particles, with yields vary-
ing over 9 orders of magnitude. Remarkably, the description
works equally well for loosely bound states. This has led
to the conjecture of hadronization into compact multi-quark
bags with the right quantum numbers evolving into the final
nuclear wave functions in accordance with quantum mechan-
ics [2203].

The values of the hadro-chemical freeze-out parameters at
lower collisions energies are similarly obtained by fitting the
SHM results to the measured hadron yields. The extracted
freeze-out parameters Tchem and μB [2203,2207] are pre-
sented as red symbols in the QCD phase diagram shown
in Fig. 159. Also included is a freeze-out point from the
HADES collaboration in Au–Au collisions at

√
sNN ≈ 2.4

GeV [2208]. They can be compared to the crossover chiral
phase transition line as computed in lQCD (blue band). From
LHC energies down to about

√
sNN = 12 GeV, i.e., over the

entire range covered by lQCD, there is a remarkable agree-
ment between Tchem and the pseudo-critical temperature for
the chiral cross over transition Tpc. We note that, along this
phase boundary, the energy density computed (for 2 quark
flavors) from the values of Tchem and μB exhibits a nearly
constant value of εcri t ≈ 0.46 GeV/fm3.

The finding that the hadro-chemical freeze-out temper-
ature is very close to Tpc has a fundamental consequence:
because of the very rapid temperature and density change
across the phase transition and the resulting low hadron den-
sities in the fireball combined with its size, the produced
hadrons cease to interact inelastically within a narrow tem-
perature interval [2209] after hadron formation.

This is very different from particle freeze-out in the early
universe where for temperatures T > 10 MeV even the mean

Fig. 159 Phase diagram of strongly interacting matter. The red sym-
bols correspond to chemical-freezeout parameters, temperature Tchem
and baryon chemical potential μB determined from experimental
hadron yields [2203,2207,2208]. The blue band represents the results
of lQCD computations of the chiral phase boundary [484,487]. Also
shown are a conjectured line of first order phase transition with a criti-
cal end point as well as the nuclear liquid-gas phase boundary

free path for neutrinos is much smaller than its size, see sec-
tion 22.3 of [513].

For large values of baryon chemical potential, experimen-
tal data for hadron-chemical freeze-out exist but the phase
structure of strongly interacting matter remains uncertain;
various model calculations suggest the appearance of a line
of first order phase transition, which in combination with the
crossover transition at smaller values of μB , would imply
the existence of a critical end point (CEP) in the QCD phase
diagram as indicated in Fig. 159. The experimental discovery
of the CEP would mark a major break-through in our under-
standing of the QCD phase structure. The location of the CEP
is most likely in the region μB > 470 MeV, based mostly on
results from lQCD. Searching for the CEP is the subject of a
very active research program, at RHIC and the future FAIR
facility at GSI. The importance of this research is underlined
by the realization that we have currently no experimental evi-
dence for the order of the chiral phase transition at any value
of baryon chemical potential.

7.1.7 Fluctuations and the search for critical behavior

Important further information on the phase structure of QCD
matter is expected by measuring, in addition to the first
moments of hadron production data, also higher moments
as such data can be directly connected to the QCD partition
function via conserved charge number susceptibilities in the
Grand Canonical Ensemble (GCE) [2210,2211]. For a ther-
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mal system of volume V and temperature T the susceptibili-
ties in the GCE are defined as the coefficients in the Maclaurin
series of the reduced pressure P̂ = P(T, V, �μ)/T 4

χ
q
n ≡ ∂n P̂

∂μ̂n
q
= 1

VT 3

∂nlnZ(V, T, �μ)

∂μ̂n
q

= κn(Nq)

VT 3 , (7.2)

where �μ = {μB, μQ, μS} is the chemical potential vec-
tor that is introduced to conserve, on average, baryon num-
ber, electric charge and strangeness. Here, μ̂q = μq/T is
the reduced chemical potential for the conserved charges
q ∈ {B, Q, S}. The partition function Z(V, T, �μ) encodes
the Equation of State (EoS) of the system under consider-
ation. Equation (7.2) establishes a direct link between sus-
ceptibilities and fluctuations of conserved charge numbers.
By measuring the cumulants κn(Nq) of net-charge number
(Nq ) distributions one can, using Eq. (7.2), further probe and
quantify the nature of the QCD phase transition.

Important at this point is to define a non-critical baseline,
which is done by using the ideal gas EoS, extended such as to
account for event-by-event charge conservation and correla-
tions in rapidity space [2170,2212,2213], see also [2214]. In
addition, non-critical contributions arising, e.g., from fluctu-
ations of wounded nucleons [2215,2216] need to be corrected
for. Deviations from this non-critical baseline, for example
leading to negative values of κ6 for net-baryons would arise
due to the closeness of the cross over transition to the O(4)
2nd order critical phase transition for vanishing light quark
masses [2217].

In Fig. 160 the ALICE results on the normalized sec-
ond order cumulants of net-proton distributions are presented
as function of the experimental acceptance. The acceptance
is quantified via the pseudo-rapidity coverage around mid-
rapidity Δη [2218–2220]. The measured cumulant values
approach unity at small values of Δη, essentially driven by
small number Poisson statistics. With increasing acceptance,
the data progressively decrease from unity. For small but
finite acceptance the decrease can be fully accounted for
by overall baryon number conservation in full phase space.
Hence, after correcting for baryon number conservation, the
experimental data would be consistent with unity over the
range of the experimental acceptance.

This observation has three important consequences. (i) It
shows that, up to second order, cumulants of the baryon num-
ber distribution functions follow a poissonian distribution,
a posteriori justifying the assumptions underlying the con-
struction of the partition function used in the SHM. (ii) This
is the first experimental verification of lQCD results which
also predict unity for the second order scaled cumulants of
baryon distributions. (iii) Compared to the different calcu-
lations, the data imply long range correlations in rapidity
space, calling into question the baryon production mecha-
nism implemented in string fragmentation models. Indeed,

Fig. 160 Scaled second order cumulants of the net-proton distribution
as a function of the pseudo-rapidity acceptance measured by the ALICE
experiment (black symbols) [2219]. The colored lines correspond to
calculations accounting for baryon number conservation with different
correlation length in rapidity space [2213]. The results of the HIJING
event generator are presented with the black solid line

the results from the HIJING event generator based on the
Lund String Fragmentation model shown in Fig. 160, due to
the typical correlation over about one unit of rapidity, grossly
overpredict the suppression due to baryon number conserva-
tion [2221].

Contrary to the detailed predictions for signals in the cross-
over region of the transition covered by lQCD, no quanti-
tative signals are available for the existence of a possible
critical end point in the phase diagram. All predicted sig-
nals are of generic nature and mostly based on searching for
non-monotonic behavior in the excitation function of fourth
order cumulants of, e.g., net-protons [2222]. A compilation
of the respective measurements [2223,2224] is presented in
Fig. 161. The search for non-monotonic behavior needs a
starting point. In Fig. 161 two possibilities are presented, one
corresponding to calculations in HRG within GCE (dashed
line at unity) and the other the non-critical baseline intro-
duced above where baryon number conservation is explicitly
accounted for (red solid line or blue symbols). With respect to
unity the data indeed exhibit an indication for non-monotonic
behavior with a significance corresponding to 3.1 standard
deviations [2224]. However, a significant part of this devi-
ation from unity is induced by non-critical effects, such as
baryon number conservation. Therefore, one must search for
non-monotonic behavior with respect to the red solid line.
Analysis of the data shows that there are no significant devi-
ations from a statistical ensemble with event-by-event baryon
number conservation, i.e, within the current precision of the
data there is not yet evidence for the presence of a critical
end point [2170,2212]. The analysis of fourth order cumu-
lants from a much higher statistics data set has just started and
will be essential for a possible discovery of the critical point.
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Fig. 161 Collision energy dependence of the fourth to second order
cumulants of net-proton distributions as measured by experiments. The
STAR data are for |y| < 0.5 and pt = 0.4–2 GeV/c, the HADES data for
|y| < 0.4 and pt = 0.4–1.6 GeV/c. The non-critical baseline induced
by global baryon number conservation is indicated by the blue circles
and the red line

The current status on experimental verification of the
nature of the chiral cross-over transition at vanishing or mod-
erate μB is still rather open. Within QCD inspired model
calculations [2225,2226], based on O(4) scaling functions
the predicted sixth order cumulants for net-baryon distribu-
tions exhibit negative values at Tpc due to a singular term
in the pressure. Similarly, the sixth order susceptibilities of
baryon number resulting from lQCD calculations are also
negative [2217,2227] and this sign change (relative to the
HRG baseline in GCE) has been linked to the critical com-
ponent in the pressure present as a residue of the 2nd order
chiral phase transition for vanishing (u,d) quark masses, due
to the smallness of the physical masses. First experimental
results on sixth order net-proton cumulants were reported by
the STAR collaboration [2228] for Au–Au collisions, albeit
with sizeable statistical uncertainties since the data analy-
sis to determine high order cumulants is extremely statistics
hungry. Qualitatively, the STAR results at

√
sNN = 200 GeV

are indeed consistent with the expectations for the crossover
transition. At the same time, the experimentally measured
energy dependence of κ6 [2228] is at odds with both model
and lQCD calculations. For a quantitative conclusion, in any
case, the effects of baryon number conservation [2170] and
transformation from net-protons (experiment) to net-baryons
(theory) [2229] are still to be performed. So far, experimental
insight into the nature of the chiral cross-over transition and
the development towards low net-baryon densities remains
inconclusive. It can be expected that ongoing and future high
statistics measurement campaigns by the STAR and ALICE
collaborations will elucidate the situation.

7.1.8 Hadrons with heavy quarks

There is now significant experimental information, from rel-
ativistic nuclear collisions, not only on the production of
hadrons composed of light (u,d,s) quarks, but also of open and
hidden charm and beauty hadrons. In particular, there is good
evidence, mainly from results obtained at the CERN Large
Hadron Collider (LHC) [2230–2232], that charm quarks
reach a large degree of thermal equilibrium, although charm
quarks in the system are chemically far out of equilibrium.
This is supported by heavy quark diffusion coefficients from
lQCD [2233]. A strong indication for equilibration is the
fact that J/ψ mesons participate in the collective, anisotropic
hydrodynamic expansion [2234,2235].

To microscopically understand the production mechanism
of charmed hadrons for systems ranging from pp to Pb–Pb,
various forms of quark coalescence models have been devel-
oped [2236–2240]. This provides a natural way to study
the dependence of production yields on hadron size and,
hence, may help to settle the still open question whether
the many exotic hadrons that have been observed recently
are compact multi-quark states or hadronic molecules (see
[2241,2242] and Refs. cited there). Conceptual difficulties
with this approach are that energy is not conserved in the coa-
lescence process and that color neutralization at hadroniza-
tion requires additional assumptions about quark correlations
in the QGP [2243].

Another approach, named SHMc, has been made possi-
ble by the extension of the SHM to also incorporate charm
quarks. This was first proposed in [2244] and developed fur-
ther in [2203,2231,2245–2248] to include all hadrons with
hidden and open charm. The key idea is based on the recog-
nition that, contrary to what happens in the (u,d,s) sector,
the heavy (mass∼ 1.2 GeV) charm quarks are not thermally
produced. Rather, production takes place in initial hard col-
lisions. The produced charm quarks then thermalize in the
hot fireball, but the total number of charm quarks is con-
served during the evolution of the fireball [2248] since charm
quark annihilation is very small. In essence, this implies that
charm quarks can be treated like impurities. Their thermal
description then requires the introduction of a charm fugac-
ity gc [2231,2244]. The value of gc is not a free parameter
but experimentally determined by measurement of the total
charm cross section. For central Pb–Pb collisions at LHC
energy, gc ≈ 30 [2231]. The charmed hadrons are, in the
SHMc, all formed at the phase boundary, i.e. at hadroniza-
tion, in the same way as all (u,d,s) hadrons.

In Fig. 158 it can be seen that, with that choice, the mea-
sured yield for J/ψ mesons is very well reproduced, the uncer-
tainty in the prediction is mainly caused by the uncertainty
in the total charm cross section in Pb–Pb collisions. We note
here that, because of the formation from deconfined charm
quarks at the phase boundary, charmonia are unbound inside
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Fig. 162 D0 to J/ψ yield ratio measured in Pb–Pb collisions at the
LHC and predicted by the Statistical Hadronization Model with charm
SHMc. Figure from [2249]

the QGP but their final yield exhibits enhancement compared
to expectations using collision scaling from pp collisions,
contrary to the original predictions based on [2152]. For a
detailed discussion see [2203].

For the description of yields of charmonia, feeding from
excited charmonia is very small because of their strong Boltz-
mann suppression. For open charm mesons and baryons,
this is not the case and feeding from excited D∗ and Λ∗c
is an essential ingredient for the description of open charm
hadrons [2231]. Even though the experimental delineation
of the mass spectrum of excited open charm mesons and
baryons is currently far from complete, the prediction of
yields for D-mesons andΛc baryons compares very well with
the measurements,77 both concerning transverse momentum
and centrality dependence.

A particularly transparent way to look at the data for Pb–
Pb collisions is obtained by analyzing the centrality depen-
dence of the yield ratio D0/(J/ψ) and comparing the results
to the predictions of the SHMc. Recently, both the D0 and
J/ψ production cross sections have been well measured
down to pt = 0. The yield ratio D0/(J/ψ) is reproduced
with very good precision for both measured centralities, as
demonstrated in Fig. 162. This result lends strong support to
the assumption that open and hidden charm states are both
produced by statistical hadronization at the phase boundary.
A more extensive comparison between SHMc and data for
open charm hadrons is shown in [2231].

Impressive experimental results were also obtained mainly
by the CMS collaboration ([2250] and Refs. there) on the sup-
pression of excited states of Υ mesons in Pb–Pb collisions at
LHC energy. These data have led to intense theoretical work

77 For Λc baryons on has to augment the currently measured charm
baryon spectrum with additional states to achieve complete agreement
with experimental data [2231].

and, indeed, to a break-through of our understanding of the
complex heavy quark potential in a hot medium [2149,2251].

From the successful comparison of measured yields for
the production of (u,d,s) as well as open and hidden charm
hadrons obtained from the SHM or SHMc with essentially
only the temperature as a free parameter at LHC energies,
one may draw a number of important conclusions.

– First, we note that hadron production in relativistic
nuclear collisions is described quantitatively by the
chemical freeze-out parameters (Tchem, μB). Note that
the fireball volume appearing in the partition function is
determined by normalization to the measured number of
charged particles. At least for energies

√
sNN ≥ 10 GeV

these freeze-out parameters agree with good precision
with the results from lQCD for the location of the chiral
cross over transition. Under these conditions, hadroniza-
tion is independent of particle species and only depen-
dent on the values of T and μB at the phase boundary. At
LHC energy, the chemical potential vanishes, and only
T = Tpc is needed to describe hadronization.

– The mechanism implemented in the SHMc for the pro-
duction of charmed hadrons implies that these parti-
cles are produced from uncorrelated, thermalized charm
quarks as is expected for a strongly coupled, deconfined
QGP (see also the discussion in [2231]). At LHC energy,
where chemical freeze-out takes place for central Pb–Pb
collisions in a volume per unit rapidity of V ≈ 4000
fm3, this implies that charm quarks can travel over lin-
ear distances of order 10 fm (see [2203,2231] for more
detail).

One may ask whether there is a possible contribution to the
production of charmed hadrons (in particular of J/ψ) from
the hadronic phase. At the phase boundary, assembly of J/ψ
from deconfined charm quarks or from all possible charmed
hadrons is indistinguishable, as discussed in detail in [2203].
In fact, in [2209] it was demonstrated that multi-hadron colli-
sions lead to very rapid thermal population, while within very
few MeV below the phase boundary, the system falls out of
equilibrium. Both is driven by the rapid drop of entropy and
thereby particle density in the vicinity of Tpc. In the con-
fined hadronic phase, i.e. for temperatures lower than Tpc,
the hadron gas is off-equilibrium, and any calculation via
reactions of the type DD̄∗ ↔ nπJ/ψ has to implement the
back-reaction [2252]. Since predictions with the SHMc agree
very well with the data for J/ψ production at an accuracy of
about 10%, and since any possible hadronic contribution has
to be added to the SHMc value, we estimate any contribution
to J/ψ production from the confined phase to be less than
10%.

Future measurement campaigns at the LHC will yield
detailed information on the production cross sections of
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hadrons with multiple charm quarks as well as excited char-
monia. The predictions from the SHMc for the relevant cross
sections exhibit a rather dramatic hierarchy of enhancements
[2231] for such processes. Experimental tests of these pre-
dictions would lead to a fundamental understanding of con-
finement/deconfinement and hadronization.

7.2 QCD at high density

Kenji Fukushima

7.2.1 QCD phase diagram

The QCD vacuum has rich contents, very different from an
empty “vacuum” but rather close to a medium. The rele-
vant physical degrees of freedom can change according to
the probe resolution to the medium. As long as the typical
momentum scale in physical processes is large compared to
the QCD scale, i.e., ΛQCD ∼ 200 MeV, observed particles –
all hadrons including mesons and baryons – are only color-
singlet composites. The typical scale of hadronic masses and
radii is characterized by ΛQCD or Λ−1

QCD ∼ 1 fm. There-
fore, if hadronic matter is compressed so that the interpar-
ticle distance becomes comparable to Λ−1

QCD, wavefunctions
of hadrons overlap each other. Then, hadrons are no longer
isolated and more elementary particles should take over the
physical degrees of freedom.

High compression of QCD matter is achieved by increas-
ing the particle number density. Actually, if matter is heated
up, the density of massless thermal excitations increases as
∼ T 3 which corresponds to the scaling of interparticle dis-
tance ∝ T−1. If the baryon density, nB, is increased in the
same way, the average distance between baryons should scale
as∝ n−1/3

B . It is hence natural to expect a phase boundary in
the plane of T and nB from hadronic matter to a new state of
matter composed of quarks and gluons, which portrays the
QCD phase diagram.

The idea of the QCD phase diagram was first cast into
a concrete shape by Cabibbo and Parisi [464] based on the
conjecture of Hagedorn’s limiting temperature. Let us briefly
look over the theory foundations according to explanations
in Ref. [2253]. The thermal partition function at finite T but
zero density reads:

ZM =
∫

dm ρM(m) e−m/T , (7.3)

where dmρM(m) represents the number of mesonic states
within the mass window, m ∼ m + dm. The last exponen-
tial factor appears from the thermal Boltzmann weight. The
density of states associated with degeneracy is increasing for
larger eigen-energies, and so ρM(m) is an increasing func-
tion of m. It is empirically known that ρM(m) ∼ em/TH with

a phenomenological parameter TH called the Hagedorn tem-
perature. Because the logarithm of the combinatorial factor
for a given energy is nothing but the entropy, this exponen-
tially increasing ρM(m) means that the entropy grows lin-
early with m. As seen from Eq. (7.3), the m integration in
ZM blows up for T > TH for which the entropy enhance-
ment overwhelms the energy suppression and the free energy
is bottomlessly pushed down with increasing m. Hagedorn
proposed that TH is interpreted as the upper bound of the
physically possible temperature. Later on, a physically sen-
sible interpretation was clarified that the singularity in ZM

should be overridden by a phase transition, possibly the one
to a state with more fundamental degrees of freedom. The
critical temperature from mesonic matter to deconfined mat-
ter with quarks and gluons is thus T (M)

c = TH.
The above mentioned argument can be generalized to the

case at finite baryon density. Then, the partition function is

ZB =
∫

dm ρB(m) e−(m−μB)/T , (7.4)

where the Boltzmann factor depends on the baryon chemi-
cal potential μB. The experimental data imply that the bary-
onic spectrum exhibits ρB(m) ∝ em/T ′H with the baryonic
Hagedorn temperature, T ′H, that is slightly different from TH.
The critical temperature for baryons is deduced from the
singularity as T (B)

c = T ′H − (T ′H/m0)μB, which is derived
from an approximation that the Boltzmann factor is replaced
by e−m(1−μB/m0)/T with a phenomenological parameter, m0

(see Ref. [2253] for detailed discussions).
Now, supposing that T ′H > TH, the critical temperature

for the deconfinement transition is dominantly characterized
by mesonic T (M)

c in the low density region at μB � T . With
increasing μB, the two lines of constant T (M)

c and decreas-
ing T (B)

c cross eventually. This consideration leads us to a
picture of the phase diagram on the plane of the baryon den-
sity (along the horizontal axis) and the temperature (along
the vertical axis) as illustrated in Fig. 163. This QCD phase
diagram handwritten by Gordon Baym (see Ref. [2254] for
more historical backgrounds) has played a role of prototype
of the contemporary QCD phase diagram.

So far, we addressed only the deconfinement phase transi-
tion associated with the liberation of quarks and gluons in hot
and dense media. The theoretical description of deconfine-
ment in the presence of dynamical quarks is subtle, how-
ever. One may think that each phase separated by phase
boundaries should be distinctly defined by a different real-
ization of some global symmetry but for the deconfinement
phenomenon, the symmetry corresponding to quark confine-
ment/deconfinement (known as center symmetry [475] that is
a 1-form symmetry in finite-T quantum field theory [1263])
is not exact but approximate. Still, as long as the approxi-
mate symmetry is barely broken, an approximate value of
critical temperature called the pseudo-critical temperature
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Fig. 163 A prototype of the QCD phase diagram. The handwritten
phase diagram recaptured in Ref. [2254] was adapted and colorized
here

Fig. 164 The QCD string extends between a pair of test quark and
antiquark (upper figure). The string breaking occurs once the fluxtube
energy exceeds the meson mass (lower figure)

can be prescribed. Therefore, the temperature at which the
deconfinement takes place is not uniquely defined but the
pseudo-critical temperature is inevitably scheme dependent.
This is why some theoretical QCD phase diagrams show the
phase boundary with an uncertainty band associated with
non-unique pseudo-critical temperatures.

The deconfined phase of gluons corresponds to the vac-
uum with spontaneous breaking of center symmetry, while
quarks explicitly break this symmetry. Here, we shall avoid
cumbersome mathematics and limit ourselves to pedagogical
explanations about center symmetry. Let us consider a free
energy gain, fq(x), in response to a test quark placed at x,
and then construct a quantity called the Polyakov loop:

L(x) = e− fq(x)/T . (7.5)

If the gluonic medium confines quarks, on the one hand,
fq → ∞ leads to L → 0. Here we note that in a homo-
geneous system the x dependence of the expectation value
can be safely dropped. On the other hand, L remains non-
vanishing in the deconfined phase with fq < ∞. Thus, L
serves as an order parameter for quark confinement, and in
quantum field theory L is expressed by an expectation value
of a 1-form line operator (i.e., Wilson line), see Ref. [1263]
for generalized higher-form symmetries.

In reality with dynamical quarks, fq would never diverge.
The reason is easy to understand. A single test quark is a

source to which a color fluxtube is attached. The color field
energy is proportional to the squeezed fluxtube length. Thus,
in a purely gluonic medium, a test quark cannot be screened
and the fluxtube goes to spatial infinity, yielding fq →∞ and
thus L → 0 if confined. Fluctuations of dynamical quarks
allow for the creation of a quark and an antiquark pair once the
fluxtube energy exceeds the mesonic mass threshold as illus-
trated in Fig. 164. Then, the color field energy stored between
a test quark and a test antiquark cannot become greater than
twice the mesonic mass MV . That is, the clustering decom-
position property indicates L(0)L†(x) ∼ e−2MV /T for suf-
ficiently large |x|, and so L ∼ e−MV /T > 0 even in the
confined hadronic phase.

This argument implies that the QCD string is further
breached by fluctuations of surrounding quarks and holes at
finite density. In other words the explicit breaking of center
symmetry is enlarged in high-density matter and the mathe-
matical concept of quark confinement would be obscure. Not
that we do not yet find a better order parameter. The absence
of the deconfinement order parameter could be attributed to
the profound nature of dense QCD matter; namely, duality
from hadronic to quark matter.

Now, let us shift gear to another aspect of the QCD vacuum
and the QCD phase transition. The QCD Lagrangian contains
quark mass parameters mq. The bare values of up and down
(i.e., u and d) quark masses are only a few MeV, accounting
for an only small fraction of the nucleon mass composed of u
and d quarks. This huge discrepancy in the masses of quarks
and baryons is explained by spontaneous breaking of chiral
symmetry. Its order parameter is the chiral condensate 〈q̄q〉
that gives rise to the dynamical mass, Mq ∼ ΛQCD � mq.

Almost all textbooks on quantum field theory affirm that
the divergent zero-point oscillation energy is harmlessly dis-
carded, but this common assertion is not valid for QCD
because the mass is not a physical constant but is dynam-
ically rooted in the QCD interactions. That is, the zero-point
oscillation of quarks and antiquarks with Nc colors and Nf

flavors gives [59]

Ezero = −2NfNc

∫ Λ d3 p

(2π)3

√
p2 + M2

q

� −NfNc
Λ4

8π2

[
2+ ξ2 +O(ξ4)

]
, (7.6)

where Λ is a ultraviolet (UV) cutoff and the dimensionless
parameter, ξ = Mq/Λ, is assumed to be small. We see that the
UV divergent term∝ Λ4 is irrelevant to the dynamics, but we
cannot drop another UV divergent term ∼ M2

qΛ
2 ∼ Λ4ξ2.

Because Mq is related to the chiral condensate in the QCD
vacuum, 〈q̄q〉, the value of Mq is dynamically determined to
minimize the vacuum energy. The coefficient of the quadratic
term, ξ2, is negative in Eq. (7.6), so that Ezero energetically
favors larger Mq. It is the condensation energy, Econd, that

123



Eur. Phys. J. C          (2023) 83:1125 Page 243 of 636  1125 

competes the zero-point oscillation energy. Let us postulate
that gluon mediation induces a four-fermionic interaction
term∼ λq̄qq̄q in the low-energy Lagrangian where the mass
dimension of the coupling constant, λ, is−2. Thus, a dimen-
sionless coupling, λ̂ = Λ2λ, is useful, and the dimensional
analysis hints at a relation Mq = −2λ〈q̄q〉. (In QCD 〈q̄q〉
is known to take a negative value.) Then, the condensation
energy from the interaction term is parametrically written as

Econd = NfNcλ〈q̄q〉2 = NfNc
M2

q

4λ
= NfNc

Λ4

4λ̂
ξ2. (7.7)

Now, the balance between two energies gives a condition for
the spontaneous generation of Mq �= 0; that is, λ̂ > 2π2, as
first derived by Nambu and Jona-Lasinio [59,2255]. For the
four-fermionic interaction stronger than this threshold, the
QCD vacuum accommodates a nonvanishing chiral conden-
sate.

From the Dirac mass term mqq̄q in the Lagrangian we
see that the mass and the chiral condensate are conjugate to
each other. It is thus evident that a nonzero 〈q̄q〉 is a source
to generate Mq even from a massless theory with mq = 0.
The massless Dirac fermions are split into the right-handed
and the left-handed components and they do not commu-
nicate. Therefore, for the theory with Nf flavors of mass-
less quarks, a unitary rotation in flavor space is a symme-
try in each of the right-handed and the left-handed sectors,
i.e., the system enjoys the symmetry of UR(Nf) × UL(Nf).
Actually, the chiral condensate is decomposed as 〈q̄q〉 =
〈q†

RqL + q†
LqR〉 and it breaks the symmetry down to the vec-

torial one only, UV(Nf). Among these symmetries, conven-
tionally, SUR(Nf)×SUL(Nf) is called chiral symmetry that is
spontaneously broken so as to generate the dynamical mass,
Mq ∼ ΛQCD, out from the bare mass, mq � ΛQCD.

We can expect, as elaborated below, that 〈q̄q〉 should
melt at high density and chiral symmetry should be restored
then, which is commonly referred to as the chiral phase
transition. It is the zero-point oscillation energy (7.6) that
favors the symmetry breaking, and its expression involves the
phase-space integration. At finite quark chemical potential
μq which takes a larger value with increasing quark number
density, the Fermi sphere is excluded from the phase-space
integration due to the Pauli exclusion principle. Accord-
ingly the symmetry breaking effect is diminished at finite
μq. Therefore, it is a reasonable educated guess that the chi-
ral phase transition makes a boundary curve on the density-
temperature plane just like the deconfinement phase transi-
tion, as already depicted in Fig. 163.

The exact relation between the deconfinement phase tran-
sition with an approximate order parameter L and the chiral
phase transition with another approximate order parameter
〈q̄q〉 is a longstanding problem in QCD, and the satisfactory
answer has not been found especially at finite density. As a
function of mq, actually, the deconfinement phase transition

Fig. 165 Two order parameters as functions of the temperature at zero
density as measured in the lattice-QCD simulation. Nt represents the site
number along the temporal direction and the extrapolation to Nt →∞
defines the continuum limit. The figure and the lattice data are adapted
from Ref. [2257]

is exact only in the limit of mq →∞, while the chiral phase
transition is exact only in the opposite limit of mq → 0. The
lattice-QCD data at finite T suggest that these two concep-
tually distinct phase transitions at opposite limits be interpo-
lated by a single line for arbitrary mq [2256].

Figure 165 shows the Polyakov loop and the chiral con-
densate as functions of T , normalized by the T = 0 values.
We clearly notice that chiral symmetry is restored around
Tc ∼ 150 MeV, and at the same time the Polyakov loop
starts increasing from nearly zero, indicating a simultaneous
deconfinement crossover. Thus, the lattice-QCD simulation
at finite T has led us to a conclusion that two phase transitions
of chiral restoration and deconfinement are somehow locked
together. Actually, the prototype phase diagram in Fig. 163
assumes such tight locking of two transitions on the entire
plane. However, as mentioned earlier, the barrier for the QCD
string breaking would be eased by the density effect and the
deconfinement would be more and more blurred at higher
density, which implies a modernized version of the phase
diagram as shown in Fig. 166. Here, as compared to the pro-
totype in Fig. 163, there are three new ingredients added to
Fig. 166; namely, the color superconductivity, the quarky-
onic regime, and the QCD Critical Point (QCP). Moreover,
Fig. 166 shows a new label, “sQGP” at high T and zero den-
sity, that refers to strongly correlated quark–gluon plasma.
We will address only high-density aspects of QCD in this
section, and for the physical interpretation of sQGP and the
experimental characterization, see the previous section.

7.2.2 Quark matter

There is no clear definition that distinguishes nuclear and
quark matter. In one working definition, quark matter is a
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Fig. 166 A modern phase diagram of QCD with blurred deconfine-
ment at higher density represented by the color gradation. Near the QCD
Critical Point inhomogeneous spontaneous chiral-symmetry breaking
(SCB) is predicted in the mean-field calculation, while the quasi-long-
range order should take it over with fluctuation effects. The possible
family of color-superconducting states includes not only the CFL and
the 2SC phases (see the text) but also the uSC (where Δ2 �= 0 and
Δ3 �= 0) and the dSC (where Δ3 �= 0 and Δ1 �= 0); see Refs.
[2258,2259] for details. Unfortunately we are still unable to remove
a big question mark

state of matter whose properties are reasonably approximated
by perturbative QCD (pQCD) calculations. The presence of
quark matter in the neutron star (NS) has been proposed by
Collins and Perry [463] based on the asymptotic freedom at
high baryon density (see also Ref. [2260] for a preceding
hypothesis on quark matter). If the momentum scale associ-
ated with the running strong coupling constant, αs, is char-
acterized by the baryon chemical potential μB or the quark
chemical potential μq = μB/3, asymptotically free quarks
should be liberated from hadrons as the density goes above a
certain threshold. In Ref. [463] the leading order (LO) con-
tributions, i.e., thermodynamic quantities of free massless
quarks, were considered:

P(0) = Nc

12π2

Nf∑

i=1

μ4
i . (7.8)

The next-to-leading order (NLO) diagrams add corrections
of O(αs), i.e.,

P(2) = −
(
αs

π

)
Ng

16π2

Nf∑

i=1

μ4
i , (7.9)

where the adjoint color factor, Ng = N 2
c − 1, was intro-

duced. The next-to-next leading order (N2LO) calculations
produce a logarithmic term with μq dependence in the argu-
ment. All the terms are not listed up here (see Ref. [2261] for
the formulation and Ref. [2262] for the QCD application);
the logarithmic term looks like

P(4) = +
(
αs

π

)2 Ngβ0

64π2

Nf∑

i=1

μ4
i ln

μ2
i

μ2
0

+ (non-log terms),

(7.10)

where β0 = (11Nc − 2Nf)/3. Non-logarithmic terms are
omitted. Even if αs is sufficiently small, αs ln(μ2

i /μ
2
0) may

become large, and then the perturbative expansion breaks
down. A remedy for this problem of the singular logarithm
is the resummation over the leading-log terms. For simplic-
ity let us assume that all the quark chemical potentials are
identical. (More generally one can introduce a flavor aver-
aged value of the chemical potential.) Actually, it is easy to
confirm that, if αs is upgraded to the running one, i.e.,

αs(μq)

π
= αs

π

[

1+
(
αs

π

)
β0

4
ln(μ2

q/μ
2
0)

]−1

, (7.11)

an expansion of Eq. (7.9) can reproduce Eq. (7.10). In other
words, such dangerous logarithmic terms are absorbed into
the density-dependent running coupling, αs(μq) (see Ref.
[2262] for more details). In this way the perturbative calcu-
lation is justified at high enough density.

From this construction of the running coupling constant,
one can easily imagine that the resummation is not free
from an arbitrary choice of irrelevant constants. Instead
of ln(μ2

q/μ
2
0), one could try to make a resummation of

ln(μ2
q/μ

2
0) + C = ln(μ2

q/μ
2
1) with μ2

1 = μ2
0e
−C . In princi-

ple, an optimal choice ofC could exist to reduce higher-order
corrections. If C is close to the optimal point, the results are
expected to be flat against changes of C , and it is custom-
ary to check the stability of the results by changing X of
αs(Xμq). Here, the logarithmic term in αs(Xμq) takes the
form of ln(X2μ2

q/Λ
2
MS

) in the MS scheme [2263]. It is then
found that such variation of X = 1 ∼ 4 leads to huge uncer-
tainty unless μq becomes unphysically large. This is some-
times referred to as the slow-convergence problem. The next
correction, i.e., the N3LO contribution is expected to sta-
bilize the results better, and indeed the soft N3LO part has
been shown to cure the slow-convergence problem partially
[2264,2265].

7.2.3 Color-superconducting phases

The pQCD calculation is not capable of describing dynam-
ical generation of 〈q̄q〉, which is apparently consistent with
melting chiral condensate at high density. However, even at
high density, high enough to validate pQCD, the chiral con-
densate is not simply gone.

Quarks carry a fundamental charge in color SU(3), and so
two charges of a pair of quarks (i.e., a diquark) connected by
one-gluon exchange are coupled via

(ta)i j (t
a)kl

= −Nc + 1

4Nc
(δi jδkl − δilδk j )+ Nc − 1

4Nc
(δi jδkl + δilδk j )

(7.12)
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corresponding to 3 ⊗ 3 = 3̄ ⊕ 6 in the group theoretical
language. Interestingly, as implied from the sign of each term
in the above decomposition, the inter-quark interaction in
the 3̄ channel is attractive, while the 6 channel interaction
is repulsive. This attractive nature is intuitively understood
as follows: Suppose that two quarks are infinitely separate
(in the deconfined phase), then the total field energy is just
twice of the field energy associated with a single quark. If
two quarks approach and make a composite of 3̄, the total
field energy is the same as that of a single quark, that is, a
half of the original total energy. So, the energy decreases as
two quarks touch. Consequently two quarks in the 3̄ channel
should feel an attractive force to minimize the total energy.

The most favored diquark channel is color anti-triplet
(anti-symmetric) and spin singlet (anti-symmetric) and thus
the flavor must be anti-symmetric. The diquarks generally
carry two color indices and two flavor indices, but the diquark
matrix in the most favored color-flavor channel simplifies to

Φiα = εi jkεαβγ qTjβCγ5qkγ . (7.13)

Here, C = iγ 0γ 2 is the charge conjugation matrix neces-
sary to make the diquark a Lorentz scalar. The Latin and the
Greek letters represent the indices in flavor and color space,
respectively.

In the three-flavor symmetric limit with mu = md = ms ,
the flavor rotation as well as the color rotation is a symmetry
of the system. Then, it is possible to choose the flavor and
the color bases to diagonalize Φiα . Without loss of generality
we can parametrize the diquark condensate as

〈Φiα〉 = δiα Δi . (7.14)

Under the identification of i = 1, α = 1 for up (u) and red
(r), i = 2, α = 2 for down (d) and green (g), and i = 3,
α = 3 for strange (s) and blue (b), for example, Δ1 involves
pairings of gd-bs and gs-bd quarks. A state of quark matter
with Δ1 �= 0, Δ2 �= 0, and Δ3 �= 0 is known as the color-
flavor locking (CFL) phase. The CFL phase is considered
to be the ground state as long as the strange quark mass
is ignored. In the opposite limit of infinitely heavy strange
quark mass, we can regard quark matter as composed from
only light flavors. In this case only Δ3 (involving ru-gd and
rd-gu quark pairings) can take a nonzero value, while Δ1 =
Δ2 = 0 due to suppression of strange quarks. Such a state
of Δ1 = Δ2 = 0 and Δ3 �= 0 is called the two-flavor color-
superconducting (2SC) phase.

Which symmetry should spontaneously be broken by the
diquark condensate is a nontrivial question. Let us first con-
sider the 2SC phase. We note that the local gauge symmetry is
never broken. Then, the baryon UV(1) symmetry is not bro-
ken in the 2SC phase since its rotation on Δ3 can be always
canceled by unbroken electromagnetic transformation. The
same argument concludes that flavor (chiral) symmetry is

not broken, either. Therefore, in the 2SC phase, all global
symmetries are unbroken, only modified with a mixture of
local symmetry. One might think that color-superconducting
phases assume deconfined quark matter, but as shown in Ref.
[2266], the low-energy physics in the 2SC phase is gov-
erned by ungapped gluons in the unbroken SU (2) sector and
color confinement persists. Theoretically speaking, there is
no gauge-invariant order parameter to define the 2SC phase.

In reality, however, the 2SC phase is anyway taken over by
the CFL phase at high density where the strange quark mass is
negligible. The Nf = 3 world is drastically different from the
2SC phase. The UV(1) symmetry can no longer be restored
by the electromagnetic symmetry because Δ1 and Δ2,3 are
differently charged. Thus, the CFL phase has a superfluid,
and a vortex configuration is topologically stabilized. Also,
chiral symmetry is spontaneously broken. We note that the
diquark condensate has both the left-handed and the right-
handed components; that is, 〈qq〉 = 〈qRqR〉 + 〈qLqL〉 �= 0,
and 〈qR,LqR,L〉 breaks SUR,L(3). The vectorial rotation in fla-
vor space can still be canceled by unbroken color rotation, so
the symmetry breaking pattern in the CFL phase turns out to
be: SUR(3)× SUL(3)→ SUV(3). Interestingly, this is iden-
tical to the symmetry breaking in the hadronic phase. Actu-
ally the gauge-invariant order parameter of the CFL phase
is, 〈(q̄q̄)(qq)〉 ∼ 〈(q̄q)2〉 that induces 〈q̄q〉 �= 0 unless the
anomalous UA(1) is restored. The observation of exactly the
same symmetry properties has led to a conjecture of conti-
nuity between the hadronic phase (i.e., the confined phase)
with superfluidity and the CFL phase (i.e., the Higgs phase)
[2267].

We can develop an intuitive understanding of the conti-
nuity. In the case of electron superconductivity, there is no
gauge-invariant order parameter, and one might think that the
theoretical characterization is as problematic. In this case,
however, the solution has already been known. Because the
Cooper pairs have twice the elementary charge, they cannot
completely screen a single elementary charge. This would
lead to an emergent Z2 symmetry and the superconducting
state is unambiguously defined by the symmetry.

This argument makes it clear why the CFL phase is so
special. As mentioned earlier, the most favored diquark is
found in the color triplet (and the anti-triplet) channel made
from 3 ⊗ 3 → 3̄. So, the Cooper pairs (i.e, the diquarks)
are charged just like the fundamental (anti-)charge. Thus, a
fundamental charge can be screened by Cooper pairs and the
definition of the CFL phase is obscured, which underlies the
continuity scenario between hypernuclear matter and CFL
quark matter.

The continuity scenario cannot be applied to the 2SC phase
as it is, but it was pointed out in Ref. [2268] that the NS envi-
ronment can realize continuity within the two-flavor sector
only. The idea is that the electric neutrality requires twice
more d-quarks than u-quarks, and free d-quarks (not paired
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Fig. 167 An illustration of the two-flavor continuity scenario between
nuclear matter and 2SC+d quark matter in the NS environment in β

equilibrium. Figure taken from Ref. [2268]

with u-quarks) may form a condensate of 〈dd〉. In this exotic
phase that may be called the 2SC+d phase, the electromag-
netic rotation cannot cancel rotations in Δ3 and 〈dd〉 simul-
taneously, and so it is a superfluid with UV(1) breaking, and
also, it spontaneously breaks chiral symmetry. In this way,
as illustrated in Fig. 167, the continuity can be formulated.

Recently, the quark–hadron continuity scenario is encoun-
tering a fatal challenge. As mentioned, the emergent Z2

symmetry characterizes ordinary electron superconductivity,
and to see it mathematically, a Wilson loop as a symmetry
generator is acted on a magnetic vortex operator. The mag-
netic flux in a superconducting cylinder is quantized in units
not of 2π h̄c/e but of π h̄c/e due to doubly charged Cooper
pairs. The symmetry operation with the Wilson loop, hence,
results in a Z2 phase. The same exercise in the CFL phase
replaces the magnetic vortex with the non-Abelian CFL vor-
tex [2269] that carries both the global phase as well as the
chromo-magnetic flux. From the explicit expression of the
non-Abelian CFL vortex, it has been shown in Ref. [2270]
that a Z3 symmetry emerges (see also Ref. [2271] for more
mathematical discussions). The hadronic phase presumably
confines any color degrees of freedom, and it is a natural
anticipation (but not proven yet) that this Z3 symmetry oper-
ation is merely trivial in the confined phase. If so, the spon-
taneous breaking of emergent Z3 symmetry should result in
a phase transition from nuclear to quark matter. It is not yet
settled theoretically whether a phase transition really sep-
arates nuclear and quark matter. The symmetry arguments
are convincing, but the calculations are feasible only at high
enough density, not at intermediate density where a transi-
tional change may occur. As we will argue later, astrophysical
observations constrain the strength of first-order phase tran-
sition for the neutron-rich NS matter, and for the moment it
disfavors the first-order phase transition.

7.2.4 Quarkyonic regime

In the large-Nc limit the duality between nuclear and quark
matter has been recognized by McLerran and Pisarski [2272]
and they named the dual regime of matter Quarkyonic Matter
after a combination of “quark” and “baryonic”. It should be

Fig. 168 A quark description
of two-body NN interaction

noted that Quarkyonic Matter is not a novel phase of matter
but it refers to a regime in which the duality is manifested.

The conjectured duality is based on the large-Nc counting
of the pressure. Along the temperature axis at zero baryon
density, the pressure jumps from O(1) in the confined phase
to O(N 2

c ) in the deconfined gluonic phase, which defines
a first-order phase transition even with dynamical quarks.
Then, along the axis of the baryon/quark chemical potential
at zero temperature, one might also think of a phase tran-
sition from O(1) in confined nuclear matter to O(Nc) in
deconfined quark matter. This naïve order counting implic-
itly neglects the contribution from interactions that could be
dropped in the dilute/dense limits, but not in the intermedi-
ate density region. Actually, in the large-Nc limit, the ampli-
tude of meson scattering is suppressed so that mesons can be
regarded as non-interacting particles, while baryons interact
strongly. It is immediately understood why the strength of
baryon interaction scales as O(Nc). The one pion exchange
process for the two-body nucleon–nucleon (NN ) interac-
tion can be viewed microscopically as a quark hopping from
one to the other baryon as shown in a schematic picture in
Fig. 168. There are N 2

c combinations of quark exchanges,
among which color singlets are of O(Nc). In contrast, the
n-point interaction vertices of mesons scale as O(N 1−n/2

c )

that goes to zero as Nc →∞ for n ≥ 3. All the multi-body
interactions of nucleons turn out to scale as O(Nc) which
coincides with the scaling property peculiar to quark mat-
ter. In this way, in Quarkyonic Regime, the system is still
in the confined phase and the relevant degrees of freedom
are baryons, but the pressure is sensitive to quark degrees of
freedom through inter-baryonic interactions.

Now, we see that the deconfinement phenomenon induced
by baryons at high density is far more nontrivial than the
high temperature situation dominated by mesons. For weakly
interacting mesons the onset of deconfinement can be approx-
imated as an overlap of wavefunctions, that agrees with a
picture of site percolation. For baryons, however, the onset
of deconfinement would be rather located at the density
where the NN , NNN , and arbitrary multi-body interactions
become comparably strong, building a connected network
of interacting bonds. In the language of percolation, hence,
it would not be the site percolation but the bond percola-
tion that is appropriate for high-density deconfinement. It
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has also been speculated that the deconfinement onset could
be delayed toward higher density by quantum fluctuations as
suggested in a quantum percolation picture [2273].

In Quarkyonic Regime the state of matter is not simply
quark-like nor baryon-like, but something that shares both
features. It is unlikely that there is any sharp deconfinement
boundary in the phase diagram as drawn in the prototype in
Fig. 163. This is why deconfinement is represented by smooth
gradation over Quarkyonic Regime in Fig. 166. It is quite
suggestive that both the CFL phase and Quarkyonic Regime
favor smooth continuity between nuclear and quark matter in
parallel, even though the diquark condensate is suppressed
in the large-Nc limit and color-superconducting matter and
Quarkyonic Matter seem not to coexist.

7.2.5 Critical point vs. inhomogeneous states

So far, we have focused on deconfinement, and we shall now
turn to the chiral phase transition at finite density. It has
been established that the chiral phase transition at physical
quark masses is a smooth crossover if the chiral restoration is
induced by the temperature effect [2274]. Most chiral models
predict that, as the baryon density increases, the behavior of
the chiral condensate as a function of increasing T becomes
steeper. Eventually, in some chiral models, the chiral restora-
tion occurs with a discontinuous jump in the chiral conden-
sate, and the separation point between the smooth crossover
and the first-order phase transition corresponds to the exact
second-order critical point, which is commonly called the
QCD Critical Point (QCP). It is sometimes referred to as the
critical end point (CEP) of QCD matter as well. The presence
of the QCP was first recognized in the Nambu–Jona–Lasinio
model by Asakawa, Yazaki [2275], and in a QCD-like model
by Barducci, Casalbuoni, De Crutis, Gatto, Pettini [2276],
independently. For a comprehensive review on the order of
chiral restoration at the early stage, see Ref. [2277].

In the language of the Ginzburg–Landau theory, the grand
potential has an expansion,

Ω = α2

2
M2 + α4

4
M4 + α6

6
M6 +O(M8), (7.15)

with respect to an order parameter M ∼ 〈q̄q〉 (proportional
to the constituent quark mass). For simplicity the bare quark
mass effect that induces a symmetry-breaking term ∝ M is
dropped. The coefficients, αi , are functions of T and μB. If
α2 changes its sign while α4 > 0 is kept, a second-order
phase transition is derived. If α2 = 0 and α4 changes its sign
for α6 > 0, a tricritical point appears.

Interestingly, the QCP has nothing to do with the original
chiral symmetry of QCD, and the universality class belongs
to the same as the three-dimensional Ising model. Only when
the bare quark mass is vanishing, as mentioned above, the
QCP is located on the chiral phase transition, which exhibits

tricriticality. At finite bare quark mass that explicitly breaks
chiral symmetry, the QCP is identified as the Z2 liquid-gas
transition whose order parameter is the density, i.e., a con-
served quantity coupled with the energy–momentum tensor,
resulting in the dynamical universality class of the model H
[2278].

The QCP can be an unambiguous landmark, if experi-
mentally confirmed, on the QCD phase diagram. It is, how-
ever, quite nontrivial what plays a role of a signature. The
most well-investigated quantity in the search for the QCP
is the fluctuation observable. Because the correlation func-
tions scale with the correlation length ξ , that ideally diverges
near the critical point but does not in reality due to the crit-
ical slowing down, one can make a robust prediction for the
critical behavior characterized by ξ to the power of critical
exponent. Although the time evolution away from the QCP
may wash out the critical signature, the fluctuation of the
conserved quantities such as the baryon number, the elec-
tric charge, and the strangeness (within the time scale of the
strong interaction) could retain a trace of criticality if its value
is frozen inside the critical region. This means that, to probe
the QCP in a heavy-ion collision experiment, the created hot
and dense matter must cool down along the trajectory hitting
the critical region of the QCP, and the chemical freezeout
(that fixes the ratio of the particle species) must be located
sufficiently near the QCP. Such requirements may hold or
may not.

There is no reliable QCD-based prediction for the loca-
tion of the QCP due to the sign problem, but the virtue of the
QCP search is that the critical theory provides us with unique
theoretical prediction once its location on the phase dia-
gram is experimentally constrained. We have already learnt
a lot about fluctuations from nearly zero baryon density (at
high collision energy

√
sNN � 100 GeV) to high density

(at
√
sNN ∼ 3 GeV) from the heavy-ion collision experi-

ments. See discussions in the previous section and the figure
to show the data of κ4/κ2. For a review including related
topics, especially the kurtosis (fourth order fluctuation of the
proton number) and the skewness (third order fluctuation),
see Ref. [2279] and references therein.

It is also mentioned that constructing an effective descrip-
tion of low-energy dynamics near the critical point is an
intriguing theoretical challenge. Typically the time evolution
of locally equilibrated matter is governed by undamped zero
modes associated with conservation laws, which constitutes
the hydrodynamic description based on the derivative expan-
sion. In the vicinity of the critical point, the critical slowing
down breaks the clear scale separation. Then, the correla-
tion of the diffusive mode, that is the slowest one, should be
coupled in the hydrodynamic equations, and such a general-
ized framework – called the “Hydro+” – has been proposed
[2280].
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Fig. 169 Another phase diagram of QCD matter without the QCD
Critical Point, which may be the case in the neutron star matter in β

equilibrium for which the nuclear liquid-gas critical point is known to
disappear

One subtlety remains. The grand potential, Ω , can be gen-
erally expressed as a functional of the order parameter, which
is denoted by M(x) here. If the spatial variation is smaller
than other scales, the derivative expansion makes sense and
the spatial profile of M(x) is optimized to minimize the
energy locally. It was Nickel [2281] who first recognized that
in a typical chiral model in the mean-field approximation the
local energy takes the following structured form:

Ω = α2
2 M(x)2 + α4

4

[
M(x)4 + (∇M(x))2

]

+α6
6

[
M(x)6 + 5(∇M(x))2M(x)2 + 1

2 (ΔM(x))2
]
.

(7.16)

This is a striking result. At the tricritical point (and near
the QCP also) α4 should change its sign. For α4 < 0, the
coefficient of the first derivative correction turns out to be
negative too, which means that ∇M(x) �= 0 would lower
the local energy. Therefore, the above form of the expanded
energy indicates that the ground state should be spatially
inhomogeneous.

The onset of inhomogeneity is called the Lifshitz point
and Nickel’s calculation was the first clarification for an
explicit relation between the QCP and the Lifshitz point,
though there were preceding works to hint at the possibility
of inhomogeneous ground states [2282]. Whether the QCP
and the Lifshitz point exactly coincide or not depends on
the model choice and the approximation, and in more real-
istic model studies the QCP is overridden by the inhomoge-
neous states (see Ref. [2283] for a comprehensive review).
Interestingly, such an inhomogeneous state is favored also in
Quarkyonic Regime; the large-Nc limit justifies an approxi-
mation of nuclear matter by a Skyrme crystal that inevitably
gives rise to inhomogeneous chiral condensate.

Therefore, another view of the QCD phase diagram may
look like Fig. 169 on which the QCP is taken over by
an approximate triple point where the hadronic phase, the
quark–gluon plasma, and Quarkyonic Regime (or the inho-

mogeneous state) meet [2253]. Once the large-Nc approx-
imation is relaxed, however, the thermal fluctuations of
phonons and pions should be taken into account. It is known
by now that inhomogeneous condensates are unstable and
the quasi-long-range order (i.e., not exponential but alge-
braic decay of the order parameter correlation) could survive
there [2284,2285]. In contrast to the QCP on Fig. 166, it is a
demanding question what can be an experimental signature
to detect Quarkyonic Regime (or the quasi-long-range order)
if the genuine phase diagram is like Fig. 169. Even with-
out inhomogeneous condensates, for example for the theory
proposal, the order parameter modes could be modified non-
trivially to have a damped dispersion relation similar to the
roton, which was discussed as a candidate for the observable
signature [2286].

7.2.6 Astrophysical constraints

Figure 169 looks like one variant of conjectured phase dia-
grams, but a special realization of dense matter in accord
to Fig. 169 is known. That is, the state of dense matter in
deep cores of a neutron star (NS) satisfies the β equilibrium
condition and contains more neutrons than protons due to
the Coulomb interaction. This makes a sharp contrast to the
heavy-ion collision whose time scale is shorter than the weak
interaction, and flavor changing processes are negligible. It
is important to note that the isospin contents would signif-
icantly affect the phase structure of QCD matter. A well-
known example is that the first-order liquid-gas phase tran-
sition of symmetric nuclear matter in Fig. 166 does not exist
any more in the NS matter; that is, pure neutron matter is
not a self-bound fermionic system unlike symmetric nuclear
matter. Then, it would be conceivable that the β equilibrium
condition simplifies the phase diagram from the conventional
one as in Fig. 166 into a smoother shape without any solid
phase boundary as in Fig. 169.

In fact, as we saw already before, the quark–hadron con-
tinuity scenario of the color-superconducting phase and the
large-Nc Quarkyonic Regime supports a picture of smooth
crossover from nuclear to quark matter. Here, we dis-
cuss astrophysical constraints about the phase transition of
QCD matter. The internal structure of the NS follows from
the hydrostatic condition (called the Tolman–Oppenheimer–
Volkoff equation) between the inward gravitational force and
the outward pressure gradient. To this end, the calculation of
the pressure gradient needs the relation of the pressure as a
function of the baryon density, i.e., p = p(ρ), or as a func-
tion of the energy density, p = p(ε), which is referred to as
the equation of state (EOS).

There is no first-principles derivation of the EOS except
for the zero-density and the high-density limits and the EOS
is the most crucial source of uncertainty in NS phenomenol-
ogy. For a given ε, the EOS with larger p (and smaller p) is
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Fig. 170 Conformality indicator deduced from the neutron star data
as a function of the energy density normalized by ε0 = 150 MeV/fm3.
Bands with different colors refer to the results from Refs. [2268,2292–
2294]. Figure adapted from Ref. [2295]

called “stiff” (and “soft”, respectively). Generally speaking,
stiffer EOSs can support heavier NSs, and so the heaviest
NS can give us the information about the EOS stiffness. If an
assumed model cannot predict a stiff EOS enough to explain
the experimentally confirmed largest NS mass, this model is
falsified. In the presence of the first-order phase transition,
p = p(ε) should have a plateau, i.e., a window of ε with
a constant p, in the mixed-phase region, which generally
makes the EOS softer.

In 2010 the mass measurement in a binary system (an NS
and a white dwarf) by means of the Shapiro time delay estab-
lished the existence of a two-solar-mass NS (PSR J1614-
2230 [2287]). Later, similar massive NSs (PSR J0348+0432
[2288] and PSR J0740+6620 [2289]) have been discovered.
These observations are extremely useful to make strict con-
straints and to exclude some of soft EOSs. In particular, the
first-order phase transition is disfavored; it should be weak if
the first-order phase transition takes place at moderate density
reachable in the NS environment, or the first-order phase tran-
sition can occur only at large density beyond the NS region
[2290]. In principle, a very rapid stiffening before/after the
first-order phase transition could also yield an EOS that sup-
ports the massive NSs, but justification of the underlying
mechanism needs further investigations. Actually, the ab ini-
tio estimates based on the chiral effective theory (χEFT)
and the pQCD suggest that the nuclear EOS near the satura-
tion density n0 and quark EOS for high density � 5n0 are
both softer than empirically adopted EOSs, and the stiffening
should occur around 1.5–1.8 times n0 [2291].

It is quite suggestive that such behavior of rapid stiffening
from a low-density soft EOS is inferred from the experi-
mental data, irrespective of any theoretical conjecture. The
distribution of masses and radii of the observed NSs can be
analyzed by probabilistic methods and the preferred EOS can

be constructed from the observational data only. Figure 170
shows a specific combination of the EOS, i.e., 1/3 − p/ε,
as a function of dimensionless energy density ε/ε0 with
ε0 = 150 MeV/fm3, that approaches zero in the conformal
limit at high density. In Fig. 170 the orange, the green, and
the red lines represent the results from the Bayesian anal-
yses of the observational data in Refs. [2292], [2293], and
[2294], respectively. The blue line represents the results from
the neural network analysis in Ref. [2268]. An intriguing
finding is that the system seems to restore the conformal-
ity quite rapidly as first quantified in Ref. [2295]. The pQCD
results at asymptotically high density as indicated in Fig. 170
are nearly conformal because the density scale is sufficiently
larger than ΛQCD and the system is weakly interacting. Thus,
the NS experimental data imply the realization of strongly
correlated conformal matter far earlier at not asymptotically
high but just intermediate density. The microscopic origin of
early conformality is to be identified by future studies.

Finally, let us briefly mention the impact of the gravita-
tional wave signal from the NS merger. So far, the LIGO-
Virgo collaboration reported two events of GW170817 and
GW190425 as candidates of the NS–NS merger. In particu-
lar the former happened at a short distance of only 40 Mpc,
and the electromagnetic counterpart (called the “kilonova”)
was also detected. For the moment only the signal from the
inspiral stage before the merger has led to an EOS constraint
in terms of the tidal deformability coefficient [2296,2297],
which turned out to be consistent with preceding constraints
from the symmetry energy measurement [2298] as well as
the NS mass-radius distributions. In the future the post-
merger stage after the merger might be detected, and if so, an
extremely dense state of matter, even denser than the largest
density in the central core of the NS, could be probed, which
will eventually clarify the nature of Quarkyonic Regime,
quark matter, and hopefully color-superconducting states.

8 Mesons

Conveners:
Eberhard Klempt and Curtis Meyer
The Particle Data Group lists 78 light mesons with u and d
quarks, 50 of them are “established”, with 3* or 4* ratings. 25
mesons carry strangeness, 16 of them are established. Most
mesons show a regular pattern, their masses are mostly com-
patible with a Regge behavior in L and N . Curtis Meyer intro-
duces the meson quantum numbers and their regularities. The
scalar mesons of lowest mass have resisted for a long time
an undisputed acceptance with proper poles in the complex
energy plane. José Pelaez shows how unitarity, analyticity
and dispersion relations are exploited to determine the scalar
partial wave and to extract the poles with high precision. A
driving force in meson spectroscopy is since long the quest
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for hybrids, in particular those with exotic quantum num-
bers, and for glueballs. Boris Grube and Eberhard Klempt
present old and recent evidence for these states. 12 (7) estab-
lished (candidate) charmed mesons are known at present, 7
(5) mesons with a bottom and a light quark, 6 (5) with a
strange and 2 with a charm quark. Charmonium (and bot-
tomonium) played a crucial role for the general acceptance
of the quark model. Nowadays, 39 cc̄ states are known, 25
of them established. The so-called XYZ states, unexpected
states or states with unexpected properties, play an important
role to understand the richness of QCD. Marco Pappagallo
reports on the crime story of X (3872) with its dual nature,
on the unexpected Y (4260) and the discovery of Z+c (4430)
and Tcc(3875), both with minimal four-quark content. Nora
Brambilla outlines the different approaches to identify the
degrees of freedom driving the exotic states.

8.1 The meson mass spectrum, a survey

Curtis Meyer

8.1.1 Introduction

In the quark model, mesons are states containing quarks,
antiquarks and gluons such that the net baryon number of the
state is zero. Conventional mesons are described as bound
states of a quarks and an antiquark (qq̄) and can be viewed
as similar to positronium (e+e−). Exotic mesons can include
hybrids, which are qq̄g states with valence glue, four-quark
states containing two quarks and two antiquarks, and glue-
balls containing only glue. These more exotic forms will be
discussed in later sections, this section will deal with the
ordinary mesons, referred to here as simply mesons. Mesons
containing only u, d and s quarks are known as light-quark
mesons. Given three quarks and three antiquarks, nine possi-
ble qq̄ combinations can be made. These nine mesons form
a so-called nonet where the members have the same well-
defined quantum numbers: total spin J , parity P , and C-
parity C , represented as J PC .

8.1.2 Meson quantum numbers

The J PC quantum numbers of quark–antiquark systems are
functions of the total spin, S, and the relative orbital angular
momentum, L . The spin S and angular momentum L com-
bine to yield the total spin J ,

�J = �L ⊕ �S, (8.1)

where L and S add as two angular momenta.
Parity is the result of a mirror reflection of the wave func-

tion, taking �r into −�r . It can be written as

P
[
ψ(�r)] = ψ(−�r) = ηPψ(�r), (8.2)

Table 9 The allowed J PC

quantum numbers for
light-quark mesons with L up to
4

L S J PC L S J PC

0 0 0−+ 3 0 3+−

0 1 1−− 3 1 2++

1 0 1+− 3 1 3++

1 1 0++ 3 1 4++

1 1 1++ 4 0 4+−

1 1 2++ 4 1 3−−

0 2 2−+ 4 1 4−−

1 2 1−− 4 1 5−−

1 2 2−−

1 2 3−−

where ηP is the eigenvalue of parity. An application of parity
twice must return the original state, ηP = ±1. In spherical
coordinates, the parity operation reduces to the reflection of
a YLM function,

YLM (π − θ, π + φ) = (−1)LYLM (θ, φ). (8.3)

From this, we conclude that ηP = (−1)L . For a qq̄ system,
the intrinsic parity of the antiquark is opposite to that of the
quark, which yields the total parity of a qq̄ system as

P(qq̄) = −(−1)L . (8.4)

Charge conjugation, C , is the result of a transformation
that takes a particle into its antiparticle. For a qq̄ system,
only electrically-neutral states can be eigenstates of C . In
order to determine the eigenvalues of C (ηC ), we need to
consider a wave function that includes both spatial and spin
information

Ψ (�r , �s) = R(r)Ylm(θ, φ)χ(�s). (8.5)

If we consider a uū system, theC operator reverses the mean-
ing of u and ū which has the effect of mapping the vector �r to
the u quark into−�r . Thus, following the arguments for parity,
the spatial part of C yields a factor of (−1)L . The C operator
also reverses the two individual spins. For a symmetric χ ,
we get a factor of 1, while for an antisymmetric χ , we get a
factor of −1. For two spin- 1

2 particles, the S = 0 singlet is
antisymmetric, while the S = 1 triplet is symmetric. Finally,
there is an additional factor of −1 when we interchange two
fermions. Combining all of this, we find that the C-parity of
(a neutral) qq̄ system is

C(qq̄) = (−1)L+S . (8.6)

In Table 9 are shown the J PCs and the possible values of L
and S up to L of 3. From the list, the J PC values of 0−−,
0+−, 1−+, 2+− and 3+− are missing. These missing J PC

are referred to as exotic.
Because C-parity is only defined for neutral meson, we

define G-parity to extend this to all non-strange qq̄ states,
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independent of charge. For isovector states (I = 1),C would
transform a charged member into the oppositely charged state
(e.g. π+ → π−). In order to transform this back to the orig-
inal charge, we would need to perform a rotation in isospin
(π− → π+). For a state of whose neutral partner has C-
parity C , and whose total isospin is I , the G-parity is defined
to be

G = C · (−1)I , (8.7)

which can be generalized to

G(qq̄) = (−1)L+S+I . (8.8)

The latter is valid for all of the I = 0 and I = 1 non-strange
members of a nonet. In the limit of exact SU(3) symmetry,
G is conserved. Mesons with G = +1 decay into an even
number of pions while mesons with G = −1 decay into an
odd number of pions. From this, mesons have the following
well defined quantum numbers: total angular momentum J ,
isospin I , parity P , C-parity C , and G-parity G. These are
represented as (I G)J PC , or simply J PC for short. For the
case of L = 0 and S = 0, we have J PC = 0−+, while for
L = 0 and S = 1, J PC = 1−−.

8.1.3 Light-quark meson names

Prior to 1986, there was no systematic naming scheme for
mesons. Those who discovered new states often proposed
what those states would be called. In 1986, the Particle Data
Group [2299] proposed a naming scheme for mesons that is
still in use today. This scheme is based on the total spin J ,
parity P and charge conjugation C of the nonet, and then the
isospin of the nonet members. The base name is the same for
all mesons of a given I and PC , where there is a subscript
denoting the total spin J . For the kaons, (I = 1

2 ), those with
J P = 0−, 1+, 2−, . . . are named KJ , while those with J P =
0+, 1−, 2+, . . . are named K ∗J . Table 10 lists the names of
the light-quark mesons up to L = 3.

8.1.4 SU(3) flavor and light-quark mesons

Given three flavors of light quarks, there are nine possible
qq̄ combinations. SU(3) flavor groups these mesons into
eight members of an SU(3) octet and one SU(3) singlet. Fig-
ure 171 shows these qq̄ combinations plotted on a graph
where the strangeness S is plotted against the third compo-
nent of isospin, I3. There are four mesons with S = 0, three
with isospin 1 and one with isospin 0. The SU(3) singlet state
also has I = 0. The SU(3) singlet state with I = 0 is

| 1〉 = 1√
3

(
uū + dd̄ + ss̄

)
, (8.9)

Table 10 The naming scheme for light-quark mesons [616]

L S J PC I = 1 G I = 0 G K

0 0 0−+ π −1 η η′ +1 K

0 1 1−− ρ +1 ω φ −1 K ∗

1 0 1+− b1 +1 h1 h′1 −1 K1

1 1 0++ a0 −1 f0 f ′0 +1 K ∗0
1 1 1++ a1 −1 f1 f ′1 +1 K1

1 1 2++ a2 −1 f2 f ′2 +1 K ∗2
2 0 2−+ π2 −1 η2 η′2 +1 K2

2 1 1−− ρ1 +1 ω1 φ1 −1 K ∗1
2 1 2−− ρ2 +1 ω2 φ2 −1 K2

2 1 3−− ρ3 +1 ω3 φ3 −1 K ∗3
3 0 3+− b3 +1 h3 h′3 −1 K3

3 1 2++ a2 −1 f2 f ′2 +1 K ∗2
3 1 3++ a3 −1 f3 f ′3 +1 K3

3 1 4++ a4 −1 f4 f ′4 +1 K ∗4
4 0 4−+ π4 −1 η4 η′4 +1 K4

4 1 3−− ρ3 +1 ω3 φ3 −1 K ∗3
4 1 4−− ρ4 +1 ω4 φ4 −1 K4

4 1 5−− ρ5 +1 ω5 φ5 −1 K ∗5

Fig. 171 The SU(3) quark structure of the light-quark mesons. The
mesons are plotted against strangeness S on the vertical axis and the z
component of isospin, Iz on the horizontal axis The left-hand plot shows
the octet mesons, while the right-hand plot shows the singlet meson

while the SU(3) octet state with I = 0 is

| 8〉 = 1√
6

(
uū + dd̄ − 2 ss̄

)
. (8.10)

The two physical I = 0 states are mixtures of the two SU(3)
states. Following the Particle Data Group [616] notation with
nonet mixing angle θn , the physical isospin-zero states are

(
f
f ′

)

=
(

cos θn sin θn
− sin θn cos θn

) ( | 1〉
| 8〉

)

. (8.11)
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Table 11 The nonet mixing
angles as reported in reference
[616]. The linear formula is
given by Eq. (8.12) while the
quadratic angle is given by
Eq. (8.13)

J PC θlin θquad

0−+ −24.5◦ −11.3◦

1−− 36.5◦ 39.2◦

2++ 28.0◦ 29.6◦

3−− 30.8◦ 31.8◦

Many of the known nonets have physical states that sep-
arate the light-quark states, uū + dd̄ , and the states with
hidden strangeness, ss̄. This is known as ideal mixing and
corresponds to tan θn = 1√

2
, or θn ≈ 35.26◦. Contrary to

this, the ground state mesons are almost pure SU(3) states.
The η′ is nearly pure singlet and the η is the octet state. The
nonet mixing angles can be determined from masses of the
member states. In the following,ma is the mass of the isospin
1 state, mK is the mass of the isospin- 1

2 , and m f and m f ′ are
the masses of the two isospin-0 states. θ in Eq. (8.12) is
known as the linear mixing angle,

tan θ = 4mK − ma − 3m f ′

2
√

2 (ma − mK )
(8.12)

while Eq. (8.13) is known to define the quadratic mixing
angle.

tan2 θ = 4mK − ma − 3m f ′

−4mK + ma + 3m f
(8.13)

The Particle Data Group quotes mixing angles for four nonets
which are listed in Table 11. With exception of the pseu-
doscalar J PC = 0−+ nonet, the others nonets are all fairly
close to being ideally mixed.

The most comprehensive predictions for nonet mixing
angles comes from lattice QCD [521]. Those predictions are
in good agreement with the known values. The mixing angles
can also be determined using relative decay rates for the phys-
ical isospin 0 states to pairs of mesons in the same nonets, to
two pseudoscalar mesons, or to a pseudoscalar and a vector
J PC = 1−− meson. Determinations exploiting decay rates
exist for several nonets [2300]. In Table 12 are listed the lat-
tice QCD predictions as well as several determinations of
mixing angles from decay measurements. The one discrep-
ancy between lattice and decay rate predictions are in the
2−+ nonet; this may be due to incorrect assignments and is
discussed later.

8.1.5 Light-quark mesons

The pseudoscalar mesons
The J PC = 0−+mesons are spin singlets with 0 orbital angu-
lar momentum and are known as the pseudoscalar mesons.
They are listed in Table 13. These are the lightest mesons, and
with the exception of the η′, all their decays are either weak
or electromagnetic. In addition, the mixing of this nonet is

Table 12 The nonet mixing angles for mesons with orbital angular
momentum less than 4. The lattice results are reported in reference
[521], while the references for the decay rate determinations are given
in the table

J PC θn lattice θn decays

0−+ −11◦ −9.3◦ [2301]

1−− 33◦

1+− 35◦

1++ 8◦

2++ 28◦ 32.1◦ [2302]

2−+ 33◦ −6.7◦ [2303]

1−− 30◦

2−− 33◦

3−− 33◦ 31.8◦ [2304]

3−+ 34◦

2++ 26◦

3++ 33◦

4++ 29◦

Table 13 The pseudoscalar mesons

Isospin State(s) Mass [MeV] Width or lifetime

1 π0 134.9768 8.52× 10−17s

1 π± 139.57039 2.6033× 10−8s
1
2 K± 493.677 1.238× 10−8s
1
2 K 0/K̄ 0 497.611

0 η 547.862 0.00131 MeV

0 η′ 957.78 8.49 MeV

quite different from other nonets in that the mixing angle is
small, and the η and η′ are very close to being SU(3) octet
and singlet states respectively.

In addition to the ground state pseudoscalar mesons, there
can also be radially excited states. Both excited πs, the
π(1300) and π(1800), and ηs, the η(1295), the η(1405), the
η(1475), η(1760) and the η(2225) have been observed. The
K (1460) and K (1830) are the observed J P = 0− states. The
lighter is consistent with the first radial excitation. The Parti-
cle Data Group [616] identifies the states listed in Table 14 as
the nonet of radially excited pseudoscalar mesons. One could
also associate theπ(1800), η(1760) and K (1830) together as
a third nonet as listed in Table 15. However in addition to the
second radial excitation, there is a predicted pseudoscalar
glueball (see Sect. 8.4) as well as a nonet of J PC = 0−+
hybrid mesons (see Sect. 8.3).

With regard to the η(1295) state, we believe that its status
deserves some scrutiny and that the η(1405) and η(1475)
should be the two I = 0 members of the radially excited
pseudoscalar mesons. For the η(1295), there is a single report
in radiative J/ψ decays [2305,2306], but there is ambigu-
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Table 14 The radially excited pseudoscalar mesons according to ref-
erence [616]

Isospin State(s) Mass [MeV] Width [MeV]

1 π(1300) 1300 200 to 600

0 η(1295) 1294 55

0 η(1475) 1475 90
1
2 K (1460) 1482 335

Table 15 A possible third nonet of pseudoscalar mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 π(1800) 1810 215

0 η(1760) 1751 240

0
1
2 K (1830) 1874 168

Table 16 The vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 ρ(770) 775.26 149.1

0 ω(782) 782.65 8.49

0 φ(1020) 1019.461 4.249
1
2 K ∗±(892) 891.66 50.8
1
2 K ∗0(892) 895.5 47.3

ity about whether the signal is η(1295) or f1(1285). It has
not been reported in other J/ψ measurements since then,
while there has been extensive results of the η′, η(1405) and
η(1475). The majority of the observations have been in pion
production [2307–2311] where there are generally contribu-
tions from both the η(1295) and the f1(1285). In p p̄ annihi-
lation, both the η(1405) [2312] and the η(1475) [2313] have
been observed, but no observation of the η(1295) has been
reported.

The vector mesons
A spin triplet system with L = 0 forms the J PC = 1−−
nonet, its members are known as vector mesons. These
mesons are shown in Table 16. The dominant decay modes
of the vector mesons are through the strong interaction to
two or three pseudoscalar mesons and the states are nearly
ideally mixed with the ω nearly all uū and dd̄ , while the φ is
nearly all ss̄.

In addition to the expected radial excitations of the vec-
tor mesons, the L = 2, S = 1 qq̄ system can also have
J PC = 1−−. Finally, there is a nonet of hybrid mesons
expected with the same J PC . Thus, we expect disentan-
gling of the excited vector meson spectrum to be tricky. The
reported states in I = 1 are ρ(1450), ρ(1570), ρ(1700),
ρ(1900) and ρ(2150). In the I = 0 system, ω(1420),

Table 17 The radially excited vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 ρ(1450) 1465 400

0 ω(1420) 1410 290

0 φ(1680) 1680 150
1
2 K ∗(1410) 1414 232

Table 18 A possible fourth nonet of vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 ρ(1900)

0

0 φ(2170) 2162 100
1
2

Table 19 The pseudo vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 b1(1235) 1229.5 142

0 h1(1170) 1166 375

0 h1(1415) 1416 90
1
2 K1A

ω(1680), φ(1680) and φ(2170) have been reported. Finally,
for I = 1

2 , the K ∗(1410) and K ∗(1680) are known. The
Particle Data Group identifies the radially excited states as
in Table 17. The states identified with the D-wave nonet are
listed in Table 24 and discussed later. Finally, the ρ(1900)
and φ(2170) could be part of another nonet; either the hybrid
nonet or the second radial excitation of the ground-state vec-
tor mesons (Table 18).

The pseudo vector mesons
Spin singlet states with L = 1 form the J PC = 1+− nonet,
and are known as the pseudo vector mesons. These mesons
are listed in Table 19. There is one known state beyond those
listed in the table, the h1(1595) which has been reported in
pion production [2314]. There is also an interesting compli-
cation with the kaonic states where C-parity is not defined.
The states with open strangeness have J P = 1+ which is
the same as those in the J PC = 1++ axial vector mesons.
Because of this, the two states can mix, and it is believed
that the physical states, K1(1270) and K1(1400), are mix-
tures of the SU(3) states, K1A and K1B , with a mixing angle
θK1 = −(33.6± 4.3)◦ [2315] conventionally defined by
( | K1(1270)〉
| K1(1400)〉

)

=
(

sin θK1 cos θK1

cos θK1 − sin θK1

) ( | K1A〉
| K1B〉

)

.

The scalar mesons
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Table 20 The axial vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 a1(1260) 1230 250 to 600

0 f1(1285) 1281.9 22.7

0 f1(1420) 1426.3 54.5
1
2 K1B

A spin triplet with L = 1 can form three possible J PCs: 0++,
1++ and 2++. The 0++ states are known as scalar mesons
and are discussed in Sect. 8.2 because there are added com-
plications which make it difficult to discuss them with the
other mesons. There is also significant discussion of the scalar
states and their relation to the scalar glueball, see Sect. 8.4).

The axial vector mesons
The L = 1 J PC = 1++ mesons are known as the axial
vector mesons and are listed in Table 20. As noted earlier in
the discussion of the pseudo vector mesons, the SU(3) K1B

state is a mixture of the physical K1(1270) and K1(1400)
states. In addition to the states listed, two additional states
have been reported. The f1(1510) has been seen in kaon
production [2316,2317] as well as pion production [2318]
decaying to K ∗K . These productions and decay would favor
an ss̄ interpretation of the f1(1510), but it is probably too
light to be the radial excitation. A second state, the a1(1640)
is identified as the radial excitation of the a1(1270). This has
been observed in pion production with the most significant
observation in reference [2319]. It has also been reported in
D decays [2320].

The tensor mesons
The last L = 1 nonet contains the J PC = 2++ ten-
sor mesons, where the states are listed in Table 21. This
well-established nonet is close to ideally mixed as noted in
Table 11. As with the vector mesons, there is a second L , S
combination that can exist for J PC = 2++, L = 3 and S = 1.
In addition, one of the lightest glueballs is also expected to
have these quantum numbers, and of course radial excitations
should be present.

With regard to excited states, there is a second a2 state,
the a2(1700), which the Particle Data Group associates with
the radial excitation of the tensor mesons. This assignment is
based on mass, where we would expect the radiala2 state to be
close in mass to the a1(1640), the radial excitation of the a1.
The L = 3 state is expected to have similar mass to other L =
3 states, where here the a4(1970) anchors these nonet around
2 GeV. The a2(1700) has been observed in many production
mechanisms including pion production [2319,2321–2324],
p p̄ annihilation [2325–2328], two-photon production [2329,
2330] and ψ ′ radiative decays [2331].

For the isospin 0 states, there is an overpopulation of
f2 states, with 10 additional states beyond the two ground

Table 21 The tensor mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 a2(1320) 1316.9 107 to 600

0 f2(1270) 1275.5 186.7

0 f ′2(1525) 1517.4 86
1
2 K ∗2 (1430) 1427 100

Table 22 The radial excitations of the tensor mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 a2(1700) 1698 265 to 600

0 f2(1640) 1639 99

0 f2(1950) 1936 464
1
2 K ∗2 (1980) 1995 349

state tensors reported. These include the f2(1430), f2(1565),
f2(1640), f2(1810), f2(1910), f2(1950), f2(2010), f2(2150),
f2(2300) and f2(2340). For I = 1

2 , there is a single state,
the K ∗2 (1980). The Particle Data Group identifies the radi-
ally excited states as listed in Table 22. With the radial states
accounting for 2 of the 10 extra states, a second pair in the
L = 4 mesons, probably above 2 GeV in mass, and a glue-
ball state, there are still 5 states. Presumably several of the
reported states are all the same state, with low statistics and
differences in production mechanisms accounting for the dif-
ferences. Three of the isoscalar tensor states were observed
in the OZI rule suppressed reaction π− p→ φφn [2332] and
were discussed as one or three glueballs. This interpretation
is supported by a recent analysis of BESIII data on radiative
J/ψ decays (see Sect. 8.4). In any case, a careful exami-
nation of the I = 0 J PC = 2++ data with high statistics
experiments is merited.

The pseudo tensor mesons
Mesons formed with S = 0 and L = 2 have J PC = 2−+ and
are known as the pseudo tensor mesons. The known states are
listed in Table 23. In addition to the radial excitations of these
states, there is also a nonet of hybrid mesons expected. The
latter are likely slightly heavier than the mesons in Table 23.
There are three known states beyond those in the table, the
π2(1880), π2(2005) and the π2(2100). It is also interesting
that the decay patterns of the η2(1645) and the η2(1870)
both look like those for a uū/dd̄ state and not an ss̄ state
[2333]. This suggests that the η2(1870) might be paired with
the π2(1880) in a third nonet. However, studies of the axial
anomaly [2300] favor the assignment in Table 23, but with
an unusual mixing angle that is inconsistent with lattice, as
shown in Table 12.

The D-state vector mesons
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Table 23 The pseudo tensor mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 π2(1670) 1670.6 258

0 η2(1645) 1617 181

0 η2(1870) 1842 225
1
2 K2(1770) 1773 186

Table 24 The L = 2 1−− vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 ρ(1700) 1720 250

0 ω(1650) 1670 315

0
1
2 K ∗(1680) 1718 322

Table 25 The L = 2 3−− vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 ρ3(1690) 1688.8 161

0 ω3(1670) 1677 168

0 φ3(1850) 1854 87
1
2 K ∗3 (1780) 1776 159

The mesons formed from an S = 1, L = 2 qq̄ system can
have J PC = 1−−, 2−− and 3−− and are referred to as vector
mesons. The Particle Data Group identifies the states listed
in Table 24 with the 1−− states, where there is no candidate
for the φ state which is probably expected with a mass in
the 1.8 to 1.9 GeV mass region. For the J PC = 2−− states,
very little is known with the only assignment made by the
Particle Data Group being the K2(1820). However, similar
to the K1A and K1B of the 1+− and 1++ nonets, the kaonic
states from the 2−+ and 2−− nonets can also mix.

The J PC = 3−− nonet is one of the well established
nonets where a mixing angle is also reported. These states
are listed in Table 25. In addition to the listed states, there are
two additionalρ3 states reported in literature. Theρ3(1990) is
reported in p p̄ annihilation [2334,2335], and the ρ3(2250)
reported in both p̄ p annihilation and in ψ ′ decays [2334,
2336]. The lighter state could be a radial excitation of the
L = 2 ρ3(1690). The higher mass state is of similar mass to
the ρ5(2350) and could be an L = 4 meson.

Higher excitations
Going beyond the L = 2 mesons, less is known, with the most
information tending to be on the nonets with the largest J . For
the case of L = 3, there are candidates for the J PC = 4++
mesons as shown in Table 26. There should also be a 2++
and 3++ nonet as well as a J PC = 3+− nonet. While as
noted in the tensor meson section, there are a large number
of reported f2 states, in particular the f2(2010), f2(2150),

Table 26 The L = 3 4++ mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 a4(1970) 1967 324

0 f4(2050) 2018 237

0 f4(2300) 2320 260
1
2 K ∗4 (2045) 2048 199

Table 27 The L = 4 5−− vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 ρ5(2350) 2350 400

0

0
1
2 K ∗5 (2380) 2382 178

f2(2300) and f2(2340), assigning any of these to an L = 3
nonet is not clear. There is also a J P = 3+ kaonic state, the
K3(2320) which could be a member of either of the spin 3
nonets.

For the L = 4 mesons, the highest spin is J PC = 5−−,
and a few states with these quantum numbers are known, as
listed in Table 27. There should also be a 3−−, 4−− and 4−+
nonet for which a few states are reported. For I = 1

2 the
K4(2500) which could be a member of either of the J = 4
nonets. There are also two ρ3 states reported, the ρ3(1990)
and the ρ3(2250). The latter state is of similar mass to the
ρ5(2350) and could be an L = 4 meson. The lighter state
could be a radial excitation of the L = 2 ρ3(1690).

8.1.6 The leading Regge trajectories

The original meson Regge trajectories78 described a lin-
ear relation between the mass squared and the orbital
angular momentum of mesons [1068,2338], where the tra-
jectories include J PC = 0−+, 1+−, 2−+, 3+−, . . . and
1−−, 2++, 3−−, 4++, 5−−, . . .. In reality, the trajectories are
often more complicated than the simple linear form. In a sim-
plified picture when the quarks can be regarded as ultrarel-
ativistic, a linear confining potential leads to linear Regge
trajectories, while in the nonrelativistic regime, the trajecto-
ries would be nonlinear, and the intermediate regime would
lead to a transition in the slope of the Regge trajectories. In
the ultrarelativistic regime, the Regge slope depends on the
string tension, while more generally it depends on both the
quark masses and the tension. See reference [2337] for a more
detailed discussion on this. In addition to the trajectories in
orbital angular momentum l, there are also trajectories in the

78 See paragraph The Regge approach and QCD in Sect. 12.6 for an
introduction to Regge phenomenology
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Fig. 172 The pseudoscalar meson Regge trajectories as a function of
the orbital angular momentum l. The isospin 0 trajectory has been
shifted by 1

2 unit in l to the right. The established states, π , b1(1235),
π2(1670), η, h1(1170) and η2(1645) are shown in blue. The states
shown in green, b3(2030), π4(2250), h3(2025) and η4(2330), need
confirmation. The fitted slopes are consistent with 1.20 GeV2 for I = 1
and 1.37 GeV2 for I = 0 as in reference [2337]

radial excitation quantum number, n. From a simple linear
confining potential with string tension σ , the orbital trajec-
tory is given in Eq. (8.14) and the radial as in Eq. (8.15),
where one would expect universal slopes in both cases, with
the slopes related by a factor of π

2 .

M2 = 8σ l + c1, (8.14)

M2 = 4πσn + c2. (8.15)

For light-quark mesons, the slopes are similar, but not
universal. The orbital trajectories starting with the pseu-
doscalar mesons are shown in Fig. 172. The slopes for the
two are found to be 1.20 GeV2 and 1.37 GeV2 respectively.
The orbital trajectories starting with the vector mesons are
shown in Fig. 173. In these cases, the slopes are found to be
1.10 GeV2 and 1.09 GeV2 respectively.

8.2 The light scalars

José R. Peláez

8.2.1 Introduction

Light scalar mesons are treated in a separate subsection
because, on the one hand, both their existence and nature
have been the subject of a six-decade-long debate that pre-
dates QCD. On the other hand, they are particularly interest-
ing because they play a very relevant role in several aspects,
gathered below in seven items for concreteness, some of them
already present before QCD, some others after.

First of all, in 1955, well before QCD was formulated,
Johnson and Teller [2339] proposed the existence of a light
scalar-isoscalar field to explain the attractive part of the

Fig. 173 The vector meson Regge trajectories as a function of
the orbital angular momentum l. The isospin 0 trajectory has been
shifted by 1

2 unit in l to the right. The established states, ρ(770),
a2(1320), ρ3(1690), a4(1970), ρ5(2350), ω(781), f2(1270), ω3(1670)
and f4(2050) are shown in blue. The states shown in green, a6(2540)
and ω5(2250) need confirmation. The fitted slopes are consistent with
1.10 GeV2 for I = 1 and 1.09 GeV2 for I = 0 as in reference [2337]

nucleon–nucleon interaction. Two years later, Schwinger
suggested that such a field, which he named σ , could be
an isospin singlet, difficult to observe due to its huge width
caused by its most likely very strong coupling to two pions.

Second, in the early sixties, Gell-Mann and Levy [2340]
considered this field as the fourth member of a multiplet
together with the three pions to build the popular “Linear
sigma model” (LσM). Such a state could also be generated
dynamically in the Nambu and Jona-Lasinio (NJL) mod-
els [59,2255]. These relatively simple models were able to
explain the light masses of the pions, kaons and eta, and their
mass gap with respect to the other hadrons, since they are the
Nambu–Goldstone Bosons (NGB) of a spontaneous chiral
symmetry breaking observed in the spectrum. Actually, they
are pseudo-NGB, because they are not strictly massless. The
masses of light-scalar mesons are closely related to the size
of the non-zero vacuum expectation value, particularly those
that share its same quantum numbers. Details of their inter-
actions are also related to the specifics of the spontaneous
breaking mechanism. The consequences of chiral symmetry
were initially worked out with current–algebra methods as
described in Sect. 1. Of particular interest for us will be the
derivative interactions of NGB among themselves and the
requirement of an Adler-zero below threshold in the NGB
scattering amplitudes [20]. The leading order at low energies
of those amplitudes was obtained by Weinberg in [22].

Third, since light scalars are the lightest states in the QCD
spectrum that are not pseudo-NGB, we may expect them to fit
as ordinary quark–antiquark mesons within the Quark Model
that was proposed in the mid 1960s [17,18]. However, they
do not, as we will see repeatedly below. Moreover, within
the Quark Model, another scalar strange state, relatively sim-
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Fig. 174 Light scalar nonet. Note the inverted hierarchy with respect
to the naive qq̄ assignment in Fig. 171, according to which the a0(980)
should be ∼ 200 MeV lighter than the K ∗0 (700)

ilar to the σ and called κ , was proposed by Dalitz in 1965
[2341], with a quark–antiquark assignment in a simple poten-
tial model, or more generally “simply on the basis of SU(3)
symmetry”. The existence of these two states, the σ and κ ,
nowadays known as f0(500) and K ∗0 (700), has been very
controversial until very recently because they are extremely
wide and difficult to observe. Actually, since they were first
proposed, there were many experimental and phenomeno-
logical claims of such states, sometimes narrow, sometimes
wide, sometimes lighter than 1 GeV, sometimes heavier, and
sometimes absent. The list of references is huge and we refer
the reader to the Review of Particle Properties (RPP) [616]
and the evolution of its “Note on Light Scalars” over the
years, as well as the historical accounts in relatively recent
reviews [2342,2343]. An additional pair of scalar mesons,
sitting very close to the K K̄ threshold at 980 MeV, were
soon identified, presently known as f0(980) and a0(980).
These are narrower and their existence has not been contro-
versial, although their mass and width values have changed
slightly over the years. All in all they form the lightest scalar
SU(3) nonet in Fig. 174. Note the largely broken flavor sym-
metry since the difference in the nominal masses is as large
as 480 MeV. In addition, the mass hierarchy is inverted with
respect to the naive expectations for an ordinary nonet of
quark–antiquark states as in Fig. 171. For example, since in
such a scheme the a0(980) would contain no strange valence
quarks or antiquarks it should be about 200 MeV lighter than
the K ∗0 (700), with one valence strange quark or antiquark.
But this is precisely the opposite of what is found for the
lightest scalars.

Fourth, light scalars, and particularly the σ and κ , are dif-
ficult to include in the linear Regge trajectories that the other
ordinary mesons follow [2344–2346] . These linear trajec-
tories are related to the confinement mechanism. This diffi-
culty became clear only around the time when the existence
of the lightest scalars was being settled, and although QCD
had already been formulated, it played no direct role in this
discussion.

With the advent of QCD new interesting perspectives
arose. In particular:

Fifth, one of the most attractive possibilities of a non-
abelian gauge theory like QCD is the existence of glue-
balls, discussed in Sect. 8.4. The lightest one is expected to
have scalar-isoscalar quantum numbers and to appear as an
“extra state” beyond the quark SU(3) multiplets. It is there-
fore important to identify all states within some light-scalar
meson SU(3) nonets. For this, strange states are important,
since they do not mix with glueballs and count how many
quark nonets exist.

Sixth, given the quark constituent masses, tetraquarks
would be naively expected to appear naturally around 1.4
GeV, if they appear at all. However, based on the dominance
of the magnetic contribution of gluon interactions, Jaffe
[2347] was able to build, within the “bag” model, tetraquarks
well below 1 GeV. This suggests the existence of two 0+
nonets, one made of such tetraquarks, below 1 GeV, that on
a first approximation could be identified with the nonet in
Fig. 174 and another one made of ordinary qq̄ above 1 GeV.
This is how light scalars became the first non-ordinary-meson
candidates, in the form of tetraquarks, or meson molecules.
Still, they are not usually considered “exotics”, but “crypto-
exotics”, since their quantum numbers can also be built with
ordinary quark–antiquark configurations, with which they
will necessarily mix, thus complicating this simple picture.

Seventh and final, despite QCD being non-perturbative
at low energies, its symmetries, and particularly the sponta-
neous symmetry breaking of chiral symmetry leading to a
mass gap between NGB and other hadrons, allow for a sys-
tematic low-energy (and low-mass) expansion of amplitudes
involving pions, kaons, and the eta. The mathematical for-
mulation in terms of an Effective Theory [1426] in the meson
sector, has been presented in Sect. 6.2 and is called Chiral
Perturbation Theory (ChPT) [69,1610]. Being the next less
massive states after the NGB, one would naively expect the
lightest scalars to saturate the ChPT parameters at NLO dis-
cussed in Sect. 6.2. Once again, they do not, but the vector
mesons do instead. This suggests once more that the dynam-
ics that govern the formation of light scalars might be differ-
ent from that of ordinary mesons like vectors.

With all those pieces of motivation in mind, the rest of the
section is divided into two parts. First, we will describe the
light scalars present status, paying attention to the dispersive
and analytic methods used to settle the controversy about
their existence, and other dispersive applications that are of
relevance for the next part. Since the purpose of this work is
to celebrate the 50th anniversary of QCD, we apologize for
discussing in the second part only the most direct connections
with it. Namely, their description in terms of (unitarized)
ChPT and their dependence on the number of colors and
quark masses. We will then discuss what can we conclude
from these results.
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Table 28 Scalar light mesons below 1.9 GeV as listed in the RPP[300].
Note that for the first nonet we have taken the “T -matrix pole” param-
eters, not available for the rest. Also, there seems to be one f0 state too
many to form a second nonet

Isospin State(s) Mass [MeV] Width [MeV]

0 f0(500) 400–550 400–700

1/2 K ∗0 (700) 630–730 520–680

0 f0(980) 980–1010 40–70

1 a0(980) 960–1030 40–140

0 f0(1370) 1200–1500 200–500

1/2 K ∗0 (1430) 1425± 50 270± 80

1 a0(1450) 1474± 19 265± 13

0 f0(1500) 1506± 6 112± 9

0 f0(1710) 1704± 12 123± 18

Present status
As it is customary, and given the present precision, we con-
sider the isospin limit. At present, 19 well-established scalar
mesons are identified in the RPP [300] below 1.9 GeV,
which we list in Table 28 with their present names. We have
already classified nine of them in the lightest scalar nonet
in Fig. 174. The other ten are three isoscalars, f0(1370),
f0(1500), f0(1710), the a0 (1450) isovectors with their three
different charges, and the K ∗0 (1430) in four different com-
binations of strangeness and charge. There are more scalar
mesons, but they all lie nominally at or above 1.95 GeV.
Hence, given the number of strange scalars and isovectors,
there must be two nonets below 1.75 GeV. Looking at their
masses, one lies below 1 GeV and the other one around 1.4
GeV. Note, however, that above 1 GeV there seems to be
one scalar state too many. This agrees with the expectation
for the lightest QCD glueball. On the other hand, the newly
proposed a0(1700) [2348–2351] points to an interpretation
of the f0(1710) as isoscalar partner of the a0(1700).

Compared with other mesons made of light quarks dis-
cussed in Sect. 8.1, we see that, for similar masses, they
tend to have larger widths. The exceptions are the f0(980)
and a0(980), which are narrower than the rest because their
decay into K K̄ is suppressed due to their proximity to the
K K̄ threshold. Given the O(100)MeV width of most of these
resonances, there must be some mixing between states with
the same quantum numbers in different nonets. This mix-
ing most likely distorts the mass hierarchies expected if they
were narrow. Many mixing schemes have been proposed, but
they only make sense for the flavor part of the wave func-
tion. We will see below one such treatment. Unfortunately,
they are often used for the spatial or momentum part, which
would only make sense in the narrow width approximation
for almost stable mesons, which is not the case of any pair of
light scalars with the same quantum numbers, and should be
avoided (see Section 4.6.2 in [2342] and references therein).

In general, light-scalar-meson parameters have much big-
ger uncertainties than those of other mesons. This is because
their large widths make them often overlap with one another
as well as with other analytic features like thresholds. As a
consequence, in many analyses they do not show up as clean
resonance peaks and their observed shapes can vary strongly,
depending on specific features of their production, becom-
ing dips or being even completely masked. It is therefore
essential to determine light-scalar-meson parameters from
process-independent quantities. In particular, resonances are
rigorously defined through their associated poles in the com-
plex plane, that we briefly describe next.

8.2.2 Resonance poles and dispersive determinations

Resonance poles
These are poles appearing in the complex s-plane of any T -
matrix element describing a process where a resonance R
is produced as an intermediate state. As a technical remark,
these poles appear in conjugated pairs in the Riemann sheet
that is reached when crossing continuously from above the
square-root cuts associated with the center-of-mass (CM)
momenta of the particles in the physically available inter-
mediate states. This sheet is sometimes called “adjacent”,
“proximal” and in the elastic case “second” sheet. Out of
the conjugate pair, it is the pole in the lower-half plane that
most influences the behavior of the amplitude on the real
axis. Then, its position sR is related to the resonance mass
and width as

√
sR ≡ M − iΓ/2. The familiar peak shape in

the modulus squared of the amplitude is clearly observed for
real-physical values of s only when the resonance is narrow
and well isolated from other singularities. Only in such cases
the simple Breit–Wigner (BW) approximation, or models like
K-matrices or isobar sums, etc. may be justified. However,
this is not the case for most scalars and definitely not for
the f0(500) and K ∗0 (700), which have been the most contro-
versial and latest states to be accepted as well-established in
the RPP. This is the reason why in Table 28 we provide the
“T -matrix pole” mass and widths, avoiding “Breit–Wigner”
parameters.

Let us then briefly comment on how the poles of those
states are determined by means of model-independent dis-
persive and analytic techniques, although we first need to
define partial waves.

Partial waves
Resonances and their quantum numbers are most easily iden-
tified using partial waves of definite isospin and angular
momentum !. For rigorous determinations of the lightest
scalar mesons, the most relevant process is meson–meson
scattering, whose partial waves are defined as follows:

f I! (s) =
1

32πK

∫ 1

−1
dzs P!(zs)F

I (s, t (zs)), (8.16)
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where F I (s, t) are the amplitudes, or elements of the T -
matrix, of definite isospin I ; s, t are the usual Mandelstamm
variables, P! the Legendre polynomials and zs the scattering
angle in the s channel. Note that K = 1, 2 for Kπ and
ππ , respectively, because, for hadron interactions, pions are
identical particles in the isospin limit that we will use.

It is convenient to recast partial waves in terms of the phase
shift δ I! and elasticity ηI

! as follows:

f I! (s) =
ηI
! (s)e

i2δ I! (s) − 1

2iσ(s)
, σ (s) = 2q(s)√

s
, (8.17)

where q is the CM momentum of the scattering particles. In
the elastic regime ηI

! = 1 and we can write:

f I! (s) =
eiδ

I
! (s) sin δ I! (s)

σ (s)
. (8.18)

For later purposes, it is important to recall that we are inter-
ested in poles in the second Riemann sheet. Let us illustrate
the elastic case, where the analytic continuation to the second
sheet through the physical cut is very simple. Moreover, it
is the most relevant for the σ/ f0(500) and κ/K ∗0 (700), since
they appear in elastic ππ and πK scattering, respectively,
well below the next open threshold. For elastic partial waves,
the following relation holds S! = 1 + 2iσ(s) f!. Note that,
in the partial-wave context, the T -matrix is actually called
f . In addition, above threshold, the unitarity of the S-matrix
implies

Im f I! (s) = σ(s)| f I! (s)|2, Im f I! (s)
−1 = −σ(s), (8.19)

which in turn imposes the following unitarity bounds:

| f I! (s)| ≤ 1/σ(s). (8.20)

Knowing the imaginary part of f I! on the cut allows us to
write a very simple relation between the S-matrix in the first
(I) and second (II) sheet:

S(I I )! = 1

S(I )!

, f (I I )(s) = f (I )

1+ 2iσ(s) f (I )
, (8.21)

where the isospin and angular-momentum indices have been
momentarily suppressed for convenience. Note that in the
second sheet σ(s∗) = −σ(s)∗.

Nevertheless, in the σ and κ case, we still need to know
the value of f I! in the first Riemann sheet, but very deep
in the complex plane. Unfortunately, the continuation to the
complex plane is a hard and unstable mathematical problem.
Different parameterizations or models, seemingly equivalent
when describing data in a given region, may lead to different
analytic continuations and different poles. The rigorous way
of extending the amplitudes to the complex plane is through
dispersion relations, if available, and analytic continuation
techniques.
Analyticity and dispersion relations

Relativistic causality implies that the amplitude F(s, t), for
fixed t , must be analytic in the first Riemann sheet of the com-
plex s-plane except for the real axis. In the absence of bound
states in meson–meson scattering, only singularity cuts are
present on the real axis. First of all, a right-hand-cut (RHC)
appears from threshold to +∞. Crossing this RHC continu-
ously leads to the adjacent Riemann sheet, where resonance
poles may exist. In turn, crossing symmetry implies that there
is a left-hand-cut (LHC) from −∞ to s = −t due to cuts in
the u channels. In particular, the LHC extends up to s = 0
for forward scattering (t = 0) and for partial-wave ampli-
tudes. Finally, for scattering of two particles with different
masses, the P!(cos θ) integration in the partial wave defi-
nition yields a circular cut of radius |m2

1 − m2
2| centered at

s = 0. Then, Cauchy’s integral formula relates the ampli-
tude at any s in the first Riemann sheet with integrals over
the amplitude imaginary part along the cuts. These are called
dispersion relations.

Since Cauchy’s Integral formula applies to functions that
depend on one variable, say s, the other variables have to
be fixed or integrated over. Of particular interest are forward
dispersion relations (FDRs), which correspond to the fixed-t
case with t = 0. Also of interest for our discussion below
are hyperbolic dispersion relations, obtained when s, t, u are
fixed to lie on an hyperbola (s−a)(u−a) = b. Any of these
relations can also be integrated in t as in Eq. (8.16) to obtain
a partial-wave dispersion relation. In principle, forward dis-
persion relations are applicable at any s, but for different
fixed-t and hyperbolic cases the applicability is reduced.
These applicability domains affect those of the partial waves,
depending on how they have been obtained (see the appendix
in [2343] for details).

Generically, the most complicated parts of the calcula-
tion are the left and circular cuts. Within the context of light
scalars, partial-wave dispersion relations are the most rele-
vant and we can crudely group their most frequent uses into
two categories: precision dispersive approaches and unita-
rization techniques.

Before discussing these two uses in detail, let us just men-
tion that dispersive approaches also constrain Regge trajecto-
ries and they hence can be used to calculate, not fit, the Regge
parameters of resonances using their poles as input. While
the resulting trajectories for ordinary mesons like the ρ(770),
K ∗(892), f ′2(1525), f ′2(1525) come out [2345,2352] with a
rather small imaginary part and a dominant real part, whose
s dependence is almost a straight line, as expected, those for
the f0(500) and κ come at odds with the ordinary behavior
[2345,2346]. This explains why those two resonances do not
fit well in the usual phenomenological Regge plots.

Precision dispersive approaches:
We aim at mathematical rigor to establish the existence of
the σ and κ poles and at precision to determine their param-
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eters. Note that these are the poles closest to the left and
circular cuts. Therefore, those cuts must be accurately eval-
uated using the partial-wave expansion of the crossed chan-
nels. This complicates the integrands, and the new relations
then couple different partial waves and channels. These rela-
tions are generically called Roy-like equations [2353]. There
are variations like Roy–Steiner ([2354,2355] for different
masses and hyperbolic relations), GKPY ([2356] with mini-
mal subtractions), etc. Their applicability is reduced in prac-
tice to energies around 1.1 GeV for ππ [2357,2358] and πK
scattering [2359]. The inelastic, higher-energy, and higher-
wave contributions are calculated from phenomenological
fits. They have been used with two approaches:

– Solving the equations for the lowest partial waves ! =
0, 1, in the region of interest, without using any data
in that region. All other contributions come from phe-
nomenological fits. Sometimes these are supplemented
with ChPT constraints, which reduce considerably the
uncertainties. Thus, poles and results in the resonance
region could be considered as predictions from the equa-
tions and the other terms (and ChPT if used). The proof
of the applicability of this approach to determine the
existence of the σ/ f0(500) and κ/K ∗0 and their resulting
parameters were provided in [2360] and [2361], respec-
tively.

– Data driven approach. Here Roy-like equations are
used as constraints on fits to the S and P partial-wave
data [2362]. Data sets that are largely inconsistent with
these constraints are discarded. Additional contributions
from higher energies and partial waves are constrained
with forward dispersion relations and sum rules. Sim-
ple parameterizations are then fitted to the remaining
data, but constrained to satisfy Roy-like equations in dif-
ferent versions and/or number of subtractions, as well
as forward dispersion relations up to 1.42 GeV for ππ

[2356] and up to 1.6 GeV for πK [2363]. The lat-
ter was later coupled to ππ → K K̄ and studied in
[2343] with Roy–Steiner equations. With this approach
the σ/ f0(500) and κ/K ∗0 (700) poles were obtained in
[2362] and [2343,2364], respectively.

Recall that dispersion relations are written in the first Rie-
mann sheet. However, in both approaches above, poles can be
determined within a fully dispersive approach, because the
second sheet can be easily obtained using Eq. (8.21). In con-
trast, accessing the “contiguous” sheet in the inelastic regime
requires additional analytic continuation methods. Detailed
reports on the dispersive determinations of the σ/ f0(500)
and κ/K ∗0 (700) poles can be found in [2342] and [2343],
respectively. For convenience we have gathered their result-
ing poles in Tables 29 and 30. We also provide the mod-
ulus of the coupling to the dominant decay channel. Note

Table 29 σ/ f0(500) pole determinations using Roy–Steiner equations
and the conservative dispersive estimate [2342] which covers them. For
the latter, we have corrected a typo in the error of Im

√
spole which read

±12 MeV instead of ±15 MeV

σ/ f0(500)
√
spole (MeV) |g| (GeV)

Refs. [2360,2365] (441+16
−8 )− i(272+9

−12.5) 3.31+0.35
−0.15

Ref. [2366] (442+5
−8)− i(274+6

−5) -

Ref. [2362] (457+14
−13)− i(279+11

−7 ) 3.59+0.11
−0.13

Conservative Dispersive Estimate

Ref. [2342] (449+22
−16)− i(275± 15) 3.45+0.25

−0.29

Table 30 κ/K ∗0 (700) dispersive pole determinations using Roy–
Steiner equations

κ/K ∗0 (700)
√
spole (MeV) |g| (GeV)

Ref. [2361] (658± 13)− i(279± 12)

Ref. [2343] (648± 7)− i(280± 16) 3.81± 0.09

that the uncertainty and spread of the dispersive results are
much smaller than the RPP estimates in Table 28. This is
because other non-dispersive and model-dependent determi-
nations are included in the RPP estimate. However, the exis-
tence of two independent dispersive approaches was decisive
to consider both resonances as well established in the RPP
2012 and 2020 editions, respectively, changing their nominal
masses in their names to be closer to their pole values.

Note that the f0(980) pole was obtained simultaneously
within the same framework [2356,2360]. However, being a
narrow resonance and further away from left cuts, its pole is
more similar to those obtained with other methods. Finally,
some of these analytic continuation methods – using disper-
sively constrained input – have been applied to determine
the poles of further mesons in the inelastic regime, including
the scalars K0(1430) [2367], f0(1370) and f0(1500) [2368].
In such cases Eqs. (8.18), (8.19) and (8.21) do not hold and
the use of analytic continuation methods is unavoidable to
suppress any model dependence.

8.2.3 Light scalars and QCD

In the previous section, we have discussed how the rigorous
dispersive approach was instrumental in settling the contro-
versy about the existence and parameters of theσ and κ . Once
this is settled, we now concentrate on light scalars within the
context of QCD, which is the subject of this volume.

Unitarized chiral perturbation theory (UChPT)
Being so light, these resonances lie in the non-perturbative
region of QCD, and thus an effective treatment with ChPT
seems appropriate. However, the ChPT series by itself can-
not generate poles and also violates unitarity as the energy
reaches the resonance region. The most successful approach
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is thus a combination of Chiral Perturbation Theory (ChPT)
with dispersion relations. This is generically known as uni-
tarized ChPT.

ChPT, which is the low-energy theory of QCD, and is
formulated as an expansion in momenta or masses of the
NGB, has been introduced for the meson sector in Sect. 6.2.2.
Meson–meson scattering partial waves are then expanded as
f (s) = f2(s)+ f4(s)+ · · · , where f2n(s) = O(p2/F2

π )×
O(p/Λχ)

2n−2, p are the meson CM momenta or masses,
Λχ = 4πF0 and F0 is the NGB decay constant at LO, com-
mon to all mesons at that order. Up to higher orders, F0 can
be approximated by Fπ , FK… Note that we have suppressed
momentarily the isospin and angular momentum indices I, !.
As an example, the O(p2) or LO ππ and πK elastic partial
waves in the scalar channel with lowest isospin are:

f 0
0 (s) =

2s − M2
π

32πF2
π

, (8.22)

f 1/2
0 (s) = 5s2 − 2(M2

K + M2
π )s − 3(M2

K − M2
π )

2

128πF2
π s

.

ChPT amplitudes are an expansion in powers of p and
cannot satisfy the unitarity condition in Eq. (8.19) exactly,
but just perturbatively:

Im f2(s) = 0, Im f4(s) = σ(s) f2(s)
2, . . . (8.23)

When p/Λχ is very small, this is not a problem, but the vio-
lation of unitarity grows with momenta or energy. This vio-
lation then becomes a severe caveat to describe resonances,
since, in typical cases, resonant effects saturate the unitar-
ity bound in Eq. (8.20). Even worse, the ChPT series cannot
generate poles in s and thus, in principle, cannot generate
resonances.

Therefore, if we want to describe resonances, we need
to implement unitarity, but also analyticity if we want to
study their associated poles. Let us now provide a simple,
but formal, derivation of ChPT unitarization methods. The
elastic unitarity condition in Eq. (8.19) fixes the imaginary
part of the inverse partial wave. Hence, naively, we just have
to use ChPT to calculate the real part of the inverse amplitude,
and write: Re(1/ f ) = Re 1/( f2 + f4 + · · · ) � (1/ f2)(1 −
Re f4/ f2 + · · · ), since f2 is real from Eq. (8.22). Then we
write a unitarized elastic partial wave at different orders as:

f ULO(s) =
1

1/ f2(s)− iσ(s)
, (8.24)

f UNLO(s) =
1

1/ f2(s)− Re f4(s)/ f2(s)2 − iσ(s)
, . . . (8.25)

and similar expressions for NNLO, etc. Note that the ChPT
series is recovered if re-expanding again. These expressions
are unitary and can be recast in explicitly analytic forms.
For instance, using Eq. (8.23), the second one is f UNLO =
f 2
2 /( f2 − f4), which is known as the NLO Inverse Ampli-

tude Method (IAM). Similar analytic formulas for higher
orders exist [2369–2371]. Thus these methods can be ana-
lytically continued to the complex plane and the second sheet
using Eq. (8.21). This derivation is formal because, strictly
speaking, we could still not use the expansion of the real
part beyond the applicability realm of ChPT into the reso-
nance region. However, there are derivations [2372–2374]
from partial-wave dispersion relations for the inverse partial
wave and ChPT is only used in the subtraction constants at
s = 0 or in the left and circular cuts. The use of several
subtractions makes those cuts to be dominated by the low
energies, where ChPT is applicable, thus justifying the use
of the Inverse Amplitude Method.

Interestingly, with the simplest possible calculation, i.e.
using just the LO in Eqs. (8.24) and (8.22) in the chiral limit
Mπ ,MK → 0, we find the following poles in the second
Riemann sheets of the partial waves where the σ/ f0(500)
and κ/K ∗0 (700) are seen:

f 0
0 :
√
sσ = (1− i)

√
8πF0 � (463− i463)MeV, (8.26)

f 1/2
0 : √sκ = (1− i)8

√
π/5F0 � (638− i638)MeV,

where for the numerical values of F2
0 we have taken F2

π �
92.3 MeV for ππ and Fπ FK for πK scattering, with FK =
1.19Fπ [300]. Taking into account that this is the most naive
LO unitarized calculation, with no free parameters, the light-
est scalar masses come remarkably close to their actual val-
ues, while their widths are about a factor of 2 too wide. Note
that the only dynamical information is the scale of the spon-
taneous chiral symmetry breaking, given by F0. In contrast,
if the same procedure is followed with the vector ! = 1
channels, the resulting poles for the ρ(770) and K ∗(892)
come almost twice too heavy, and their widths more than
16 times too wide. This is already an indication that the LO
low-energy chiral dynamics plays a predominant role in the
formation of light scalar resonances, and very little for other
ordinary mesons.

The description of meson–meson scattering at NLO in
UChPT is very successful for both scalar and vector par-
tial waves in all isospin combinations (tensor waves start
at NNLO). In particular, now not only the pole width of the
scalars comes right, but also the vector meson poles and their
parameters. Recall that, as explained in Sect. 6.2, the NLO
ChPT calculations contain several Low Energy Constants
Li (μ), which multiply the terms in the NLO Lagrangian
allowed by symmetry. They are scale-dependent because they
absorb, through renormalization, the loop divergences at pre-
vious orders. In addition, they contain information about the
underlying quark and gluon dynamics, namely, QCD. Only
when these Li are taken into account it is possible to describe
the “ordinary” quark–antiquark vector mesons with UChPT.
However, the Li combinations that appear in the scalar chan-
nels are much less relevant numerically and that is why scalar
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poles come out fairly decent with just the LO UChPT and
just information on the chiral breaking scale.

So far we have only discussed elastic unitarization. But
exactly the same naive derivation can be followed in matrix
form to obtain a coupled channel T -matrix formalism [2375–
2377], only slightly more complicated. When this is done,
besides the f0(500) and K ∗0 (700) poles, those associated
with the a0(980) and f0(980) resonances also appear in the
Inverse Amplitude Method [2377], completing the lightest
scalar nonet, as well as those of the ρ(770) and K ∗(892)
vectors.

Many variations of ChPT unitarization techniques exist
in the literature of which, together with the IAM, the sim-
plest and most popular is the Chiral Unitary Approach [2378,
2379] (for other variations, see the reports [2342,2380–
2382]), which usually raises the caveat about some arbitrari-
ness. However, all unitarization methods just correspond to
finer or more crude approximations to Re(1/ f ) and its ChPT
series or to different treatments of the left cut, or even includ-
ing some additional heavier states. But as long as they contain
the basic information about the chiral scale, or are equivalent
to the ChPT LO, they all obtain a similar description of light
scalars, whereas vectors or other resonances can be accom-
modated only when including enough NLO information.

Of course, since unitarization methods involve some trun-
cation of ChPT and approximations, they are not competitive
in precision and rigor with the precise dispersive approaches
discussed before. They have, however, another advantage,
which is that we can study the dependence of the resonances
on QCD parameters, which we will describe next.

Leading QCD 1/Nc behavior
At leading order in the 1/Nc expansion [1162,2383], ordi-
nary qq̄ mesons behave as M ∼ O(1) and Γ ∼ O(1/Nc).
Genuine tetraquark states [2384,2385] have at least that same
Nc behavior, which is even more suppressed for glueballs.

First of all, using meson–meson scattering and the light-
resonance pole parameters it is possible to build observables
whose sub-dominant Nc corrections are highly suppressed
[2386]. When evaluated for the f0(500) and K ∗0 (700) the
resulting values are at odds with the ordinary meson or glue-
ball behavior by several orders of magnitude.

Next, using the effective theory approach, the 1/Nc lead-
ing order of the NLO ChPT parameters is known from a
model-independent analysis: Mπ ,MK ∼ O(1), F0 ∼ √Nc

and the Li behavior is either O(1) or O(Nc) [69,2387]. If,
in the UChPT amplitudes, we then call p a parameter whose
behavior is O(Nk

c ) and change its value to p → p(Nc/3)k ,
we will obtain the leading 1/Nc behavior of resonances
following their associated poles as Nc is increased. Thus,
already with the substitution F0 → F0

√
Nc/3 in the LO

UChPT results in Eqs. (8.26), we obtain a non-ordinary

behavior for both the σ and κ . Namely, their M, Γ ∼
O(
√
Nc).

That was just the naive LO estimate, but the leading
1/Nc dependence within UChPT has been studied to NLO in
[2377,2388] and NNLO in [2389]. It is then possible to study
the light vectors as well, and they come remarkably compat-
ible with the expected ordinary behavior. This is shown for
the ρ(770) in the top panel of Fig. 175. However, the σ and
κ poles, shown in the center and bottom panels of Fig. 175,
respectively, display again a non-ordinary behavior, at least
near the physical value of Nc = 3. This is a robust result
also found in other approaches. Of course, if Nc is made
very large, the dominance of meson loops governed just by
F0, which are suppressed by 1/Nc, fades away. Then, even
the tiniest mixture with an ordinary meson could dominate
at sufficiently large Nc. We should remark that there is some
uncertainty, that grows with Nc due to the scale dependence
of the Li , illustrated for the σ in Fig. 175. Indeed, Fig. 175
shows that the sigma pole could turn back [2390] to the real
axis, well above 1 GeV. This could be a small mixture with
an “ordinary” state around or above 1 GeV. This is also found
in NNLO UChPT [2389]. Similarly, in other phenomenolog-
ical approaches the σ and κ only appear when the unitarized
meson–meson interaction is included, showing up as an addi-
tional pole due to unitarization, in addition to ordinary states
above 1 GeV that are present even if meson–meson inter-
actions are turned off (this was first proposed in [2391], for
additional references see [2342]). Back to UChPT, the ordi-
nary subdominant component restores the semi-local duality
sum-rules [2390] that would be violated if the light scalars
just disappeared from the spectrum by becoming too massive
and wide. However, other analyses [2392,2393], challenged
in [2394], yield a σ behavior closer to the one of the opposite
side of the scale uncertainty in Fig. 175, reaching the third
quadrant at very large Nc, which lacks a clear interpreta-
tion. One should nevertheless recall that the large-Nc regime,
although of mathematical interest, is not the one of relevance
for the observed meson, but the leading 1/Nc behavior near
Nc = 3.

Quark-mass dependence and light-scalar multiplets
The study of quark-mass dependence is of interest to under-
stand the dynamics of their formation, to provide a guideline
for lattice studies, and to check that the light scalar states that
we have grouped in an octet are degenerate when the strange
and non-strange quark masses are equal.

We have seen in Sect. 6.2 the relation between quark
and meson masses. This allows us to study the quark mass
dependence of the σ at NLO [2395] and NNLO [2396] and
κ at NLO [2397]. A slight IAM modification is used to
deal with subthreshold Adler zeros [2398]. Figure 176 thus
shows the resulting σ and κ pion mass dependence. Note
that beyond 300–350 MeV the results are at most qualita-
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Fig. 175 Trajectories of the ρ(770) (top), σ/ f0(500) (center) and
κ/K ∗0 (700) (bottom) poles in the complex plane as Nc is varied away
from 3 within NLO ChPT unitarized with the IAM. The lighter curves
in the center plot indicate the uncertainties when varying the regular-
ization scale μ in the usual range, as recalculated in [2390]. In the case
of the ρ(770) the three lines almost overlap and are not plotted. Top
and center figures taken from [2390] and bottom figure from [2377]

tive. With increasing pion mass, the meson masses grow,
although slower than the two-pion threshold, and their pole
widths decrease. When the pion mass is 2–3 times its physical
value, the 2π threshold is above the pole mass of these res-
onances. Then, their behavior differs dramatically from that
of the ρ(770) and K ∗(892) (the latter shown in Fig. 176).

Fig. 176 Top: Dependence of the sigma mass Mσ on the pion mass,
from the NNLO (two-loops) IAM [2389]. Different curves represent
different fits on [2389]. The thin continuous line shows the 2mπ thresh-
old. Bottom: mπ dependence of the κ (solid line) and K ∗(892) (dashed
line) masses [2397]. All masses and widths are defined from the pole
positions as obtained from NLO IAM fits. Figures taken from [2399]
(top) and [2400] (bottom)

The width of these non-scalar mesons would tend to zero,
and their conjugated pair of poles would meet at threshold
[2395,2401]. Right after that, one of their poles would jump
to the first sheet, whereas the other would remain at a symmet-
ric position in the second sheet, both below threshold. This
is a bound state. In contrast, the σ and κ conjugated poles
meet in the second sheet below threshold. The two branches
observed in Fig. 176 correspond to these two poles in the sec-
ond sheet, where at first one moves towards threshold and the
other away from it. The closest one to threshold, influencing
the most the physical region, is known as a “virtual” or quasi-
bound state. Eventually, it reaches threshold and jumps to the
first sheet, becoming a bound state. However, its second-sheet
counterpart lies in a rather different position. The more asym-
metric their positions, the more predominant their “molec-
ular” or “meson cloud” nature is. Hence, UChPT suggests
that, at high pion masses, both the f0(500) and K ∗0 (700) are
closer to two-meson states than to ordinary mesons.
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Fig. 177 Trajectories of the poles that appear in coupled-channel uni-
tarized amplitudes of different isospin as the pion, kaon, and eta masses
are varied from their physical values to a common value of 350 MeV
[2406]. This shows that the lightest scalars actually belong to a nonet
in the SU(3) limit. The two trajectories with I = 0 correspond to the
singlet and octet states, not directly to the poles of the σ or f0(980)
resonances, which are a mixture of these two. Figure taken from [2406]

Quark masses can be changed on the lattice. Actually,
calculations are not often done at physical masses, which are
expensive numerically. Note also that analytic continuation
to reach poles would be required, although models are often
used to reach poles. There are lattice calculations for the σ

[2402,2403], supporting its molecular picture at very large
pion masses, where it is a bound state. The σ is also found at
moderately large pion masses [558,2404] qualitatively con-
sistent with UChPT. For mπ = 236 MeV [558,559] lattice
results are consistent with a pole now in the second Rie-
mann sheet, also consistent with UChPT. A virtual state was
found for κ in πK scattering on the lattice [551,577], again
in qualitative agreement with UChPT. However, as the pion
mass becomes lighter, the σ and κ poles are plagued again
with instabilities [552,559,560]. In [2405], Adler zeros, i.e.
chiral symmetry, were found to be very relevant in the κ

determination. A dispersive “data-driven” approach of the
kind explained above may be relevant for a robust extraction
of light scalar poles from lattice-QCD. We refer to Sect. 4
for further details.

The strange-quark mass can also be varied [2397], but not
much since it is already quite high, and thus the observed
changes on scalars are very smooth. However, when chang-
ing both quark masses one can reach the degenerate pion–
kaon mass limit. Figure 177 shows that the trajectories of
the κ pole, and a combination of the σ and f0(980) become
degenerate with the a0(980) pole in that limit. This result has
been obtained [2406] within the Unitary Chiral Approach,
where the left cut is neglected and the effect of the Li is
mimicked by a mass-independent cutoff. Still, this provides
strong support for the assignment of these states to the same
lightest scalar octet.

8.2.4 Summary

Despite their relevant role in numerous aspects of hadron
physics and QCD, the controversy about the existence and
the parameters of the lightest scalar nonet, particularly for
the σ/ f0(500) and κ/K ∗0 (700), predated the establishment
of QCD. The settling of this controversy was hindered by the
conflicting available data sets and by the use of models. We
have provided here a brief account of how it has been settled
recently by using rigorous dispersive techniques to constrain
data analyses and to determine the poles associated with the
light-scalar resonances. Many phenomenological approaches
were able to describe to different degrees of accuracy these
states. Here, we have focused on those most directly linked to
QCD through the unitarization of Chiral Perturbation The-
ory, the 1/Nc behavior, and the dependence on the quark
masses. The general picture that arises is that there is one light
scalar nonet below 1 GeV. Their non-ordinary Nc behavior,
quark mass dependence, Regge trajectories, and the fact that
they do not saturate the ChPT constants strongly support
that these mesons are not of the ordinary quark–antiquark
type. Rather their predominant component would be of the
meson–meson type (molecule, meson cloud, etc). Still, they
are most likely mixed with some companion bare or preex-
istent quark–antiquark state above 1 GeV. Indeed, a second
scalar multiplet can be identified between 1.2 and 1.8 GeV.
There is still ample room for refining this picture and a high
expectation of further experiments and developments from
lattice-QCD.

8.3 Exotic mesons

Boris Grube

8.3.1 Introduction

Already when Gell-Mann [17] and Zweig [18] formulated
the constituent quark model they presumed that additional
states beyond the baryonic qqq and the mesonic qq̄ com-
binations exist.79 For a long time, the search for such states
was unsuccessful and hence all hadronic states going beyond
the constituent quark model were labelled exotic. How-
ever, rather recently experiments have found compelling evi-
dence that exotic states indeed exist. Here, we will focus on
exotic mesons, which can be divided into three categories:

79 In Ref. [17], Gell-Mann writes: “Baryons can now be constructed
from quarks by using the combinations (qqq), (qqqqq̄), etc., while
mesons are made out of (qq̄), (qqq̄q̄), etc.” Similarly, Zweig writes
in a footnote in Ref. [18]: “In general, we would expect that baryons
are built not only from the product of three aces, AAA, but also from
ĀAAAA, Ā ĀAAAAA, etc., where Ā denotes an anti-ace. Similarly,
mesons could be formed from ĀA, Ā ĀAA etc.”
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(i) spin-exotic states, which have J PC quantum number com-
binations that are not possible for ordinary qq̄ states (cf.
Table 9),80 (ii) flavor-exotic states, which have flavor quan-
tum numbers, such as isospin and/or strangeness, that are not
possible for qq̄ states, and (iii) crypto-exotic states, which
have quantum numbers of ordinary qq̄ states and are there-
fore able to mix with them.

Possible exotic mesonic configurations beyond qq̄ are
four-quark combinations such as tightly bound qqq̄q̄ tet-
raquark states, where the constituents are bound directly by
the strong force, or more loosely bound (qq̄)(qq̄) molec-
ular states, which consist of a pair of mesons bound by
nuclear forces. Also the gluon fields are expected to man-
ifest themselves in the meson spectrum either in the form of
hybrid states, where, in addition to a qq̄ pair, excited glu-
onic field configurations contribute to the quantum numbers
of the meson, or in the form of glueballs, which are color-
singlet bound states of gluons (see Sect. 8.4). However, in
general, physical mesons are not pure realizations of single
configurations but are instead mixtures of all possible con-
figurations that are allowed for the given quantum numbers.
Disentangling these different contributions is a highly diffi-
cult experimental and theoretical problem.

Crypto-exotic states will manifest themselves as super-
numerary states compared to the spectrum expected from
the quark model. This makes them rather difficult to estab-
lish. And even if experimental data unambiguously show an
overpopulation of states in a certain mass range, the determi-
nation of the internal configuration of these states is an even
harder problem. The prime example for such a situation is
the sector of isoscalar scalar mesons discussed in Sects. 8.2
and 8.4. Therefore, the cleanest way to unambiguously estab-
lish the existence of exotic mesons is to search for spin- and/or
flavor-exotic states. Presently, the clearest evidence for the
existence of such states comes from the heavy-quark sec-
tor (see Sects. 8.5 and 8.6), where experiments have found
several flavor-exotic states with a minimum quark content
of four, for example, the charged charmonium and bottomo-
nium states, Z±c and Z±b [1427,2407], or the doubly-charmed
state, T+cc [1067].

Although mesons from the light-quark sector, i.e. mesons
composed of up, down, or strange quarks, are usually eas-
ier to produce in experiments, the picture is less clear in
this sector. This is mainly because light mesons have rel-
atively large decay widths compared to their masses. As a
consequence, these mesons usually do not appear as isolated
and narrow peaks in the invariant mass spectra of their decay
products. Instead, they often overlap and interfere with neigh-

80 More correctly, these states have forbidden J PG quantum numbers.
However, here we use the common convention that the C-parity of a
charged meson in an isospin triplet is given by theC-parity of its neutral
partner state.

boring states, which makes their extraction from experimen-
tal data challenging. In addition, in most analyses models
are required in order to extract resonances from the data and
the results therefore depend on the employed model assump-
tions and approximations. In the following, we will confine
the discussion to spin-exotic light mesons. More details on
exotic light mesons can be found in the reviews in Refs.
[420,2408–2414].

8.3.2 Predictions

Model predictions
Various models have been employed to study the light-meson
spectrum. Some of these model approaches are discussed in
more detail in Sect. 5. Further discussions can be found, e.g.,
in Refs. [420,2414]. Most of the models that include exotic
mesons predict the lightest spin-exotic state to be a hybrid
meson with J PC = 1−+ quantum numbers.

The first detailed studies of hybrid light mesons were
based on the bag model [785–787,2415,2416]. In this model,
quarks and gluons are described by cavity modes in a con-
fining vacuum bubble (see Sect. 5.1.3). Detailed predic-
tions for the decays of hybrid light mesons were obtained
using, for example, the fluxtube model [2417–2423]. This
model extends the conventional quark model by explic-
itly modeling the gluonic fields in form of an oscillating
flux tube described by single-phonon excitations. Decays of
hybrid mesons were also studied in constituent-glue models
[2424–2427], where one assumes that a massless gluon with
J P = 1− interacts with quarks via potentials that depend lin-
early on the distance of the constituents. Recently, also the
Dyson–Schwinger/Bethe–Salpeter approach (see, e.g., Refs.
[896,2428,2429] and also Sect. 5.2), basis light-front quanti-
zation (see, e.g., Ref. [950] and also Sect. 5.3), as well as the
AdS/QCD correspondence (see, e.g., Ref. [1003] and also
Sect. 5.4) were applied to study hybrid light mesons.

The models predict the mass of the lightest 1−+ state to be
in the range from about 1.3 to 2.2 GeV and most model calcu-
lations find that f1(1285)π and b1(1235)π are the dominant
decay modes for the lightest isovector 1−+ state. However,
for the ηπ , η′π , and ρ(770)π decay modes, discussed in
Sect. 8.3.4 below, the model predictions diverge.
Lattice QCD calculations
In recent years, lattice QCD calculations of the hadron exci-
tation spectrum have made tremendous progress (see Sect. 4,
in particular Sect. 4.5). Currently, calculations that study the
excitation spectrum of light mesons still have to be performed
in an unphysical world, where the up and down quarks are
much heavier in the simulation than in nature.81 The main
reason for this is that decays into multi-body hadronic final
states, which for most excited states are the dominant decay

81 This is often expressed in terms of an unphysically large pion mass.
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modes, cannot yet be calculated on the lattice. By setting the
quark masses to sufficiently high values and neglecting multi-
hadron operators, the excited states become quasi stable and
can be extracted from the simulation. Consequently, such
calculations cannot predict widths and decay modes and also
cannot take into account coupled-channel effects. Despite
these limitations, lattice calculations have already provided
important insights by making predictions for light-meson
spectra and for two-body scattering processes [514,532].

For example, the seminal calculation performed by the
Hadron Spectrum collaboration [521] showed for the first
time a nearly complete spectrum of isoscalar and isovector
mesons covering a wide range of J PC quantum numbers up
to J = 4 (see Fig. 46). The lattice spectrum is qualitatively
similar to the one obtained from quark-model calculations.
However, the lattice calculation in addition revealed a whole
supermultiplet of extra states [527] that lie about 1.3 GeV
above the lightest J PC = 1−− state and that have quan-
tum numbers of 0−+, 1−−, 2−+, and 1−+, where the latter
one is spin-exotic. Studying the overlap of these states with
various operators used in the calculation allowed to probe
their internal structure. All states in the supermultiplet have
large overlaps with operators that correspond to a chromo-
magnetic gluonic excitation coupled to a color-octet qq̄ pair
in an S-wave and were therefore identified as hybrid states.
Intriguingly, the spin-exotic 1−+ state was predicted to be
the lightest hybrid state confirming many model calculations
(see Sect. 8.3.2).

Recently, the Hadron Spectrum collaboration published
results of the first lattice QCD calculation of the hadronic
decays of the lightest 1−+ resonance using a two-body
approximation for the decay [582]. They performed this cal-
culation at the SU(3)flavor symmetric point, where up, down,
and strange-quark masses are chosen to approximately match
the physical strange-quark mass, corresponding to a large
unphysical pion mass of about 700 MeV. Using a coupled-
channel approach, the Hadron Spectrum collaboration stud-
ied the scattering amplitudes of eight meson–meson systems
and extrapolated the extracted 1−+ resonance pole and its
couplings to the physical light-quark masses. Doing so and
assuming a 1−+ resonance mass of 1564 MeV (value taken
from Ref. [2324]), they found a broad π1 resonance with a
total width ranging between 139 and 590 MeV. The dom-
inant decay mode of this resonance is b1(1235)π (partial
width ranging from 139 to 529 MeV), in qualitative agree-
ment with most model calculations (see Sect. 8.3.2). Com-
pared to the b1(1235)π channel, the partial widths for the
decays into f1(1285)π , ρ(770)π , η′π , and ηπ are much
smaller. Although these results still have large uncertainties,
they provide important guidance for experiments.

The next great leap for lattice QCD is the calculation of
three-body systems, which is already looming on the hori-
zon (see Sect. 4.5.8 and Ref. [593]). First proof-of-principle

calculations of three-body systems that do not contain any
resonances (see, e.g., Fig. 53) demonstrate the feasibility of
the approach and are paving the way towards calculations of
more interesting systems that contain two- and/or three-body
resonances.

8.3.3 Experimental methods

Excited light mesons can be studied in many reactions.
They are copiously produced in high-energy scattering reac-
tions of meson beams on nucleon or nuclear targets, such
as diffractive dissociation or charge exchange, as well as
in central-production reactions in hadron–hadron scatter-
ing. Also, antiproton–nucleon annihilations are a source
of light mesons. Complementary to these purely strong-
interaction processes are photoproduction reactions, which
are induced by photon or lepton beams, and e+e− scattering
reactions such as annihilation, initial-state radiation, or two-
photon fusion. Finally, also multi-body decays of heavy par-
ticles, such as τ , J/ψ , or D, are good laboratories to study
light mesons. Conservation laws, couplings, and the avail-
able energy impose constraints that determine which excited
states are allowed to be produced from the various initial
states in these reactions. The study of the light-meson spec-
trum is a world-wide effort with experiments performed at all
major particle-accelerator labs covering all the above reac-
tions.

Excited light mesons decay via the strong interaction and
are hence extremely short-lived. This is why these states are
usually referred to as resonances, which are characterized by
their nominal mass m0, their total width Γ0, and their quan-
tum numbers. In the simplest case of an isolated resonance,
its experimental signature is a peak at m0 in the distribution
of the invariant mass m of the system of daughter particles
that the resonance decays into. This peak is accompanied by
a phase motion, i.e. an increase of the phase of the quan-
tum mechanical amplitude of the studied process by 180◦
with increasing m, reaching 90◦ at m0 (see Fig. 178). If the
resonance is in addition narrow andm0 is far away from kine-
matical thresholds, the resonance amplitude is well approx-
imated by a Breit–Wigner amplitude. However, in general
resonances are described by amplitudes that are analytical
functions of m2 and the resonance parameters are defined
by the position of pole singularities of this amplitude in the
complex m2 plane (see, e.g., Ref. [2430] for more details).

Depending on its mass and quantum numbers, a resonance
may have several decay modes, which for highly excited
states often lead to multi-body hadronic final states consist-
ing mostly of π , K , η, and/or η′. Due to their short-lived
nature, any information about resonances has to be inferred
from the kinematic distribution of their decay products. To
this end, partial-wave analysis (PWA) techniques are often
employed, which take into account possible interferences of
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Fig. 178 Example of a relativistic Breit–Wigner amplitude with con-
stant width for a fictitious resonance with a mass of m0 = 1200 MeV
and a total width of Γ0 = 200 MeV. (Top) intensity, i.e., absolute value
squared of the amplitude, (bottom) phase of the amplitude

all the intermediate resonances produced in the reaction and
exploit the full kinematic information contained in the data.
For an n-body final state with given mass m, a set τ of 3n−4
kinematic variables is needed to completely define the decay
kinematics. In a simplified picture, a PWA model describes
the measured intensity distribution I(m, τ ), i.e. the density
distribution of the events in the (3n − 4)-dimensional phase
space of the final-state particles, in terms of partial-wave
amplitudesTi (m), which describe the strength and phase with
which an intermediate state with given quantum numbers
i = {J PC M} and massm is produced, and decay amplitudes
Ψi (m, τ ), which describe the decay of this intermediate state
into the observed final state. Here, M is the projection of the
spin J along the chosen quantization axis. High-energy scat-
tering reactions, for which examples will be discussed below,
are known to be dominated by natural-parity exchange.82

82 The naturality is defined as ε = P (−1)J , i.e. ε = +1 corre-
sponds to the natural-parity series with J P = 0+, 1−, 2+, . . . and,
correspondingly, ε = −1 corresponds to the unnatural-parity series
with J P = 0−, 1+, 2−, . . ..

When analyzing data from these reactions, it is hence advan-
tageous to perform the PWA in the reflectivity basis [2431],
where the spin state of a resonance is characterized by Mε

with M ≥ 0 and ε = ±1 such that the multiplicity of 2J + 1
of the spin state remains unchanged. Here, ε corresponds
to the naturality of the exchange particle in the scattering
reaction. By performing the PWA in this basis, it is there-
fore possible to separate the contributions from natural- and
unnatural-parity exchange to the scattering reaction.

Since production and decay of a resonance are indepen-
dent of each other, the total amplitude for an intermediate
state i is given by Ti (m) Ψi (m, τ ). In the simplest case, the
amplitudes of the various allowed intermediate states i are
assumed to be fully coherent so that

I(m, τ ) =
∣
∣
∣
∑

i

Ti (m) Ψi (m, τ )

∣
∣
∣
2
, (8.27)

where the sum runs over all allowed states. It is important to
note that in the above equation, the intensity is given by the
sum of the contributing amplitudes, i.e. all intermediate states
may interfere with each other. The decay amplitudes can be
calculated using first principles and models. The analyses that
will be discussed in Sect. 8.3.4 below use a two-stage proce-
dure, where in the first stage the known decay amplitudes Ψi

are used to determine the partial-wave amplitudes Ti in nar-
rowm bins by fitting the PWA model in Eq. (8.27) to the mea-
sured τ distributions. At this stage, no assumptions are made
about the resonance content in the studied n-body system. In
a second stage, a resonance model is fit to the m dependence
of selected partial-wave amplitudes in order to extract the
resonances and their parameters. For high-energy scattering
data, the resonance model also has to take into account con-
tributions from non-resonant processes, i.e. processes where
the measured n-body final state is produced without going
through an intermediate n-body resonance. Unfortunately,
in most cases no detailed theoretical models exist for these
non-resonant contributions and one has to revert to empirical
models. More details on the PWA procedure and the involved
model assumptions can be found, e.g., in Ref. [2432].

8.3.4 Experimental evidence

More than three decades ago the GAMS experiment claimed
the first observation of a spin-exotic resonance with J PC =
1−+ [2433]. Since then, many other experiments reported
such signals. Currently, the Particle Data Group (PDG)
lists three spin-exotic light-meson states: the π1(1400), the
π1(1600), and the π1(2015) [513]. However, despite the
seemingly large body of evidence, which includes data from
pion diffraction, antiproton–nucleon annihilation, photopro-
duction, and charmonium decays covering several decay
channels, the experimental situation is still puzzling and the

123



 1125 Page 268 of 636 Eur. Phys. J. C          (2023) 83:1125 

interpretation of many of the observed signals is controver-
sial.

The π1(1400) was observed nearly exclusively in the ηπ

decay channel produced in pion diffraction and antiproton–
nucleon annihilation [2328,2433–2439]. Only the OBELIX
and Crystal Barrel experiments claimed to see the π1(1400)
also in the ρ(770)π decay channel in their antiproton–
nucleon annihilation data [2440,2441]. Surprisingly, the sig-
nal in the ρ(770)π channel arises from antiproton–nucleon
initial states with different quantum numbers than the sig-
nal in the ηπ channel.83 Since production and decay of a
resonance are independent, the ρ(770)π resonance claimed
by OBELIX and Crystal Barrel cannot be the same π1(1400)
state that is observed in ηπ – a puzzling result. The π1(1400)
masses quoted by the various experiments are in fair agree-
ment; the width values, however, scatter over a larger range.
The PDG estimates for the π1(1400) mass and width are
m0 = (1354± 25)MeV and Γ0 = (330± 35)MeV [513].

Compared to the π1(1400), the π1(1600) was seen in
a much wider range of decay channels produced in pion
diffraction, antiproton–nucleon annihilation, andχc1 decays.
Signals were reported in the ρ(770)π [2319,2442–2445],
η′π [2446–2450], f1(1285)π [2449,2451], and b1(1235)π
[2322,2438,2447–2449,2452] decay channels. As for the
π1(1400), the measured π1(1600) mass values are in better
agreement with each other than the measured width values.
The PDG estimates for the π1(1600) mass and width are
m0 = (1661+15

−11) MeV and Γ0 = (240± 50)MeV [513].
The π1(2015) was so far only observed by the BNL

E852 experiment in the decay modes f1(1285)π [2451] and
b1(1235) π [2322]. It hence still needs to be confirmed by
other experiments and is listed as a “further state” by the
PDG.

Although on first sight there seems to be strong experi-
mental evidence for the π1(1400) and the π1(1600), some
analyses have issues and some experimental results are dis-
puted. From a phenomenological standpoint, the properties
of the π1(1400) are problematic. Compared to most of the
predictions (see Sect. 8.3.2), it is too light. Also, theπ1(1600)
is too close in mass to the π1(1400) in order to be an exci-
tation of the latter. Additionally, the fact that the π1(1400)
seems to decay only to ηπ is hard to explain.84

The analyses of some channels also face technical issues.
For example, in order to extract the π1(1400) in the ηπ chan-
nel and theπ1(1600) in the η′π channel, the phase motions of
the P-wave amplitudes need to be measured. Often, this can

83 In the ρ(770)π channel, the π1(1400) is seen predominantly in P-
wave antiproton–nucleon initial states, whereas in the ηπ channel it is
seen mainly in the 3S1 initial state.
84 If one would take the π1(1400) → ρ(770)π claims of OBELIX
and Crystal Barrel [2440,2441] at face value, then even two mass-
degenerate π1(1400) states would exist, one decaying to ηπ the other
to ρ(770)π – an even more puzzling scenario.

Fig. 179 Intensity of the ρ(770)π P-wave with spin-exotic J PC =
1−+ quantum numbers produced in natural-parity exchange (points with
statistical uncertainties) as a function of the π−π−π+ mass obtained by
the BNL E852 collaboration. (Adapted from Fig. 3(b) in Ref. [2442])

be done only relative to the D-wave amplitudes. However,
in the mass region of interest the D-waves contain contribu-
tions from the a2(1700), which is the first radial excitation
of the a2(1320) ground state. Unfortunately, the a2(1700)
is a rather broad state and its resonance parameters are not
well known. For the widely used simple Breit–Wigner based
resonance models, this may lead to systematic uncertainties
that are hard to control.

The analysis of the data of the BNL E852 experiment
yielded inconsistent results on the production properties of
the π1(1600). Whereas in the η′π [2446] and f1(1285)π
[2451] channels the π1(1600) is observed to be produced
only via natural-parity exchange, i.e. with Mε = 1+, it
appeared in the ρ(770)π [2442,2443] and b1(1235)π [2322]
channels also in unnatural-parity exchange, i.e. in waves with
Mε = 0− and 1−, with similar strength as in the Mε = 1+
wave. This is hard to explain as production and decay of a
resonance are independent processes.

One of the deepest puzzles, however, concerns the seem-
ingly contradictory conclusions on the existence of the
π1(1600) in the ρ(770)π decay channel that were drawn
from similar analyses. The BNL E852 experiment was the
first to claim the observation of π1(1600)→ ρ(770)π based
on a sample of about 250 000 π− p → π−π−π+ p events
and using a PWA model with 21 waves [2442,2443]. The
measured intensity distribution of the spin-exotic wave with
J PC = 1−+ quantum numbers is shown in Fig. 179. It
exhibits a pronounced peak at about 1.6 GeV that is accompa-
nied by significant phase motion with respect to other partial
waves (see Fig. 19 in Ref. [2443]).85 Based on a simultane-
ous resonance-model fit of the intensities of the 1−+ wave

85 The second peak at about 1.2 GeV was explained as an analysis
artifact caused by intensity leaking from the dominant 1++ wave into
the spin-exotic wave because of a non-uniform detector acceptance in
combination with the finite experimental resolution. The gray-shaded
histogram in Fig. 179 represents an estimate of this effect from Monte
Carlo simulations.
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and of the f2(1270)π S-wave with J PC = 2−+ and their
relative phase, the authors of Refs. [2442,2443] claimed the
observation of the π1(1600). However, they also observed a
strong dependence of the shape and strength of the π1(1600)
signal on the PWA model.

Surprisingly, an analysis of a more than 20 times larger
data sample (2.6 × 106 π− p → π−π−π+ p events plus
3.0× 106 π− p→ π−π0π0 p events) from the same experi-
ment performed by Dzierba et al. came to a completely differ-
ent conclusion [2453]. They performed the partial-wave anal-
ysis independently in 12 bins of the reduced four-momentum
squared t ′ that is transferred from the beam to the target recoil
particle86 in the range from 0.08 to 0.53 GeV2 using a larger
PWA model of 36 waves. The observed intensity distribution
of the 1−+ wave exhibits a broad and structureless enhance-
ment (see black points in Fig. 180; cf. Fig. 179). The shape of
this enhancement was found to change strongly with t ′ with
intensity moving from the 1.2 GeV region towards higher
masses with increasing t ′. However, the peak at 1.6 GeV,
which in Refs. [2442,2443] was attributed to the π1(1600),
had disappeared. By applying the 21-wave PWA model from
Refs. [2442,2443], Dzierba et al. were able to reproduce the
results from Refs. [2442,2443] (see gray points in Fig. 180;
cf. Fig. 179). They also showed that the omission of important
2−+ waves in the 21-wave PWA model causes leakage from
the π2(1670) producing an artificial peak at 1.6 GeV in the
1−+ wave. Based on these findings, Dzierba et al. concluded
that the BNL E852 data provide no evidence for the exis-
tence of the π1(1600) in the ρ(770)π decay channel and that
the signal reported in Refs. [2442,2443] was an artifact of a
too restricted PWA model. However, this conclusion was not
based on a resonance-model fit and did not take into account
the phase motions of the 1−+ wave that were still present in
the analysis of Dzierba et al.. In addition, Dzierba et al. only
considered the kinematic region t ′ < 0.53 GeV2, which will
become important in the discussion below.

The first results from the COMPASS experiment only
added to the confusion. The authors of Ref. [2444] per-
formed a partial-wave analysis of 420 000 events for the
reaction π−Pb → π−π−π+Pb in the kinematic range
0.1 < t ′ < 1.0 GeV2 using an even larger PWA model than
Dzierba et al. consisting of 42 waves. This model is similar
to the 36-wave PWA model used in Ref. [2453] and includes
in particular the 2−+ waves that were found to cause leakage
from the π2(1670) into the 1−+ wave. However, in contrast
to Dzierba et al., COMPASS observed an enhancement at
1.6 GeV in the intensity distribution of the 1−+ wave (see
data points in Fig. 181; cf. black data points in Fig. 180).
In the performed resonance-model fit, which describes the

86 Here, t ′ ≡ |t |−|t |min with t = (pbeam− pX )2 being the Mandelstam
variable, pbeam the four-momentum of the beam pion, and pX the total
four-momentum of the produced 3π system.

Fig. 180 Intensity distribution of the ρ(770)π P-wave with spin-
exotic J PC = 1−+ quantum numbers produced in natural-parity
exchange as obtained by Dzierba et al. using BNL E852 data on
π− p → π−π−π+ p in the kinematic range 0.18 < t ′ < 0.23 GeV2.
The open gray points (“low wave”) correspond to the 21-wave PWA
model from Refs. [2442,2443] (cf. Fig. 179), the solid black points
(“high wave”) correspond to the 36-wave PWA model from Ref. [2453].
(Taken from Fig. 25(a) in Ref. [2453])

Fig. 181 Intensity distribution of the ρ(770)π P-wave with spin-
exotic J PC = 1−+ quantum numbers produced in natural-parity
exchange as obtained by the COMPASS experiment using data on
π−Pb → π−π−π+Pb (points with statistical uncertainties). The red
curve represents the result of a fit with a resonance model, which is
the coherent sum of a Breit–Wigner amplitude for the π1(1600) (blue)
and a non-resonant amplitude (magenta). (Taken from Fig. 2(d) in Ref.
[2444])

intensities and mutual interference terms of six waves simul-
taneously, the 1−+ amplitude is well described by a coher-
ent sum of a non-resonant and a Breit–Wigner amplitude
for the π1(1600) (see curves in Fig. 181) and the resulting
resonance parameters are compatible with the previous mea-
surements of the π1(1600). Hence, COMPASS claimed the
observation π1(1600)→ ρ(770)π .
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Fig. 182 (Left) and (center) Intensity distribution of the ρ(770)π P-
wave with spin-exotic J PC = 1−+ quantum numbers produced in
natural-parity exchange as obtained by the COMPASS experiment using
data on π− p → π−π−π+ p at low and high t ′. (Right) Phase of the
1−+ wave relative to the ρ(770)π S-wave with J PC = 1++ at high t ′.
In the three diagrams, the points with statistical uncertainties represent

the measured values. The red curves represent the results of fits with
two resonance models. The continuous red curve corresponds to the
coherent sum of a Breit–Wigner amplitude for the π1(1600) (blue) and
a non-resonant amplitude (green). The dashed red curve corresponds
to a model that contains only the non-resonant amplitude. (Taken from
Figs. 48(b), (c), and (d) in Ref. [2319])

These puzzling experimental findings were reconciled
only recently by the results of a comprehensive partial-wave
analysis performed on a highly precise sample of 46 × 106

π− p → π−π−π+ p events obtained by the COMPASS
experiment [2319,2445,2454]. The PWA was performed
independently in 11 t ′ bins in the range 0.1 < t ′ < 1.0 GeV2

using the so far largest PWA model with 88 waves. The
intensity distribution of the 1−+ wave summed over the
11 t ′ bins exhibits a broad enhancement from about 1.0
to 1.8 GeV but no peak at 1.6 GeV. This is consistent with
the distribution observed by the VES experiment in a sim-
ilar t ′ range [2455]. The shape of the intensity distribution
changes strongly with t ′ confirming a similar observation
made by Dzierba et al. in the BNL E852 data [2453]. At
low t ′, COMPASS observes a broad structure in the mass
range from about 1.0 to 1.7 GeV (see Fig. 182(left)).87 As
t ′ increases, this structure becomes narrower and its maxi-
mum moves to about 1.6 GeV so that it becomes similar to
the distribution observed in the first COMPASS data on the
Pb target (see Fig. 182(center); cf. Fig. 181).

Since resonance parameters are independent of t ′, the
observed strong modulation of the intensity distribution
with t ′ hints at large contributions from non-resonant pro-
cesses. This was confirmed by the resonance-model fit, which
simultaneously describes the amplitudes of 14 selected par-
tial waves. The large wave set provides tight constraints for
the 1−+ amplitude via the mutual interference terms between
the amplitudes. In addition, for the first time all 11 t ′ bins

87 The distribution also exhibits a narrow peak at about 1.1 GeV, which,
however, has no associated phase motion and depends on the PWA
model. According to Refs. [2319,2445] this peak is likely an artifact
induced by imperfections of the analysis method.

were fit simultaneously, forcing the resonance parameters
to be the same across the t ′ bins. This t ′-resolved approach
leads to a much better disentanglement of the resonant and
the non-resonant contributions, which have in general differ-
ent dependences on t ′. For t ′ � 0.5 GeV2, the fit finds that
the 1−+ intensity is almost saturated by the non-resonant
component (green curve in Fig. 182(left)) with only a small
π1(1600) contribution (blue curve). With increasing t ′ the
strength of the non-resonant component decreases relative to
that of the π1(1600), so that for t ′ � 0.5 GeV2 the π1(1600)
becomes the dominant component (see Fig. 182(center)).

Applying the 21- and 36-wave PWA models from the
two analyses of BNL E852 data [2445] to the COMPASS
data yields results consistent with those reported in Refs.
[2442,2443,2453] confirming the observations by Dzierba
et al. that the 21-wave model produces an artificial peak at
1.6 GeV in the 1−+ waves for natural as well as unnatural-
parity exchange due to leakage from the π2(1670). This
explains the puzzling observation of aπ1(1600)→ ρ(770)π
signal in unnatural-parity exchange by the BNL E852 exper-
iment [2442,2443] as an artifact caused by leakage. In addi-
tion, the t ′-resolved analysis of the COMPASS data shows
that for t ′ � 0.5 GeV2 the π1(1600) signal is masked
by the dominant non-resonant contribution. This explains
why Dzierba et al., who considered only the range t ′ <

0.53 GeV2, reported a non-observation of the π1(1600).
However, in the kinematic range t ′ � 0.5 GeV2 COM-
PASS observes a clear π1(1600) → ρ(770)π signal and a
π1(1600) resonance is indeed required to explain the COM-
PASS data. This is demonstrated by the dashed red curve
in Fig. 182, which represents the result of a resonance-
model fit, where the 1−+ amplitude was described using
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only the non-resonant component. At low t ′, this model is
able to describe the data fairly well (see Fig. 182(left)), but
clearly fails at high t ′ (see Fig. 182(center) and (right)). The
t ′-resolved COMPASS results in Refs. [2319,2444,2445]
therefore establish unambiguously the ρ(770)π decay mode
of the π1(1600) and in addition resolve a long-standing con-
troversy by showing that the data of previous experiments are
indeed consistent and that the BNL E852 puzzle was caused
by a too restricted PWA model on the one hand [2442,2443]
and a too restricted t ′ range on the other hand [2453].

Another big step towards a better understanding of the
π1 states was the coupled-channel analysis of the ηπ and
η′π P- and D-wave amplitudes measured by the COMPASS
experiment [2457], which was performed by the JPAC col-
laboration [2324]. Using a unitary model based on S-matrix
principles they find in the D-wave amplitudes two reso-
nance poles, the a2(1320) and the a2(1700) and in the P-
wave amplitudes a single resonance pole. The parameters of
the P-wave resonance pole are m0 = (1564+24

−86)MeV and

Γ0 = (492+ 54
−102)MeV, consistent with the π1(1600). Apart

from determining theπ1(1600) pole position for the first time
using an analytic and unitary model, this result is in so far
remarkable as only a single resonance pole is required to
simultaneously describe the ηπ and the η′π P-wave ampli-
tudes despite their rather different intensity distributions (see
green and blue points and curves in Fig. 183). This is in con-
trast to most previous analyses, which considered two dif-
ferent resonance components in their models: a π1(1400) to
describe the broad peak at 1.4 GeV in the ηπ P-wave inten-
sity and a π1(1600) to describe the narrower peak at 1.6 GeV
in the η′π P-wave intensity. It is interesting to note that in
the COMPASS data the latter peak is nearly identical to the
one observed in the 1−+ intensity in the high-t ′ region of
the π−π−π+ data (cf. blue and red points and curves in
Fig. 183). Since the COMPASS partial-wave data are con-
sistent with previous experiments, the JPAC analysis raises
serious doubts about the existence of the π1(1400) as a sepa-
rate resonance. Recently, the JPAC results were confirmed by
Kopf et al., who performed a coupled-channel analysis that in
addition to the COMPASSηπ andη′π P- and D-wave ampli-
tudes also includes Crystal Barrel data on p̄ p → π0π0η,
π0ηη, and K+K−π0 as well as ππ scattering data [2458].

Both coupled-channel analyses favor a much simpler and
more plausible picture with only one π1 state below 2 GeV,
the π1(1600), decaying into (at least) ηπ , η′π , ρ(770)π ,
f1(1285)π , and b1(1235)π . This scenario resolves the long-
standing puzzle of two spin-exotic states having peculiar
decay modes and lying unexpectedly close to each other. If
interpreted in terms of hybrid states, this would also remove
the discrepancy with lattice QCD and most model calcu-
lations, which predict the lightest hybrid state to have a

Fig. 183 Intensity distributions of spin-exotic waves with J PC = 1−+
from COMPASS data. (Green points) ηπ P-wave, (blue points) η′π P-
wave, both for 0.1 < t ′ < 1.0 GeV2. (Red points) ρ(770)π P-wave
for 0.449 < t ′ < 0.724 GeV2. The curves represent the results of the
resonance-model fits from Refs. [2319,2324]. (Taken from Fig. 2 in
Ref. [2456])

mass substantially higher than that of the π1(1400) (see
Sect. 8.3.2).

Up to now only isovector spin-exotic states were observed
in the light-meson sector. However, models and lattice QCD
predict that SU(3)flavor partner states of the π1, i.e. η1 and
η′1 as well as K ∗ states,88 should exist. In order to estab-
lish exotic resonances it is therefore important to find these
states. A first sign that they indeed exist is the very recent first
observation of a spin-exotic isoscalar η1(1855) state in the
ηη′ decay channel produced in J/ψ → γ ηη′89 reported by
the BESIII experiment [2461,2462]. The challenge is now to
confirm this state in other experiments.

8.3.5 Summary and outlook

The dust of more than three decades of research on spin-
exotic light mesons is starting to settle. For a long time, the
experimental data were confusing leading to contradictory
conclusions on the existence and properties of π1 mesons.
Recently, high-precision data and more advanced theory
models helped to resolve many of these puzzles and a more
coherent picture seems to be emerging, where instead of
two low-lying states, π1(1400) and π1(1600), with hard

88 As kaons are neither eigenstates of C nor of G parity, there are no
spin-exotic kaon states. Hence, the exotic K ∗ states can be identified
only as supernumerary states and via their couplings.
89 This is an example for a radiative J/ψ decay. Such decays are
“gluon-rich” processes because in lowest order the cc̄ pair in the J/ψ
annihilates into the measured photon and a pair of gluons that hadronize
into the measured final state, here the ηη′ system. The production of
mesons with explicit gluonic degrees of freedom, i.e. hybrids and glue-
balls, is expected to be enhanced in these decays.
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Fig. 184 Intensity distributions of the ρ(770)π P-wave with spin-
exotic J PC = 1−+ quantum numbers produced in γ + π± →
π±π−π+ reactions. (Left) Result from the CLAS experiment [2459],
where the process is embedded into γ + p → π+π−π+ + (n)miss.

(Right) Result from the COMPASS experiment [2413,2460], where
the process is embedded into π−+Pb → π−π−π++Pb. (Taken from
Fig. 5(d) of Ref. [2459] and Fig. 7(a) of Ref. [2413])

to explain properties only the π1(1600) remains. However,
there are at least two puzzles to be solved. The first is
the unexpected production of the π1(1600) in unnatural-
parity exchange claimed by the BNL E852 experiment in the
b1(1235)π channel [2322]. This can be clarified by the COM-
PASS experiment using data on the same reaction at higher
energy. The second remaining puzzle is the seeming non-
observation of the π1(1600) in photon-induced reactions.
Since the π1(1600) is observed to decay into ρ(770)π , it
should couple to γπ via vector-meson dominance. However,
in the γ + π± → π±π−π+ reaction studied by the CLAS
and the COMPASS experiments90 nearly vanishing inten-
sity was observed in the J PC = 1−+ wave in the mass range
where a π1(1600) signal would be expected (see Fig. 184).
The nearly vanishing intensity could be the result of a destruc-
tive interference of the π1(1600) amplitude with the one of
non-resonant contributions. However, no resonance-model
fits have been performed yet to test this hypothesis. In the
future, much more precise photoproduction data from the
GlueX experiment at JLab will help to clarify the situation.

Having established that spin-exotic 1−+ light-meson
states do exist is, of course, only the starting point. The
next goal is to study their properties in detail, in particu-
lar their couplings, by measuring them in various production
and decay modes. Another goal is to find their excitations.
A first step in this direction would be the confirmation of

90 CLAS measured the photoproduction reaction γ+p→ π+π−π++
(n)miss, where a pion is exchanged between the target and the beam
photon producing the 3π final state. In COMPASS data, the γπ →
3π reaction is embedded into the reaction π− + Pb → π−π−π+ +
Pb, which was measured at very low squared four-momentum transfer,
where the beam pion predominantly scatters off quasi-real photons from
the Coulomb field of the Pb target nucleus.

the π1(2015) signal in the f1(1285)π and b1(1235)π decay
channels. In addition, it is important to search for the exotic
SU(3)flavor partner states of the π1. Here, the result by the
BESIII experiment of a possible observation of an η1(1855)
state could be a breakthrough. Last but not least, the search
for states with other spin-exotic J PC quantum numbers such
as 0+− and 2+− continues. These searches will also yield a
more complete picture of the spectrum of states with ordinary
quantum numbers, which not only helps to identify supernu-
merary states, but is also an important input to theory in order
to improve our understanding of the non-perturbative regime
of QCD.

In turn, the analysis of the extremely high-precision data
from running and upcoming experiments requires more
advanced theoretical models and in particular a more accu-
rate understanding of the dynamics of hadrons. Close col-
laboration of theorists and experimentalists will help us to
formulate, test, and apply detailed models for production
reactions and for the interactions of final-state hadrons in
order to overcome limitations of the currently available anal-
ysis approaches. Together with refined statistical tools and
novel approaches such as Machine Learning, this will enable
us to leverage the full potential of the data.

8.4 Glueballs, a fulfilled promise of QCD?

Eberhard Klempt

8.4.1 Introduction

At the Workshop on QCD: 20 Years Later [78] held in 1992
in Aachen, Heusch [2463] reported on searches for glueballs,
gluonium, or glue states as Fritzsch and Gell-Mann [35,55]
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had called this new form of matter. Glueballs are colorless
bound states of gluons and should exist when their newly pro-
posed quark–gluon field theory yields a correct description of
the strong interaction. The title of Heusch’s talk Gluonium:
An unfulfilled promise of QCD? expressed the disappoint-
ment of a glueball hunter: At that time there was some –
rather weak – evidence for glueball candidates but there was
no convincing case. In 1973, the e+e− storage ring SPEAR at
the Stanford Linear Accelerator Center had come into oper-
ation and one year later, the J/ψ resonance was discovered
[91] – this was the very first SPEAR publication on physics.
The J/ψ resonance and its radiative decay became and still
is the prime reaction for glueball searches.

One of the first glueball candidates was the ι(1440)
[2464,2465]. The name ι stood for the “number one” of all
glueballs to be discovered. It was observed as very strong
signal with pseudoscalar quantum numbers in the reaction
J/ψ → γ K K̄π . Its mass was not too far from the bag-
model prediction (1290 MeV) [782]. Now the ι(1440) is sup-
posed to be split into two states, η(1405) and η(1475), where
the lower-mass meson is still discussed as glueball candidate
even though its mass is incompatible with lattice gauge cal-
culations. They find the mass of the pseudoscalar glueball
above 2 GeV.

A second candidate was a resonance called Θ(1640)
[2466,2467]. It was seen in the reaction J/ψ → γ ηη and
confirmed – as G(1590) – by the GAMS collaboration in
π− p → ηηn [2468]. Later, its quantum numbers shifted
from J PC = 2++ to 0++, and its mass changed to 1710 MeV.
This resonance still plays an important role in the glueball
discussion.

A third candidate, or better three candidates, were obser-
ved in the OZI rule violating process π− p → φφn [2332,
2469]. Three φφ resonances at 2050, 2300 and 2350 MeV
were reported. I remember Armenteros saying: When you
have found one glueball, you have made a discovery. When
you find three, you have a problem. Now I believe that this
was a very early manifestation of the tensor glueball.

The situation was not that easy at that time as described
here. Nearly for each observation, there were contradicting
facts, and Heusch concluded his talk at the QCD workshop
with the statement: there is no smoking-gun candidate for
gluonium · · · . At this workshop, I had the honor to present
the results of the Crystal Barrel experiment at LEAR and to
report the discovery of two new scalar mesons, f0(1370) and
f0(1500), and I was convinced, Heusch was wrong: f0(1500)
was the glueball! And I turned down my internal critical voice
which told me that in my understanding of p̄N annihilation,
this process is not particularly suited to produce glueballs
[2470,2471]. Our glueball f0(1500)was not seen in radiative
J/ψ decays where a glueball should stick out like a tower in
the landscape. The f0(1500) as scalar glueball? That could
not be the full truth!

8.4.2 QCD predictions

Glueball masses
First estimates of the masses of glueballs were based on bag
models. The color-carrying gluon fields were required to van-
ish on the surface of the bag. Transverse electric and trans-
verse magnetic gluons were introduced populating the bag.
The lowest excitation modes were predicted to have quantum
numbers J PC = 0++ and 2++ and to be degenerate in mass
with M = 960 MeV [782,2472]. A very early review can be
found in Ref. [2473].

The bag model is obsolete nowadays. Most reliable are
presumably simulations of QCD an a lattice (see Sect. 4
and Ref. [2474] for an introduction). In lattice gauge the-
ory, the spacetime is rotated into an Euclidean space by the
transformation t → i t and then discretized into a lattice
with sites separated by a distance in space and time. The
gauge fields are defined as links between neighboring lattice
points, closed loops of the link variables (Wilson loops) allow
for the calculation of the action density. Technically, gluons
on a space-time lattice struggle against large vacuum fluc-
tuations of the correlation functions of their operators, the
signal-to-noise ratio falls extremely rapidly as the separation
between the source and sink is increased. These difficulties
can be overcome by anisotropic space-times with coarser
space and narrow time intervals [2475,2476]. Fermion fields
are defined at lattice sites. Different techniques have been
developed to include fermions in lattice calculations [2477].
The effect of see quarks on glueball masses seems to be small
[2478].

Recently, a number of different approaches were chosen
to approximate QCD by a model that is solvable analyti-
cally. Szczepaniak and Swanson [2479] constructed a quasi-
particle gluon basis for a QCD Hamiltonian in Coulomb
gauge that was solved analytically. A full glueball spectrum
was calculated with no free parameter. The authors of Ref.
[2480] constructed relativistic two- and three-gluon glueball
currents and applied them to perform QCD sum rule anal-
yses of the glueball spectrum. The Gießen group calculated
masses of ground and excited glueball states using a Yang–
Mills theory and a functional approach based on a truncation
of Dyson–Schwinger equations and a set of Bethe–Salpeter
equations derived from a three-particle-irreducible effective
action [2481,2482].

AdS/QCD relies on a correspondence between a five
dimensional classical theory with an AdS metric and a super-
symmetric conformal quantum field theory in four dimen-
sions. In the bottom-up approach, models with appropriate
operators are constructed in the classical AdS theory with the
aim of resembling QCD as much as possible. Confinement is
generated by a hard wall cutting off AdS space in the infrared
region, or spacetime is capped off smoothly by a soft wall
to break the conformal invariance. Rinaldi and Vento [1104]
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Table 31 Masses of low-mass glueballs, in units of MeV. Lattice QCD
results are taken from Refs. [2475,2477] (quenched) and Ref. [2478]
(unquenched). Szczepaniak and Swanson [2479] construct of a quasi-
particle gluon basis for a QCD Hamiltonian. Results from QCD sum

rule results are given in Ref. [2480], from using Dyson–Schwinger
equations in [2481,2482], and from a graviton-soft-wall model in Ref.
[1104]

Glueball Ref. [2475] Ref. [2477] Ref. [2478] Ref. [2479] Ref. [2480] Ref. [2481] Ref. [1104]

|0++〉 1710± 50± 80 1653± 26 1795± 60 1980 1780+140
−170 1850± 130 1920

|2++〉 2390± 30± 120 2376± 32 2620± 50 2420 1860+140
−170 2610± 180 2371

|0−+〉 2560± 40± 120 2561± 40 – 2220 2170± 110 2580± 180

calculated the glueball mass spectrum within AdS/QCD. The
results on glueball masses are summarized in Table 31.

The width of glueballs
Glueballs are often assumed to be narrow. φ decays into ρπ

are suppressed since the primary ss̄ pair needs to annihilate
and a new qq̄ pair needs to be created. In glueball decays,
there is no pair to be annihilated but a qq̄ pair needs to be
created. If the OZI rule suppresses the decay by a factor 10 to
100, we might expect the width of glueballs to be suppressed
by a factor 3 to 10. Assuming a “normal” width of 150 MeV,
a glueball at 1600 MeV could have a width of 15 to 50 MeV.
This argument is supported by arguments based on the 1/Nc

expansion (see, e.g., Ref. [2390]).
Narison applied QCD sum rules [2483]. Assuming a mass

of 1600 MeV, he calculated the 4π width of the scalar glue-
ball to 60 to 138 MeV while the partial decay width of the
tensor glueball at 2 GeV to pseudoscalar mesons should be
less than 155 MeV. Calculations on the lattice gave a partial
decay width for decays into pseudoscalar mesons of 108± 29
MeV for a scalar glueball mass of 1700 MeV [2484]. In a
semi-phenomenological model, Burakovsky and Page find
that the width of the scalar glueball (at 1700 MeV) should
exceed 250 to 390 MeV. A flux tube model predicted the mass
of the glueball of lowest mass to 1680 MeV and its width
to 300 MeV [2485]. In a field theoretical approach with an
effective Coulomb gauge the glueball width was estimated
to 100 MeV [2486].

Radiative yields
The study of radiative decays of the J/ψ meson is the prime
path to search for glueballs with masses of less than ∼2500
MeV.

Gui et al. [2487] calculated the yield of a scalar glueball
having a mass of 1710 MeV on lattice and found

BRJ/ψ→γG0++ (T H) = (3.8± 0.9)× 10−3. (8.28)

For higher glueball masses the yield increases.
Narison gave a mass dependent formula derived from sum

rules. For a mass of 1865 MeV, a yield of about 10−3 is pre-
dicted [2483].

Fig. 185 Reactions most relevant for glueball searches. Left: p̄ p
annihilation; middle: Pomeron-Pomeron fusion; right: radiative J/ψ
decays. The glueball is supposed to decay into K 0 K̄ 0

The tensor glueball is expected [2488] to be observed with
a branching ratio

BRJ/ψ→γG2++ (T H) = (11± 2)× 10−3. (8.29)

Production of the pseudoscalar glueball seems to be consid-
erably smaller. For a mass of 2395 (or 2560) MeV, the authors
of Ref. [2489] find

BRJ/ψ→γG0−+ (T H) = (0.231± 0.080)× 10−3

or = (0.107± 0.037)× 10−3. (8.30)

These are very significant yields, and the glueballs must be
found provided they can be identified convincingly as glue-
balls amidst their qq̄ companions.

8.4.3 How to identify a glueball

Figure 185 shows the prime reactions in which glueballs have
been searched for.

NN̄ annihilation
A decisive step forward in the search for glueballs was the
discovery of two scalar isoscalar states in p̄ p annihilation
at rest. With the large statistics available at the Low Energy
Anitiproton Ring (LEAR) at CERN, f0(1370) and f0(1500)
were identified in several final states. A large fraction of the
data taken at LEAR is still used jointly with data on radiative
J/ψ decays in a coupled-channel analysis. Glueballs decay
via qq̄ pair creation. Hence they can be produced via qq̄ anni-
hilation. Meson production in p̄ p annihilation was studied by
the ASTERIX, OBELIX and Crystal Barrel experiments at
LEAR and is a major objective of the PANDA collaboration
at the GSI.
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Fig. 186 Decay probabilities of mesons for decays into two pseu-
doscalar mesons as a function of the scalar mixing angle [2490]

Central production
In central production, two hadrons (e.g. two protons) scatter
in forward direction via the exchange of Pomerons. Pomerons
are supposed to be glue-rich, hence glueballs can be formed
in Pomeron-Pomeron fusion. This process was studied exten-
sively at CERN by the WA76 and WA102 collaborations and
is now investigated with the STAR detector at BNL. In the
WA102 experiment, f0(1370) and f0(1500) were confirmed
and f0(1710) was added to the number of scalar resonances.

Radiative J/ψ decays
In radiative J/ψ decays, the primary cc̄ pair converts into
two gluons and a photon. The two gluons are mainly pro-
duced in S-wave, the two gluons can form scalar and tensor
glueballs which should be produced abundantly. The large
statistics available from BESIII at Beijing makes this reac-
tion the most favorable one for glueball searches. Radiative
decays of heavy mesons is the only process for which glue-
ball yields have been calculated. The data will be discussed
below in more detail.

Decay analysis
The decay of mesons into two pseudoscalar mesons is gov-
erned by SU(3)F . In a meson nonet, there are two isoscalar
mesons, one lower in mass the other one higher, which both
contain a nn̄ = (uū + dd̄)/

√
2 and a ss̄ component and

are mixed with the mixing angle ϕ. Figure 186 shows the
SU(3)F squared matrix elements for meson decays into two
pseudoscalar mesons as a function of the scalar mixing angle.

(
f H

f L

)

=
(

cosϕs − sin ϕs

sin ϕs cosϕs

)( |nn̄〉
|ss̄〉

)

(6)

Supernumery
The three scalar isoscalar mesons f0(1370), f0(1500) and
f0(1710) played an important role in the glueball discus-
sion. Amsler and Close [2491,2492] suggested to interpret
these three states as the result of mixing of the two expected
isoscalar states with the scalar glueball.
⎛

⎝
f0(1370)
f0(1500)
f0(1710)

⎞

⎠ =
⎛

⎝
x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞

⎠

⎛

⎝
|nn̄〉
|ss̄〉
|gg〉

⎞

⎠ (8.31)

These papers led to a large number of follow-up papers, ref-
erences can be found in Ref. [2490]. In all these papers,
these three mesons contain the full glueball,

∑
j x

2
i j = 1

is imposed. Note that the squared mass difference between
f0(1370) and f0(1710) is slightly above 1 GeV2, the f0(1710)
could also be a radial excitation (and is interpreted as radial
excitation below).

Conclusions
Identifying a glueball is a difficult task. The main argument
in favor of a glueball interpretation is an anomalously large
production rate in J/ψ decays. It turns out that scalar mesons
are organized like pseudoscalar mesons, into mainly singlet
and mainly octet mesons. A large production rate of a mainly-
octet scalar isoscalar meson in radiative J/ψ decays directly
points to a significant glueball content in its wave function.
A second argument relies an meson decays into pseudoscalar
mesons. In presence of a glueball, a pair of mesons assigned
to the same multiplet should have a decay pattern that is
incompatible with a qq̄ interpretation for any mixing angle.
Supernumery is a weak argument. It requires a full under-
standing of the regular excitation spectrum. Further studies
are required to learn if central production is gluon-rich. The
large production rates of f0(1500), f0(1710) and f0(2100)
in p̄ p annihilation at collision energies above 3 GeV encour-
ages glueball searches at the FAIR facility with the PANDA
detector (see Sect. 14.5).

8.4.4 Evidence for glueballs from coupled-channel analysis

We have performed a coupled-channel partial wave analysis
of radiative J/ψ decays into π0π0, K 0

s K
0
s , ηη, and ωφ, con-

strained by the CERN-Munich data on πN scattering, data
from the GAMS collaboration at CERN, data from BNL on
ππ → K 0

s K
0
s , and 15 Dalitz plots on p̄ p annihilation at rest

from LEAR. Data on Ke4 decays constrain the low-energy
region. Fitting details and references to the data can be found
in Ref. [2493]. A similar analysis has been carried out by
Rodas et al. [2494]. This will be discussed in Sect. 8.4.9.

Figure 187 shows the data on radiative J/ψ decays into
π0π0, K 0

s K
0
s and the fit. Ten scalar isoscalar resonances

were included in the fit. Oller [2406] has shown that f0(500)
is singlet-like, the f0(980) octet-like (see also [2495]). The
f0(1500) is seen in Fig. 187 as a dip. This pattern was repro-
duced in Ref. [2493] assuming that f0(1370) is a singlet
state and f0(1500) an octet state. Hence we assumed that the
ten mesons can be divided into two series of states, mainly-
singlet states with lower masses and mainly-octet states with
higher masses.

In a (M2, n) plot, the masses of singlet and octet states
follow two linear trajectories (see Fig. 188). Remarkably,
the slope (1.1 GeV−2) is close to the slope of standard Regge
trajectories. The separation between the two trajectories is
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Fig. 187 The squared S-wave transition amplitudes for J/ψ → π0π0

(a) and J/ψ → K 0
s K

0
s (b). The data points are from an energy-

independent partial-wave analysis [2496,2497], the curve represents
our fit [2493]

Fig. 188 M2, n trajectories for mainly-singlet and mainly-octet scalar
isoscalar resonances. The red dot at high masses represents a scalar state
from J/ψ → γ η′η′ [2498]. Adapted from Ref. [2493]

given by the mass square difference between η′ and η-meson
as suggested by instanton-induced interactions [2499]. The
figure includes a meson reported by the BESIII collaboration
studying J/ψ → γ η′η′ [2498]. As η′η′ resonance, f0(2480)
is very likely a SU(3) singlet state. Indeed, its mass is com-
patible with the “mainly-singlet” trajectory. The figure gives
the pole positions of the eleven resonances as small inserts.

8.4.5 Scalar multiplets

The nonet of scalar mesons

a0(980), K ∗0 (700), f0(980), f0(500)

of lowest mass were discussed by Pelaez (Sect. 8.2). In our
interpretation, this nonet is followed by

a0(1450), K ∗0 (1430), f0(1500), f0(1370).

All known decay modes are compatible with SU(3) predic-
tions except K ∗0 (1430) → Kπ : the SU(3) fit requires this

Fig. 189 Yield of scalar isoscalar mesons in radiative J/ψ decays into
mainly-octet (open circles) and mainly-singlet mesons (full squares) as
a function of their mass [2493]

resonance to have a large inelasticity. The large K ∗0 (1430)→
Kπ is incompatible with the known a0(1450) decay modes,
unrelated of course with the assignment of the isoscalar
mesons to this nonet.

The recently discovered a0(1700) [2348–2351] can be
accommodated in a multiplet

a0(1700), K ∗0 (???), f0(1780), f0(1710),

where the K ∗0 (???), expected at about 1680 MeV, is missing.
The SU(3) fit to the next nonet

a0(1950), K ∗0 (1950), f0(2100), f0(2020)

requires a larger f0(2100) → ηη coupling which is not
observed. Too little is known about the a0(1950), K ∗0 (1950)
decays modes.

It is obvious, that the assignments of the observed scalar
mesons to multiplets is very tempting but tensions between
an SU(3) analysis of the decay mode and experimental values
remain.

8.4.6 The yields of scalar mesons in radiative J/ψ decays

The total yields of scalar mesons in radiative J/ψ decays –
including decay modes not reported by the BESIII collabo-
ration – was determined from the coupled-channel analysis
[2493] that included also other data. The yield of mainly-
octet and mainly-singlet mesons as a function of their mass
is shown in Fig. 189. Mainly-octet mesons should not be
produced (or at most weakly) in radiative J/ψ decays. How-
ever, they are produced abundantly, in a limited mass range
centered at about 1865 MeV. Mainly-singlet mesons are pro-
duced over the full mass range but show a peak structure at
the same mass. This enhancement must be due to the scalar
glueball mixing into the wave functions of scalar mainly-
octet and mainly-singlet mesons. A Breit–Wigner fit to these

123



Eur. Phys. J. C          (2023) 83:1125 Page 277 of 636  1125 

Fig. 190 The glueball content of scalar mesons. Black squares:
sin2 ϕs

n, solid curve: Breit–Wigner resonance with area 1 [2490]

distributions gives mass and width

MG = (1865± 25+10
−30)MeV ΓG = (370± 50+30

−20)MeV,

(8.32)

and the (observed) yield is determined to

YJ/ψ→γG = (5.8± 1.0) 10−3. (8.33)

8.4.7 Meson–glueball mixing

Earlier attempts to identify the glueball have in common
that the full glueball is distributed among the three states
f0(1370), f0(1500) and f0(1710). Inspecting Fig. 187, this
seems not to be the case: Above 1 GeV, four peaks with three
valleys are seen, and there is no reason why one particular
region should be more gluish than the other ones. The yield
of scalar mesons sees the glueball contribution distributed
over several resonances.

We did not impose that the full glueball should be seen
in these three states nor that we must see the full glueball at
all. We fitted the decay modes of pairs of scalar mesons, one
mainly-singlet one mainly-octet, and allowed for a glueball
component [2490].

f nH
0 (xxx) = (

nn̄ cosϕs
n − ss̄ sin ϕs

n

)
cosφG

nH + G sin φG
nH

f nL
0 (xxx) = (

nn̄ sin ϕs
n + ss̄ cosϕs

n

)
cosφG

nL + G sin φG
nL

(8.34)

ϕs
n is the scalar mixing angle, φG

nH and φG
nL are the meson–

glueball mixing angles of the high-mass state H and of the
low-mass state L in the nth nonet. The fractional glueball
content of a meson is given by sin2 φG

nH or sin2 φG
nL.

With this mixing scheme and the SU(3) coupling constant
(see Fig. 186), we have fitted the meson decay modes and
have thus determined the glueball content of the eight high-
mass scalar mesons. Figure 190 shows the glueball fraction
in the scalar mesons.

Fig. 191 In radiative J/ψ decays two gluons, in B̄0
s → J/ψ + ss̄, a

ss̄ pair may convert into a scalar meson

The glueball fractions derived from the decay analysis of
pairs of scalar mesons add up to a sum that is compatible
with 1. The distribution of the glueball fraction in Fig. 190
is identical to the distribution of yields in Fig. 189. This is
a remarkable confirmation that the scalar glueball of lowest
mass has been identified and has mass and width as given in
Eq. (8.32) and a yield as given in Eq. (8.33).

8.4.8 Comparison with LHCb data

Most striking is the mountain landscape above 1500 MeV in
the data on radiative J/ψ decays. In these decays a cc̄ pair
converts into gluons which hadronize (see Fig. 191, left). The
huge peak in the K K̄ mass spectrum at 1750 MeV and the
smaller one at 2100 MeV decay are produced with two gluons
in the initial state. This is to be contrasted with data on B0

s
and B̄0

s decays into J/ψ+π+π− [2500] and K K̄ [2501]. In
this reaction, a primary ss̄ pair – recoiling against the J/ψ
– converts into the final state mesons (see Fig. 191, right).
We have included the spherical harmonic moments in the
coupled channel analysis that describes the radiative J/ψ
decays [2502]. High-mass scalar mesons are only weakly
produced in B0

s decays with ss̄ in the initial state. The strong
peak in the K K̄ invariant mass at 1750 MeV in Fig. 187 is
nearly absent in B0

s → J/ψ K K̄ !
Figure 192 shows the ratio of the decay frequencies of

J/ψ → γ f0 and B0
s → J/ψ f0 with f0 decaying into

ππ or K K̄ . The f0(980) is likely a mainly-octet state, little
produced in radiative J/ψ decays but strongly with ss̄ in the
initial state. On the contrary, f0(1770) is seen as strong peak
in radiative J/ψ but very weakly only in B0

s decays. The
uncertainties are large, but the ratio of the decay frequencies
is fully compatible with the shape of the glueball derived
above.

This is highly remarkable: the two gluons in the initial
state must be responsible for the production of resonances
that decay strongly into K K̄ but are nearly absent when ss̄
pairs are in the initial state. Also, there is a rich structure in
the ππ mass spectrum produced in radiative J/ψ decays but
little activity only when the initial state is an ss̄ pair: The rich
structure stems from gluon–gluon dynamics. Similar conclu-
sions can be drawn [2495] from a comparison of the invariant
mass distributions from radiative J/ψ decays with the pion
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Fig. 192 The ratio Rgg/ss̄ of the frequencies for J/ψ → γ f0 and
B0
s → J/ψ f0 with f0 decaying into ππ or K K̄

Table 32 Comparison of the pole positions of the mainly-octet mesons
from [2493] and the pole positions from [2494]. Masses are given in
MeV

[2493] [2494]

(1483± 15) − i(116± 12)/2 (1450± 10) − i(106± 16)/2

(1765± 15) − i(180± 20)/2 (1769 ± 8) − i(156± 12)/2

(2075± 20) − i(260± 25)/2 (2038 ± 48) − i(312± 82)/2

(2340± 20) − i(250± 20)/2 (2419 ± 64) − i(274 ± 94)/2

and kaon form factors [2503]. Their square is proportional
to the cross sections. The f0(980) resonance dominates both
formfactors but is nearly absent in radiative J/ψ decays: The
f0(980) has large nn̄ and ss̄ components mixed to a dominant
SU(3) octet component. The large intensity above 1500 MeV
in radiative J/ψ decays is absent when not gluons but an ss̄
pair are in the initial state: the mountainous structure in radia-
tive J/ψ decays is produced by gluons and not by qq̄ pairs:
The structure is due to the scalar glueball.

8.4.9 Discussion

The BESIII data were also fitted by Rodas et al. [2494]. They
describe the data above 1 GeV with four scalar and three ten-
sor resonances only, and a “background” due to production
of vector mesons decaying into π0γ and recoiling against
a π0, J/ψ → Vπ0, V → π0γ . The fit suggests vector
meson masses outside of the available phase space leading
to a smooth background. (For the KSKSγ final state, the
vector meson decays via V → KSγ .)

This fit is very interesting. It seems to identify the octet-
like mesons and to dismiss the singlet-like mesons. In
Table 32 we compare these masses. The similarity of the
pattern is obvious!

The existence of the f0(1370) has been disputed since
long, see, e.g. [420,2504,2505] and [2368,2506]. In the
1700–1800 MeV region, only one state is established, and

the high-mass region is not constrained by the CERN-Munich
data. Hence the existence of individual SU(3) singlet scalar
resonances can be questioned. In [420] I had proposed that the
mainly-singlet scalar mesons above the f0(500) merge into
a continuous scalar “background”. In the fits of Ref. [2493],
the interference between a mainly-singlet and a mainly-octet
amplitude is shown to be required to explain the dip in the
scalar K K̄ mass distribution and the rapid intensity change
in the ππ mass distribution. I assume that the J/ψ → Vπ0

amplitude in Ref. [2494] simulates the SU(3)-singlet ampli-
tude. The strong peaks in the ππ and K K̄ mass distributions
in Fig. 187 are still assigned to mainly-octet mesons that
should not be produced in radiative J/ψ decays.

If these considerations are true, the structure in Fig. 187
still originates from an intermediate glueball mixed into the
wave function of scalar mesons. Also the arguments pre-
sented in Sect. 8.4.7 remain valid: the “narrow” octet-like
mesons and the singlet-like “background” contain identified
fractions of the scalar glueball.

8.4.10 A trace of the tensor glueball

The tensor glueball is predicted with an even higher yield
[2488]:

ΓJ/ψ→γ /G2++ /Γtot = (11± 2)10−3. (8.35)

The yield of f2(1270) in radiative J/ψ decays is (1.64 ±
0.12)10−3, about six times weaker than the predicted rate for
the tensor glueball! Bose symmetry implies that the π0π0 or
KsKs pairs are limited to even angular momenta, practically,
only S and D-waves contribute. The scalar intensity origi-
nates from the electric dipole transition E0. Three electro-
magnetic amplitudes E1,M2, and E3 excite tensor mesons.
Figure 193 shows these three amplitudes and the relative
phases.

Two fits were performed [2507]. One fit describes the mass
distribution only. Apart from the well known f2(1270) and
f ′2(1525) the fit needs one high-mass resonance with

M = (2210± 60)MeV; Γ = (360± 120)MeV, (8.36)

where the error includes systematic studies with or with-
out additional low-yield resonances. The enhancement was
called X2(2210). In this fit, the phases are not well described.
Figure 193 shows a fit in which the 2200 MeV region
is described by three tensor resonances with masses and
widths of about (M, Γ ) = (2010, 200), (2300, 150), and
(2340, 320) MeV. These resonances had been observed by
Etkin et al. [2332] in the reaction π− p→ φφn. The unusual
production characteristics were interpreted in Ref. [2332] as
evidence that these states are produced by 1–3 glueballs.

The total observed yield of X2(2210) in ππ and K K̄ is
(0.35±0.15) 10−3, far below the expected glueball yield. We
assume the glueball is – like the scalar glueball – distributed

123



Eur. Phys. J. C          (2023) 83:1125 Page 279 of 636  1125 

Fig. 193 D-wave intensities and phases for radiative J/ψ decays
into π0π0 (top subfigures) and Ks Ks (bottom subfigures) from Ref.
[2496,2497]. The subfigures show the E1 (a), M2 (b) and E3 (c)
squared amplitudes and the phase differences between the E0 and E1
(d) amplitudes, the M2 and E1 (e) amplitudes, and the E3 and E1 (f)
amplitudes as functions of the meson–meson invariant mass. The phase
of the E0 amplitude is set to zero. The curve represents our best fit

over several tensor mesons. Adding up all contributions from
tensor states above 1900 MeV seen in radiative J/ψ decays,
one obtains

M=2.5 GeV∑

M=1.9 GeV

YJ/ψ→γ f2 = (3.1± 0.6) 10−3, (8.37)

which is a large yield even though still below the predicted
yield.

8.4.11 How to find the pseudoscalar glueball

The BESIII collaboration has studied the reaction J/ψ →
π+π−η′ [2508]. The top panel of Fig. 194 shows theπ+π−η′
invariant mass distributions with a series of peaks. Assuming
that these are all pseudoscalar mesons, two trajectories can be
drawn (see bottom panel of Fig. 194). The figure suggests that
the higher-mass structures could house two mesons, possibly
singlet and octet states in SU(3). If this is true, a cut in the
π+π− invariant mass at about 1480 MeV would partly sep-
arate the two isobars, X (2600)→ f0(1370)η′ and X (2600)
→ f0(1500)η′. We may expect a slight mass shift in the

Fig. 194 Top: The π+π−η′ mass distribution from radiative J/ψ
decays [2508]. The quantum numbers are not known. Bottom: M2 ver-
sus n trajectories

Fig. 195 π+π− (left) and K+K− (right) invariant mass distributions
from radiative decays of ψ(2S). The red curves represent the S-wave
contributions. Adapted from [2509]

two π+π−η′ invariant mass distributions. The two mesons
f0(1370) and η′ are both mainly singlet. The f0(1370)η′
isobar as singlet meson in the X (2600) complex should be
slightly higher in mass than the f0(1500)η′ mainly octet
meson.

The total yields of the high-mass structures – including
unseen decay modes – are not known. Nevertheless, their
appearance above a comparatively low background is sur-
prising. Personally, I suppose that the pseudoscalar glueball
is rather wide, and that the structures are seen so clearly
because of a small glueball content. More studies of theses
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Fig. 196 π+π− (left) and K+K− (right) invariant mass distribu-
tions from radiative deacys of Υ (1S). The Υ (1S) is observed in
Υ (2S)/Υ (3S)→ π+π−Υ (1S). The red curves represent the S-wave
contributions, the grey area the ρ(770) contribution. Adapted from
[2510]

data and of different channels are required to substantiate this
conjecture.

8.4.12 Outlook

The data of the BESIII collaboration presented above are
based on 1.3 × 109 events taken at the J/ψ . Presently
available are 1010 events. Based on this large statistics,
rare radiative decays like J/ψ → γ ηη′ [2461,2462] and
J/ψ → γ η′η′ [2498] have been analysed. Data on the dif-
ferent charge modes of J/ψ → γ 4π would be extremely
important. In an ideal world, these data would be publicly
available after publication and would be included in differ-
ent coupled-channel partial-wave analyses.

Radiative decays of ψ(2S) and of Υ (1S) open a wider
range in invariant mass. The authors of Ref. [2509] used the
data of the CLEO collaboration on radiative ψ(2S) decays
into π+π− and K+K−. The data are shown in Fig. 195. The
data are fit with known resonances, no partial-wave analysis
was performed. The BaBar collaboration studied radiative
Υ (1S) decays into π+π− and K+K− [2510]. Figure 196
shows the results. In all four distributions, there is not a sin-
gle prominent peak in the S-wave contribution which would
stick out as glueball candidate. The S-waves rather resem-
bles the distributions observed in radiative J/ψ : three major
enhancement in the 1500, 1750 and 2200 MeV region sep-
arated by dips. (With the larger statistics in J/ψ decays, a
fourth enhancement is seen at about 2350 MeV.) In Fig. 195,
a peak is found at 1447 MeV and assigned to f0(1500). At
1500 MeV, there is the dip. The wrong mass is due to the
neglect of interference: The phase between f0(1500) and the
“background” (due to the wider f0(1370)) is 180◦ [2493].
This phase difference and the significant f0(1500) → ηη′
branching ratio identify f0(1500) as mainly SU(3)F octet
state. The different masses for the high-mass state in the
π+π− and K+K− invariant mass distributions point again
to the neglect of interference between the prominent octet
states and the singlet “background”. Inspecting Figs. 195
and 196 shows: there is no striking isolated peak which could

be interpreted as “the glueball”. The glueball content must
be distributed over a large number of states.

In ψ(2S) radiative decays, the f0(1710) → K K̄ is
observed with a branching fraction of (6.7± 0.9)×10−5, in
Υ (1S) radiative decays, the f0(1710) → K+K− is seen
with a branching ratio of (2.02± 0.51± 0.35)×10−5. The
comparison with the yield observed in Ref. [2493] allows
us to calculated the branching ratio expected for ψ(2S) and
Υ (1S) decays when the full scalar glueball is covered, i.e.
for Υ (1S)→ γG0(1865). The values are given in Table 33.

Clearly, a significant increase in statistics is required when
these reactions should make an independent impact. The
advantage of ψ(2S) and Υ (1S) radiative decays is of course
that phase space limitations play no role any more. This is
particularly important for the search for the tensor and pseu-
doscalar glueball. The scalar glueball seems to be confirmed:
there is not much intensity above 2500 MeV.

At the end I would like to give an answer to the question
posed in the title: yes, I am convinced, the scalar glueball
is identified, and the tensor glueball seems to have left first
traces in the data.

8.5 Heavy quark–antiquark sector: experiment

Marco Pappagallo

8.5.1 Introduction

The term “quarkonium” is a collective name to denote heavy
quark–antiquark bound states QQ̄′ (Q, Q′ = c, b) where the
masses of heavy (anti-)quarks are much larger thanΛQCD, the
scale of non-perturbative physics. Therefore the velocities of
the heavy (anti-)quark in quarkonium systems are small and a
nonrelativistic potential between the heavy quark–antiquark
can be employed to predict the properties of the quarkonium
states. The spectra of the charmonium and bottomonium
states, with quark content cc̄ and bb̄ respectively, have been
extensively studied in the past years. All excited quarkonium
states below the open-flavor DD̄(∗) or B B̄(∗) thresholds were
predicted to be narrow. The observation of the J/ψ meson
in 1974 and the success, to predict the electromagnetic and
hadronic transitions among the narrow quarkonium states,
established the potential models as a tool to unravel the com-
plicated QCD dynamics.

Starting from 2003, new states with masses above the
DD̄(∗) and B B̄(∗) thresholds were observed. A common fea-
ture is the presence of a heavy quark Q and anti-quark Q̄ pair
in the decay products. As a consequence, the constituent-
quark content of the decaying meson has to include a heavy
quark and a heavy anti-quark. However, the properties of
many of these states did not match to those of any conven-
tional quarkonium state. So, what are they?
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Table 33 Radiative yields
expected for ψ(2S) and Υ (1S)
radiative decays into the scalar
glueball

“Exp.” Theory Refs.

ψ(2S)→ γG0(1865) ∼ 5× 10−4 (5.9+3.4
−1.4)× 10−4 [2511]

Υ (1S)→ γG0(1865) ∼ 3× 10−4 (1.3+0.7
−0.3)× 10−4 [2511]

(1− 2)× 10−3 [2512]

In addition to the conventional qq̄ mesons and qqq
baryons, models based on QCD predict hadrons with dif-
ferent combinations of quarks q and gluons g, such as:
pentaquarks (qq̄qqq), tetraquarks (qq̄qq̄), six-quark H-
dibaryons (qq̄qq̄qq̄), hybrids (qq̄g) and glueballs (ggg), see
Sects. 8.3 and 8.4. The existence of such “exotic” hadrons
has been debated for several years without reaching a general
consensus. In the early 2000s new hadrons with unexpected
features were observed, in particular the D∗s0(2317)+ [2513]
and χc1(3872) [2514] mesons and the Θ+ baryon [2515].
While the first two candidates are still consistent with being
conventional cs̄ and cc̄ states, the latter one is manifestly
exotic with a minimal quark content uddus̄ since it was
observed in the nK+ and pK 0

S final states. However, while
the existence of the D∗s0(2317)+ and χc1(3872) mesons has
been extensively confirmed by many experiments, the evi-
dence of the Θ+ baryon has faded away with time [2516].
The discovery of the χc1(3872) drew a lot of attention due
to the narrowness of the signal and the proximity of the
mass to the m(D0) + m(D̄∗0) threshold. Soon after many
other charmonium-like and bottomonium-like states were
observed. While it is still not possible to rule out firmly a con-
ventional nature for the majority of them, the observation of
the Zc(4430)+ meson, an electrically charged charmonium-
like state, and of the T+cc state, a meson containing two charm
quarks, established definitively the existence of QCD exotics.
Many models have been proposed to explain the exotic nature
of such a states: hadronic molecules [2517], whose con-
stituents are color-singlet mesons bound by residual nuclear
forces, tetraquarks [2518], bound states between a diquark
and diantiquark, hadro-quarkonium [2519], a cloud of light
quarks and gluons bound to a heavy QQ̄ core state via van-
der-Waals forces, threshold effects, enhancements caused by
threshold cusps [2520] or rescattering processes [2521].

The spectra of the conventional and exotic charmonium-
like and bottomonium-like states are shown in Fig. 197.
Many of them have been named X , Y and Z in the corre-
sponding discovery papers without a consistent criterion as
a consequence of their uncertain nature. With the number
of X,Y, Z states growing, the need of an adequate naming
scheme emerged. The current naming scheme in Particle Data
Group extends the convention used for ordinary quarkonia
by taking in account the isospin, spin and parity of the state
[513]. The names are not related to the internal structure of
the states given their nature is controversial. However, even

the current scheme presents some limitation for the man-
ifestly exotic states and a new scheme has been proposed
recently [2522].

8.5.2 χc1(3872): the renaissance of the exotic spectroscopy

In 2003, the Belle collaboration, while studying the B+ →
J/ψπ−π+K+ decays, observed two peaking structures in
the J/ψπ−π+ mass projection (Fig. 198): the well known
ψ(2S) meson and a new state, originally dubbed X (3872)
[2514]. The new meson has been confirmed by many exper-
iments [2523–2529] and observed in prompt production in
pp, p p̄, pPb [2530] and PbPb [2531] collisions as well as
in B and Λ0

b hadron decays [2532,2533]. The invariant mass
distribution of the dipion system is consistent with originat-
ing from ρ(770)0 → π+π− decays [2527,2534]. Recently
using a larger dataset the presence of a sizeable contribution
of ω(782) → π+π− decays has been established as well
[2535]. For a pure charmonium state, the decays to J/ψω

[2536,2537] and J/ψρ0 are isospin conserving and violat-
ing, respectively. Therefore the latter should be strongly sup-
pressed, in contrast to the measured branching ratios. Later,
further decay modes have been reported: D0 D̄0π0 [2538],
D̄0D∗0 [2539], χc1π

0 [2540], J/ψγ [2541] and ψ(2S)γ .
The current branching-fraction measurements of theψ(2S)γ
radiative decay [2541–2544] are, however, not fully consis-
tent and further studies are needed to solve the emerging ten-
sion. Solving this puzzle will help to understand the nature
of the X (3872) meson, given that the predicted branching
fractions span over a broad range of values depending if the
X (3872) state is a D∗0 D̄0 molecule [2545,2546] or a pure
charmonium state [2547,2548].

A study of the angular correlations among the final state
particles from X (3872) → J/ψπ+π− decays constrained
the possible J PC assignments for the X (3872) to J PC =
1++ and 2−+ [2549]. The latter, disfavoured by the obser-
vation of the radiative decays, was definitively ruled out by
the LHCb experiment [2550,2551]. Once the quantum num-
bers J PC = 1++ have been firmly established, the name of
X (3872) turned into χc1(3872) according to the PDG nam-
ing scheme [513]. The identification of the X (3872) with
the the 23P1 cc̄ state is disfavoured by the large branching
fraction of X (3872) → J/ψρ0 and the large mass splitting
with respect to the 23P2 state, identified with χc2(3930).
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Fig. 197 The spectrum of charmonium(-like) (left) and
bottomonium(-like) (right) states. States are labeled according to
the PDG naming scheme. Dashed horizontal lines show some relevant

open-charm or open-bottom thresholds. The states shown in the right
columns are manifestly exotic, i.e. the quark content can not be only
cc̄ or bb̄ given their non-zero electrical charge

An intriguing feature of the χc1(3872) meson is the prox-
imity of its mass to the m(D∗0) + m(D0) threshold. This
characteristic has led to speculate that the χc1(3872) is
a molecular state [2552] where the D∗0 and D̄0 mesons
are bound by residual nuclear forces, similarly to a proton
and a neutron in the nucleus of the deuterium. An impor-
tant input for such an interpretation is the binding energy
Eb ≡ mD0+mD∗0−mχc1(3872) which is still consistent with
zero despite being measured with a precision of O(100)keV
[2553,2554]. The analyses also reported a measurement of
the natural width Γ BW

χc1(3872) = (1.39 ± 0.24 ± 0.10)MeV
by using a Breit–Wigner lineshape for the χc1(3872) sig-
nal. However, since the |Eb| < Γ BW

χc1(3872), coupled channel
effects might distort the lineshape. Indeed a Flatté-inspired
model returned a significantly smaller full width at half-
maximum FWHM = (0.22 ±0.07

0.06 ±0.11
0.13) MeV, highlight-

ing the relevance of a physically well-motivated lineshape
parameterization (see Sect. 14.5).

The smallness of the binding energy Eb = (0.07± 0.12)
MeV [2553,2554] implies a size of O(10) fm in a molecu-
lar scenario. The production of a large and weakly bound
molecule is expected to be suppressed due to the inter-
actions with comoving hadrons produced in the underly-
ing event [2555]. The ratio of χc1(3872) to ψ(2S) cross-
sections for promptly produced particles has been measured
at LHC [2556] and has been found to decrease with mul-
tiplicity. However the slope would seem not to agree with
the expectations for a molecular state [2557]. In addition no
enhancement of the χc1(3872) production has been observed
in association to a pion [2558] as expected for a molec-
ular state produced via the formation of a D∗ D̄∗ pair at
short distance followed by the rescattering of the charmed

mesons into χc1(3872)π [2559]. Finally, the relative pro-
duction of χc1(3872) to ψ(2S) mesons as a function of the
transverse momentum and rapidity has shown a mild (or null)
dependence for χc1(3872) (or ψ(2S)) mesons produced in
prompt pp collisions and from b-hadron decays, respectively
[2527,2560]. The CMS collaboration has measured a large
production rate of the χc1(3872) mesons also at large trans-
verse momenta while a suppression is expected for hadronic
molecules [2561], as measured for the deuteron [2562].

In order to reconcile the molecular picture to the pro-
duction measurements, it has been suggested that the physi-
cal χc1(3872) might be a quantum mechanical mixture of a
D∗0 D̄0 molecule and the 23P1 cc̄ charmonium state [2563],
where the production is dominated by the charmonium com-
ponent. Alternatively, an interpretation has been proposed
where the χc1(3872) meson is a tightly bound diquark–
diantiquark system [2518] with a size of a few fermis. In
this scenario, isospin partner states are expected to exist.
A search for charged X− states has been carried out by
studying the decays B0 → X−K+ and B− → X−K 0

S ,
where X− → J/ψπ−π0 [2564,2565]. No charged X− has
been reported. Moreover no X− → D0D∗− signal has been
observed in the D0 D̄0π− mass spectrum [2566]. Another
firm prediction of the compact tetraquark models is that hid-
den charm states must form complete flavor-SU(3) multi-
plets with mass differences determined by the quark mass
difference ms − mu [2567]. The χc1(3872) meson could
belong to the same flavor multiplet of the X(4140) given
both states have J PC = 1++, where the two mesons are
interpreted as [c̄q̄][cq] (q = u or d) and [c̄s̄][cs] bound
states, respectively. As a consequence, a [cs][c̄q̄] state with
mass (mX (4140) + mχc1(3872)/2 = 4009 MeV should exist.
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Fig. 198 Distribution of the mass difference M(π+π−!+!−) −
M(!+!−), where ! = e, μ and the invariant mass of the dilepton system
is within a range around the J/ψ mass. The two signals correspond to
the ψ(2S) and χc1(3872) mesons, respectively [2514]

Two exotic states, Zcs(3985) [2568] and Zcs(4000) [2569]
have been observed in D+s D̄∗0 and J/ψK+ mass spectra,
respectively, with masses close to 4000 MeV, making them
potential candidates to complete the J PC = 1++ tetraquark
nonet, whereC = +1 refers to the sign of charge conjugation
of the neutral-non-strange members.

A C-odd partner of the χc1(3872) state, dubbed X̃(3872),
is expected as well [2518,2570]. Several experiments searc-
hed for a X̃(3872) candidate in the J/ψη and χc1γ mass
spectra in B+ → J/ψη/χc1γ K+ decays but no signal
was reported [2571–2574], even though many other charmo-
nium states were observed. The COMPASS collaboration
searched for muo-production of charmonia in the process
μ+N → μ+X0π±N ′ with X0 → J/ψπ+π− where N
denotes the target nucleon, N ′ the unobserved recoil system
and X0 an intermediate charmonium state [2575]. In addition
to the observation of the ψ(2S) meson, evidence of a nar-
row structure, peaking at about 3872 MeV in the J/ψπ+π−
spectrum, was reported. While the measured mass and width
pointed to an interpretation of the signal asχc1(3872)meson,
the π+π− mass spectrum showed a rather flat distribution
instead of the expected ρ0-like shape thus disagreeing sig-
nificantly with previous experimental results. This surpris-
ing result led the authors to speculate that the observed
state might be the C-odd partner X̃(3872) decaying to the
J/ψ f0(500) final state.

Assuming heavy flavor symmetry, a bottomonium coun-
terpart Xb of the χc1(3872) meson is expected. Searches for
Xb, carried out by the CMS [2576] and ATLAS [2577] col-
laborations by studying theΥ π+π− final state, have not been
successful. This result does not rule out the existence of an
Xb state since, contrary to the χc1(3872) case, the Υ π+π−
decay mode is expected to be suppressed due to the smaller
isospin breaking effect: the mass difference between the neu-
tral and charged B mesons is very small. Most likely, the Xb

state would decay into the Υω and χbπ
+π− final states.

The former decay has been recently studied by the Belle-II
collaboration. No Xb meson has been observed [2578].

8.5.3 Zc(4430)+ and the charmonium-like states

The observation of manifestly exotic candidates was a turn-
ing point in the discussion about the existence of non-
conventional hadrons. Indeed, a peculiar characteristic of
charmonium-like states is the possibility to observe states
with non-zero electrical charge and quark content cc̄ud̄.

The first-ever candidate, the Zc(4430)+ meson, was
observed by the Belle collaboration in the ψ(2S)π+ pro-
jection of B̄0 → ψ(2S)K−π+ and B+ → ψ(2S)K 0

Sπ
+

decays [2579]. The m2(Kπ+) versus m2(ψ(2S)π+) Dalitz-
plot distributions show a continuous band (and a peak in the
m2(ψ(2S)π+) projection) together with two bands in the
m2(Kπ+) mass distributions corresponding to the K ∗(892)
and K ∗0/2(1430) resonances. After applying a veto on the K ∗
regions, a one-dimensional fit to the ψ(2S)π+ projection
returned the mass and width (Table 34) of a signal that was
interpreted as the first charmonium-like state with non-zero
electrical charge (Fig. 199). Given that the decay modes have
four degrees of freedom, the claim of a new exotic state based
on the study of a one-dimensional projection received some
criticism. In addition, excluding regions in the Kπ+ invari-
ant mass does not imply that interference effects are removed
which could lead to peaking structures in other projections.

A model-independent approach was pursued by the BaBar
collaboration which investigated the extent to which the
reflections of mass and angular distribution of structures in
the Kπ+ system might describe the associated ψ(2S)π+
mass distributions in B̄0 → ψ(2S)K−π+ and B+ →
ψ(2S)K 0

Sπ
+ decays [2580]. For this purpose, the Kπ+

angular distribution was represented, at a given m(Kπ+),
in terms of a Legendre polynomial expansion. The combi-
nations of the first N = 2Jmax + 1 = 7 terms reproduces
adequately the ψ(2S)π+ mass distribution where Jmax = 3
is the maximum spin of the excited K ∗ resonances expected
in the Kπ+ spectrum. This result provided a hint that an
exotic contribution may not be needed, but it cannot rule
out the presence of the Zc(4430)+ meson either. Later on,
the Belle collaboration performed a fit to the m2(Kπ+) ver-
sus m2(ψ(2S)π+) Dalitz-plot [2581] and finally a complete
four-dimensional amplitude analysis [2582], both confirming
the observation of an exotic state. The latter analysis quotes
a natural width for the Zc(4430)+ much larger than the one
reported in the discovery paper (Table 34) which highlights
the relevance of performing full amplitude analyses to mea-
sure the physical parameters.

The existence of the Zc(4430)+ exotic state was debated
for many years until the LHCb collaboration also studied the
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Table 34 Measurements of mass and natural width of the Zc(4430)+
meson. The last column reports the number of dimensions considered
in the corresponding amplitude analysis

Zc(4430)+
Mass [MeV/c2] Width [MeV]

Belle [2579] 4433± 4± 2 45+18+30
−13−13 1D

Belle [2581] 4443+15+19
−12−13 107+86+74

−43−56 2D

Belle [2582] 4485+22+28
−22−11 200+41+26

−46−35 4D

LHCb [2583] 4475± 7+15
−25 172± 13+37

−34 4D

Fig. 199 Observation of the Zc(4430)+ meson in the m(ψ(2S)π+)
distribution of the B̄0 → ψ(2S)K−π+ and B+ → ψ(2S)K 0

Sπ
+

decays after applying a veto on the K ∗(892) and K ∗0/2(1430) states

in the Kπ+ systems [2579]

B̄0 → ψ(2S)K−π+ decays [2583]. The ten-fold increase
in signal yield over the previous measurements allowed the
collaboration to confirm the Zc(4430)+ state firmly with an
improved measurement of mass and width (Table 34) and to
establish its spin and parity to J P = 1+.

In addition, the resonant character of a charged four-
quark state is demonstrated for the first time by represent-
ing the Zc(4430)+ amplitude as the combination of inde-
pendent complex amplitudes at six equidistant points in
the m2(ψ(2S)π+) spectrum. The resulting Argand diagram,
shown in Fig. 200, is consistent with a rapid change of the
Zc(4430)+ phase when its magnitude reaches the maximum,
a behavior characteristic of a resonance. Finally, an analysis
of the data, using the model-independent approach devel-
oped by the BaBar collaboration, shows significant incon-
sistencies in the Zc(4430)+ region between the data and a
model introducing K ∗ states with J ≤ 3 [2584]. Evidence of
the Zc(4430)+ → J/ψπ+ is also reported by an amplitude
analysis of the B̄0 → J/ψK−π+ decays [2585].

After the discovery of the Zc(4430)+ meson, many fur-
ther charged charmonium-like states have been reported

Fig. 200 Argand diagram of the Zc(4430)+ meson by a Dalitz analysis
of the B̄0 → ψ(2S)K−π+ decays where the Zc(4430)+ amplitude
is fitted in six independent m2(ψ(2S)π+) bins. The red curve is the
expected shape according to a Breit–Wigner function with a resonance
mass (width) of 4475 (172) MeV. Units are arbitrary [2583]

Table 35 Decay modes and quantum numbers of manifestly exotic
charmonium-like states

State Decay modes I G(J PC )

Zc(3900)+ J/ψπ+ [2588–2590] 1+(1+−)
D̄0D∗+, D̄∗0D+ [2591,2592]

X (4020)+ hcπ+ [2593], D∗+ D̄∗0 [2594] 1+(??−)
X (4050)+ χc1(1P)π+ [2595] 1−(??+)
X (4055)+ ψ(2S)π+ [2596] 1+(??−)
X (4100)+ ηc(1S)π+ [2597] 1−(???)

Zc(4200)+ J/ψπ+ [2585] 1+(1+−)
Rc0(4240)+ ψ(2S)π+ [2583] 1+(0−−)
X (4250)+ χc1(1P)π+ [2595] 1−(??+)
X (3985)+ D+s D̄∗0, D∗+s D̄0 [2568] 1/2(??)

Zcs(4000)+ J/ψK+ [2569] 1/2(1+)
Zcs(4220)+ J/ψK+ [2569] 1/2(1?)

(Table 35), including candidates with strangeness and isospin
partners [2586,2587].

8.5.4 The bottomonium-like Z+b states

Few years after the discovery of the Zc(4430)+ meson,
the Belle collaboration claimed the observation of two
bottomonium-like states Zb(10610)+ and Zb(10650)+ in
the Υ (nS)π+ (n = 1, 2, 3) and hb(mP)π+ (m = 1,
2) spectra by studying the exclusive processes e+e− →
Υ (nS)π+π− (n = 1, 2, 3) and e+e− → hb(mP)π+π−
(m = 1, 2) with data collected at the collision energy√
s = 10.865 GeV [2598], the Υ (5S) mass. Amplitude

analyses of the three-body Υ (nS)π+π− decays were per-
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Fig. 201 The maximum invariant mass of the two Υ (2S)π combina-
tions of the e+e− → Υ (2S)π+π− process at

√
s = 10.865 GeV.

The two peaking structures are interpreted as the Zb(10610)+ and
Zb(10650)+ bottomonium-like states [2598]

formed by means of unbinned maximum likelihood fits
to two-dimensional m2(Υ (nS)π+) versus m2(Υ (nS)π−)
Dalitz distributions. Two narrow structures appear in the
m(Υ (nS)π±) spectrum (e.g. Fig. 201). The analyses of the
hb(mP)π± spectra returned compatible results. Weighted
averages of mass and width measurements over all five chan-
nels yield for the Zb(10610)+

m = (10607.2± 2.0)MeV, Γ = (18.4± 2.4)MeV,

and for the Zb(10650)+

m = (10652.2± 1.5)MeV, Γ = (11.5± 2.2)MeV.

Later on a six-dimensional amplitude analysis of the Υ (nS)
π+π− (n = 1, 2, 3) three-body final states confirmed
the existence of the two Z+b states and strongly favored
I G(J P ) = 1+(1+) quantum-number assignments for both
of them [2599]. Finally, the two mesons Zb(10610)+ and
Zb(10650)+ have been observed in the B+ B̄∗0 and B∗+ B̄∗0

mass spectrum, respectively [2600]. Table 36 summarizes the
branching fractions of Zb(10610)+ and Zb(10650)+ states
by assuming that their sum is equal to one.

The large branching fractions of the B(∗) B̄∗ decay modes
and the measured quantum numbers are consistent with the
interpretation of the two states as B B̄∗ and B∗ B̄∗ loosely
bound molecular hadrons. However the measured mass for
the Zb(10610)+ and Zb(10650)+ are both above the nearby
open-flavor thresholds. This might be the result of using
Breit–Wigner functions to parameterize the amplitudes of
very near-threshold states. Indeed, when amplitudes consis-
tent with unitarity and analyticity are used instead, lower
masses are measured, typically below the thresholds [2601].

Table 36 Branching fractions for the Zb(10610)+ and Zb(10650)+
decays. The first uncertainty is statistical while the second is systematic
[2600]

Channel Fraction (%)

Zb(10610)+ Zb(10650)+

Υ (1S)π+ 0.60± 0.17± 0.07 0.17± 0.06± 0.02

Υ (2S)π+ 4.05± 0.81± 0.58 1.38± 0.45± 0.21

Υ (3S)π+ 2.40± 0.58± 0.36 1.62± 0.50± 0.24

hb(1P)π+ 4.26± 1.28± 1.10 9.23± 2.88± 2.28

hb(2P)π+ 6.08± 2.15± 1.63 17.0± 3.74± 4.1

B+ B̄∗0 + B̄0B∗+ 82.6± 2.9± 2.3 −
B∗+ B̄∗0 − 70.6± 4.9± 4.4

8.5.5 The B+c mesons

Contrary to charmonium and bottomonium states, the B+c
mesons can not annihilate into gluons and thus these states
are more stable. Indeed, apart from the ground state which
decays weakly, all the excited states, with masses below the
lowest strong decay B(∗)D(∗) thresholds, are predicted to
have narrow widths [2602,2603].

Before the start of LHC, only the ground B+c state was
observed [2604] via few decays modes: B+c → J/ψπ+ and
B+c → J/ψ!+ν. The LHCb and CMS experiments have
observed 15 new decays modes and have largely improved
the precision of the B+c mass [2605] and lifetime [2606–
2608]. The production of the B+c meson has been observed
in p p̄, pp as well as in PbPb collisions [2609], where the
measurement of the nuclear modification factor hints that
effects of the hot and dense nuclear matter created in heavy
ion collisions contribute to its production.

Despite the large number of expected excited states, only
a few have been observed so far due to the small production
cross sections of the B+c mesons and the small branching
ratios of the reconstructed decay chains. In 2014 the ATLAS
collaboration reported the first observation of an excited B+c
state decaying to B+c π+π− final state [2610]. Few years
later the same mass spectrum was investigated by other LHC
experiments [2611,2612] and it turned out that the ATLAS
structure was very likely the result of a superimposition of
two narrower signals (Fig. 202), interpreted as the Bc(2S)+
and B∗c (2S)+ states. The latter appears in the mass spectrum
as a partially reconstructed decay B∗c (2S)+ → B∗+c π+π−,
where the photon of the B∗+c → B+c γ reaction is not recon-
structed. Since the B∗+c meson has not been observed yet,
the mass of the B∗c (2S)+ state can not be measured and it is
not listed in the PDG. In the next years the upgraded LHC
experiments will probe the largely unexplored spectrum of
the excited B+c mesons below and above the B(∗)D(∗) thresh-
olds with the intriguing possibility to observe exotic states
as for the other quarkonium systems [2613].
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Fig. 202 Observation of the B∗c (2S)+ (left-most peak) and Bc(2S)+
(right-most peak) states in the M(B+c π+π−) − M(B+c ) + mB+c mass
distribution [2611]

8.5.6 The doubly charmed Tcc(3875)+ state

All the exotic mesons described so far are featured by a heavy
quark–antiquark pair QQ̄ and a light quark–antiquark pair
qq̄ . The observation of several QQ̄qq̄ state has revived the
discussion on the existence of of QQq̄q̄ states with two heavy
quarks and two light antiquarks. In the limit of a large heavy-
quark mass, the two heavy quarks QQ form a heavy point-
like color-antitriplet object, that behaves like an antiquark,
and the corresponding four-quark state should be bound.
The argument that such a state should exist, if the mass of
the charm quark is enough, has been discussed extensively,
but a consensus was not reached. Even lattice QCD calcula-
tions had not provided a definite conclusion [2614]. The ccūd̄
ground state, hereafter denoted as T+cc , is predicted with spin-
parity quantum numbers J P = 1+ and isospin I = 0. The
only known hadron with a similar quark content is the Ξ++

cc
baryon [2615–2617], a bound state of two c quarks and one
u quark. Its measured mass [2618] implies that the mass of
the T+cc is close to the sum of masses of D0 and D∗+ mesons
[1066].

The LHCb experiment reported the observation of a nar-
row state in the D0D0π+ mass spectrum near the D∗+D0

mass threshold compatible with being a T+cc tetraquark state
[1067,2566]. The D0D0π+ final state is reconstructed by
selecting events with two D0 mesons and a positively charged
pion, all produced at the same proton–proton interaction
point. Both D0 mesons are reconstructed in the D0 →
K−π+ decay channel. The mass distribution of the selected
D0D0π+ candidates is shown in Fig. 203. A narrow peak
near the D∗+D0 mass threshold is clearly visible.

An extended unbinned maximum-likelihood fit to the
D0D0π+ mass spectrum is performed by modelling the sig-
nal with a Breit–Wigner function FBW . The measured mass

Fig. 203 Distribution of D0D0π+ mass where the contribution of the
non-D0 background has been statistically subtracted. The D∗+D0 and
D∗0D+ thresholds are indicated with the vertical dashed lines. Inset
shows a zoomed signal region with fine binning scheme [1067,2566]

δm and the full width at half maximum (FWHM) of the T+cc
state are reported in Table 37, where the uncertainties are
statistical. The mass parameter δm is defined relative to the
D∗+D0 mass threshold as δm ≡ m − mD∗+ − mD0 , where
mD∗+ and mD0 denote the known masses of the D∗+ and
D0 mesons. The measured δm value corresponds to a mass
of approximately 3875 MeV. Though the use of a standard
Breit–Wigner function is sufficient to reveal the existence of a
state, it does not take in account the proximity to D∗D thresh-
olds. A more advanced parameterization is needed to probe
the physical properties of the resonance. An unitarized Breit–
Wigner profile FU is considered as an alternative model for
the Tcc(3875)+ signal, where the energy-dependent width
accounts for the T+cc → D0D0π+, T+cc → D0D+π0 and
T+cc → D0D+γ decays. The resulting mass, relative to
D∗+D0 threshold, and the FWHM of the signal are shown in
Table 37 and compared to the results of the FBW model. The
narrowness of the T+cc state varies substantially highlighting
the relevance of accounting for the D∗D thresholds. Despite
the difference in results, both models can describe the data
adequately given the mass resolution of about 400 keV/c2.
The Tcc(3875)+ state is the narrowest exotic state observed
to date.

The D0D0π+ events with a mass below the D∗+D0

threshold (Fig. 203) are selected to study the D0π+ mass
distribution which indicates that the T+cc → D0D0π+ decay
proceeds via an intermediate off-shell D∗+ meson.

The peak in the D0D0π+ could be interpreted as the
I3 = 0 component of an isotriplet (T̂ 0

cc, T̂
+
cc , T̂

+
cc+) with

ccūū, ccūd̄ and ccd̄d̄ quark content, respectively. A search
for a T̂++cc state in the D+D0π+ mass spectrum reports no
signal. All the observed properties strongly support the inter-
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Table 37 Mass difference δm ≡ m−mD∗+ −mD0 and the full width at
half maximum (FWHM) of the Tcc(3875)+ state by fitting the D0D0π+
mass spectrum with the FBW and FU models. The uncertainties are
statistical only. See Refs. [1067,2566] for a complete set of results

Tcc(3875)+

δm [keV/c2] FWHM [keV/c2]

FBW −279± 59 409± 163

FU −359± 40 47.8± 1.9

pretation of the new state as the isoscalar J P = 1+ ccūd̄
tetraquark ground state.

Using the FU model, the scattering length a, the effective
range r [2622], and the compositeness Z [2623] are deter-
mined:

a =
[
− (7.16± 0.51)+ i (1.85± 0.28)

]
fm, (8.38)

−r < 11.9 (16.9) fm at 90 (95)% CL, (8.39)

Z < 0.52 (0.58) at 90 (95)% CL. (8.40)

The real part of the scattering length a can be interpreted as
the characteristic size of the state Ra ≡ −Re[a] = 7.16 ±
0.51 fm which corresponds to a spatial extension as large
as expected for molecular states. Within the FU model the
resonance pole is found to be located on the second Riemann
sheet at ŝ = mpole − i

2Γpole, where

δmpole = −360± 40+ 4
− 0 keV/c2, (8.41)

Γpole = 48± 2+ 0
− 14 keV. (8.42)

All exotic hadrons observed so far predominantly decay
via the strong interaction; their decay widths vary from a
few to a few hundred MeV. The discovery of the Tcc(3875)+
meson implies the existence of abbūd̄ state that should be sta-
ble against strong and electromagnetic interactions: its mass
is expected to fall below the B∗−B0 and B−B0 mass thresh-
olds. The observation of a long-lived exotic state will be an
intriguing goal for future experiments.

8.5.7 The fully charmed tetraquark X(6900)

Many QCD-motivated phenomenological models [2624,
2625] have predicted the existence of states consisting of
four heavy quarks TQQQ̄Q̄ . In 2020 the LHCb collabora-
tion reported the study of the invariant mass spectrum of the
J/ψ pairs where both J/ψ mesons are reconstructed via
the μ+μ− decay [2619]. As a result, the reconstruction effi-
ciency is large due to the presence of muons only in the final
state. A pair of J/ψ mesons can be produced in proton–
proton collisions at LHC via single (SPS) or double (DPS)
parton scattering processes, where the two J/ψ are produced
in a single or two separated interactions of gluons or quarks,
respectively. The SPS process includes both resonant produc-

tion via intermediate states, such as Tcc̄cc̄, and nonresonant
production.

The J/ψ J/ψ mass distribution (Fig. 204) shows a broad
structure just above the kinematic threshold and a narrower
peak at about 6.9 GeV, dubbed X (6900). An unusual dip also
appears between them. The broad structure can be modelled
as a superimposition of two Breit–Wigner structures or as an
interference between a Breit–Wigner function and the back-
ground. The latter model successes to describe also the dip
adequately. The presence of the X (6900) state is established
in both models, though the natural width is twice larger in
the latter.

Recently the CMS [2620] and ATLAS [2621] collabo-
rations have presented preliminary studies of the J/ψ J/ψ
spectrum (Fig. 204). While the X (6900) state is confirmed,
there is no consensus on the fit model. Common features are
the presence of dips in the spectrum and the need of inter-
ference terms to describe it properly. Interestingly the CMS
collaboration also claimed the observation and the evidence
of two new states X (6600) and X (7300), respectively. A
hint of the latter structure was also pointed out by the LHCb
collaboration.

Given no single light hadron can mediate the interaction
between charmonia to generate a loosely bound molecule,
the X (6900) meson seems likely to be a compact tetraquark
[2626]. The LHC experiments will profit of larger datasets
in a near future which will help to investigate further the
resonant nature of the peaks and eventually to measure their
spins and parities [2627] in the J/ψ J/ψ and ψ(2S)J/ψ
spectra.

Tetraquarks states containing only bottom quarks, Tbbb̄b̄,
have been also searched for by the LHCb and CMS collabo-
rations in the Υμ+μ− decay [2628,2629] but no signal have
been observed.

8.5.8 Conclusions

The existence of exotic hadronic states with more than mini-
mal quark content (qq̄ or qqq) was proposed since the birth
of the quark model [17,18]. In the last decades samples of
quarkonia larger and larger have been exploited to study their
transition and production processes. New and fascinating
exotic X,Y, Z states have been observed at a large num-
ber of facilities and in different production processes: at tau-
charm (BES experiment) and B factories (BaBar and Belle
experiments), in hadroproduction at Fermilab Tevatron and
the Large Hadron Collider (LHC) at CERN, in photon-gluon
fusion at DESY, photoproduction at JLab, and in heavy-ion
production and suppression at RHIC, NA60, and LHC. In
the upcoming years an unprecedented amount of data will
be available from the upgraded experiments CMS, ATLAS,
LHCb, ALICE, Belle II and BESIII [1464,2630–2634] and
more data will come in future from Panda at FAIR and
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Fig. 204 Invariant mass spectra of J/ψ pair candidates by using data
recorded bu the LHCb [2619] (top), CMS [2620] (middle) and ATLAS
[2621] (bottom) experiments. The three spectra have been aligned for
an easier comparison

the Electron Ion Collider (EIC) [2635,2636]. The measure-
ments of the quantum numbers and classification of the exotic
hadrons in SU (3) flavor multiplets will be an important step
to understand the nature of the observed exotic states. In
addition it will be important to identify observables which

can discriminate between different models. For instance the
measurement of the effective range has been suggested as a
physical quantity able to determine if theχc1(3872) is a com-
pact tetraquark or a loosely-bound molecular state [2637].

8.6 Heavy quark–antiquark sector: theory

Nora Brambilla

8.6.1 Introduction

Heavy quarks have been instrumental in accessing the strong
interactions as they provide a mass scale mh which is bigger
than LQCD: at such scale perturbation theory is valid and
scale factorization is useful. Among the systems with heavy
quarks, systems with two (or more) heavy quarks are very
special, being endowed with a pattern of separated energy
scales. Quarkonium in particular, a bound state of a heavy
quark and a heavy anti-quark, provides a special tool to study
strong interactions.

The 1974 discovery of the J/ψ [91,92], the charmo-
nium ground state, drastically changed and shaped the Stan-
dard Model (SM) of particle physics: termed the Novem-
ber revolution, it represented the confirmation of the quark
model, the discovery of the charm quark, the confirmation
of the GIM mechanism [80] (the mechanism through which
flavor-changing neutral currents are suppressed in loop dia-
grams), and the first discovery of a quark of large mass
moving nonrelativistically. It was also the confirmation of
QCD in its most peculiar properties of high-energy asymp-
totic freedom and low-energy confinement [97]. The small
width can be explained by the fact that J/ψ is the lowest
cc̄ energy level and can decay only via annihilation, which
makes available in the process a large energy, of order of
twice the mass of the charm quark (about 2 GeV). The anni-
hilation width is then proportional to α2

s (2mc) which is small
due to asymptotic freedom, since mc is bigger than ΛQCD .
Confinement becomes also manifest in the case of quarko-
nium, where the color-singlet static quark–antiquark interac-
tion potential can be written in terms of a Wilson loop (see
e.g. [2638,2639]). Confinement emerges as an area law in
the Wilson loop [97], cf. Fig. 205. Correspondingly a lin-
ear potential grows with the distance between the quarks
[2640] as V0 = limT→∞(i/T ) ln W , where W is given by
W = Tr P exp{igs

∮
Γ0

dzμAμ(z)}, see Fig. 206 and Sect. 6.1.
The energy scales involved in quarkonium span from the

hard region, where an expansion in the coupling constant is
possible and precision studies may be done, to the low-energy
region, dominated by confinement and the many manifesta-
tions of nonperturbative dynamics. This property underlies
its uniqueness and is the reason for which quarkonium plays
a crucial role for a number of problems at the frontier of our
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Fig. 205 The static Wilson loop along the circuit Γ0: it contains the
interaction of a static quark–antiquark pair created at a time t = 0 (respec-
tively at space points y1 and y2) annihilated at a subsequent large time
T (at space points x1 and x2) initial and final states are made gauge
invariant by the presence of the Schwinger line. The Wilson area law
says that the Wilson loop behavior at large distances is exponential in
the area of the loop weighted by the string tension σ

Fig. 206 Results for the static potential in physical units for 2+1+1
dynamical quark flavors. The data are from twelve ensembles of vary-
ing lattice spacing (keyed by β) and three choices of light quark mass
(denoted “M i”, “M ii”, “M iii”). Lattice units are eliminated via the
r0/a scale setting, and an unphysical constant is eliminated by setting
V0(r0) = 0. For details see [2641]. This is the first ever determination
of the potential with 4 dynamical fermions

research, from the investigation of the confinement dynam-
ics in QCD to the study of deconfinement and the phase
diagram of nuclear matter, from the precise determination of
Standard Model parameters up to the emergence of exotics
X,Y, Z states of an unprecedented nature [1464,1465,2630–
2632,2639], as we will summarize in the next sections. It is
also the reason for which quarkonium should be addressed
with effective field-theory methods to take advantage of the
scales separation.

8.6.2 Scales and effective field theories

The multiscale nature of quarkonium has made a description
within Quantum Field Theory particularly difficult until the
advent of non-relativistic effective field theories (NREFTs),
cf. Sect. 6.1. When in the eighties of last century, theorists
set up to investigate the structure of the energy levels of char-
monium and bottomonium, they noticed that it can be repro-
duced by using a Schrödinger equation with a static poten-
tial composed of an attractive Coulomb contribution (with
the appropriate SU (3) color factor for a singlet QQ̄) and a
term linear in the distance: the famous Cornell potential (see
Sect. 2.1 and Refs. [769,2642]:

V0(r) = −κ

r
+ σr + const. (8.43)

This was the quark model description with the potential
inspired by QCD. The parameter κ was identified with 4

3αs ,
corresponding to a one-gluon exchange that should dom-
inate at small distances due to asymptotic freedom. The
string tension σ corresponds to a constant energy density
related to confinement and generates a potential growing
with the interquark distance r at large distances. A fit to
the states gave κ = 0.52 and σ = 0.182 GeV2. In order to
describe the fine and hyperfine characteristics of the spec-
trum, relativistic corrections to the static potential have been
introduced to account for effects of order v2, i.e. 20% to
30% for the charmonium and up to 10% for the bottomo-
nium spectrum. They appear at the order 1/m2

h in the expan-
sion, involving both spin dependent (spin–spin, tensor and
spin–orbit couplings) and purely velocity dependent terms.
They were derived in the eighties, either from the semirel-
ativistic reduction of a Bethe–Salpeter equation [816] for
the quark–antiquark Green functions (or, equivalently at this
level, from the reduction of the quark–antiquark scattering
amplitude with an effective exchange) or in some model
description like the flux-tube model [2418], for a review see
[2638,2639,2643]. The problem of these approaches is the
lack of a precise connection to QCD. Taking advantage of
NREFTs, quarkonium can be described directly in QCD, and
in this way it becomes a probe of strong interactions.

The spectrum of quarkonium, see Fig. 171, clearly states
that it is a nonrelativistic system: the difference in the orbital
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energy levels is much smaller than the quark mass. Defin-
ing v as the heavy quark velocity in the rest frame of the
meson in units of c (with v2 ∼ 0.1 for the bb̄, v2 ∼ 0.3 for
cc̄ systems) the energy levels scales like mhv

2, while fine
and hyperfine separations scale like mhv

4. This is the same
scaling as for the hydrogen atom (identifying v with the fine
structure constant αem). This scaling is the signature of a
nonrelativistic system. Being nonrelativistic, quarkonia are
characterized by a hierarchy of energy scales: the mass mh

of the heavy quark (hard scale), the typical relative momen-
tum p ∼ mhv (in the meson rest frame) corresponding to the
inverse Bohr radius r ∼ 1/(mhv) (soft scale), and the typical
binding energy E ∼ mhv

2 (ultrasoft scale). Of course, for
quarkonium there is another scale that can never be switched
off in QCD, i.e. ΛQCD, the scale at which nonperturbative
effects become dominant. A similar pattern of scales emerge
in the case of baryons composed of two or three heavy quarks
[1451,1452] and for the just discovered state X (6900) made
by two charm and two anticharm quarks. The pattern of non-
relativistic scales makes all the difference between heavy
quarkonia and heavy-light mesons, which are characterized
by just two scales: mh and ΛQCD.

The correct zero-order problem is thus the Schrödinger
equation with potentials. These should, however, be defined
and calculated directly in QCD, and nonpotential correc-
tions that should be accounted for. As explained in Sect.
6.1 using the EFT method to integrate out in QCD (in
the sector with one heavy quark and one heavy anti-
quark) the hard scale mh and the soft scale mhv, give
origin to the NREFT called pNRQCD (potential Nonrela-
tivistic QCD) [1462,1490,1492]. The pNRQCD description
directly addresses the bound state dynamics, implements
the Schrödinger equation as zero-order problem, properly
defines the potentials as matching coefficients, and allows to
systematically calculate relativistic and retardation correc-
tions. Each correction has a size determined by the power
counting in v and in αs . The EFT allows us to make model-
independent predictions and we can use the power counting
to attach an error to the theoretical predictions.

When mv � ΛQCD, we speak about weakly-coupled
pNRQCD because the soft scale is perturbative and the poten-
tials can be calculated in perturbation theory. The lowest
levels of quarkonium, like J/ψ , Υ (1S), Υ (2S) . . . , may be
described by weakly coupled pNRQCD, while the radii of the
excited states are larger and presumably need to be described
by strongly coupled pNRQCD. All this is valid for states
away from the strong-decay threshold, i.e. the threshold for
a decay into two heavy-light hadrons. In the first case the
dynamical degrees of freedom are QQ̄ pairs in color singlet
or color octet configuration and ultrasoft gluons, in the second
case just QQ̄ pairs in color singlet. The details of the two the-
ories have been presented in Sect. 6.1. The nonperturbative
physics in pNRQCD is encoded in a few low-energy correla-

tors that depend only on the gluons and are gauge invariant:
these are objects in principle ideal for lattice calculations.
Strongly coupled pNRQCD allows us to obtain a definition
of the potentials that are given in terms of Wilson loops also
in generalized form (i.e. with the insertion of chromoelec-
tric and chromomagnetic field in the static loop). The static
potential is given by the static Wilson loop described before
that was calculated on the lattice since the inception of QCD
[97,351,1568,2640,2644], up to the present state of the art
that includes four dynamical quarks in the calculation, see
Fig. 206. Some of these potentials have been obtained before
the advent of the EFT in the so-called Wilson-loop approach
[97,803,1501,1502,2645,2646], but they were missing the
contribution of the hard scale. Moreover in the EFT, new
(spin-independent) contributions appear at the order 1/mh

and at the order 1/m2
h [1556,1557]. The results of strongly

coupled pNRQCD – which are valid in the regime in which
mhv is of order ΛQCD and where strong decay thresholds
are far away – justify the success of the quark model from
the QCD perspective. In fact in this regime the only degree
of freedom is the QQ̄ singlet, the dynamics is controlled
by the Schrödinger equation and ultrasoft corrections are
carried only by pions. The potentials, however, are calcu-
lated from QCD and they have a structure that is different
from what one gets in models, especially for terms related
to momentum dependent contributions. This EFT descrip-
tion allows for modifications that could be used to describe
X,Y, Z exotics and (combining with finite temperature QCD
and open quantum system) the nonequilibrium evolution of
quarkonium in medium, as it will summarized later.

8.6.3 The quarkonium potential and confinement

The lattice QCD evaluation of the static Wilson loop clearly
displays an area law which is the sign for confinement. Still, it
is relevant to investigate the nature of the confinement mech-
anism. Quarkonium is a golden tool for this aim. Strongly-
coupled pNRQCD realizes a scale factorization encoding the
low-energy physics in the Wilson loop and its generalized
versions, i.e. Wilson loops with insertions of chromoelectric
and chromomagnetic fields. All the potentials, static ones
and spin and velocity-dependent ones, are given in terms of
these gauge invariant nonperturbative objects that no longer
depend on the heavy quark degrees of freedom and on the
quark flavor. This turns out to be a systematic method to
study the QCD confinement properties and put them directly
in relation to the quarkonium phenomenology.

The area law emerging in the static Wilson loop at large
distance corresponds to the formation of a chromoelectric
flux tube between the quark and the antiquark that sweeps
the area of the loop: this has been directly observed on the
lattice, see Fig. 207. The effects originates from the nonper-
turbative QCD vacuum that can be imagined as a disordered
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medium with whirlpools of color on different scales, thus
densely populated by fluctuating fields whose amplitude is
so large that they cannot be described by perturbation theory
[439]. A QCD vacuum model can be established by making
an assumption on the behavior of the Wilson loop in the low
energy. The relativistic corrections that involve insertions of
gluonic fields in the Wilson loop follow via functional deriva-
tive with respect to the quark path see [2638,2646]. One may
notice that the part proportional to the square of the angu-
lar momentum in the velocity dependent potential at order
1/m2

h takes into account the energy and the angular momen-
tum of the flux tube, which is something that could not be
obtained e.g. in any Bethe Salpeter approach with a confining
interaction represented by a scalar convolution kernel. The
action density or the energy density structure between the
static quark and the static antiquark is currently studied both
in the lowest energy configuration as well as in the hybrid
configurations with excited glue [2647–2649]. The mecha-
nism underlying confinement and flux tube formation has
been investigated since long on the lattice [432] using Wil-
son loops and the‘t Hooft abelian projection, to identify the
roles of magnetic monopoles [2650,2651] and center vortices
[438], see e.g. the review [1465].

In the continuum, several models of low-energy QCD have
been introduced to explain the flux-tube formation. The mod-
els vary from the dual Meissner effect and a dual-abelian
Higgs-model picture, from dual QCD [2652] to the stochas-
tic vacuum [2653], to the flux tube model [2418] and an
effective low energy string description. Each of these mod-
els can be used to obtain analytic estimates of the behavior
of the generalized Wilson loops for large distance, which in
turn give the static potential and the relativistic corrections as
function of r , see e.g. [1571,2654–2657]. Similar nonpertur-
bative configurations leading to confinement can be studied
analyzing the Wilson loop in case of baryons with three or
two heavy quarks [2658,2659].

8.6.4 States below threshold: quarkonium

On the basis of EFTs and lattice calculations we have reached
today a comprehensive understanding of the properties of
quarkonium below the strong decay threshold.

Spectra, transition and decays
The power counting of the EFT allows us to attach an error
to each prediction. For states with a small radius one can use
weakly-coupled pNRQCD with potentials calculated at high
order in perturbation theory (see Sect. 6.1) and retardation
effects carried by local or non-local condensates. For states
with larger radii, the potentials obtained in strongly-coupled
pNRQCD (see Sect. 6.1) have been calculated on the lattice
[804,1566,1568,2661–2663], and the full quarkonium phe-
nomenology may be obtained using such potentials in the

Fig. 207 The origin of the linear potential between the static quark and
antiquark may be traced back to a flux tube: a string of gluon energy
between the quark pair. Here we present the historical picture of the
action density distribution between a static quark antiquark couple in
SU(2) at a physical distance of 1.2 fm, from [2660]

Schrödinger equation. The imaginary parts of the potentials
control the decays.

On the other hand, direct lattice calculations of quarko-
nium properties along the years have reached realistic values
for the dynamical quark flavors, solid continuum limits and
have been extended to the excited states, reaching a com-
prehensive and precise description [1474,2664–2668]. Elec-
tromagnetic M1 and E1 transitions have been calculated in
pNRQCD, see e.g. [1551–1554]. There are so many results
that it is impossible to discuss all of them here and we refer
to some reviews [1462,1464,1465,1518,2630].

Summarizing: today we understand in a precise way, on
the basis of QCD, most of the properties of the quarkonium
states lying below the strong decay threshold. This has a
great impact for the physics of quarkonium, as we explain
with examples in the next paragraph.

Precise determination of SM parameters
In the regime in which the soft scale is perturbative, pNRQCD
enables precise and systematic higher order calculations of
bound states allowing us to extract precisely standard-model
parameters like the quark masses and αs . For example, it
has been possible to extract a precise value of αs at rather
low energy by comparing a short-distance lattice calculation
with 2+1 flavors of the static energy and a next-to-next-to-
next leading order (NNNLO, α4

s ) perturbative pNRQCD cal-
culation of the same quantity, including also ultrasoft logs
resummation. When αs is extrapolated to the mass of the Z,
αs(MZ ) = 0.11660+0.00110

−0.00056 is obtained. This is a competi-
tive extraction made at a pretty high order of the perturbative
expansion [2669,2670]. This method of αs extraction is now
used by several groups, see e.g. [2671,2672]. The QCD static
force, defined in terms of a single chromolectric insertion in
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the Wilson loop could be used as well to the same scope
[2673,2674].

In the same way precise values of the bottom and charm
masses can be extracted from measurements of the masses
of the lowest states and by comparing them to the formula
for the energies in pNRQCD at NNNLO. The renormalon
ambiguity between the mass and the static potential cancels
and a pretty good determination is possible, see e.g. [1518,
1527,1537] and references therein. Similar methods [1517,
1537] can be used to describe the top anti-top S-wave pair-
production cross section near threshold in e+e− annihilation
and to study the possible achievable accuracy of top-quark
mass measurement expected at a future linear collider. A
precise determination of the top quark mass is very important
for precision tests of the SM, and also due to its crucial role
in the vacuum stability of the SM at a very high energy scale.
Hence, progress in our understanding of heavy quarkonia
leads to an access to key aspects of the SM.

8.6.5 Production

Production of heavy quarkonium has been extensively stud-
ied along the years at the Tevatron collider at Fermilab, at
Hera at DESY, at B factories and in particular at the LHC
where quarkonium production with high statistics at unprece-
dented values of pT is measured [1464,1465,1477,1478,
2630–2632]. This is a complex problem encompassing many
physical scales still not fully understood, and it can be used to
test and extend our understanding of factorization theorems,
which are the foundation for all the perturbative calculations
in QCD. New theoretical concepts that have been developed
here, e.g. arising from kinematic enhancements and from
large endpoint logarithms, could have wider applicability in
the calculation of high-energy cross sections. Quarkonium
production is also relevant to BSM, as certain quarkonium
production processes can be used to measure Higgs cou-
plings.

The standard method for calculating quarkonium pro-
duction rates is the NRQCD [1476] (see Sect. 6.1) factor-
ization approach, where production rates are expressed as
perturbatively calculable partonic cross sections multiplied
by nonperturbative constants called NRQCD long-distance
matrix elements (LDMEs) which are universal. The NRQCD
factorization approach is a conjecture that has not been
proven to all orders in αs . Another important theoretical
development is the next-to-leading-power (NLP) fragmenta-
tion approach [1275,2063], in which quarkonium production
rates are expressed as perturbatively calculable partonic cross
sections convolved with fragmentation functions, up to cor-
rections suppressed by a factor m4

h/p
4
T . The NLP fragmenta-

tion approach becomes more predictive if NRQCD factoriza-
tion is used to express the fragmentation functions in terms
of NRQCD matrix elements. This organizes the NRQCD

factorization expression for the cross section according to
powers ofm2

h/p
2
T , which simplifies the calculation of higher-

order corrections and the resummation of large logarithms.
NRQCD factorization predictions have now been computed
at NLO in αs for many production processes.

The NRQCD approach has brought a great progress into
the field even though not all experimental data are under-
stood coherently, and the extraction of the LDMEs remains a
complex enterprise [2675–2681]. Recently, it has been possi-
ble to factorize the quarkonium production-cross sections at
lower energy in pNRQCD [1573–1575], rewriting the octet
NRQCD LDMEs, which are the nonperturbative unknowns,
in terms of products of wave functions and gauge invariant
low energy correlators depending only on the glue and not the
on flavor quantum numbers. This allows to reduce by half the
number of LDMEs, opens up the possibility of their lattice
evaluation and may lead to further progress of the field.

8.6.6 Nonequilibrium evolution in medium

The properties of production and absorption of quarkonium
in a nuclear and hot medium are crucial inputs for the study of
QCD at high density and temperature (see Sect. 7), reaching
out to cosmology.

Heavy ions experiments at the LHC at CERN and at
the RHIC at BNL aim at producing the Quark Gluon
Plasma (QGP): heavy quarks are good probes of this hot QCD
medium. They are produced at the beginning of the collision
and remain up to the end. As we discussed, quarkonia are
special hard probes as they are multi-scale systems. In the
medium besides the energy scales of quarkonium, also the
thermal scales of the QGP have to be considered (cf Sect.
6.5): the scale πT related to the temperature, the Debye
mass mD ∼ gT , with αs = g2/4π , related to the (chromo)
electric screening and the scale g2T related to the (chromo)
magnetic screening. In a weakly-coupled plasma, the scales
are separated and hierarchically ordered, in a strongly cou-
pled plasma, mD ∼ T . To calculate QCD at finite T in real
time, Hard Thermal Loop EFT can be used to integrate out
the temperature scale. Heavy quarkonium dissociation has
been proposed a long time ago as a clear probe of QGP for-
mation through the measurement of the dilepton decay-rate
[2152]. The dissociation was related to the screening of the
quark–antiquark interaction due to the Debye mass and it
was suggested that dissociation would manifest itself in an
exponential screening term exp(−mDr) in the static poten-
tial. One of the key quantities measured in experiments is the
nuclear modification factor RAA, a measure for the difference
of quarkonium production in pp and in nucleus–nucleus col-
lisions. Since higher excited quarkonium states have larger
radii, the expectation was that, as the temperature increases,
quarkonium would dissociate first for the higher-mass and
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then for lower-mass states giving origin to sequential melt-
ing [2152].

In the last decades, using pNRQCD at finite T [1592,
2159], it has been possible to actually define and calculate
the QQ̄ potential in medium. In perturbative calculations it
was found that the thermal part of the static potential has
a real part (roughly described by the free energy) and an
imaginary part. The imaginary part comes from two effects:
the Landau damping [1592,1593,2153], an effect existing
also in QED, and the singlet to octet transition, existing only
in QCD [1592]. Which one dominates depends on the ratio
between mD and E . In the EFT one could show that the
imaginary part of the potential related to the Landau damp-
ing comes from inelastic parton scattering [1596] and the sin-
glet to octet transition from gluon dissociation [1595]. The
existence of the imaginary part, first realized in Ref. [2153],
changed our paradigm for quarkonium suppression: it has
become clear that the state dissociates well before the con-
ventional screening becomes active [1593,2153]. A similar
pattern emerges in lattice nonperturbative calculations of the
potential [2682,2683].

So far, we have discussed an equilibrium description.
However, the evolution of quarkonium in the QGP is an
out-of-equilibrium process in which many effects enter: the
hydrodynamical evolution of the plasma and the production,
dissociation and regeneration of quarkonium in the medium,
to quote the most prominent ones. It is necessary therefore to
introduce an appropriate framework to describe the real-time
nonequilibrium evolution. Recently, using the formalism of
open quantum system (see Sect. 6.6) and pNRQCD, it has
been possible to describe the nonequilibrium evolution of
bottomonium inside a strongly coupled QGP, in a way that
incorporates the quantum effects, conserves the number of
heavy quarks and considers both color singlet and color octet
quarkonium degrees of freedom as well as their recombina-
tion [1599,1600]. The results not only describe well the RAAs
measured at LHC [1602,2150] (see also [2158,2684]), but
they allow also to establish a connection with QCD, since the
quarkonium evolution depends only on two transport coeffi-
cients given in terms of QCD gluonic correlators character-
izing the QGP [1599,1600]. For a review of open quantum
system approaches for quarkonium, see [1601,2685].

8.6.7 States at and above threshold: X,Y, Z exotics: intro

As explained in Sect. 8.5, the spectroscopy of charmonium
and bottomonium states at or above the open-heavy-flavor
thresholds have reserved us several surprises. Experiments at
e+e− and hadron colliders have discovered many new, unex-
pected states in the last decades, cf. Sect. 8.5 and Fig. 197.
Many of these states are surprisingly narrow, and some have
electric charge. The observations of these charged quarko-
nium states are the first definitive discoveries of manifestly

exotic hadrons. These results challenge our understanding of
the QCD spectrum. The X,Y, Z offer us a unique opportunity
to investigate the dynamical properties of strongly correlated
systems in QCD.

As mentioned in Sect. 8.5, These states have been termed
X,Y, Z in the discovery publications, without any special
criterion. Meanwhile, the Particle Data Group (PDG) has
proposed a new naming scheme [2686], that extends the
scheme used for ordinary quarkonia, in which the new names
carry information on the J PC quantum numbers, see [1427]
for more details. Since the situation is still in evolution we
will stick to X,Y, Z names. The field is in enormous and
very fast development both experimentally and theoretically,
with a continuous flux of new papers: we refer to reviews to
account for this development [1427,1464,2630,2687–2692].
The X,Y, Z states offer us unique possibilities for the inves-
tigation of the dynamical properties of strongly correlated
systems: we should develop the tools to gain a solid inter-
pretation from the underlying field theory, QCD. This is a
very significant problem with trade off to other fields featur-
ing strong correlations and pretty interesting connections to
heavy ion physics, as propagation of these states in medium
may help us to scrutinize their structure and composition.

8.6.8 X,Y, Z models and degrees of freedom

Since the X (3872) discovery in 2003, a wealth of theoreti-
cal papers appeared to investigate the characteristics of the
exotics. Most papers are based on models, which involve a
choice of some dominant degrees of freedom and an assump-
tion on their interaction hamiltonian. In the case of states
particularly close to their heavy-light threshold, with a very
small binding energy and a large scattering length, a more
universal picture based on an effective-field-theory molecu-
lar description has been put forward [2692–2696] and along
the years it has been refined arriving at detailed calculations
of the line shapes and the production properties.

A priori the simplest system consisting of only two quarks
and two antiquarks (generically called tetraquarks) is already
a complicated object and it is unclear whether or not any kind
of clustering occurs in it. To simplify the problem, models
focus on certain substructures and investigate their implica-
tions: in hadroquarkonia the heavy quark and antiquark form
a compact core surrounded by a light-quark cloud; in com-
pact tetraquarks the relevant degrees of freedom are compact
diquarks and antidiquarks; in the molecular picture two color
singlet mesons are interacting at some typical distance: we
have no chance here to illustrate all these models and we refer
to some recent reviews [1427,2688,2690,2692]. Discussions
about exotics therefore often concentrate on the “pictures” of
the states, for example the tetraquark interpretation against
the molecular one (of which both several different realiza-
tions exist). However, as a matter of fact, all the light degrees
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of freedom (light quarks, glue, in different configurations)
should be there in QCD close or above the strong decay
threshold: it is a result of the strong dynamics which one
sets in, and when, and which configuration dominates in a
given regime.

Even in an ordinary quarkonium, which has a dominant
QQ̄, subleading contributions of the Fock space may con-
tribute, which have additional quark–antiquark pairs and
active gluons. However, in the most interesting region, close
or above the strong decay threshold, where the X,Y, Z have
been discovered, the situation is more complicated: there is
no mass gap between quarkonium and the creation of a pair
of heavy-light mesons, nor to gluon excitations, therefore
many additional states appear and are dynamical degrees of
freedom to be considered [2687]. Still, mh is a large scale,
and a scale factorization is applicable so that nonrelativis-
tic QCD is still valid. There is still another scale separation
that can be used to introduce a description of the bound state
similar to what is done in pNRQCD, in which the zero order
problem is the Schrödinger equation. Let us consider bound
states of two nonrelativistic particles and some light-quark
degrees of freedom, e.g. molecules in QED or quarkonium
hybrids (QQ̄g states) or tetraquarks (QQ̄qq̄ states) in QCD:
electrons, gluon fields or light quarks fields change adia-
batically in the presence of heavy quarks or nuclei. In this
situation the interaction between the heavy quarks or the one
between nuclei due to the electron cloud may be described
at leading order of a nonrelativistic expansion by an effec-
tive static energy (or potential) Eκ between the static sources
where κ labels different excitations of the light degrees of
freedom. A plethora of states can be built on each of the
static energies Eκ by solving the corresponding Schrödinger
equation, see Figs. 208 and 209. Based on this scale separa-
tion one may describe hybrids and tetraquarks using a Born-
Oppenheimer (BO) description, similarly to what is done
in molecular systems. On the basis of this, the QCD static
energies in presence of a static quark and a static antiquark
can be classified according to representations of the symme-
try group D∞ h , typical of diatomic molecules, and labeled
by Λσ

η (see Fig. 210): Λ is the rotational quantum number

|�̂r · �K | = 0, 1, 2, . . . , with �K the angular momentum of the
gluons (or in general the nonperturbative collective degrees
of freedom), that corresponds to Λ = Σ,Π,Δ, . . . ; η is
the CP eigenvalue (+1 ≡ g (gerade) and −1 ≡ u (unger-
ade)); σ is the eigenvalue of reflection with respect to a plane
passing through the QQ̄ axis. The quantum number σ is rel-
evant only for Σ states. In general there can be more than
one state for each irreducible representation of D∞ h : higher
states are denoted by primes, e.g., Πu , Π ′

u , Π ′′
u , . . . . In pres-

ence of a light quark that takes part in the binding, isospin
quantum numbers should be added. The QCD static ener-
gies, EΓ in Fig. 211, have been calculated on the lattice

Fig. 208 Pictorial view of electronic static energies in QED, labelled
by a collective quantum number κ

Fig. 209 Pictorial view of the QCD static energies, EΓ , in QCD. The
collective quantum number κ has been detailed in Λσ

η as explained in
the text. It corresponds to the actual lattice results in Fig. 211

in NRQCD more than 20 years ago [415], Γ representing a
choice forΛσ

η or in short for the collective quantum numberκ .
These lattice calculations uses Wilson loops with initial and
final states encoding the given quantum numbers, to select a
given symmetry. The Born Oppenheimer approximation idea
has been first exploited in phenomenological applications by
[1586,1588]. This picture may be made precise inside QCD
using NREFTs and has the possibility to subdue many dif-
ferent models and pictures. In the next section the content of
BOEFT and its implications will be presented.

8.6.9 BO effective field theory

Starting from pNRQED/pNRQCD the BO approximation
can be made rigorous and cast into a suitable EFT called
Born-Oppenheimer EFT (BOEFT) [1427,1461,1587,1589,
2697–2699] which exploits the hierarchy of scales ΛQCD �
mhv

2.
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In Ref. [1589] the BOEFT that describes hybrids has been
obtained. In particular, the static potentials and a set of cou-
pled Schrödinger equations were derived and solved to pro-
duce the hybrids multiplets for the two first static energies
Σ−

u andΠu . Such static energies are degenerated at short dis-
tance where the cylindrical symmetry gets subdue to a O(3)
symmetry and are then labelled by the quantum number of
a gluonic operator 1+− called a gluelump. The hybrid static
energies are described by a repulsive octet potential plus the
gluelump mass in the short distance limit. The O(3) sym-
metry is broken at order r2 of the multipole expansion. In
the long distance regime the static energies display a behav-
ior linear in r , cf. Fig. 211. The gluelump correlator can be
calculated on the lattice to determine the gluelump mass. It
depends on the scheme used (the scheme dependence can-
cels against the analogous dependence in the quark mass
and in the octet static potential) but it is of the order of 800
MeV. The hybrid multiplets Hi are constructed from the solu-
tion of the Schrödinger equations in correspondence to their
J PC quantum numbers. The coupling between the different
Schrödinger equations is induced by a non-adiabatic term,
known in the Born-Oppenheimer description of diatomic
molecules, induced by the non-commutation between the
kinetic term and a projector of the cylindrical symmetry in
the BOEFT lagrangian. The degeneracy of the static energies
at small distance induces a phenomenon called Λ doubling,
removing the degeneration between multiplets of opposite
parity. This phenomenon is known in molecular physics but
with smaller size. This and the structure of the multiplets
differ from what is obtained in models for the hybrids, cf.
[1589]. The BOEFT hybrid multiplets can be compared to
neutral exotic states measured in the bottomonium and char-
monium sector [1427]: there are many experimental candi-
dates and to make clear identifications one should study also
the decay and production properties in the same framework.

The picture can be generalized to tetraquarks by consid-
ering static energies classified by the D∞ quantum numbers
and isospin quantum numbers, extracted from lattice evalua-
tion of the static energies of system of a heavy quark, a heavy
antiquark and two light quarks [1461].

Exotic spin structures, decays
In Refs. [2698,2699] the spin-dependent potential of hybrids
has been obtained at order 1/mh and 1/m2

h in the quark mass
expansion. The potential turned out to be rather different from
the spin potential known from standard quarkonium. In fact, a
1/mh contribution appears due to the coupling of the angular
momentum of the gluonic excitation (which is not suppressed
in mh) with the total spin of the heavy-quark–antiquark pair.
Among the 1/m2

h operators are the standard spin–orbit, total
spin squared, and tensor spin operators respectively, which
appear for standard quarkonia. But now three novel opera-
tors appear in addition. So interestingly and differently from

Fig. 210 Symmetries of a system with a static quark and a static anti-
quark and a nonperturbative cloud (gluonic, light quarks) and respective
quantum numbers

Fig. 211 Hybrid static energies labeled by the D∞ group quantum
number, EΓ , in lattice units, from the historical Ref. [415]. For updated
calculations see [2700]

the quarkonium case, the hybrid potential gets a first con-
tribution already at order Λ2

QCD/m. Hence, spin splittings
are remarkably less suppressed in heavy quarkonium hybrids
than in heavy quarkonia: this will have a notable impact on the
phenomenology of exotics. The nonperturbative low-energy
correlators appearing in the factorization can be extracted
by fixing them using lattice data on the masses of charmo-
nium hybrids [2667], Then, all bottomonium-hybrid spin-
multiplets (more difficult to evaluate on the lattice [1474])
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can be predicted. The BOEFT is therefore able to predict all
spin hybrid multiplets, including their decays and transitions
[1427].

Avoided level crossing
In the BOEFT the information is carried by the QCD static
energies and a few purely gluonic low-energy correlators.
The information is relevant, however to describe the static
energies in the region close to the threshold of two heavy-light
mesons. A phenomenological description has been put for-
ward recently [2701,2702] inspired by lattice calculation in
which the avoided-level-crossing-effect is exploited to con-
struct a set of coupled Schrödinger equations and a procedure
for the calculation of open-flavor meson–meson scattering
cross sections from diabatic potentials. In this framework,
the X (3872) naturally emerges [2701]. Such a description
can be carried over to BOEFT.

The BOEFT may be used to describe also tetraquarks,
double heavy baryons and pentaquarks [1461,1587]. In the
case of tetraquarks, a necessary input of the theory is the cal-
culation on the lattice of the generalized Wilson loops with
appropriate symmetry and light quark operators. Note that
besides the quantum number κ also the isospin quantum num-
bers I = 0, 1 have to be considered. It is interesting to note
that the BOEFT approach reconciles the different pictures
of exotics based on tetraquarks, molecules, hadroquarkoni-
um…In fact in the plot of the static energy as a function
of r for a state with QQ̄qq̄ or QQ̄g we will have different
regions: for short distance a hadroquarkonium picture would
emerge, then a tetraquark (or hybrid) one and, when pass-
ing the heavy-light mesons line, avoided-cross-level effects
should be taken into account and a molecular picture would
emerge. QCD would then dictate, through the lattice corre-
lators and the BOEFT characteristics and power counting,
which structure prevails and in which precise way. In addi-
tion production and suppression in medium may be described
in the same approach [1574,2149].

8.6.10 X,Y, Z lattice

Lattice QCD plays a key role for the description of exotics
[2666,2703]. For what concerns BOEFT, nonperturbative
input from the lattice is needed in the form of static energies,
gluelumps correlators, insertions of chromoelectric fields on
hybrids states, for a full list see [2687]. Lattice groups have
started to calculate some of these crucial quantities [2704–
2707].

Direct lattice calculations of the spectrum and properties
of exotic states at and above thresholds are extremely chal-
lenging. These states are resonances in the pertinent multi-
hadron channels and to obtain their properties, scattering
amplitudes in the relevant kinematic range should be cal-
culated on the lattice. The approach is based on Lüscher’s

work. Later generalizations give access to scattering ampli-
tudes of two-hadron elastic channels, of multiple coupled
two-hadron inelastic channels, and of three-hadron channels.
While the Lüscher method for a single two-hadron elastic
channel provides a straightforward mapping between scat-
tering amplitudes and finite-volume energies, this connec-
tion is lost for the multi-channel case, and a parameteriza-
tion of the amplitude is needed. Abundant and precise energy
eigenvalues in a given kinematic range should be obtained to
constrain these multi-parameter forms, with solid systematic
uncertainties. As the calculations move toward physical val-
ues of the light-quark masses, the multi-hadron thresholds
move towards lower energies and the number of kinemati-
cally allowed hadronic channels that need to be included in
the determination of scattering amplitudes increases, mak-
ing everything more challenging. Still interesting informa-
tion about some exotics mesons could be obtained in these
direct lattice calculations, see e.g. [584,2708].

8.6.11 Summary

Quarkonium has been at the origin of QCD. It has been a
long way to arrive at describing quarkonium within QCD. It
has payed off, making quarkonium a special probe of strong
interactions at zero and at finite temperature. We are now
in the process to attack the next frontier, i.e. to develop a
coherent, field-theory-based description of exotic quarko-
nium states. Notice, that if new physics involves nonrelativis-
tic bound states, then the techniques that have been developed
for understanding quarkonia will be directly applicable. This
holds for example for studies of pairs of heavy dark matter in
the evolution in the early universe, that well match the studies
of the nonequilibrium evolution of quarkonium in medium,
or for the production and the spectroscopy of heavy particles
of BSM.

9 Baryons

Conveners:
Volker Burkert and Franz Gross
As we are trying to make progress in the complex world of
physical sciences, we should not lose sight of what physics
is all about: understanding the origin and the history of our
universe, and the laws underlying the observations. In this
section we also address how excited states of the nucleon
fit in to our understanding of the forces and the dynamics
of matter in the history of the universe. On the internet we
find beautiful representations of the phases through which
the universe evolved from the Big Bang (BB) to our times as
shown in Fig. 212.

Existing electron accelerators as CEBAF, ELSA, and
MAMI, and colliders as BES III have sufficient energy reach
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Fig. 212 The evolution of the Universe. The line denoted as Quark–
hadron transition, is where protons and neutrons are formed

to access this region and study processes in isolation that
occurred during this transition in the microsecond old uni-
verse and resulted in the freeze out of baryons. There are
some marked events that have been of particular significance
during the early phases of its history, such as the quark–
gluon plasma of non-interacting colored quarks and gluons,
and the forming of protons and neutrons. During this tran-
sition dramatic events occur – chiral symmetry is broken,
quarks acquire mass dynamically, baryon resonances occur
abundantly, and colored quarks and gluons are confined. This
crossover process is governed by the excited hadrons. Dur-
ing this period strong QCD (sQCD) emerges as the process
describing the interaction of colored quarks and gluons.

These are the phenomena that we are exploring with elec-
tron and hadron accelerators – the full discovery of the baryon
(and meson) spectrum, the role of chiral symmetry breaking
and the generation of dynamical quark mass in confinement.
While we can not recreate the exact condition in the labo-
ratory, with existing accelerators we can explore these pro-
cesses in isolation. With electron machines and high energy
photon beams in the few GeV energy range we search for
undiscovered excitation of nucleons and other baryons.

In this section, Capstick and Crede give an overview over
the spectrum of light-quark baryons, followed by a review
o the present experimental status by Burkert, Klempt and
Thoma. The structure of baryon resonances is explored in
electroproduction experiments (Burkert). The section ends
with a review of baryons with heavy quarks.

9.1 Theoretical overview of the baryon spectrum

Simon Capstick and Volker Crede

9.1.1 Overview

This contribution examines the constraints on the baryon
spectrum imposed by general considerations of flavor, rota-
tional, parity, and particle-exchange symmetries, which lead
to a classification scheme for excited baryons. Theoreti-
cal approaches to a description of the baryon spectrum
based on constituent quark models with various methods for
treating the short-range range interactions between quarks
are described, and are contrasted to investigations of the
spectrum based on lattice and Dyson–Schwinger equation
approaches to QCD. Models predict more excited states than
are present in the spectrum extracted from data; considera-
tions of how these missing states decay point to alternative
ways to produce them, and how to detect their presence once
produced. Finally, hybrid baryons with explicit gluonic exci-
tations and the prospect for their discovery are discussed.
More detail is given in, for example, reviews of the theoret-
ical approach to the baryon spectrum in Refs. [2709–2711],
and reviews of recent experimental developments in Refs.
[2712,2713].

9.1.2 Symmetry, group theory, and constraints on the
baryon spectrum

Exchange symmetry, baryons, and the color degrees of free-
dom
The development of SU (3) f and its isospin subgroup in order
to understand the proliferation of what are now known as
ground-state baryons led to an understanding that there are
states with flavor wave functions that are totally symmetric
under exchange of up and down quarks, which are identical
in the isospin-symmetric limit. An example is the isospin-
3/2 baryon, Δ, with the four charge states Δ++, Δ+, Δ0,
and Δ−, three of which were discovered in early πN elastic
scattering experiments with charged pion beams, and shown
by examining their strong decays to have spin and parity
J P = 3/2+. This led to a paradox: Ground states of few-
body systems made up of identical particles usually have
spatial wave functions with orbital angular momentum and
parity LP = 0+, and are exchange symmetric. This implies
a total quark spin S = 3/2, which is also totally symmetric
under exchange of the spin-1/2 quarks. However, as fermions,
the Pauli principle requires that the wave function of these
baryons in the product flavor, spatial, and spin space is totally
antisymmetric.

The solution is to assign to the quarks an additional degree
of freedom, and a wave function in this degree of freedom
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which is totally antisymmetric under exchange of the quarks.
The simplest way to do this is with a three-valued degree of
freedom, now called color. QCD was developed when it was
realized that this would result from an SU (3)c symmetry,
where the strong interactions are independent of rotations
of the quarks in the color space, with baryons as automati-
cally totally antisymmetric color singlets. This naturally led
to a gauge theory which could be the basis for the strong
interactions between quarks, and by extension, between all
hadrons.

Flavor symmetry in baryons
There is an approximate SU (3) f symmetry of the strong
interactions under exchange of the quarks u, d, and s, which
is broken by the higher mass of the strange quark. Gell-Mann
[1604] and Okubo [15] were able to write a mass formula
for ground-state decuplet (J P = 3/2+), shown in Fig. 213,
and separately for octet (J P = 1/2+) baryons, shown in
Fig. 214, in terms of the eigenvalues of the two generators
of the Lie algebra of SU (3) f that can be simultaneously
diagonalized. These generators are the third component of
isospin I3, and the hypercharge Y = B + S, where B is
baryon number and S is strangeness (S = −1 for a strange
quark, for historical reasons). Hypercharge is represented by
the diagonal matrix (1, 1,−2) in the {u, d, s} flavor space.
The Gell-Mann-Okubo mass formula ascribes the breaking
of symmetry in hadrons to differences in the hypercharge,
now understood to be due to the larger mass of the strange
quark. It is realized in the ground-state octet baryons as

(MN + MΞ)/2 = (3MΛ + MΣ)/4,

which holds to a fraction of a percent accuracy, and in ground-
state decuplet baryons as the equal-spacing rule

MΣ∗ − MΔ = MΞ∗ − MΣ∗ = MΩ − MΞ∗ ,

each approximately 147 MeV, which can be thought of as
the difference in the strange and average light (u, d) quark
masses. The latter led to the prediction by Gell-Mann [2714]
of the existence at around 1680 MeV of the decuplet Ω

baryon, made up of three strange quarks. Although the for-
mula is phenomenological, it is now understood in the context
of chiral perturbation theory.

De Rujula, Georgi and Glashow [763] were able to explain
the above results in the context of a model of hadrons which
confined the quarks with a flavor and spin-independent inter-
action, and used a short-distance interaction between the
quarks that results from asymptotic freedom. This is the
result of one-gluon exchange, and led to a short-distance
potential between two quarks that was Coulomb in nature,
and could be interpreted of as due to interactions between
two colored spin-1/2 quarks. The mass dependence of the
color-magnetic moments of the quarks led naturally to spin-
and flavor-dependent interactions between the quarks, which

Fig. 213 The ground-state baryon decuplet, with strangeness (Y − B)
plotted vs. the third component of isospin I3

Fig. 214 The ground-state baryon octet, with strangeness plotted vs.
the third component of isospin

could also explain the mass differences between octet and
decuplet baryons of the same flavor, and allow a qualitative
understanding of the sign and size of the difference Σ0−Λ0

between the masses of the I = 1 and I = 0 neutral strange
baryons.

One consequence of this simple (additive) quark model
description of baryons is an understanding of the magnetic
moments of the nucleons p, n and other octet and decuplet
ground-state baryons. Using the total quark-spin S = 1/2
wave function and octet flavor wave functions for the three
quarks in nucleons yields

μp = 4

3
μu − 1

3
μd ,
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and, since the proton can be turned into the neutron by the
transformation u ↔ d, we have

μn = 4

3
μd − 1

3
μu .

Fitting this to the measured moments gives quark magnetic
moments in the ratio of the quark charges to a good approx-
imation, if we assume the quark masses are identical, and
that this light quark mass is around one third of the mass
of nucleons. This approach also leads to a qualitative under-
standing of the magnetic moments of other ground-state octet
and decuplet baryons, and the transition moment that affects
the rate of the decay Σ0 → Λ0γ . Isgur and Karl [2715]
added small contributions to baryon magnetic moments, due
to configuration mixing, relativistic corrections, and viola-
tions of isospin symmetry, to refine these non-relativistic
quark model estimates. The result was better agreement with
the moments extracted from experimental data.

Rotational and parity symmetries
Ignoring for now interactions that couple the orbital and spin
angular momenta of the quarks, rotational symmetry and the
conservation of angular momentum also imply that ground
and excited-state baryons should lie in multiplets with a given
orbital angular momentum L and total quark spin S, with
the overall angular momentum of a baryon given by �J =
�L+ �S. The confining and spin-independent part of the short-
range interaction will cause splittings between and within
multiplets of states with different orbital angular momentum
L , and the short distance interactions between the quarks, for
example those in the work of De Rujula, Georgi and Glashow,
will further split those multiplets into groups of states with
the same total quark spin S.

It is always possible to describe the orbital angular
momentum of a basis state used to describe the wave function
of a baryon in terms of the angular momentum of the orbital
wave functions in the two vectors required to describe the
relative positions of the quarks. These can be conveniently
chosen to be the Jacobi coordinates

�ρ = 1√
2
(�r1 − �r2) ,

�λ = 1√
6
(�r1 + �r2 − 2�r3)

(9.1)

shown in Fig. 215, where the �ri are the vector positions
of the three quarks. The total orbital angular momentum
is then �L = �lρ + �lλ, and the parity of the resulting state
is P = (−1)lρ+lλ . It is simple to show that all values of
baryon spin and parity can be attained by various choices
of the eigenvalues for quarks moving in a static potential;
in contrast to the situation in mesons, there are no baryons
with ‘exotic’ quantum numbers. Exotic quantum numbers
in mesons require degrees of freedom like those of the

Fig. 215 The three-body Jacobi coordinate vectors �ρ and �λ

glue binding the hadrons together to be in other than their
J P = 0+ ground state.

This situation is complicated in the presence of spin–orbit
(vector in spin and vector in space coupled to a scalar) and
tensor (S = 2 and L = 2 coupled to a scalar) interactions
between the quarks. These are present in models which have
short-distance interactions between the quarks based on the
exchange of a vector boson, such as those due to one-gluon
exchange. The evidence for the presence of such interactions
in the spectrum of baryons is weaker than that for the pres-
ence of interactions which are simultaneous spin and orbital
angular momentum scalars; this is discussed in what follows.

The dominance in the baryon spectrum of simultaneous
quark spin and orbital angular momentum scalar interactions,
when combined with the observation that states assigned
quark spin S = 3/2 are more massive than those with
S = 1/2, allowed Klempt [2716] to fit the spectrum of
baryons made of {u, d, s} quarks with a mass formula. The
squares of the masses of baryons are proportional to their
orbital angular momenta L , as in Regge theory and, approx-
imately, the spectrum of a linear confining potential. For a
given flavor of baryon, more massive recurrences of the same
J P quantum numbers were assigned the same gap in mass-
squared as orbital excitations.

Symmetry under particle exchange
The requirement of Pauli symmetry implies, in the isospin
symmetric limit, that the wave functions of baryons are
totally symmetric under the exchange of light quarks, since
the color wave function is totally antisymmetric in the
absence of excitation of the gluon fields. For non-strange
baryons made up of three light quarks, this means that each
component of the wave function must be a basis function
for a representation of the exchange group S3. These basis
functions are either totally symmetric (S) under particle
exchange, totally antisymmetric (A), or one of a pair with
mixed symmetry {Mρ,Mλ} that transform into each other
under the elements of the permutations of S3 in a predictable
way. Here Mρ refers to the basis function that is antisym-
metric under the exchange 1 ↔ 2, and Mλ refers to the basis
function that is symmetric under this exchange. The rules for
how the mixed-symmetry pair transform into linear combina-
tions of each other under the elements of S3 can be found, for
example, by examining the result of the various permutations
on the relative position vectors �ρ and �λ. .

The rules of combining the spin angular momentum of
three S = 1/2 particles require that the overall spin wave
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function of the quarks for all values of the total quark spin
projection MS be either totally symmetric, when S = 3/2,
or be one of a pair of states of mixed symmetry when S =
1/2. The same rules apply for the isospin wave functions for
baryons made up of three light quarks, Δ-flavor baryons with
I = 3/2 and N -flavor baryons with I = 1/2.

The lowest lying basis state for the spatial wave functions
of ground-state baryons made up only of light quarks have
LP = 0+, and are totally symmetric under quark exchange.
Overall exchange symmetry then requires that the flavor and
spin wave functions be combined by using the rules for com-
bining two representations of S3. ForΔ baryons this is trivial,
since both the spin and flavor wave functions are totally sym-
metric. For N baryons, the mixed-symmetry spin (χ) and fla-
vor (φ) wave functions are combined to the symmetric linear
combination

1√
2

(
χMρ φMρ + χMλφMλ

)
.

The wave functions of baryons with a given flavor and spin-
parity J P can be expanded in a basis of states that satisfy the
requirements of antisymmetry under exchange of identical
(or nearly identical, for u ↔ d) quarks. A convenient choice
is to use a harmonic oscillator (HO) basis, which has the
useful feature of being form invariant under Fourier transfor-
mation; another is the Sturmian basis, which has improved
large momentum behavior useful for calculating decay form
factors, but is harder to use in both coordinate and momen-
tum space. Configuration mixing due to the confining poten-
tial and the short-range interactions between quarks can be
implemented by diagonalization of the Hamiltonian matrix
calculated in this basis.

The rules for combining representations of the exchange
group S3 are used to construct this basis from states with
given values of radial {nρ, nλ}, orbital {L , lρ , lλ}, and spin
S quantum numbers (magnetic quantum numbers have been
suppressed, and the sums and Clebsch–Gordan coefficients
required to form states of definite {L , S, J } are assumed). It
is often convenient to expand the wave function up to a given
energy, or equivalently polynomial order, which in the HO
basis is

E = (2nρ + lρ + 3/2)h̄ωρ + (2nλ + lλ + 3/2)h̄ωλ, (9.2)

where ωρ and ωλ are oscillator energies related by α2
ρ,λ =

mρ,λωρ,λ to the scaleα at which the radial wave functions fall
with distance and the reduced masses, equal when all three
quark masses are the same. Karl and Obryk [2717] give the
general procedure up to fourth-order polynomials. Examples
of how to construct these bases can be found in [764,2718,
2719]; for a pedagogical overview see, for example, Ref.
[2720].

It is not necessary to antisymmetrize the wave functions
of baryons under the exchanges u ↔ s or d ↔ s. It is

convenient to use the ‘uds’ basis [764] for baryons with S =
−1 or−2, which uses basis states that have either symmetry
or antisymmetry under these exchanges.

Baryon resonance classification scheme
The quantum numbers of the total orbital angular momentum
�L = �lρ + �lλ and spin �S = ∑

i �si are not good quantum
numbers in a relativistic theory. The parity of such states is
given by P = (−1)lρ+lλ . It is always possible to use a basis
of states with specific values of L and S which can couple to
the total angular momentum J of the baryon being described.
These are then mixed in the eigenstates of a Hamiltonian
that includes interactions that are not simultaneous scalars
in both spin and space, but are overall scalars of the form∑

q Ckq Rk,q Sk,−q , where Rk and Sk are tensor operators of
rank k acting on the spatial and spin bases, and the Ckq are
the coefficients required to make the result an overall scalar.
Examples are the tensor (k = 2) interactions which occur
in models of the short-range interactions between quarks,
and spin–orbit (k = 1) interactions. To the extent that these
interactions are small, a classification scheme based on the
{L , S} values of the dominant component of a configuration-
mixed eigenstate is useful.

It may also be useful to further break down sets of states
with the same {L , S} values into those with specific spatial
symmetries. As an example, consider excitations of N and Δ

flavored baryons, which are made up of only {u, d} quarks.
It is useful to enumerate basis states in a harmonic-oscillator
basis. Because of isospin symmetry, this basis has ωρ = ωλ

in Eq. 9.2, so that

E = [
2(nρ + nλ)+ lρ + lλ + 3

]
h̄ω = [N + 3]h̄ω.

Ground states
Baryon states can be classified according to the flavor-spin
SU (6)multiplet in which they predominantly lie. This would
be an exact symmetry of the Hamiltonian if it was simulta-
neously invariant under both rotations of quark flavors in the
SU (3) f space, and independent of the spin projections of
the quarks. Although useful as a classification scheme, this
is clearly only a very approximate symmetry: In addition
to the flavor-symmetry breaking effect of the larger strange
quark mass, the measured mass difference MΔ − MN �
300 MeV shows that interactions between quarks are not
independent of their spin. In this scheme the ground-state
nucleon lies in an SU (3) f octet of ground-state baryons with
J = S = 1/2, which are, in order of increasing strangeness,
{n, p,Λ0,Σ+,0,−, Ξ0,−}, giving (2S + 1) · 8 = 16 states.
The ground-state Δ is a member of an SU (3) f decuplet of
baryons with J = S = 3/2, which are {Δ,Σ∗, Ξ∗,Ω},
giving (2S + 1) · 10 = 40 states. Collectively, these domi-
nantly LP = 0+ states make up the SU (6) multiplet, labeled
[56, 0+].
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Following the notation of Isgur and Karl [2719], we
can label harmonic-oscillator basis states by |X2S+1Lπ J P 〉,
where X is the flavor, L is given in {S, P, D . . .} notation,
and π is the spatial exchange symmetry, either totally sym-
metric (S), mixed symmetry (M), or totally anti-symmetric
(A). In this notation, the dominant N = 0 components of the
ground state non-strange baryons are

|N 2SS1/2+〉, |Δ4SS3/2+〉.

Negative-parity states
The low lying (dominantly N = 1) negative-parity non-
strange excitations are made up of a triplet of S = 3/2 N
states and a doublet of S = 1/2 N states with mixed flavor
symmetry

|N 4PM (1/2−, 3/2−, 5/2−)〉, |N 2PM (1/2−, 3/2−)〉.
Their spatial wave functions necessarily have mixed exch-
ange symmetry, since they are proportional to Y1m(Ωρ) ∝
ρm , where ρm is a spherical component of the vector �ρ, or
Y1m(Ωλ) ∝ λm . There is also a a doublet of S = 1/2 Δ states
with S flavor symmetry,

|Δ2PM (1/2−, 3/2−)〉.
These negative-parity resonances are members of the SU (6)
multiplet [70, 1−], with two flavor octets of S = {1/2, 3/2}
states and a decuplet of S = 1/2 states [symmetric under
SU (3) f ], plus a flavor singlet state Λ, with S = 1/2. Ref-
erences [764,2717,2720] show how the rules for combining
representations of the exchange group S3 can be applied to
yield properly anti-symmetrized basis state wave functions.
Basis states with the same flavor, spin, and parity can and will
undergo configuration mixing when a model Hamiltonian is
diagonalized.

Positive-parity excited states
This scheme can be extended to, for example, positive-parity
non-strange excitations, dominantly described by N = 2
basis states. This is complicated by the presence of both radial
and orbital excitations. There are three radial excitations that
have nρ = 1 or nλ = 1, and, in a three-body system, lρ =
lλ = 1 coupled to L = 0; linear combinations form L = 0
states with definite (S or M) exchange symmetry. There are
also orbital excitations with lρ = 2 or lλ = 2, or lρ = lλ =
1. Since they have positive parity, these baryons must be
described by basis states with even lρ + lλ.

After forming linear combinations of spatial basis states to
form anti-symmetrized basis state wave functions, we have
a total of 21 basis states that contribute at N = 2 to the wave
functions of N and Δ states. These are radial excitations

|N 2SS′1/2+〉, |Δ4SS′3/2+〉

in the SU (6) multiplet [56′, 0+], and

|N 4SM3/2+〉, |Δ2SM1/2+}〉, |N 2SM1/2+〉
in the SU (6) multiplet [70, 0+]; L = 2 orbital excitations
that are admixtures of lρ = 2 and lλ = 2,

|Δ4DS(1/2+, 3/2+, 5/2+, 7/2+)〉, |N 2DS(3/2+, 5/2+)〉
in the SU (6) multiplet [56, 2+], and

|N 4DM (1/2+, 3/2+, 5/2+, 7/2+)〉, |Δ2DM (3/2+, 5/2+)〉,
|N 2DM (3/2+, 5/2+)〉,

in the SU (6)multiplet [70, 2+], and L = 1 orbital excitations
formed from lρ = 1 and lλ = 1

|N 2PA(1/2+, 3/2+)〉 (9.3)

in the SU (6) multiplet [20, 1+].
The J P = 1/2+ nucleon and the J P = 3/2+, isospin

I = 3/2 Δ ground states have dominant components with
N = 0, L = 0 and S = 1/2 and S = 3/2, respec-
tively. Spin-independent and spin-scalar (contact) interac-
tions between the quarks (arising from their short-distance
interactions and confinement) allow mixing between three
basis states: the N = 0 ground state |N 2SS1/2+〉, and the
L = 0, S = 1/2 states |N 2SS′1/2+〉 and |N 2SM1/2+〉.
Tensor (or spin–orbit) interactions cause mixings with the
L = 2, S = 3/2 state |N 4DM1/2+〉, and the L = 1,
S = 1/2 state |N 2PA1/2+〉. The situation is simpler for
the N = 0 ground state |Δ4SS3/2+〉, which mixes with
the L = 0, S = 3/2 radial excitation |Δ4SS′3/2+〉, and
the L = 2, S = 3/2 orbital excitations |Δ4DS3/2+〉 and
|Δ2DM3/2+〉. The resulting D-wave components in both
the N and Δ wave functions can lead to measurable conse-
quences in the photo- and electro-production amplitudes for
the transition γ (∗)N → Δ. For details, see the review on N
and Δ resonance electro-production in the 2022 RPP [616].

Hyperons
If we use a basis of states that imposes SU (6) symme-
try despite the larger strange quark mass, this classification
scheme extends to the hyperons Λ and Σ , Ξ , and Ω . As an
example, the notation of Isgur and Karl [2719] for the ground
state SU (3) f singletΛ is |Λ1

2SM1/2+〉. The SU (3) f singlet
wave function is totally antisymmetric under quark exchange,
and so is included in the wave function of the radial excitation
|Λ1

2PA1/2+〉, with its antisymmetric spatial wave function;
other radial recurrences such as |Λ8

2SS1/2+〉 necessarily
involve the SU (3) f octet flavor wave functions, so the nota-
tion is supplemented by the SU (3) f multiplet (singlet, octet,
or decuplet) in which the state lies. The total number of basis
states at each harmonic oscillator level for Ξ baryons, con-
taining two identical strange quarks, is the sum of the number
of N and Δ states at that same level. There is a one-to-one
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correspondence between basis states forΩ baryons and those
of the Δ states.

Constructing the wave functions is made simpler by use
of the uds basis [764], which requires overall antisymme-
try only under exchange of equal mass quarks. In this basis,
the exchange symmetry of the �ρ and �λ relative coordinate
wave functions are specified separately. It is always possi-
ble to convert from the uds basis back to a basis with defi-
nite SU (3) f symmetry when that is convenient, for example
when calculating strong decays [2721].

9.1.3 Constituent quark models

Constituent quark models treat a baryon as made up of three
‘valence’ quark degrees of freedom, with the gluon fields
providing a static potential in which the quarks move. In flux-
tube models [2418,2722,2723] this is treated as the lowest
energy state of a system of three strings that meet at a junc-
tion, whose energy is proportional to their length. There are
several approaches to the treatment of the short-range inter-
actions between the quarks, which are responsible for split-
ting groups of states which would otherwise be degenerate
or have their flavor dependence explained by violations of
SU (3) f symmetry due to the additional mass of the strange
quark. These approaches are briefly outlined here.

One-gluon exchange models
The earliest constituent quark models had short-distance
interactions based on the exchange of a single gluon [763],
which postulate that asymptotic freedom implies that high
momentum transfer interactions between quarks are domi-
nated by the exchange of a gluon. The result can be written
as the interaction between two color-magnetic dipoles, with
a �λi · �λ j dependence on the colors of quarks i and j , and spa-
tial dependence given by the Fourier transform of the vector
gluon propagator. Here the λi are the generators of SU (3)c
realized in the quark triplet basis. This naturally leads to a
spin-independent Coulomb interaction at short range, and,
with the assumption of point-like constituent quarks, a ‘con-
tact’ interaction proportional to

2αs
3mim j

∑

i< j

�si · �s jδ3(�ri j ), (9.4)

where �ri j = �ri − �r j is the relative coordinate of quarks i and
j . This approach also results in tensor (S = 2 and L = 2
coupled to a scalar) and spin–orbit (vector in spin and vec-
tor in space coupled to a scalar) interactions between the
quarks. There is some evidence for the former in the spec-
trum of J P = 1/2−, 3/2− nucleon resonances, and from
patterns of strong decays of negative-parity excited baryons
[2724], for example the Nη decays of the lightest non-strange
I = 1/2 (N∗) resonances with J P = 1/2−, nominally at
1535 and 1650 MeV. Isgur and Karl [764] noted a partial can-

cellation between spin–orbit interactions resulting from one-
gluon exchange and from Thomas precession of the quarks in
the confining potential, but the agreement with the spectrum
of low-lying negative-parity baryons extracted from data and
their one-gluon exchange model was best when they were left
out altogether.

The Coulomb, contact and tensor interactions resulting
from one gluon exchange were evaluated in low-lying neg-
ative parity excited baryons made up of {u, d, s} quarks by
Isgur and Karl [764]. This was extended to positive-parity
excited baryons [2719], where the effects of the difference
of the confining potential from that defining the harmonic
oscillator basis were also evaluated using perturbation theory.
The resulting parameters were fit to the spectrum extracted
from data without needing to specify the form of the anhar-
monicities. In this work and a treatment of ground state
baryons [2718], the effects of configuration mixing by the
various potentials were taken into account by diagonaliza-
tion of the Hamiltonian matrix, independently for each sector
with N = 2(nρ + nλ) + lρ + lλ = 0 for the ground states,
N = 1 for the low-lying negative-parity excited states, and
N = 2 for the positive-parity excited states.

While diagonalization independently by sector has the
advantage of simply describing the important physics, the
parameters fit to each sector’s spectrum may be inconsistent.
Systems of light quarks are also relativistic, with p/m � 1
when using constituent-quarks, which are effective degrees
of freedom with masses that include the effects of sea quark
and gluons. These theoretical problems can be solved by
simultaneously diagonalizing the Hamiltonian in a large
basis, using a relativistic kinetic energy and allowing for other
relativistic effects, and using a consistent set of parameters
for all baryon excitations [771].

Pseudoscalar-meson exchange models
Glozman and Riska [2725,2726] emphasize the role of chi-
ral symmetry in determining the baryon spectrum by using
a short-range interaction between quarks similar to that of
Eq. 9.4, but with the exchange of the ‘chiral’ octet of pseu-
doscalar mesons between quarks. This leads to a contact
interaction between quarks i and j similar in form to that
of Eq. 9.4, but proportional to the expectation of the product
�λ f
i · �λ f

j of SU (3) f generators. A fit to the spectrum of low-
lying negative and positive-parity baryons made up of u, d,
and s quarks with harmonic confinement allows first radial
recurrence of the nucleon, corresponding to the Roper reso-
nance N (1440), to be lighter than the lightest J P = 1/2−
orbital excitation, corresponding to N (1535), and the same
behavior holds for the Λ baryons, as seen in extractions from
experimental data. There are no spin–orbit interactions that
arise from pseudoscalar meson exchange; those from other
sources are neglected, along with tensor forces that accom-
pany the contact interaction. The calculation of the N and Δ
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spectra was refined by performing three-body Faddeev cal-
culations with a Goldstone-boson-exchange interaction plus
linear confinement between the constituent quarks in Ref
[2727].

Dziembowski, Fabre de la Ripelle, and Miller [2728] put
these two approaches together by including the effects of
pseudoscalar meson exchange and of one gluon exchange
between quarks, neglecting the complexity introduced by
tensor and spin–orbit interactions, in a hyper-spherical
method calculation that goes beyond wave function pertur-
bation theory. They showed that it is possible to describe the
non-strange baryon spectrum using a quark–meson coupling
constant that reproduces the measured pion–nucleon cou-
pling constant, and a reasonably small value of the strong-
coupling constant, which governs the strength of the one-
gluon exchange terms.

Instanton-induced interactions
Instantons are topologically nontrivial gauge-field configura-
tions in 4-dimensional Euclidean space, with field strengths
that vanish at large spatial distances. These configurations
are localized in both space and (Euclidean) time, and so are
instantaneous interactions, which gives rise to their name.
They are crucial to understanding the formation of con-
densates in the QCD vacuum, and how the axial current
anomaly gives mass to the η′ meson; their presence in
QCD also yields short-range interactions between the quarks.
Löring, Kretzschmar, Metsch and Petry [2729,2730] inves-
tigated the spectrum of baryons in a relativistic model by
solving the three-body Bethe–Salpeter equation. This model
uses instantaneous pairwise linear confinement, with the
Dirac structure required to make the confining potential
spin-independent, and an instantaneous two-body interac-
tion based on ′t Hooft’s residual interaction, which arises
from QCD-instanton effects. This model was able to explain
salient features of the non-strange baryon spectrum, such
as the low mass of the Roper resonance |N 2SS′1/2+〉, and
the presence of approximate parity doublets. This study was
extended [2731] to the study of excited Λ and Σ hyper-
ons, where the equivalent features of these spectra were also
explained, and later to charmed baryons in Ref. [2732].

The Dyson–Schwinger Bethe–Salpeter approach
There has been significant recent progress in understand-
ing the physics of baryons [822,2733] by using the Dyson–
Schwinger equations of QCD and Bethe–Salpeter equations
[820,2734]. In this approach baryons are relativistic bound
states of three quarks, and the treatment of their interac-
tions arising from QCD is non-perturbative, incorporating
aspects of confinement and dynamical symmetry breaking.
Two paths to solving the three-body problem are taken; direct
solution of the three-body Faddeev equation, and decompo-
sition of baryons into quark–diquark systems, with all quark
pairs able to constitute the diquark. The latter path requires

the calculation of diquark Bethe–Salpeter amplitudes, and
diquark propagators. These depend on the quark and gluon
propagators and quark–gluon vertex, which are consistent
with those used for the Bethe–Salpeter equation for mesons,
and with chiral symmetry. Due to the complexity of the three-
body system, baryon calculations are performed using the
rainbow-ladder approximation, where the q − q kernel has
the form of a single gluon exchange with a momentum-
dependent vertex strength, summed by the Bethe–Salpeter
equation into Feynman diagrams that take the form of a lad-
der, or rainbow. This construction preserves chiral symmetry.

Using this dynamical quark–diquark approach, the ground
state nucleon, Δ(1232) 3

2
+

, and Roper N (1440) 1
2
+

reso-
nances are described well [899], as their configurations are
dominated by scalar and axial vector diquarks. However,
other baryons are sensitive to other diquark channels, which
are known to be too strongly bound in this approximation,
as are the corresponding scalar and axial-vector mesons. The
result is that the other excited baryon masses come out too
low. Reducing the strength of the attraction in the pseudo-
scalar and vector di-quark kernels simulates effects beyond
the rainbow-ladder approximation, and the result is good
agreement between the calculated spectrum for excited N ,
Δ, Λ, Σ , Ξ and Ω baryons with J P = 1/2±, 3/2±, with
the exception of the Λ(1405)1/2−, Λ(1520)3/2−, and to a
lesser extent the Roper resonance N (1440)1/2+. The authors
of Ref. [899] point out that this is likely due to the lack
of a consistent treatment of baryon-meson coupled channel
effects.

9.1.4 Missing states in the baryon spectrum

Models of strong decays
For ground-state and low-lying negative-parity excited state
baryons made up of {u, d} and a single s quark, the spectrum
of states extracted from experimental data can be matched to
model predictions without ambiguity. (There is little exper-
imental information about the spectrum of the excited Ξ ,
strangeness S = −2, and Ω , strangeness S = −3 states.)
However, for positive-parity excited states, more states are
predicted by models that treat three quarks symmetrically
than are present in analyses of the data. This is called the
‘missing resonance’ problem. One possible explanation is
to postulate that they contain static, tightly-bound ud di-
quarks, which reduces the effective number of degrees of
freedom and so the number of excitations in the spectrum
[791]. However, lattice QCD calculations of nucleon struc-
ture [2735], and of the entire excited baryon spectrum using
a broad spread of operators [529,2736] do not show the
reduced number of states expected if only ‘good’ di-quarks
prevail, and recent experimental evidence for the existence
of states that are ruled out in such models is described below.
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A solution to this problem is that, unlike those states seen
in partial-wave analyses of elastic πN and K̄ N scattering
data, these missing positive-parity excited states have weak
couplings to the corresponding strong-interaction production
channel [2737,2738]. In any case, in order to make a detailed
and exhaustive comparison between predictions of any model
and the experimental spectrum of excited baryons, a model of
the strong decay B∗ → BM of baryons into a ground-state
baryon and meson is required. For a detailed, comparative
review of such models see Ref. [2709].

One approach is to couple point-like pseudoscalar mesons
to the quarks in the decaying baryon, an elementary-meson
emission model [2721,2739,2740]. As an example, Koniuk
and Isgur [2721] modeled such decays, by coupling point-
like pseudoscalar mesons to the quarks in the decaying
baryon, and evaluating the transition amplitudes using the
configuration-mixed wave functions resulting from the one-
gluon exchange model of Isgur and Karl [2719]. They also
examined baryon electromagnetic transition amplitudes that
can be extracted from meson photo-production experiments.
Many states were observed to have small πN or K̄ N ampli-
tudes, which would lead to them decoupling from elastic-
scattering partial-wave analyses, and the masses and decay
amplitudes of those that did not corresponded to those of the
observed states.

The internal structure of mesons can be taken into account
if strong decays of excited baryons proceed via an operator
that creates a qq̄ pair with vacuum, 2S+1L J = 3P0, quan-
tum numbers. The operator is assumed SU (3) f symmetric;
the additional energy required to produce a strange quark
pair is taken into account by the kinematics. Strong decay
amplitudes are formed by evaluating the required spin and
flavor overlaps, forming the expectation value of this oper-
ator between wave functions for the final state baryon and
meson, and that of the initial excited baryon, and integrating
over the relative momentum of the qq̄ pair.

9.1.5 Decay-channel couplings

Models for the baryon spectrum that do not take into account
decay-channel couplings effectively assume that baryons
are infinitely long-lived bound states. In practice, excited
baryons decay strongly, with decay widths that are signifi-
cant fraction of their masses. Excited baryons can have large
couplings to continuum states, which can and will affect the
positions of the poles in scattering amplitudes that describe
these resonances. This can be due to their proximity to decay-
channel thresholds, or unusually large couplings to a decay
channel, or both. Examples include the low-lying negative-
parity resonances Λ(1405)1/2−, which has a nominal mass
below the N K̄ threshold, and N (1535)1/2−, which couples
strongly to the Nη final state, for which it is just above thresh-
old. The authors of Ref. [2741] were among the first to sug-

gest that these states could be dynamically generated reso-
nances. Hyodo and Meißner review the interesting physics
of the Λ(1405) state in the 2022 RPP [616]. There is also
evidence of these effects from lattice QCD [2736] for states
like the Roper resonance; its mass changes rapidly as the pion
mass in the calculation approaches the physical pion mass,
due to strong Nππ channel coupling.

Beyond elastic meson scattering
The observation that baryon resonances could be missing
due to weak couplings for both their strong-interaction pro-
duction and decay in elastic meson-nucleon scattering led to
the idea that γ N photo-production experiments could excite
missing resonances that had appreciable photo-couplings,
which could be discovered via their strong decays to final
states with more than one pseudoscalar meson. For exam-
ple, missing N and Δ-flavored baryons could be searched
for in proton-target photo-production experiments examining
two or three pion final states resulting from the intermedi-
ate vector-mesons ρ(770) and ω(782). In particular, certain
missing, positive-parity resonances can be expected to decay
to two-pion final states by simultaneous de-excitation of both
lρ = 1 and lλ = 1 excitations.

Recent developments from photo-production experiments
The Particle Data Group in its bi-annual updates of the
Review of Particle Physics (RPP) lists the known baryon res-
onances, their properties, and the experimental evidence for
their existence in terms of star assignments ranging from one
star (poor evidence) to four stars (evidence is strong). Since
the 2010 edition of the RPP [2742], much new information
about N and Δ-flavored baryons has been added based on
recent photo-production experiments. In particular, various
polarization observables have played a crucial role in identi-
fying new resonances, or consolidating the existence of those
previously poorly known.

The experimental spectroscopy efforts to address the miss-
ing resonance problem have concentrated, for the most part,
on the N = 2 positive-parity non-strange excitations, and on
the N = 1 negative-parity singly- and doubly-strange states.
While only one negative-parity Λ state has yet to be iden-
tified to complete the first excitation band, with many more
positive-parity candidates unknown for the second excitation
band, overall as many Σ and Ξ states are expected as N∗ and
Δ states combined, and of these, many negative-parity states
are still missing. The situation is worse for Ξ and Ω res-
onances, since their spins and parities have been measured
for very few states; speculative J P assignments based on
quark model predictions are listed by the PDG for the major-
ity of the observed states. The potential for new discoveries
remains high in the hyperon sector.

Of particular interest in the non-strange sector are those
multiplets of the second excitation band where both oscil-
lators have a single orbital excitation, lρ = lλ = 1, which
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combine to either L = 0, 1, or 2. Since both relative coordi-
nate vectors must be excited in order to have the necessary
exchange symmetry, their presence would rule out tightly-
bound, static di-quarks. In fact, a quartet of S = 3/2 states

|N 4DM (1/2+, 3/2+, 5/2+, 7/2+)〉,
has been proposed [2743] for the 70-plet (70, 2+) largely
based on the photo-produced double-pion final state.

These states were expected to be seen in double-meson
reactions since each oscillator can de-excite via the emission
of a meson. There is a new J P = 1/2+ state, N (1880)1/2+,
and the state N (1900)3/2+ has had its likely existence
upgraded from 2 to 4 stars in the Review of Particle Proper-
ties (RPP) by the PDG [616]. Evidence for two other states
in the quartet, N (2000)5/2+ and N (1990)7/2+, is strong in
some partial wave analyses but requires additional confirma-
tion, and so remains listed with weak evidence (two stars)
in the RPP. Such double-meson reactions had been under-
explored until recently, which would explain why these states
escaped detection in the past. Another previously one-star
resonance, N (2100)1/2+, has been upgraded to three stars,
and can be tentatively assigned to the doublet of states with
S = 1/2 forming the SU(6) multiplet [20, 1+] of Eq. 9.3,
where lρ = lλ = 1 combine to L = 1. There remains at best
weak evidence for the second state in this doublet. Although
the assignment of experimental N∗ candidates to these mul-
tiplets is speculative, some optimism persists that the goal
of completely mapping the second excitation band for non-
strange baryons is within reach once all currently available
(polarization) data have been analyzed.

There is also an interesting pattern of parity doublets of N∗
baryons with masses around 2 GeV, which might indicate the
restoration of the chiral symmetry at higher energies [2744,
2745]. A similar pattern was observed for Δ resonances in
the same mass region:

Δ(1910)1/2+ Δ(1900)1/2−
Δ(1920)3/2+ Δ(1940)3/2−
Δ(1905)5/2+ Δ(1930)5/2−
Δ(1950)7/2+

A detailed study has not yet revealed the missing 7/2−
state [2746]. Closest in mass is a previously poorly-known
state, Δ(2200)7/2−, which has since been upgraded from
one to three stars based on photo-production data. Inter-
estingly, the corresponding mass difference is observed in
the nucleon spectrum between N (1990)7/2+ (two stars) and
N (2190)7/2− (four stars).

The result is that, based on photo-production data, six
completely new N∗ resonances have been proposed with
masses around 2 GeV, and three additional states have been
upgraded. No new Δ state has been proposed, but four states
have had their status upgraded by the PDG.

9.1.6 Baryons with excited glue

In a strongly-coupled system, hybrid baryons with excited
gluon degrees of freedom must exist. Unlike in the spec-
trum of mesons, all J P quantum numbers are accessible via
spatial excitation for a given flavor of baryon, as explained
in Sect. 9.1.2. In the absence of exotic quantum numbers,
another approach to the discovery of hybrid baryons might be
to search for an over-population, relative to the expectations
of constituent quark models, of states with a given flavor,
spin, and parity quantum numbers. However, it is expected
that the lowest-lying states with excited gluon degrees of
freedom are positive-parity states that overlap in mass the
region in the spectrum where there are already several miss-
ing conventional states.

Early approaches to the physics of hybrid baryons include
those based on the MIT bag model [2747], large-Nc QCD
[2748], and QCD sum rules [2749]. As an example, the cal-
culation of Ref. [2747] confined a constituent gluon and three
quarks to an MIT bag, and used O(αs) interactions between
the constituents. In these studies, the lightest hybrid baryons
were found to have N flavor and J P = {1/2+, 3/2+}, with
the lightest of these having J P = 1/2+ and a mass of approx-
imately 1500 MeV, between those of the two lightest radial
excitations of the nucleon, the Roper resonance at 1440 MeV,
and the N(1710).

The flux-tube model developed to examine hybrid meson
structure and decays by Isgur and Paton [2418] was applied
to hybrid baryons in Refs. [2723,2750]. An adiabatic approx-
imation is employed, where a Y-shaped flux tube is allowed
to move with the three quark positions fixed, except for cen-
ter of mass corrections. This defines a potential in which the
quarks move, for both conventional (glue in its ground state)
and hybrid (glue in its lowest-lying excited state) baryons.
The flux-tube dynamical problem can be reduced to the inde-
pendent motion of the junction and the strings connecting the
junction to the quarks. The seven low-lying hybrid baryons
are found to be two doublets of N 21/2+ and N 23/2+ states
with quark spin S = 1/2, and three states

4Δ(1/2+, 3/2+, 5/2+)

with quark spin S = 3/2. Baryon masses are found by using
a variational method to solve for the quark energies in these
string potentials. Including the hyperfine contact spin–spin
term in Eq. 9.4 lowers the mass of the quark–spin 1/2 hybrid
states by 110 MeV to 1865 MeV, and raises the mass of
the quark–spin 3/2 hybrid states, which coincide with the
lightest Δ flavored hybrids, by a similar amount.

Lattice QCD approaches to describing the spectrum of
conventional and hybrid baryons assuming isolated bound
states [529,2736,2736] are able to determine the spectrum
of baryon states up to J P = 7/2±. The results show the
same number of states as non-relativistic models based on
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three-quark degrees of freedom [2736], with no signs of the
reduced number of excitations predicted by di-quark models,
or parity doubling. States in this spectrum can be grouped into
SU (6) × O(3) multiplets, with weak mixing. Using many
composite QCD interpolating fields, hybrid baryons of N and
Δ flavor were identified in Ref. [529] by searching for states
with a substantial overlap with operators containing glu-
onic excitations. This led to doublets of N1/2+ and N3/2+
hybrids, and N5/2+, Δ1/2+ and Δ3/2+ states at energies
above the center of the first band of conventional positive-
parity excitations. This suggests that exciting the glue adds
a color-octet effective degree of freedom, with roughly the
same additional energy in mesons and baryons, that has J P =
1+, unlike the vector nature of this excitation in the flux-tube
model. A J P = 1+ excitation is expected in the bag model of
Ref. [2747], as these are the quantum numbers of the lowest
energy, transverse electric mode of a gluon in a spherical bag.

This approach is extended to all baryons made from u,
d, and s quarks in Ref. [2736], using operators that lie in
irreducible representations of SU (3) f symmetry, in addition
to SU (4) symmetry for the Dirac spins and O(3) symmetry
for the orbital state. The spectra that result for non-hybrid
states are again consistent with quark model expectations
based on weakly broken SU (6)⊗O(3) symmetry. States with
strong hybrid content are usually at about 1 GeV above the
corresponding conventional excited states, and the quantum
numbers and multiplicity of the positive-parity hybrid states
can be roughly predicted by combining a J P = 1+ gluonic
excitation with non-relativistic quark spins, although some of
the expected states are not found in the calculation performed
at the lowest pion mass. The use of multi-hadron operators
will allow the exploration of the energy dependence of and
resonances in hadron scattering amplitudes.

A recent proposal prepared by the CLAS12 Collaboration
and presented to the Jefferson Lab Physical Advisory Com-
mittee aims to experimentally search for hybrid baryon states
in electro-produced KY and pπ+π− final states by focus-
ing on measurements for Q2 < 1.0 GeV2. Since the spin
and parity of hybrid baryons are expected to be the same as
those for conventional states, the experimental signature of
hybrid baryons is the distinctively different low-Q2 evolution
of their electro-couplings that originate from the additional
gluonic component of their wave function. More details are
discussed in the contribution by V. Burkert.

9.2 Light-quark baryons

Volker Burkert, Eberhard Klempt, Ulrike Thoma

9.2.1 Why N∗’s?

This was the question with which Nathan Isgur opened his
talk at N∗2000 [2751] held at the Thomas Jefferson National

Accelerator Facility in Newport News, VA, one year before
he passed away, much too early. He gave three answers:

First, nucleons are the stuff of which our world is made.
In the Introduction to this section, two of us have outlined
the importance of N∗’s and Δ∗’s in the development of
the Universe 9, when hadrons materialized from a soup of
quarks and gluons at some 10μs after the big bang. The
full spectrum of excited baryon states including those carry-
ing strangeness must be included in hadron gas models that
simulate the freeze-out behavior observed in hot-QCD cal-
culations. These simulations aim at finding the underlying
processes, to pin-point the “critical point” of the phase tran-
sition that is expected to occur between the QGP phase and
the hadron phase at a temperature near 155 MeV. Experi-
ments are ongoing at CERN, RHIC and planned at FAIR to
study the phase diagram of strongly interacting matter, e.g.
by varying the collision energy.

Second, nucleons are the simplest system in which the
non-abelian character of QCD is manifest. The proton con-
sists of three (constituent) quarks since the number of colors
is three.

Third, baryons are sufficiently complex to reveal physics
to us hidden in the mesons. Gell-Mann and Zweig did
not develop their quark model along mesons, their simple
structure allowed for different interpretations. Three quarks
resulted in a baryon structure that gave – within SU(3) sym-
metry – the octet and the decuplet containing the famous
Ω−.

Isgur made many important contributions to the devel-
opment of the quark model. With Karl he developed the
idea that gluon-mediated interactions between quarks bind
them into hadrons and constructed a quark model of baryons
[2752]. This was a non-relativistic model, hardly justifiable.
With Capstick he relativized the model [771], but surpris-
ingly, the pattern of predicted resonances remained rather
similar. Isgur always defended the basic principles: hadrons
have to be understood in terms of constituent quarks bound
in a confining potential and additionally interacting via the
exchange of “effective” gluons.

Nearly 20 years later, Meißner ended his contribution
[2753] to the N∗2019 conference held in Bonn, Germany, by
stating: “Forget the quark model”. We need to ask: What has
happened in these two decades? What did we know before?
What have we learned?

Mapping the excitation spectrum of the nucleon (protons
and neutrons) and understanding the effective degrees of
freedom are important and most challenging tasks of hadron
physics. A quantitative description of the spectrum and prop-
erties of excited nucleons must eventually involve solving
QCD for a complex strongly interacting multi-particle sys-
tem. The experimental N∗ program currently focuses on the
search for new excited states in the mass range just below
and above 2 GeV using energy-tagged photon beams in the
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few GeV range, and on the study of resonances, their prop-
erties, and their internal structure, e.g. in cascade decays and
in meson electro-production.

9.2.2 N∗’s: how?

In the previous contribution by Capstick and Crede 9.1 we
have seen the complexity of the expected spectrum of nucleon
and Δ excitations. Even in the lowest excitation mode with
lρ = 1 or lλ = 1, we expect five N∗ and two Δ∗ states; they
are all well established. But already in the second excitation
mode, the quark model predicts 13 N∗ and 8 Δ∗ states The
resonances have quantum numbers J P = 1/2+, . . . , 7/2+
and isospin I = 1/2 or 3/2, respectively. All these 21 res-
onances are expected to fall into a mass range of, let’s say,
1600–2100 MeV. This complexity of the light-quark (u and
d quarks) baryon excitation spectrum complicates the exper-
imental search for individual states, especially since, as a
result of the strong interaction, these states are broad, the
typical width being 150–300 MeV. They overlap, interfere,
and often several resonances show up in the same partial
wave. Grube in his contribution 8.3 has convincingly demon-
strated the difficulties of extracting the existence and proper-
ties of mesonic resonances from ππ scattering experiments.
With nucleon resonances, additional complications due to
the nucleon spin emerge: in πN elastic scattering there are
two complex amplitudes to be determined, for spin-flip and
spin-non-flip scattering.

Pion scattering off nucleons was mostly performed in the
pre-QCD era. Nearly all excited nucleon states listed in the
Review of Particle Physics (RPP) prior to 2012 have been
observed in elastic pion scattering πN → πN . However
there are important limitations in the sensitivity to the higher-
mass nucleon states. These may have very small ΓπN decay
widths, and their identification becomes exceedingly diffi-
cult in elastic scattering. Three groups extracted the real and
imaginary parts of the πN partial-wave amplitude from the
data [2754–2756]. Their results are still used as constraints
in all modern analyses of photo-induced reactions.

Figure 216a, b shows the real and imaginary part of the
S11 amplitude for πN scattering. The imaginary part peaks
at 1500 MeV and just below 1700 MeV indicating the pres-
ence of two resonances, N (1535)1/2− and N (1650)1/2−.
These are known since long and established. Above, there is
no clearly visible sign for any additional resonance. Higher-
mass resonances – if they exist – must have very small ΓπN

decay widths.
Estimates for alternative decay channels have been made

in quark model calculations [2762]. This has led to major
experimental efforts at Jefferson Lab, ELSA and MAMI
to determine differential cross sections and (double) polar-
ization observables for a variety of meson photoproduction

channels. Spring-8 at Sayo in Japan and the ESRF in Greno-
ble, France, made further contributions to the field.

Figure 216c, d shows an example. In Fig. 216c, the
total cross section for η photoproduction off protons and
off neutrons is shown [2757,2758]. They are dominated
by N (1535)1/2− → Nη interfering with N (1650)1/2−.
The opening of important channels is indicated by verti-
cal lines. At the η′ threshold, the intensity suddenly drops:
significant intensity goes into the Nη′ channel. This is a
strong argument in favor of a resonance at or close to the
pη′ threshold. It also clearly demonstrates the advantage
of investigating different final states and production mecha-
nisms. In contrast to the πN -S11 scattering amplitude, here,
already in the total η-photoproduction cross section, a struc-
ture relating to N (1895)1/2− becomes visible. Furthermore,
in Fig. 216d, the result of a fit with Legendre moments to
the so-called Σ polarization observable for γ p → η p is
compared to two energy-dependent solutions of the BnGa
coupled-channel analysis. Plotted is the coefficient (a4)

Σ
4

of the Legendre expansion which receives (among others)
a contribution from the interference of the S-wave with the
G-wave. Data from different experiments are given with their
error bars. The curves represent BnGa fits with (solid curve)
and without (dashed curve) inclusion of data on γ p→ η′ p.
The N (2190)7/2− (G-wave) was included in both fits. From
1750 MeV to the pη′-threshold the coefficient is approxi-
mately constant, then at the pη′-threshold, the fit result shows
an almost linear rise towards positive values. This change
of the coefficient at about 1.9 GeV indicates the presence
of a cusp. The strong cusp is an effect of the pη′ threshold
[Eγ = 1447 MeV (W = 1896 MeV)], the Nη′ amplitude must
be strongly rising above threshold. Indeed, the inclusion of
the full data set on γ p → pη′ (cross sections, polarization
observables) into the BnGa data base had already confirmed
the existence of a new N (1895)1/2− resonance with a sig-
nificant coupling to pη and pη′ [2763,2764], first observed
in [2765].

This resonance was not seen in classical analyses of πN
elastic scattering data.91 The example shows the impor-
tance of inelastic channels and of coupled-channel analyses.
Thresholds can be identified by the missing intensity in other
channels, cusp effects can show up, all these effects need to
be considered and finally contribute to find the correct solu-
tion. High-precision and high-statistics data are required as
well as a large body of different polarization data.

9.2.3 Photoproduction of exclusive final states

In the photoproduction of a single pseudoscalar meson like
γ p → η p, not only the proton has two spin states but also

91 Höhler and Manley had claimed a similar state that had been com-
bined with Cutkovsky’s result to N (2090).
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Fig. 216 a, b Real and imaginary part of the S11 πN scattering
amplitude. Resonances in this partial wave have quantum numbers
J P = 1/2−. Clearly seen are N (1535)1/2− and N (1650)1/2−. There
is no convincing evidence for any resonance above 1700 MeV. Data
points are from [2754], errors are estimates, the curve represents a
recent Bonn–Gatchina (BnGa) fit. c Total cross sections for γ p→ η p
and γ n → η n. Important thresholds are marked by lines. The inset

shows the η′ threshold region for η-photoproduction off the proton
(picture adapted from [2757,2758]). d The Legendre coefficient of the
polarization observable Σ (a4)

Σ
4 exhibits a cusp at the η′ threshold

[2759]. The data stems from GRAAL (black), CBELSA/TAPS (blue)
and CLAS (green) Picture taken from [2759]. c, d See publications
[2757,2758,2760] for references to the data

Fig. 217 The double polarization observable E as a function of cos θη
in the cms for selected energy bins, black: CBELSA/TAPS [2760],
blue: CLAS data [2761] (due to different binning, the energies differ by
up to half of the bin size). Colored curves: Predictions from different
PWAs (see publication for references), black: BnGa-fit including the
data shown here and further new polarization data. Figure adapted from
[2760]

the photon has two possible spin orientations. In electropro-
duction, discussed by Burkert in the subsequent Sect. 9.3,
the virtual photon can also be polarized longitudinally. But
even for experiments with real photons, there are four com-
plex amplitudes to be determined. There is a large number of
observables: the target nucleon can be polarized longitudi-
nally, i.e. in beam direction, or transversely, the photon can
carry linear or circular polarization. The final-state nucleon
can carry polarization along its flight direction or perpendic-
ular to the scattering plane. There is an intense discussion in
the literature on how many independent measurements have
to be performed to determine the four complex amplitudes,

see Ref. [2713]. In practice, energy-independent analyses in
bins of the invariant mass were only done for the very low
energy region [2769,2770] or with additional assumptions
(see [2771–2773] and references therein).

In most cases, energy-dependent analyses have been per-
formed to extract the information hidden in the photopro-
duction data. These analyses were pioneered by the Giessen
group who made the first coupled-channel analysis of pion
and photo-induced reactions to extract properties of nucleon
resonances [2774,2775]. Later, the polarization data, in par-
ticular those with polarized photon beam and polarized tar-
get nucleons, proved to be decisive to reduce ambiguities
of the solutions. The double-polarization observable E is
one of the beam-target-observables; it requires a circularly
polarized photon beam and a longitudinally polarized target.
Examples of E for selected W-bins are shown in Fig. 217
for γ p → pη [2760]. The data are compared to the pre-
dictions of different PWA solutions (colored curves). The
curves scatter over a wide range indicating the high sensi-
tivity of the polarization observable on differences in the
contributing amplitudes. A new BnGa fit returned masses
and widths of N∗-resonances and their Nη-branching frac-
tions [2760], several of them unknown before. Interestingly a
N (1650)1/2− → Nη-branching fraction of 0.33±0.04 was
found supporting the large values reported by BnGa [2765]
and the A2 collaborations [2758] while in the RPP’2010, a
value of only 0.023±0.022 was given. Recently, also within
the Jülich–Bonn dynamical coupled channel approach, a Nη-
residue for N (1650)1/2− was found, larger by almost a fac-
tor of two compared to earlier analyses, after inclusion of the
new polarization data [2776]. In contrast, the Gießen group
[2777] and Hunt and Manley [2778] find very small values
for the N (1650)1/2− → Nη branching ratio. Historically,
the large N (1535)1/2− → Nη branching fraction and the
small one for N (1650)1/2− → Nη has played a significant
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role in the development of the quark model [764], of theories
based on coupled-channel chiral effective dynamics [2741]
and led to several interesting interpretations of the low mass
1/2−-resonances (for references see [2760]). The old values
from 2010 were obtained without the constraints provided
by the new high quality (double) polarization data covering
almost the complete solid angle. The impact of polarization
observables on the convergence of different PWA-solutions
was e.g. also very clearly demonstrated in a common study
of pion-photoproduction [2779].

In hyperon decays, the polarization of the Λ or Σ◦
can be determined by analyzing the parity violating decay
Λ→ pπ−. Thus the spin orientation of the final state baryon
(recoil polarization) can be determined. Kaon-hyperon pro-
duction using a spin-polarized photon beam provides access
to the beam-, recoil-, target-92 and to beam-recoil polariza-
tion observables. The data had a significant impact on the
determination of the resonance amplitudes in the mass range
above 1.7 GeV. Precision cross section and polarization data,
examples of which are shown in Fig. 218, span the K+Λ
and K+Σ invariant mass range from threshold to 2.9 GeV,
hence covering the interesting domain where new states could
be discovered. Clear resonance-like structures at 1.7 GeV
and 1.9 GeV are seen in the K+Λ-differential cross section
that are particularly prominent and well-separated from other
structures at backward angles. At more forward angles (not
shown) t-channel processes become prominent and domi-
nate the cross section. The broad enhancement at 2.2 GeV
may also indicate resonant behavior although it is less visi-
ble at more central angles with larger background contribu-
tions. Similar resonance-like structures are observed in the
KΣ channel (Fig. 218b). Examples for different polarization
observables determined for the reaction γ p → K+Λ are
shown in the lower row of Fig. 218 for selected bins in the
K+-scattering angle in the γ p center-of-mass frame. They
are compared to predictions from ANL-Osaka, BnGa-2014
and to a refit from the BnGa-PWA. The large differences
between the curves demonstrate the sensitivity of the data
to the underlying dynamics. The KΛ channel is somewhat
easier to understand than the KΣ channel, as the iso-scalar
nature of the Λ selects isospin-1/2 states to contribute to
the KΛ final state, while both isospin-1/2 and isospin-3/2
states can contribute to the KΣ final state. Of course, here, as
well as for other final states, only a full partial wave analysis
can determine the underlying resonances, their masses and
spin-parity. Polarization data are required to disentangle the
different amplitudes.

Energy-dependent analyses have been performed e.g. at
Gießen [2774,2775,2780], at GWU [2781] as SAID, in

92 The target polarization observable can also be accessed by perform-
ing a double-polarization experiment using a linearly polarized photon
beam and measuring the baryon polarization in the final state.

Mainz as MAID [2758], at Kent [2778], at JLab [2782], by
the BnGa [2765,2783], the Jülich–Bonn (JüBo) [2776], the
ANL-Osaka [2784] and by other groups. A short descrip-
tion of the different methods can be found in Ref. [2713].
Here we emphasize that the energy-dependence of a partial-
wave amplitude for one particular channel is influenced by
other reaction channels due to unitarity constraints. To fully
describe the energy-dependence of a production amplitude,
all (or at least the most significant) reaction channels must be
included in a coupled-channel approach. Many different final
states have been measured with high precision off protons and
partly also off neutrons (bound in a deuteron with a quasi-free
proton in the final state). Polarization data for meson photo-
production off neutrons are, however, still scarce. A fairly
complete list of references can be found in [2713]. Most data
are now included in single- and in multi-channel analyses.93

The photoproduction data had a strong impact on the dis-
covery of several new baryon states or provided new evi-
dence for candidate states that had been observed previously
but lacked confirmation (e.g. [2746,2758,2765]). Many new
decay modes were discovered, in particular in the photopro-
duction of 2π0 and π0η, [2783,2785,2786] and references
therein. At the NSTAR’2000 workshop, 12 N∗ and 8 Δ∗
were considered to be established (4*,3*) by the Particle
Data Group.94 These numbers increased to 19 N∗ and 10 Δ∗
two decades later. Table 38 lists the new resonances below
2300 MeV and those that had not a four-star status in 2010.
Resonances which had four stars in 2010 are well established
and kept their status. These are:

N (1440)1/2+, N (1520)3/2−, N (1535)1/2−, N (1650)1/2−,
N (1675)5/2−, N (1680)5/2+, N (1720)3/2+, N (2190)7/2−,
N (2220)9/2+, N (2250)9/2−,Δ(1620)1/2−,Δ(1700)3/2−,
Δ(1905)5/2+,Δ(1910)1/2+,Δ(1950)7/2+.

A few resonances were removed from the RPP tables. They
often had wide-spread mass values, and the old results were
redistributed according to their masses and the new find-
ings. Even more impressive is the number of reported decay
modes. Our knowledge on N∗ and Δ∗ decays has at least
been doubled.

9.2.4 Regge trajectories

Like mesons, baryons fall onto linear Regge trajecto-
ries when their squared masses are plotted as a func-
tion of their total spin J or their intrinsic orbital angular

93 A list of data on photoproduction reactions including polarization
and double-polarization observables can be found at the BnGa web
page: https://pwa.hiskp.uni-bonn.de/.
94 In PDG notation: 4* Existence certain, 3* almost certain, 2* evidence
fair, 1* poor
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Fig. 218 Invariant mass dependence of the γ p → K+Λ [2766] (a)
and γ p→ K+Σ [2767] (b) differential cross sections for selected bins
in the polar angle. c Examples for polarization observables determined
for γ p → K+Λ (only selected bins shown) [2768]. Curves: PWA-

predictions from ANL-Osaka (red) and BnGa 2014 (green). Blue: BnGa
2014-refit including the data shown. a–c For references to the data and
the PWAs see [2766–2768], Picture adapted from [2766–2768]

momentum L . In the case of Δ∗, the leading trajectory
consists of Δ(1232)3/2+, Δ(1950)7/2+, Δ(2420)11/2+,
Δ(2950)15/2+. In the quark model, these have intrinsic
orbital angular momenta L = 0, 2, 4, 6. Figure 219 shows
the squared Δ∗-masses as a function of L + Nradial, where
Nradial indicates the intrinsic radial excitation. The reso-
nances Δ(1910)1/2+, Δ(1920)3/2+, Δ(1905)5/2+ have
intrinsic L = 2 like Δ(1950)7/2+, and fit onto the tra-
jectory. Also, there are three positive-parity resonances that
likely have L = 4 with the 5/2+ state missing. The two
L = 1 resonances Δ(1620)1/2− and Δ(1700)3/2− also
have masses close to the linear trajectory. Further, there are
resonances in which the ρ or λ oscillator is excited radially
to nρ = 1 or nλ = 1 (Nradial = 1). Quark models with a
harmonic oscillator as confining potential predict that reso-
nances belong to shells. Radial excitations are predicted in
the shell L + 2 Nradial. This is not what we find experimen-
tally: the masses are approximately proportional to L+Nradial

if Nradial = 1 is assigned to Δ(1600)3/2+, the first radial
excitation of Δ(1232)3/2+, as well as to the Δ(1900)1/2−,
Δ(1940)3/2−, Δ(1930)5/2− triplet, to the two members of
a partly unseen quartetΔ(2350)5/2− andΔ(2400)9/2−, and
to Δ(2750)13/2− (with L = 5, S = 3/2 and Nradial = 1).

Clearly, this is a very simplified picture of the Δ∗ spec-
trum. The picture is that of the non-relativistic quark model –
nobody understands why it works.95 Resonances – assumed
to have the same mass if spin orbit-coupling is neglected–

95 In addition, we neglect the possible configuration mixing of states
in our discussion.

Table 38 Baryon resonances above the Δ(1232) and below 2300 MeV
given in the RPP’2022 in comparison to the resonances considered in
the RPP’2010. Resonances with 4∗ in 2010 are not listed here. See text
for further discussion

RPP RPP RPP RPP
2010 2022 2010 2022

N (1700)3/2− *** *** Δ(1600)3/2+ *** ****

N (1710)1/2+ *** **** Δ(1750)1/2+ * *

N (1860)5/2+ – ** Δ(1900)1/2− ** ***

N (1875)3/2− – *** Δ(1920)3/2+ *** ***

N (1880)1/2+ – *** Δ(1930)5/2− *** ***

N (1895)1/2− – **** Δ(1940)3/2− * **

N (1900)3/2+ ** **** Δ(2000)5/2+ ** **

N (1990)7/2+ ** ** Δ(2150)1/2− * *

N (2000)5/2+ ** ** Δ(2200)7/2− * ***

N (2040)3/2+ – *

N (2060)5/2− – *** N(2080)3/2− ** –

N (2100)1/2+ * *** N(2090)1/2− * –

N (2120)3/2− – *** N(2200)5/2− ** –

have indeed somewhat different masses. But the gross fea-
tures of the spectrum of Δ∗ resonances are well reproduced.

The nucleon spectrum is more complicated. First, there
are more resonances, and second, there are two-quark con-
figurations which are antisymmetric in spin and flavor.96 Due
to instanton induced interactions, the relativistic quark model

96 These two-quark configurations are often called good diquarks. They
may carry orbital-angular momenta, these are not frozen diquarks.
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Fig. 219 Regge-like trajectory of Δ∗-resonances. Taken from [2789]

[2730], expects a lowering of states with the respective sym-
metry. Indeed baryons with two-quark configurations which
are antisymmetric in spin and flavor (good diquarks) seem
to have lower masses than those having bad diquarks only.
Attempts to include good-diquark effects were rather suc-
cessful [2716,2787]. The χ2 for the model-data comparison
was twice better for the 2-parameter fit than for quark models
[2788] when the same mass-uncertainties are assumed.

9.2.5 Hyperons

Nearly no new data on K̄ N scattering have become available
for several decades except some new data from BNL at very
low energy (see Ref. [2790] and references therein). The reac-
tion γ p→ K+Σπ was studied at JLab and helped to under-
stand the low-energy region [2791]. However, four groups
have re-analyzed K− p reactions using extensive collections
of the old data. The new analysis progress was pioneered
by the Kent group which performed a comprehensive partial
wave analysis [2792,2793]. Energy-independent amplitudes
were constructed by starting from an energy-dependent fit
and by freezing or releasing sets of amplitudes. The result-
ing amplitudes were then fit in a coupled-channel approach.
The JPAC group performed coupled-channel fits to the par-
tial waves of the Kent group. The fit described the Kent
partial waves well while significant discrepancies showed
up between data and the observables calculated from their
partial-wave amplitudes [2794]. The ANL-Osaka group used
the data set collected by the Kent group and derived energy-
dependent amplitudes based on a phenomenological SU(3)
Lagrangian. Two models were presented which agreed for the
leading contributions but which showed strong deviations for
weaker contributions [2795,2796]. The BnGa group added
further data and tested systematically the inclusion of addi-
tional states with any set of quantum numbers. Only small
improvements in the fit were found [2797,2798].

The new studies of old data did not change the situa-
tion significantly. Some new decay modes were reported,
some new but faint signals were found, some were confirmed
by one group and missed by others. Several bumps were

removed from the RPP Tables (for details see [2799]). As
a result, our picture of hyperons (with strangeness S = −1)
remains unclear. Not even all states expected in the firstΛ and
Σ excitation shell have been seen. In Table 39 all candidates
are included.

Very little is known about excited Cascade baryons. A few
structures in invariant mass spectra were observed, nearly no
spin-parities have been determined. The hope is that at FAIR,
JLab and J-PARC (see Sect. 14) new Ξ ’s and Ω’s will be
observed and their quantum numbers will be determined.

9.2.6 QCD expectations

The spectrum of excited nucleons has been calculated in dif-
ferent approaches. We list a few here: QCD on a lattice has
been used to calculate the spectrum of light-quark baryons
including hybrid states (see Sect. 4.5 and [528]). In the
Dyson–Schwinger/Bethe–Salpeter approach (see Sect. 5.2
and [2733]) the covariant three-body Fadeev-equation is
solved in a rainbow-ladder approximation. The spectra of
baryon resonances have been calculated for J = 1/2± and
J = 3/2±, reaching for the N∗- and Δ∗-resonances to
masses up to about 2000 MeV. AdS/QCD (see Sect. 5.4 and
[1003]) predicts a spectrum of N∗ and Δ∗ that is propor-
tional to L + Nradial. Using chiral unitary approaches for the
meson–baryon interactions, certain baryon resonances can be
generated dynamically (see Sect. 6.2). Various quark models
have been developed that treat baryons as bound states of
three quarks with constituent masses, a confinement poten-
tial and residual quark–quark interactions. The models are
discussed in Sect. 9.1. At present, they are still best suited
to discuss what has been learned from recent results in the
spectroscopy of light baryons.

9.2.7 What did we learn within the quark model?

SU(6)⊗O(3) classification
Table 39 lists the observed N∗-, Δ∗-, Λ∗- and Σ∗-baryons
in a SU(6)⊗O(3) classification. This classification assumes
non-relativistic constituent quarks. It has been a miracle since
the early times of the quark model that this scheme works
so well. But baryon resonances often have a leading compo-
nent in the wave function corresponding to the SU(6)⊗O(3)
classification even in relativistic calculations.

The first excitation shell (N = 1) is fairly complete.
As expected, there are five N∗’s and two Δ∗’s with nega-
tive parity. Of the Λ and Σ octet states with negative par-
ity, only the J P = 3/2− states are missing.97 The two
states Λ(1800)1/2− and Σ(1750)1/2− are interpreted as

97 The N (1700)3/2− is wider than its spin partners and more difficult to
identify. This may also be the reason for the absence of the J P = 3/2−
Λ and Σ states.
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Fig. 220 Left: γ p → pπ0π0-Dalitz plot for a selected Eγ -bin of
1900–2100 MeV (CBELSA/TAPS) [2800], Middle: Cascade decays of
resonances via an immediate state. Right: Classical orbits of nucleon
excitations with L = 2 (upper row) and L = 1 (middle row). Taken

from [2786]. The first two pictures in the upper row show excitations
of the ρ and λ oscillators, in the third picture both, ρ and λ are excited.
When both oscillators are excited, de-excitation leads to an excited
intermediate state (middle row)

states with intrinsic spin 3/2: they seem to be spin part-
ners of Λ(1830)5/2− and Σ(1775)5/2−. The doublet of
negative-parity decuplet Σ states is not uniquely identi-
fied. Expected is this doublet at about 1750 MeV, and in the
(56,1−3 )-configuration a second doublet at about 2050 MeV
and, finally, a triplet at about the same mass. The analysis
found (poor) evidence for two doublets, marked a in Table 39.
The singlet states Λ(1405)1/2− and Λ(1520)3/2− deserve
a more detailed discussion.

At higher masses, some choices are a bit arbitrary:
Because of its mass, N (1900)3/2+ belongs to the second
excitation shell. It may have intrinsic quark spin 1/2 or 3/2,
both with L = 2. Further, there should be a 3/2+ radially
excited state with L = 0. These three states can mix. Only
one of the states is clearly identified. In any case, quark mod-
els predict three resonances with J P = 3/2+ in this mass
range while only one is found. Also missing is a doublet of
states with L = 1 belonging to the 20plet in SU(6)⊗O(3).98

The production of this doublet is expected to be strongly
suppressed for reasons to be discussed below.

Only few hyperons are known that can be assigned to
the second excitation shell. The interpretation of some Λ

resonances as SU(3) singlet configuration is plausible but
not at all compelling.

Missing resonances
In the spectrum of N∗ and Δ∗, the first excitation shell is
complete, in the second shell, 21 states are expected (two
of them likely not observable in πN -elastic scattering or in
single/double meson photoproduction), 16 are seen, three are
missing. To a large extend, the missing-resonance problem is
solved for N∗ and Δ∗: there are no frozen diquarks. Admit-

98 The RPP lists three more N∗/Δ∗-resonances: N (2040)3/2+,
Δ(2150)1/2−, which need confirmation and N (2100)1/2+ which we
assign to the 4th shell.

tedly, five of the resonances are not yet “established”, i.e.
have not (yet?) a 3* or 4* status.

In the third shell, only few resonances are known, but the
number of expected resonances is quite large and the analysis
challenging: 45 N∗ and Δ∗, likely with widths often exceed-
ing 300 MeV, are expected to populate an about 400 MeV
wide mass range.

Three-quark dynamics in cascade decays
The CBELSA/TAPS collaboration studied cascade decays of
high mass resonances via an intermediate resonance down
to the ground state nucleon. The analyses were based on a
large data base of photoproduction data including final states
such as γ p→ pπ0π0 and pπ0η (see [2783,2785] and Refs.
therein). The Dalitz plot of Fig. 220, shows very clearly band-
like structures due to the occurrence of baryon resonances in
the intermediate state. It was observed that the positive parity
N∗- and Δ∗-resonances at a mass of about 1900 MeV show
a very different decay pattern. The four N∗-resonances:

N (1880)1/2+, N (1900)3/2+, N (2000)5/2+, N (1990)7/2+,

decay with an average branching fraction of (34± 6)% into
Nπ and Δπ and with a branching fraction of (21±5)% into
the orbitally excited states N (1520)3/2−π , N (1535)1/2−π ,
and Nσ . The four Δ∗-states:

Δ(1910)1/2+,Δ(1920)3/2+,Δ(1905)5/2+,Δ(1950)7/2+,

have an average decay branching fraction into Nπ/Δπ of
(44 ± 7)% while their branching fraction into the excited
states mentioned above is almost negligible, only (5 ± 2)%
[2783]. At the first sight, this is very surprising.

The difference can be traced to the different wave func-
tions. The spin and the flavor wave functions of the four Δ∗-
states are both symmetric with respect to the exchange of any
two quarks, the spatial wave function needs to be symmet-
ric as well. This means that – having a three-quark-picture
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Table 39 The spectrum of N , Δ, Λ and Σ excitations. The first row
shows the quantum numbers of the SU(6)⊗O(3) symmetry group. D
is the dimensionality of the SU(6) group, L the total internal quark
orbital angular momentum, P the parity, N a shell index, S the total
quark spin, J the total angular momentum. The assignment of particles
to SU(6)⊗O(3) is an educated guess. In the first and second excitation
band, all expected states are listed, missing resonances are indicated
by a − sign. The third band lists only bands for which at least one
candidate exists. The states with an index are special: above 1700 MeV,
one pair of Σ states is expected at about 1750 to 1800 MeV, two pairs at
about 2000 to 2050 MeV. Two pairs markeda are found only. The pairs
are shown with the three possible assignments. Likewise, N (2060) and
N (2190) markedb could form a spin-doublet or be members of a spin-
quartet. Likely, the observed pairs of states are mixtures of these allowed
configurations (Adapted from [2799])

1. shell 2. shell 3. shell
J P 1/2− – 5/2− 1/2+ − 7/2+ 1/2− − 9/2−
Masses 1500–1750 1700–2100 1900–2300

N 5: 2 2 1 13: 4 5 3 1 30: 7 9 8 5 1
Δ 2: 1 1 – 8: 2 3 2 1 15: 3 5 4 2 1

in mind – that either the ρ- or the λ-oscillator is excited to
! = 2, the other one is not excited. (There is a mixture of
the two possibilities !ρ = 2, !λ = 0 or !λ = 2, !ρ = 0).
If this state decays, the orbital angular momentum is carried
away and the decay products are found preferentially in their
ground state.

Fig. 221 N∗- (left) and Δ∗-resonances (right) above Δ(1232) for dif-
ferent spin and parities J p . For each resonance, the real part of the pole
position Re(MR) is given together with a box of length ±Im(MR),
using the PDG estimates. 2 · Im(MR) corresponds to the total width of
the resonance. RPP star ratings are also indicated. If no pole positions
are given in the RPP (above the line), the RPP Breit–Wigner estimates
for masses and widths are used instead. This is indicated by dashed
resonance-mass lines and dashed lines surrounding the boxes. If no
RPP-estimates are given, the values above the line have been averaged
and the states are shown as gray boxes. This may indicate one measure-
ment above the line only. Δ(1750)1/2+ is not included, as there is no
RPP-value given above the line

The four N∗-states have a spatial wave function with
mixed symmetry. Thus the spatial wave function has one
part which is mixed-symmetric and one part which is mixed
anti-symmetric. In the latter one, both oscillators are excited
simultaneously (!ρ = !λ = 1). If this state decays, one of
the excitations remains in the decay product as illustrated in
Fig. 220. A similar argument has been used by Hey and Kelly
[2801] to explain why the 20’plet in the second excitation
shell of Fig. 39 cannot be formed in a πN scattering exper-
iment. For the 20’plet the spacial wave function is entirely
antisymmetric, both oscillators are excited simultaneously,
and there is no other component in the wave function. A
single-step excitation is suppressed.

Parity doublets?
The spontaneous breaking of the chiral symmetry leads to the
large mass gap observed between chiral partners: the masses
of the ρ(770) meson with spin-parity J P = 1− and its chi-
ral partner a1(1260) with J P = 1+ differ by about 500 MeV,
those of the J P = 1/2+ nucleon and N (1535)1/2− by about
600 MeV. In contrast to quark-models expectations and lat-
tice QCD calculations [528] higher-mass baryons are often
observed in parity doublets (see Fig. 221), in pairs of reso-
nances having about the same mass, the same total spin J
and opposite parities.

This observation and similar observations in meson spec-
trum has led to the suggestion that chiral symmetry might be
effectively restored in highly excited hadrons [2744,2802].
Then, all high-mass resonances should have a parity partner.
This is a testable prediction.
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In the mass region of 1900 MeV a quartet of well known
positive parity Δ∗ states exists, consisting of

Δ(1910)1/2+,Δ(1920)3/2+,Δ(1905)5/2+,Δ(1950)7/2+.

Figure 221 shows the parity partners of the first three states:

Δ(1900)1/2−,Δ(1940)3/2−,Δ(1930)5/2−.

However, the four-star Δ(1950)7/2+ has no close-by
Δ(xxx)7/2−-state that could serve as parity partner. Where
is the closest Δ∗ with J P = 7/2− ? Figure 222 shows a reso-
nance scan over the mass region of interest [2746]. There
is clear evidence for Δ(2200)7/2− (which was upgraded
from 1∗ to 3∗ based on this result). But its mass difference
to Δ(1950)7/2+ is too large. These two states are no par-
ity partners! Within the quark model and the SU(6)⊗O(3)-
systematics, the four positive-parity Δ∗’s have L = 2, S =
3/2 that couple to J P = 1/2+,· · · , 7/2+. The natural assign-
ment for the three negative-parity Δ∗’s is that they form a
triplet with L = 1 and S = 3/2. Then, they must have one
unit of radial excitation. The four positive-parity Δ-states
belong to the 2h̄ω shell and the negative-parity states to
the 3h̄ω shell. With masses considered to be proportional
to L + Nradial, these seven states are expected to have about
the same mass. Δ(2200)7/2− has L = 3, S = 1/2 and
its expected mass is higher. We note that Δ(2400)9/2− has
L = 3, S = 3/2, and we assume Nradial = 1 for this state (as
well as for Δ(2750)13/2−, see Fig. 219).

9.2.8 Dynamically generated resonances

N∗’s and Δ∗’s
Apart from Λ(1405)1/2− that will be discussed below,
the first dynamically generated resonance was the negative-
parity N (1535)1/2− [2741]. At the 1995 International Con-
ference on the Structure of Baryons, Santa Fe, New Mexico,
there was a heated discussion between Weise, defending his
new approach, and Isgur who argued that N (1535)1/2− is
well understood within the quark model and no new approach
is needed. For some time, there was even the idea that
there could be two overlapping states but this is excluded
by data. Later, in Refs. [2803,2804], N (1535)1/2− and
N (1650)1/2−, were both shown to be generated dynami-
cally. However,Δ(1620)1/2− was not.99 An important ques-
tion remains: Are (qqq)-resonance poles and dynamically
generated poles different descriptions of the same object or
do they present different (orthogonal) states?

99 It should be mentioned that not only the SU(6)⊗O(3)-systematics in
the spectrum seems to indicate a 3-quark-nature of N (1535)1/2− and
N (1650)1/2− but also the electroproduction results discussed in the
following Sect. 9.3 indicate that N (1535)1/2− is a 3-quark state with
little meson–baryon contribution only (Q2 dependence of the transition
form factor A1/2).

Fig. 222 Left: The new polarization observables T and E shown for
selected mass bins (see [2746] for Refs. to the data). The fit curves
represent the best fits with (solid) and without (dashed) inclusion of
Δ(2200)7/2−. Right: The increase in pseudo-χ2 of the fit to a large body
of pion- and photo-produced reactions when the mass of Δ(1950)7/2+
(solid points) or Δ(2200)7/2− (open circles) is scanned. The scale on
the left (right) abscissa refers to the 7/2+ (7/2−) partial wave. The
curves are to guide the eye. Adapted/taken from [2746]

The Λ(1405)1/2−
The Λ(1405)1/2− mass is very close to the N K̄ threshold.
Kaiser, Waas and Weise [2805] proved that the resonance can
be generated dynamically from N K̄ −Σπ coupled-channel
dynamics. Oller and Meissner [2806] studied the S-wave N K̄
interactions in a relativistic chiral unitary approach based
on a chiral Lagrangian obtained from the interaction of the
octet of pseudoscalar mesons and the ground state baryon
octet and found two isoscalar resonances in theΛ(1405)1/2−
mass region and one isovector state. In a subsequent paper
[2807], Jido et al. studied the the effects of SU(3) breaking
on the results in detail. These two papers had an immense
impact on the further development. It is the only result in
light-baryon spectroscopy that is in clear contradiction to the
quark model. It introduces a new state Λ(1380)1/2−, that
has no role in a quark model, it enforces an interpretation of
Λ(1405)1/2− as mainly SU(3) octet resonance, and it inter-
prets Λ(1670)1/2− as high-mass partner of Λ(1405)1/2−.
The Λ(1405)1/2− and Λ(1670)1/2− would then be the
strange partners of the N (1535)1/2− and the N (1650)1/2−.
In quark models, Λ(1405) is a mainly SU(3) singlet reso-
nance and the octet states Λ(1670)1/2− and Λ(1800)1/2−
are the strange partners of N (1535)1/2− and N (1650)1/2−
(see Table 39). In the quark-model interpretation, the hyperon
states Λ(1405)1/2− and Λ(1670)1/2− have close-by J P =
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3/2− partners (the J P = 3/2−-partner of Λ(1800)1/2− is
missing but there isΛ(1830)5/2−). The masses of the mainly
octet states are about 130 MeV above their non-strange part-
ners.

This conflict initiated an attempt to fit (nearly) all exist-
ing data relevant for Λ(1405)1/2− in the BnGa approach
[2808]. The data could be fit with one single resonance
in the Λ(1405)1/2− region but were also compatible, with
a slightly worsened χ2, with a description using two res-
onances with properties as obtained in the chiral unitary
approach.

9.2.9 Outlook

There is not yet a unified picture of baryons. Regge-like tra-
jectories (M2 ∝ L+Nradial) are best described by AdS/QCD.
Unitary effective field theories describe consistently meson–
baryon interactions, and some resonances can be generated
dynamically from their interaction. The quark model is use-
ful to understand cascade decays of highly excited states
and is indispensable to discuss the full spectrum including
missing resonances. The symmetry of quark pairs, symmet-
ric or anti-symmetric with respect to their exchange, has
a significant impact on baryon masses. This effect could
be due to an effective gluon exchange. More likely seems
an interpretation by quark and gluon condensates, e.g. by
instanton-induced interactions. Based on the new high qual-
ity (polarized) photoproduction data, new baryon resonances
were discovered and our knowledge of properties of exist-
ing resonances has increased considerably. Yet, our under-
standing is still unsatisfactory mirroring the complexity of
QCD in the non-perturbative regime. New results from lat-
tice QCD are eagerly awaited and new experiments are
needed to understand the spectrum and the properties of
baryon resonances in further detail. Those include further
precise photoproduction experiments measuring polarization
observables not only off the proton but also off the neutron.
Multi-meson final states have to be studied further. Strange
baryon resonances need to be addressed. Other production
processes such as electroproduction, p̄ p-annihilation, exper-
iments with π - or K -beams and baryon resonances pro-
duced in J/ψ or ψ ′-decays will also contribute to improve
our understanding of the bound states of the strong interac-
tion.

9.3 Nucleon resonances and transition form factors

Volker D. Burkert
Meson photoproduction has become an essential tool in

the search for new excited light-quark baryon states. As dis-
cussed in the previous section, many new excited states have
been discovered thanks to high precision photoproduction
data in different final states [2771], and are now included

in recent editions of the Review of Particle Physics (RPP)
[616]. The exploration of the internal structure of excited
states and the effective degrees of freedom contributing to
s-channel resonance excitation requires the use of electron
beams, which is the subject of this contribution, where the
virtuality (Q2) of the exchanged photon can be varied to
pierce through the peripheral meson cloud and probe the
quark core and its spatial structure. Electroproduction can
thus say something about if a resonance is generated through
short distance photon interaction with the small quark core,
or through interaction with a more extended hadronic sys-
tem.

The experimental exploration of resonance transition form
factors reaches over 60 years with many review articles
describing this history. Here we refer to a few recent ones
[2809–2812]. A review of recent electroproduction experi-
ments in hadron physics and their interpretation within mod-
ern approaches of strong interaction physics can be found in
Ref. [2813].

Electroproduction of final states with pseudoscalar mesons
(e.g. Nπ , pη, KΛ) have been employed at Jefferson Lab-
oratory mostly with the CEBAF Large Acceptance Spec-
trometer (CLAS) operating at an instantaneous luminosity
of 1034 sec−1 cm−2. In Hall A and Hall C, pairs of indi-
vidual well-shielded focusing magnetic spectrometers are
employed with more specialized aims and limited accep-
tance, but operating at much higher luminosity. This exper-
imental program led to new insights into the scale depen-
dence of effective degrees of freedom, e.g. meson–baryon,
constituent quarks, and dressed quark contributions. Several
excited states, shown in Fig. 223 assigned to their primary
SU (6)⊗ O(3) supermultiplets, have been studied this way,
mostly with CLAS in Hall B. Most of the resonance cou-
plings have been extracted from single pseudoscalar meson
production. In electroproduction, there are 6 complex helic-
ity amplitudes, requiring a minimum of 11 independent mea-
surements for a complete100 model-independent determina-
tion of the amplitudes. In addition, measurements of isospin
amplitudes require additional measurements. Following this,
the complex amplitudes would need to be subjected to analy-
ses of their phase motions to determine resonance masses on
the (real) energy axis, or poles in the (complex) energy plane.
Fortunately, in the lower mass range a variety of constraints
can be applied to limit the number of unknowns when fitting
the cross section data. These include the masses of states quite
well known from hadronic processes or from meson photo-
production. Also, the number of possible angular momenta is
limited to lπ ≤ 2 in the examples discussed in the following.
Additional constraints come from the Watson theorem [2815]
that relates the electromagnetic phases to the hadronic ones,
and the use of dispersion relations, assuming the imaginary

100 With the exception of an overall phase that cannot be determined.
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Fig. 223 Excited states of the proton that have been studied in electro-
production to determine their resonance transition amplitudes or form
factors. States highlighted in red are discussed in this subsection. Graph-
ics from Ref. [2814]

parts of the amplitude are given by the resonance contribu-
tion, and the real parts determined through dispersion inte-
grals and additional pole terms. Other approaches use unitary
isobar models that parameterize all known resonances and
background terms, and unitarize the full amplitudes in a K-
matrix procedure. In the following, we show results based on
both approaches, where additional systematic uncertainties
have been derived from the differences in the two proce-
dures.

The availability of electron accelerators with the possi-
bility of generating high beam currents at CEBAF at Jeffer-
son Lab in the US and MAMI at Mainz in Germany, has
enabled precise studies of the internal structure of excited
states in the N∗ and the Δ∗ sectors employing s-channel res-
onance excitations in large ranges of photon virtuality Q2.
This has enabled probing the degrees of freedom relevant in
the resonance excitation as a function of the distance scale
probed. This is the topic we will elucidate in the follow-
ing sections and the relevance to (approximations to) QCD.
First we briefly discuss the formalism needed for a quanti-
tative analysis of the single pseudoscalar meson electropro-
duction.

9.3.1 Formalism in the analysis of electroproduction of
single pseudoscalar mesons

The simplest process used in the study of resonance tran-
sition amplitudes is single pion or kaon production, e.g.
ep→ eπ+n. Single π+ and π0 production are most suitable
for the study of the lower-mass excited states as they couple
dominantly to the excited states with masses up to≈ 1.7 GeV.
It may then be useful to describe in more detail the analysis
techniques and the formalism used. The unpolarized differ-
ential cross section for single pseudoscalar meson production

Fig. 224 The kinematics of single π+ electro-production off protons
in the laboratory system

can be written in the one-photon exchange approximation as:

dσ

dE f dΩedΩπ

= Γ
dσ

dΩπ

, (9.5)

where Γ is the virtual photon flux,

Γ = αem

2π2Q2

(W 2 − M2)E f

2MEi

1

1− ε
, (9.6)

where M is the proton mass, W the mass of the hadronic
final state, ε is the photon polarization parameter, Q2 the
photon virtuality, Ei and E f represent the initial and the
final electron energies, respectively. Moreover,

ε =
[

1+ 2

(

1+ ν2

Q2

)

tan2 θe

2

]−1

(9.7)

and

dσ

dΩπ

= σT + εσL + εσT T cos 2φπ

+√
2ε(1+ ε)σLT cosφπ .

The kinematics for singleπ+ production is shown in Fig. 224.
The observables of the process γv p→ πN ′ can be expressed
in terms of six parity-conserving helicity amplitudes [2811,
2816,2817] :

Hi =
〈
λπ ; λN |T |λγν ; λp

〉
, (9.8)

where λ denotes the helicity of the respective particle, λπ =
0, λN = ± 1

2 , λγv = ±1, 0, and λp = ± 1
2 , and Hi are

complex functions of Q2, W , and θ∗π .

9.3.2 Multipoles and partial wave decompositions

The response functions in (1) are given by:

σT = �pπW
2KM

(|H1|2 + |H2|2 + |H3|2 + |H4|2), (9.9)

σL = �pπW
2KM

(|H5|2 + |H6|2), (9.10)
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σT T = �pπW
2KM

Re(H2H
∗
3 − H1H

∗
4 ), (9.11)

σLT = �pπW
2KM

Re[H∗5 (H1 − H4)+ H∗6 (H2 + H3)], (9.12)

where �pπ is the pion 3-momentum in the hadronic center-of-
mass system, and K is the equivalent real photon lab energy
needed to generate a state with mass W :

K = W 2 − M2

2M
. (9.13)

The helicity amplitudes Hi , i = 1–6, can be expanded into
Legendre polynomials:

H1 = 1√
2

sin θ cos
θ

2

∞∑

l=1

(Bl+ − B(l+1)−)(P ′′l − P ′′l+1)

H2 =
√

2 cos
θ

2

∞∑

l=1

(Al+ − A(l+1)−)(P ′l − P ′l+1)

H3 = 1√
2

sin θ sin
θ

2

∞∑

l=1

(Bl+ + B(l+1)−)(P ′′l + P ′′l+1)

H4 =
√

2 sin
θ

2

∞∑

l=1

(Al+ + A(l+1)−)(P ′l + P ′l+1)

H5 =
√

2 cos
θ

2

∞∑

l=1

(Cl+ − C(l+1)−)(P ′l − P ′l+1)

H6 =
√

2 sin
θ

2

∞∑

l=1

(Cl+ + C(l+1)−)(P ′l + P ′l+1), (9.14)

where the Al+ and Bl+ etc., are the transverse partial wave
helicity elements for λγ p = 1

2 and λγ p = 3
2 , and C± the

longitudinal partial wave helicity elements. In the subscript,
l+ and (l+1)− define theπ orbital angular momenta, and the
sign± is related to the total angular momentum J = lπ ± 1

2 .
In the analysis of data on the NΔ(1232) transition, linear
combinations of partial wave helicity elements are expressed
in terms of electromagnetic multipoles:

Ml+ = 1

2(l + 1)
[2Al+ − (l + 2)Bl+] (9.15)

El+ = 1

2(l + 1)
(2Al+ + l Bl+) (9.16)

Ml+1,− = 1

2(l + 1)
(2Al+1,− − l Bl+1,−) (9.17)

El+1,− = 1

2(l + 1)
[−2Al+1,− + (l + 2)Bl+1,−] (9.18)

Sl+ = 1

l + 1

√
�Q∗2

Q2 Cl+ (9.19)

Sl+1,− = 1

l + 1

√
�Q∗2

Q2 Cl+1,−, (9.20)

where �Q∗ is the photon 3-momentum in the hadronic rest
frame. The electromagnetic multipoles are often used to
describe the transition from the nucleon ground state to the
Δ(1232), which is dominantly described as a magnetic dipole
transition M1+. The electromagnetic multipoles as well as
the partial wave helicity elements are complex quantities
and contain both non-resonant and resonant contributions. In
order to compare the results to model predictions and LQCD,
an additional analysis must be performed to separate the res-
onant parts Â±, B̂±, etc., from the non-resonant parts of the
amplitudes. In a final step, the known hadronic properties of
a given resonance can be used to determine photocoupling
helicity amplitudes that characterize the electromagnetic ver-
tex:

Âl± = ∓FC I
πN A1/2, (9.21)

B̂l± = ±F

√
16

(2 j − 1)(2 j + 3)
C I

πN A3/2, (9.22)

Ŝl± = −F
2
√

2

2J + 1
C I

πN S1/2, (9.23)

F =
√

1

(2 j + 1)
π

K

pπ

Γπ

Γ 2

where the C I
πN are isospin coefficients. The total transverse

absorption cross section for the transition into a specific res-
onance is given by:

σT = 2M

WRΓ
(A2

1/2 + A2
3/2). (9.24)

Experiments in the region of theΔ(1232) 3
2
+

resonance often
determine the electric quadrupole ratio REM

REM = Im(E1+)
Im(M1+)

(9.25)

and the scalar quadrupole ratio RSM

RSM = Im(S1+)
Im(M1+)

(9.26)

where E1+, S1+, and M1+ are the electromagnetic transition
multipoles at the mass of the Δ(1232) 3

2
+

resonance.

9.3.3 Resonance analysis tools

A model-independent determination of the amplitudes con-
tributing to the electro-excitation of resonances in single
pseudoscalar pion production ep → e′Nπ (see kinemat-
ics of single pion production in Fig. 224) requires a large
number of independent measurements at each value of the
electron kinematics W , Q2, the hadronic cms angle cos θπ ,
and the azimuthal angle φπ describing the angle between the
electron scattering plane and the hadronic decay plane. Such
a measurement requires full exclusivity of the final state and

123



 1125 Page 318 of 636 Eur. Phys. J. C          (2023) 83:1125 

Fig. 225 JLab/Hall A data for �ep → e �pπ0 response functions at
W=1.232 GeV and Q2 = 1.0 [2818]. Notations refer to transverse
(t), normal (n) and longitudinal (l) components of the proton recoil
polarization. The curves correspond to results obtained using SAID
(short dashed), MAID (dashed-dotted), and the dynamical models DMT
[2819] (dotted), and SL [2820] (long-dashed/green). The other curves
correspond to Legendre and multipole fits performed by the authors

employing both polarized electron beams and the measure-
ments of the nucleon recoil polarization.

Such measurements would in general require full 4π cov-
erage for the hadronic final state. The only measurement that
could claim to be complete was carried out at Jefferson Lab
in Hall A [2818] employing a limited kinematics centered
at resonance for �ep → e′ �pπ0 at W = 1.232 GeV, and
Q2 ≈ 1 GeV2. Figure 225 shows the 16 response functions
extracted from this measurement. The results of this measure-
ment in terms of the magnetic NΔ transition form factor and
the quadrupole ratios are included in Fig. 226 among other
data. They coincide very well with results of other experi-
ments [2821–2824] using different analysis techniques that
may be also applied to broader kinematic conditions, espe-
cially higher mass resonances. Details of the latter are dis-
cussed in [2811,2825]. We briefly summarize them here:

– Dispersion Relations have been employed in two ways:
One is based on fixed-t dispersion relations for the invari-
ant amplitudes and was successfully used throughout the
nucleon resonance region. Another way is based on DR
for the multipole amplitudes of the Δ(1232) resonance,
and allows getting functional forms of these amplitudes
with one free parameter for each of them. It was employed
for the analysis of the more recent data.

– The Unitary Isobar Model (UIM) was developed in
[2831] from the effective Lagrangian approach for pion
photoproduction [2832]. Background contributions from
t-channel ρ and ω exchanges are introduced and the over-
all amplitude is unitarized in a K-matrix approximation
(Fig. 227).

– Dynamical Models have been developed, as SAID from
pion photoproduction data [2833], the Sato-Lee model

was developed in [2834]. Its essential feature is the con-
sistent description of πN scattering and the pion electro-
production from nucleons. It was utilized in the study of
Δ(1232) excitations in the ep → epπ0 channel [2820].
The Dubna–Mainz–Taipei model [2835] builds unitarity
via direct inclusion of the πN final state in the T-matrix
of photo- and electroproduction.

9.3.4 Models for light-quark resonance electroproduction

In order to learn from the meson electroproduction data about
the internal spin and spatial electromagnetic structure, it is
essential to have advanced models available with links to the
fundamentals of QCD.

While most of the analyses have focused on single pseu-
doscalar meson production, such as

γv p→ Nπ, pη, KΛ, KΣ,

more recent work included the pπ+π− final state both in
real photoproduction [2837] as well as in electroproduction
[2838]. The 2-pion final state has more sensitivity to excited
N∗ and Δ∗ states in the mass range above 1.6 GeV, with sev-
eral states dominantly coupling to Nππ final states, enabling
the study of their electromagnetic transition form factors in
the future.

9.3.5 The NΔ(1232) 3
2
+
transition

The Δ++ isobar was first observed 70 years ago in Enrico
Fermi’s experiment that used a π+ meson beam scattered
off the protons in a hydrogen target [2839]. The cross sec-
tion showed a sharp rise above threshold towards a mass
near 1200 MeV. While the energy of the pion beam was not
high enough to see the maximum and the fall-off following
the peak, a strong indication of the first baryon resonance
was observed. It took 12 more years and the development
of the underlying symmetry in the quark model before a
microscopic explanation of this observation could emerge.
There was, however, a problem; while the existence of the
Δ+,0,− could be explained within the model, the existence
of the Δ(1232)++, which within the quark model would cor-
respond to a state |u↑u↑u↑〉, was forbidden as it would have
an overall symmetric wave function. It took the introduction
of para Fermi statistics [31] what later became “color” (see
Sect. 1.2), to make the overall wave function anti-symmetric.
In this way the Δ++(1232) resonance may be considered a
harbinger of the development of QCD.

The nucleon to Δ(1232) 3
2
+

transition is now well mea-
sured in a large range of Q2 [2822–2824]. At the real photon
point, it is explained by a dominant magnetic transition from
the nucleon ground state to the Δ(1232) excited state. Addi-
tional contributions are related to small D-wave components
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Fig. 226 The NΔ(1232) transition amplitudes. Left: The magnetic
NΔ transition form factor normalized to the dipole form factor and
compared with the Light-Front Relativistic Quark Model (LFRQM)
[2826,2827] with running quark mass, and with results using the
Dyson–Schwinger Equation [2828]. Both predictions are close to

the data at high Q2. At Q2 < 3 GeV2 meson–baryon contribu-
tions are significant. Middle: The electric (top) and scalar (bottom)
quadrupole/magnetic-dipole ratios REM and RSM . Right: REM and
RSM from Lattice QCD [2829,2830] compared to data in the low Q2

domain

Fig. 227 Sample of results of an analysis by the JLab group of the
Legendre moments of �ep → eπ+n structure functions in comparison
with experimental data [2836] at Q2 = 2.44 GeV2. The solid (dashed)
curves correspond to results obtained using the DR (UIM) approach

in both the nucleon and the Δ(1232) wave functions lead-
ing to electric quadrupole and scalar quadrupole transitions.
These remain in the few % ranges at small Q2. The magnetic
transition is to ≈ 65% given by a simple spin flip of one of
the valence quarks as seen in Fig. 226. The remaining 35% of
the magnetic dipole strength is attributed to meson–baryon
contributions.
The electric quadrupole ratio REM was found as:

REM ≈ −0.02. (9.27)

There has been a longstanding prediction of asymptotic
pQCD, that REM → +1 at Q2 → ∞. Results on the

magnetic transition form factor GMn,Ash, defined in the Ash
convention [2840], and on the quadrupole transition ratios
are shown in Fig. 226. GMn,Ash is shown normalized to
the dipole form factor, but shows a much faster Q2 fall-off
compared to that. In comparison to the advanced LF RQM
with momentum-dependent constituent quark mass, and with
the Dyson–Schwinger Equation (DSE-QCD) results, there is
good agreement at the high-Q2 end of the data. The discrep-
ancy at small Q2 = 0 is likely due to the meson–baryon
contributions at small Q2, which are not modeled in either
of the calculations.

The quadrupole ratio REM shows no sign of departing
significantly from its value at Q2 = 0, even at the high-
est Q2 ≈ 6.5 GeV2. Both calculations barely depart from
REM = 0, and remain near zero at all Q2 > 2 GeV2.
This indicates that the negative constant value shown by the
data is likely due to meson–baryon contributions that are not
included in the theoretical models. For the scalar quadrupole
ratio RSM the asymptotic prediction in holographic QCD
(hQCD) [2845] is:

RSM = ImS1+
ImM1+

→ −1, at Q2 →∞, (9.28)

while REM in hQCD is predicted to approach +1 asymp-
totically. The RSM data show indeed a strong trend towards
increasing negative values at larger Q2, semi-quantitatively
described by both calculations at Q2 < 4 GeV2. The Dyson–
Schwinger equation approach predicts a flattening of RSM

at Q2 > 4 GeV2, while the Light Front relativistic Quark
Model predicts a near constant negative slope of RSM (Q2)

also at higher Q2.
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Fig. 228 Helicity transition amplitudes for the proton to Roper
N (1440) 1

2
+

excitation compared to model calculations in LFRQM,
DSE, and EFT; see text. Left: Transverse A1/2 amplitude. Middle:
Scalar S1/2 amplitude. Right: Helicity amplitudes of the Roper res-

onance N (1440) 1
2
+

at low Q2. Data are compared to calculations
within Effective Field Theory [2841], shown in solid black lines. The
other broken lines are parts of the full calculations. The data are from
[2821,2842,2843]. The open red circle at Q2 ≈ 0.1 GeV2 is the result
of an analysis of ep→ epπ0 data from MAMI [2844]

9.3.6 The Roper resonance N (1440) 1
2
+

The Roper resonance, discovered in 1964 [2846] in a phase
shift analysis of elastic πN scattering data, has been dif-
ferently interpreted for half a century. In the non-relativistic
quark model (nrQM), the state is the first radial excitation of
the nucleon ground state with a mass expected around 1750
MeV, much higher than the measured Breit–Wigner mass of
≈ 1440 MeV. This discrepancy is now understood as the con-
sequence of a dynamical coupled channel effect that shifts the
mass below the mass of the N (1535)1/2− state, the negative-
parity partner of the nucleon [2847]. Another problem with
the quark model was the sign of the transition form factor
A1/2(Q2 = 0), predicted in the nrQM as large and positive,
while experimental analyses showed a negative value.

These discrepancies resulted in different interpretations
of the state that could only be resolved with electroproduc-
tion data from CLAS at Jefferson Lab, the development of
continuous QCD approximations in the Dyson–Schwinger
equation approach [2848] and Light Front Relativistic QM
with momentum-dependent quark masses [2826] shown in
Fig. 228, and Lattice data [2849,2850]. A recent review of
the history and current status of the Roper resonance, is pre-
sented in a colloquium-style article published in Review of
Modern Physics [2851].

Descriptions of the baryon resonance transitions form fac-
tors, including the Roper resonance N (1440) 1

2
+

, have also
been carried out within holographic models [2852,2853]. In
the range Q2 < 0.6 GeV2, calculations based on meson–
baryon degrees of freedom and effective field theory [2841]
have been successfully performed, as may be seen in Fig. 228.
Earlier model descriptions, such as the Isgur-Karl model that

describe the nucleon as a system of 3 constituent quarks in
a confining potential and a one-gluon exchange contribution
leading to a magnetic hyperfine splitting of states [764,2752],
and the relativized version of Capstick [771] have popular-
ized the model that became the basis for many further devel-
opments and variations, e.g. the light front relativistic quark
model, and the hypercentral quark model [2854]. Other mod-
els were developed in parallel. The cloudy bag model [777]
describes the nucleon as a bag of 3 constituent quarks sur-
rounded by a cloud of pions. It has been mostly applied
to nucleon resonance excitations in real photoproduction,
Q2 = 0 [777,2855], with some success in the description
of the Δ(1232) 3

2
+

and the Roper resonance transitions.
There is agreement with the data at Q2 > 1.5 GeV2

for these two states, while the meson–baryon contributions
for the Δ(1232) are more extended, and agreement with the
quark based calculations is reached at Q2 > 4 GeV2. The
calculations deviate significantly from the data at lower Q2,
which indicates the presence of non-quark core effects. For
the Roper resonance such contributions have been described
successfully in dynamical meson–baryon models [2856] and
in effective field theory [2841]. Calculations on the Lattice
for the N-Roper transition form factors F pR

1 and F pR
2 , which

are combinations of the transition amplitudes A1/2 and S1/2,
have been carried out with dynamical quarks [2850]. The
results agree well with the data in the range Q2 < 1.0 GeV2,
where data and calculations overlap Fig. 229.

New electroproduction data on the Roper [2844] and on
several higher mass states have been obtained in the 2-pion
channel, specifically in ep→ e′ pπ+π− [2857].

The mass of the Roper state has been computed on the
Lattice and extrapolated to the physical pion mass, show-
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ing good agreement with the physical value measured with
a Breit–Wigner parametrization. It should be noted that the
Roper mass measured at the pole in the complex plane is
significantly different from the value obtained using the BW
ansatz. Supported by an extensive amount of single pion elec-
troproduction data, covering the full phase space in the pion
polar and azimuthal center-of-mass angles, and accompanied
by several theoretical modeling, we can summarize our cur-
rent understanding of the N (1440) 1

2
+

state as follows:

– The Roper resonance is, at heart, the first radial excitation
of the nucleon.

– It consists of a well-defined dressed-quark core, which
plays a role in determining the system’s properties at all
length scales, but exerts a dominant influence on probes
with Q2 > m2

N , where mN is the nucleon mass.
– The core is augmented by a meson cloud, which both

reduces the Roper’s core mass by ≈ 20%, thereby solv-
ing the mass problem that was such a puzzle in con-
stituent quark model treatments, and, at low Q2, con-
tributes an amount to the electroproduction transition
form factors that is comparable in magnitude with that
of the dressed quark core, but vanishes rapidly as Q2 is
increased beyond m2

N .

As stated in the conclusions of [2851]: “The fifty years of
experience with the Roper resonance have delivered lessons
that cannot be emphasized too strongly. Namely, in attempt-
ing to predict and explain the QCD spectrum, one must fully
consider the impact of meson–baryon final state interactions
and the coupling between channels and states that they gen-
erate, and look beyond merely locating the poles in the S-
matrix, which themselves reveal little structural information,
to also consider the Q2 dependencies of the residues, which
serve as a penetrating scale-dependent probe of resonance
composition.”

9.3.7 Transition form factors of N (1535) 1
2
−
– a state with

a hard quark core.

This state is the parity partner state to the ground state
nucleon, with the same spin 1/2 but with opposite parity,
its quark content requires an orbital L=1 excitation in the
transition from the proton. In the SU (6) ⊗ O(3) symmetry
scheme, the state is a member of the [70, 1−] super multiplet.
This state couples equally to Nπ and to Nη final state. It has
therefore be probed using both decay channels ep → epη
and ep→ eNπ+,0. Because of isospin I = 1/2 for nucleon
states, the coupling to the charged π+n channel is preferred
over π0 p owing to the Clebsch–Gordon coefficients.

The A1/2 helicity amplitude for the γ pN (1535) 1
2
−

res-
onance excitation shown in Fig. 229 represents the largest

range in Q2 of all nucleon states for which resonance tran-
sition form factors have been measured as part of the broad
experimental program at JLab.

For this state, as well as for the N (1440) 1
2
+

state,
advanced relativistic quark model calculations [2860], DSE-
QCD calculations [2848] and Light Cone sum rule results
[2861] are available, employing QCD-based modeling of the
excitation of the quark core for the first time.

The transverse transition amplitude A1/2 of N (1535) 1
2
−

is a prime example of the power of meson electroproduction
to unravel the internal structure of the resonance transition. In
the previous Sect. 9.2, the nature of this state is discussed as a
possible example of a dynamically generated resonance. The
electroproduction data shown here reveal structural aspects
of the state and its nature that require a different interpre-
tation. The transition form factor A1/2 of the state, shown
in Fig. 229, is quantitatively reproduced over a large range
in Q2 by two alternative approaches, the LFRQM and the
LCSR. Both calculations are based on the assumptions of
the presence of a 3-quark core. Note that there is a deviation
from the quark calculations at Q2 < 1−2 GeV2, highlighted
as the shaded area in Fig. 229, which may be assigned to the
presence of non-quark contributions. Attempts to compute
the transition form factors within strictly dynamical mod-
els have not succeeded in explaining the data [2862]. The
discrepancy could be resolved if the character of the probe,
meson (pion) in the case of hadron interaction and short range
photon interaction in the case of electroproduction, probe dif-
ferent parts of the resonance’s spatial structure: peripheral in
case of meson scattering and short distance behavior in elec-
troproduction. The peripheral meson scattering and low Q2

meson photoproduction reveal the dynamical features of the
state, whereas high Q2 electroproduction reveals the struc-
ture of the quark core.

9.3.8 The helicity structure of the N (1520) 3
2
−

The N (1520) 3
2
−

state corresponds to the lowest excited

nucleon resonance with J P = 3
2
−

. Its helicity structure is
defined by the Q2 dependence of the two transverse tran-
sition amplitudes A1/2 and A3/2. They are both shown in
Fig. 230. A particularly interesting feature of this state is that
at the real photon point, A3/2 is strongly dominant, while
A1/2 is very small. However, at high Q2, A1/2 is becoming
dominant, while A3/2 drops rapidly. This behavior is quali-
tatively consistent with the expectation of asymptotic QCD,
which predicts the transition helicity amplitudes to behave
like:

A1/2 ∝ a

Q3 , A3/2 ∝ b

Q5
. (9.29)
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Fig. 229 Left and middle: Dirac and Pauli transition form factors F1
and F2 for the proton to N (1440)1/2+ transition compared to Lattice
QCD calculations [2850] with pion masses (in GeV): 0.39 (red squares),
0.45 (orange triangles), and 0.875 (green circles) on the N f = 2 + 1
anisotropic lattices, compared to CLAS results (black circles). The F1

and F2 form factors are linear combinations of the A1/2 and S1/2 ampli-
tudes. Right: The transverse transition helicity amplitude A1/2 versus
Q2. At Q2 > 2 GeV2 the data are well described by the light-cone sum
rules LCSR [2858]. The light front relativistic quark model (LFRQM)
[2859] describes that data at Q2 > 1 GeV2

Fig. 230 The transverse helicity transition amplitudes of N (1520) 3
2
−

versus Q2, compared to the LFRQM, A1/2 (left), A3/2 (middle). The
shaded area indicates the contribution from non-quark contributions as

estimated from the difference of the measured data points and the LF
RQM contribution, likely due to hadronic contributions. Right: Helicity
asymmetry Ahel , as defined in Eq. (9.30). Graphics from Ref. [2811]

The helicity asymmetry

Ahel =
A2

1/2 − A2
3/2

A2
1/2 + A2

3/2

, (9.30)

shown in Fig. 230, illustrates this rapid change in the helic-
ity structure of the γv pN (1520)3/2− transition. At Q2 >

2 GeV2, A1/2 fully dominates the process.

9.3.9 The helicity transition amplitudes to the N (1535) 1
2
−

resonance

The Roper N (1440) 1
2
+

resonance, at the core, is a radial

excitation. Its parity partner, the N (1535) 1
2
−

, in the quark
model, is an orbitally excited quark state of the nucleon. It
is then interesting to compare the transition amplitude to the
N (1535) 1

2
−

with the amplitude to the Roper resonance. The

N (1535) 1
2
−

is, together with the Δ(1232) 3
2
+

, the best mea-
sured state, and both its transverse and longitudinal (scalar)
amplitudes are well measured [2811]. Figure 231 shows the
transverse amplitude A1/2 versus Q2. They reveal a very

different behavior at low Q2, where N (1535) 1
2
−

indicates
only small effects from meson–baryon contributions below
Q2 ≈ 1 GeV2, while the N (1440) 1

2
+

changes sign at small
Q2 and reveals a much more prominent impact of meson–
baryon contributions. The Q2 dependence of the N (1535) 1

2
−

is well reproduced by LC SR in LO and NLO. There have
been attempts to explain the transition form factor of the
N (1535) 1

2
−

as a dynamically generated resonance [2862]
that does not achieve quantitative agreement with experi-
ment and concludes that admixture with a genuine three-
quark state is demanded that could help to better reproduce
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Fig. 231 The transverse amplitudes of the proton to N (1675) 5
2
−

tran-
sition compared to the LF RQM [2863], hypercentral QM [2864], and
contributions from meson–baryon (MB) coupled channel dynamics
[2865]. Left: A1/2, Middle:A3/2. Both quark models predict very small
amplitudes for the proton, while the meson–baryon contributions esti-
mate is large and is close to the data. Right: A1/2 for neutron target (only

photoproduction data available) compared to the LFRQM and hCQM.
Both quark models predict large amplitudes for neutrons, more than
factor 10 compared to protons at Q2 = 0. Assuming similar meson–
baryon contributions as in the proton case with opposite sign could
quantitatively explain the single measured value at the photon point

the magnitude or the Q2 falloff of the A1/2 helicity ampli-
tude.

9.3.10 The N (1675) 5
2
−
state – revealing the

meson–baryon contributions

In previous discussions we have concluded that meson–
baryon degrees of freedom provide significant strength to
the resonance excitation in the low-Q2 domain where quark
based approaches LF RQM, DSE/QCD, and LC SR calcu-
lations fail to reproduce the transition amplitudes quantita-
tively. Our conclusion rests, in part, with this assumption.
But, how can we be certain of the validity of this conclusion?

The N (1675) 5
2
−

resonance allows us to test this assump-
tion, quantitatively. Figure 231 shows our current knowl-
edge of the transverse helicity amplitudes A1/2(Q2) and
A3/2(Q2), for proton target compared to RQM [2859] and
hypercentral CQM [2864] calculations. The specific quark
transition for a J P = 5

2
−

state belonging to the [SU (6) ⊗
O(3)] = [70, 1−] supermultiplet configuration, in non-
relativistic approximation prohibits the transition from the
proton in a single quark transition. This suppression, known
as the Moorhouse selection rule [760], is valid for the trans-
verse transition amplitudes A1/2 and A3/2 at all Q2. It should
be noted that this selection rule does apply to the transition
from a proton target, it does not apply to the transition from
the neutron, which is consistent with the data. Modern quark
models that go beyond single quark transitions, confirm
quantitatively the suppression resulting in very small ampli-
tudes from protons but large ones from neutrons. Further-
more, a direct computation of the hadronic contribution to

the transition from protons confirms this (Fig. 231). The mea-
sured helicity amplitudes off the protons are almost exclu-
sively due to meson–baryon contributions as the dynamical
coupled channel (DCC) calculation indicates (dashed line).
The close correlation of the DCC calculation and the mea-
sured data for the case when quark contributions are nearly
absent, supports the phenomenological description of the
helicity amplitudes in terms of a 3-quark core that dominate
at high Q2 and meson–baryon contributions that can make
important contributions at lower Q2.

9.3.11 Resonance lightfront transition charge densities

Knowledge of the helicity amplitudes in a large Q2 allows
for the determination of the transition charge densities on
the light cone in transverse impact parameter space (bx , by)
[2866]. The relations between the helicity transition ampli-
tudes and the Dirac and Pauli resonance transition form fac-
tors are given by:

A1/2 = e
Q−√

K (4MNM∗)1/2
{FNN∗

1 + FNN∗
2 } (9.31)

S1/2 = e
Q−√

K (4MNM∗)1/2

(
Q+Q−
2M∗

)
(M∗ + MN )

Q2

×
{

FNN∗
1 − Q2

(M∗ + MN )2 F
NN∗

2

}

, (9.32)

where M∗ is the mass of the excited state N∗, K = M∗2−M2
N

2M∗
is the equivalent photon energy, Q+ and Q− are short hands
for Q± ≡

√
M∗ ± MN )2 + Q2. The charge and magnetic

lightfront transition densities ρNN∗
0 and ρNN∗

T , respectively,
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Fig. 232 Left panels: N (1440), top: projection of charge densities on
by , bottom: transition charge densities when the proton is spin polarized
along bx . Right panels: same for N (1535). Note that the densities are
scaled with b2 to emphasize the outer wings. Color code:negative charge
is blue, positive charge is red. Note that all scales are the same for ease
of comparison [2868]. Graphics credit: F.X. Girod

are given as:

ρNN∗
0 (�b) =

∫ ∞

0

dQ

2π
J0(bQ)FNN∗

1 (Q2) (9.33)

ρNN∗
T (�b) = ρNN∗

0 (�b)+ sin(φb − φs)

×
∫ ∞

0

dQ

2π

Q2

(M∗ + MN )
J1(bQ)FNN∗

2 (Q2).

(9.34)

A comparison of N (1440) 1
2
+

and N (1535) 1
2
−

is shown
in Fig. 232. There are clear differences in the charge tran-
sition densities between the two states. The Roper state has
a softer positive core and a wider negative outer cloud than
N (1535) 1

2
−

and develops a larger shift in by when the proton
is polarized along the bx axis.

Similar transverse charge transition densities can be
defined for J P = 3

2
+

states such as the Δ(1232) 3
2
+

. This
has been studied in [2867] and is shown in Fig. 233.

9.3.12 Single quark transition model

Many of the exited states for which there is information about
the transition form factors available have been assigned as
members of the [SU (6), LP ] = [70, 1−] super multiplet of
the [SU (6)⊗O(3)] symmetry group. In a model, where only
single quark transitions to the excited states are considered

[2869–2871], only 3 of the amplitudes need to be known to
determine the remaining 16 transverse helicity amplitudes
for all states in [70, 1−] including on neutrons. However, the
picture is now more complicated due to the strong admixture
of meson–baryon components to the single quark transition
especially in the lower Q2 range. This requires a model to
separate the single quark contributions from the hadronic part
before projections for other states can be made [2872].

9.3.13 Higher mass baryons and hybrid baryons

The existence of baryons containing significant active glu-
onic components in the wave function has been predicted
some decade ago [529] employing Lattice QCD simulations.
The lowest such “hybrid” state is expected to be a J P = 1

2
+

nucleon state. LQCD projects a mass of 1.3 GeV above the
nucleon mass, i.e. approximately 2.2–2.3 GeV, and several
other states should appear close by in J P = 1

2
+

and J P = 3
2
+

,
as seen in Fig. 234.

How do we identify these states? Hybrid baryons have
same spin-parity as other ordinary baryons. In contrast to
hybrid mesons, there are no hybrid baryons with “exotic”
quantum numbers. One possibility is to search for more states
than the quark model predicts in some mass range. The other
possibility is to study the transition form factors of excited
states. Hybrid states may be identified as states with a dif-
ferent Q2 behavior than what is expected from a 3-quark
state. The sensitivity [2873] is demonstrated for the Roper
resonance that projected a very rapid drop of the A1/2(Q2)

with Q2, and S1/2(Q2) ∼ 0 prediction. Both are incompat-
ible with what we know today about the Roper resonance.
Precision electroproduction data in the mass range above 2
GeV will be needed to test high mass states for their potential
hybrid character, e.g. from experiments at CLAS12 [2874].

9.3.14 Conclusions and outlook

In this contribution we have focused on more recent results of
nucleon resonance transition amplitudes and their interpre-
tation within LQCD and within most advanced approaches,
e.g. in light front relativistic quark models and approaches
with traceable links to first principle QCD such as Dyson–
Schwinger Equations [2875] and light cone sum rules [2858].
These calculations describe the transition form factors at
Q2 ≥ 2 GeV2, while at lower Q2 values hadronic degrees
of freedom must be included and could even dominate con-
tributions of the quark core.

For the lowest mass states, Δ(1232) 3
2
+

and the Roper

N (1440) 1
2
+

, LQCD calculations have been carried out that
are consistent with the data within large uncertainties. These
calculations are about one decade old, and new data, with
higher precision in more extended kinematic range have been
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Fig. 233 Quark transverse transition charge density corresponding to
the p→ Δ+ transition. Light color indicates positive charge, dark color
indicates negative charge. Top: p and Δ are unpolarized. Middle: p and
Δ are polarized along bx axis generating an electric dipole along the by
axis. Bottom: Quadrupole contribution to transition density. Graphics
adapted from [2867]

added to the database that warrant new Lattice calculations
at the physical pion mass to be carried out.

Fig. 234 Projections of excited baryons with dominant gluonic com-
ponents (marked in blue shades) in LQCD with 400 MeV pions. The
lowest hybrid baryon is projected with mass 1.3 GeV above the nucleon
mass. The 1/2+ and 3/2+ states are clustered in a narrow mass range
of about 200 MeV

Over the past decade, eight baryon states in the mass
range from 1.85 to 2.15 GeV have been either discovered
or evidence for the existence of states has been significantly
strengthened. Some of these states are in the mass range and
have J PC quantum numbers that could have significant con-
tributions of gluonic components. Such “hybrid” states are
in fact predicted in LQCD [529]. These states appear with
the same quantum numbers as ordinary quark excitations,
and can only be isolated from ordinary states due to the
Q2 dependence of their helicity amplitudes [2873], which
is expected to be quite different from ordinary 3-quark exci-
tation. The study of hybrid baryon excitations then requires
new electroproduction data especially at low Q2 [2874] with
different final states and with masses above 2 GeV. Despite
the very significant progress made in recent years to fur-
ther establish the light-quark baryon spectrum and explore
the internal structure of excited states and the relationship to
QCD [2813,2876], much remains to be done. A vast amount
of precision data already collected needs to be included in the
multi-channel analysis frameworks, and polarization data are
still to be analyzed. There are approved proposals to study
resonance excitation at much higher Q2 and with higher pre-
cision at Jefferson Lab with CLAS12 [2877,2878], which
may begin to reveal the transition to the bare quark core con-
tributions at short distances.

A new avenue of experimental research has recently been
opened up with the first data-based extraction of a gravita-
tional property of the proton, its internal pressure distribution,
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which is represented by the gravitational form factor Dq(t).
It is one of the form factors of the QCD matrix element of
the energy–momentum tensor, its internal pressure and shear
stress distribution in space [2879,2880]. These properties,
as well as the distribution of mass and angular momentum,
are accessible directly in gravitational interaction, which is
highly impractical. However the relevant gravitational form
factor Dq(t) for the ground state nucleon can be accessed
indirectly through the process of deeply virtual Compton
scattering and in time-like Compton scattering [1286,2881].
Both processes, having a J = 1 photon in the initial state as
well as in the final state, contain components of J = 2 that
couple to the proton through a tensor interaction, as gravity
does [2882].

Mechanical properties of resonance transitions have recen-
tly been explored for the N (1535) 1

2
− → N (938) gravita-

tional transition form factors calculations in [2883] and in
[2884]. To access these novel gravitational transition form
factors experimentally, the generalized parton distributions
for nucleon-to-resonance transitions must be studied. The
framework for studying the N → N (1535) transition GPDs,
which would enable experimental access to these mechani-
cal properties, remains to be developed. The required effort
is quite worthwhile as a new avenue of hadron physics has
opened up that remains to be fully explored.

9.4 Heavy-flavor baryons

Eberhard Klempt and Sebastian Neubert

9.4.1 Introduction

Baryons with one heavy quark Q and a light diquark qq
provide an ideal place to study diquark correlations and the
dynamics of the light quarks in the environment of a heavy
quark. The heavy quark is almost static and provides the color
source to the light quarks. Here, we attempt to understand the
dynamics leading to the spectrum of baryons with one heavy
quark.

The Review of Particle Physics [616] lists 28 charmed
baryons (16 with known spin-parity) and 19 bottom baryons
(11 with known spin-parity). One doubly charmed state has
been detected, the ground state Ξ++

cc . (Its isospin partner Ξ+
cc

is known as well, with poor evidence and one star in RPP, but
we do not count isospin partners separately.) In the decays
of the lightest bottom baryon, exotic J/ψp states, incom-
patible with a three-quark configuration, have been have
been reported in studies of the reaction Λb → J/ψpK−
[2885,2886]. The search for further states and attempts to
understand the underlying dynamics of heavy baryons are
active fields in particle physics. New information can be
expected from the upgrades of LHC, BELLE and J-PARC,
and from the new FAIR facility at GSI (see Sect. 14).

Table 40 Masses and lifetimes of baryon ground states with one b-
quark. The second line gives the mass in MeV, the third line the life
time in fs

Λ0
b Ξ−

b Ξ0
b Ω−

b

5619.60± 0.17 5797.0± 0.6 5791.9± 0.5 6045.2± 1.2

1464± 11 1572± 40 1480± 0.030 1640+180
−170

Table 41 Masses and lifetimes of baryon ground states with one c-
quark. The second line gives the mass in MeV, the third line the life
time in fs

Λ0
c Ξ+

c Ξ0
c Ω−

c

2286.46± 0.14 2467.71± 0.23 2470.44± 0.2 2695.2± 1.7

201.5± 2.7 453± 5 151.9± 2.4 268± 26

9.4.2 Ground states of heavy baryons

Masses and lifetimes
Table 40 presents masses and life times of the ground states
of heavy baryons containing a b-quark. Naively, one could
expect all these life times to represent the life time of the b
quark, that they all agree with the life time of the B0 meson.
This life time is τB0 = (1519 ± 4) fs. Indeed, all life times
agree within ∼ 10% percent.

This is not at all the case when the b-quark is replaced
by a c-quark (see Table 41). The D0 has a life time τD0 =
(410.3 ± 1.0) fs, the D+ has τD+ = (1033 ± 5) fs. The life
times of charmed baryons are spread over a wide range and
do not agree with the life times of D mesons. In addition
to the decay of the c-quark, the cd̄ pair in a D0 meson can
annihilate into a W+, a process forbidden for the D+. In
B decays, the corresponding CKM matrix element is small,
and this effect is suppressed. Further significant corrections
are required to arrive at a consistent picture for the decays
of charmed mesons and baryons. The authors of Ref. [1243]
have performed an extensive study of the lifetimes within
the heavy quark expansion, and have included all known cor-
rections. The impact of the charmed-quark mass and of the
wavefunctions of charmed hadrons were carefully studied.
Then, qualitative agreement between their calculations and
the experimental data was achieved. For a more detailed dis-
cussion, see Sect. 5.7.

The first state with two charmed quarks, the Ξ+
cc was

reported by the SELEX collaboration in two decay modes at
a mass of (3518.9± 0.9) MeV and with 5–6σ [2887,2888].
In later searches, this state was never confirmed. The LHCb
collaboration found its doubly charged partner Ξ++

cc [2618].
Its mass is (3621.6± 0.4) MeV, its life time (25.6± 2.7) fs.
Later, the LHCb collaboration reported evidence for a Ξ+

cc
baryon at (3623.0± 1.4) MeV [2889]. It is seen with 3–4σ
only but its mass is better compatible with an interpretation
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Fig. 235 Ground-state heavy baryons in SU(4). Baryons with one
charm quark are represented by colored dots. Left: The symmetric
20-plet. Center: Baryons in the mixed-symmetry 20-plet. The mixed-

symmetry 20-plet contains a sextet with a symmetric light-quark pair
(SUF(3) multiplicity 6) and a triplet with an anti-symmetric light-quark
pair (SUF(3) multiplicity 3̄). Right: The fully antisymmetric 4-plet

of Ξ+
cc and Ξ++

cc as isospin partners. A search for the Ξ+
bc

remained unsuccessful [2890].

The flavor wave function: SU(4)
In this contribution we discuss baryons with one heavy-quark
flavor, with either a charm or a bottom quark. Overall, we
consider five quarks, u, d, s, c, b, but we will not discuss
baryons with one light (q = u, d, s) and two different heavy
quarks like Ξ+

cb = (ucb). Thus we can restrict ourselves to
SU(4). The four quarks have very different masses, and the
SU(4) symmetry is heavily broken, nevertheless it provides a
guide to classify heavy-quark baryons. Three-quark baryons
can classified according to

4⊗ 4⊗ 4 = 20s ⊕ 20m ⊕ 20m ⊕ 4a (9.35)

into a fully symmetric 20-plet, two 20-plets of mixed symme-
try and a fully antisymmetric 4-plet. In states with one heavy
quark only, there is one light quark pair. The light diquark
can be decomposed

3⊗ 3 = 3̄a ⊕ 6s (9.36)

The light diquark in the 6-plet is symmetric, in the 3̄-plet
antisymmetric.

Figure 235a shows the symmetric 20-plet, which contains
the well-known baryon decuplet and a sextet of charmed
baryons. In addition to Ξ+

cc and Ξ++
cc , a Ω+

cc (with two
charmed and one strange quarks) and a Ω++

ccc are expected
but not yet observed. All baryons in the symmetric 20-plet in
the ground state have a total spin J = 3/2. The three quark
pairs are symmetric with respect to (w.r.t.) their exchange,
in particular the pair of light quarks is symmetric w.r.t. their
exchange, they have SUF(3) multiplicity 6. Baryons with
three charmed quarks have not yet been discovered.

Figure 235b shows the mixed symmetry 20-plet of heavy
baryons. In the ground state they have J = 1/2. Baryons
with one heavy quark occupy the second layer. The 6-plet
and the 3̄-plet are indicated. The sextet in the first floor has a

a symmetric light-quark pair, the two light-heavy quark pairs
are then antisymmetric in flavor. The 3-plet in the first floor
has an antisymmetric light-quark pair, the light-heavy quark
pairs are then symmetric in flavor.

Finally, there is a fully anti-symmetric 4-plet. It is shown
in Fig. 235c. Ground-state baryons have a symmetric spa-
tial wave function. The spin of three fermions coupling to
J/1/2 has mixed symmetry. A fully symmetric (space), a
fully antisymmetric (flavor) and a mixed-symmetry (spin)
wave function cannot be coupled to a fully symmetric wave
function. Hence baryons with no orbital excitations cannot
be in the 4-plet. Only excited baryons can have a fully anti-
symmetric flavor wave function. Below, in Sect. 9.4.5, the
wave functions and their symmetries are discussed in more
detail.

9.4.3 Excited baryons: selected experimental results

BaBar, BELLE and LHCb:
Most information on heavy baryons stems from three exper-
iments, BaBar, BELLE and LHCb even though many dis-
coveries had already been made before with the Split-Field-
Magnet, by the SELEX, UA and LEP experiments at CERN,
and by the CDF experiment at FERMILAB. BaBar at SLAC
(US) and BELLE at KEK (Japan) study the decays of B
mesons produced in asymmetric e+e− storage rings with
beam energies of 9 (KEK: 7) GeV for electrons and 3.1 (KEK:
4) GeV for positrons resulting in a center-of-mass energy
equal to theΥ (4S)mass of 10.58 GeV. The LHCb experiment
is placed at the Large Hadron Collider at CERN operating
at
√
s = 13.6 GeV. The experiment is a single-arm forward

spectrometer covering the pseudorapidity range 2 ≤ η ≤ 5.
It is designed for the study of particles containing b or c
quarks. All three detectors have vertex reconstruction capa-
bilities; BaBar and BELLE track charged particles in tracking
chambers placed in the 1.5 T magnetic field of a supercon-
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Fig. 236 Left: The invariant mass distributions of Ω0
c candidates

in their decay to Ω−π+ (a), Ω−π+π0 (b), Ω−π+π−π+ (c),
Ξ−K−π+π+ (d). MΩ0

c
is the reconstructed mass of Ω0

c candidates,
Xh denotes the daughter hyperon. Right: Invariant mass distribution of
Ω∗

c → Ωcγ for the individual Ω0
c decay modes (a–d) and for the sum

(e). (Adapted from [2891])

ducting solenoid. Particle identification is provided by a mea-
surement of the specific ionization and by detection of the
Cherenkov radiation in reflecting ring imaging Cherenkov
detectors. CsI(Tl)-crystal electromagnetic calorimeters allow
for energy measurements of electrons and photons. LHCb
is equipped with silicon-strip detector located upstream and
downstream of a dipole magnet with a bending power of
about 4 Tm. Photons, electrons and hadrons are identified by
a calorimeter system consisting of scintillating counters and
pre-shower detectors, and an electromagnetic and a hadronic
calorimeter. Muons are identified by a system composed of
alternating layers of iron and multiwire proportional cham-
bers.

In the following we discuss three important results from
these experiments that demonstrate the capabilities of the
detectors.

Observation of Ω∗0
c (2770) decaying to Ω0

c γ by BaBar
The Babar experiment studied the inclusive reaction e+e− →
Ω∗0

c X where X denote the recoiling particles [2891]. Ω0
c

baryons are identified via different decay modes and recon-
structed with a mass resolution σRMS = 13 MeV. The
γ is reconstructed in the Ω0

c CsI(Tl) calorimeter. Fig-
ure 236 shows the reconstructed Ω0

c and the Ω∗0
c in its

Ω∗0
c → Ω0

c γ decay. Obviously, the Ω∗0
c (2770) is equiv-

alent to Δ0(1232) with the u, d, d quarks exchanged by
c, s, s, and the transition corresponds to the Δ(1232)→ Nγ

decay.

Fig. 237 Left: The Ξ+
c π−π+ invariant mass distribution for events

in which the Ξ+
c π− invariant mass is compatible with the Ξ0

c (2645)
mass. Right: The helicity angle θc between the direction of the π−
relative to the opposite direction of the Ξ+

c (2970) in the rest frame of
the Ξ0

c (2645). (Adapted from Ref. [2892])

First determination of the spin and parity of the charmed-
strange baryon Ξ+

c (2970) by BELLE
The BELLE collaboration identified Ξ+

c (2970) in the decay
chain Ξ+

c (2970) → Ξ0
c (2645)π+ → Ξ+

c π−π+; Ξ+
c is

reconstructed from its decay into Ξ−π+π+ [2892]. Due
to its mass, Ξ0

c (2645) is likely the spin excitation with
J P = 3/2+ of the J P = 1/2+ ground state Ξ0

c . The helicity
angle in the primary decay, i.e. the angle between the π+ and
the opposite of the boost direction in the c.m. frame both cal-
culated in the Ξ+

c (2970) rest frame, proved to be insensitive
to some likely J P combinations. However, the predictions
for different J P ’s vary significantly for the angular distribu-
tions in the secondary decay (see Fig. 237).

The analysis shows that quantum numbers J P = 1/2+ are
preferred for Ξ+

c (2970). These are the quantum numbers of
the Roper resonance. The BELLE collaboration noted that
its mass difference to the Ξc ground state is about 500 MeV.
The same excitation energy is required to excite the Roper
resonance N (1440), the Λ(1600) and the Σ(1660), all with
J P = 1/2+.

First observation of excited Ωb states by LHCb
The LHCb collaboration searched for narrow resonances in
the Ξ0

b K− invariant mass distribution [2893]. The Ξ0
b has

a lifetime of (1.48± 0.03)10−12 s, cτ ≈ 500μm, which is
sufficiently long to separate the interaction and the decay
vertices. Four peaks can be seen (Fig. 238), which correspond
to excited states of Ωc. With the given statistics, quantum
numbers can not yet be determined.

9.4.4 The mass spectrum of excited heavy baryons

Figure 239 shows the mass spectrum of heavy baryons with
a single charm or bottom quark. Established light baryons
with strangeness are shown for comparison. The quantum
numbers of low-mass heavy baryons are mostly known, for
higher-mass states this information is often missing. The
masses are given as excitation energies above the Λ (Λc,
Λb) mass.
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Fig. 238 Distribution of the mass difference MΞ0
b K− − MΞ0

b
for

Ξ0
b K− candidates. The background is given by the wrong-sign can-

didates Ξ0
b K+. (From Ref. [2893].)

Fig. 239 Heavy baryons with charm or bottomness and a comparison
with light baryons with strangeness. All heavy baryons are shown, light
baryons are shown at the pole mass and are only included with 3* or
4* rating. When two quantum numbers are given, the first one refers
to the lower-mass state, the second one to the state above. The states
with L = lρ = lλ = 0 are shown in green, states with L = 1 in red
(orange for members of 4̄F), states L = 2 in blue, states with unknown
spin-parity in brown

At the first glance, the spectrum looks confusing. The Λ

spectrum is crowded, there is a low-mass negative-parity spin
doublet, a second doublet – at about the same mass as a Σ

spin doublet – a pair with J P = 1/2− and 5/2−where a 3/2−
state seems to be missing, and then a positive-parity doublet
with J P = 3/2+, 5/2+. In the Λc spectrum, the higher-
mass negative-parity states and the positive-parity doublet
are inverted in mass.101 The 3/2+−1/2+ hyperfine splitting
decreases rapidly when going from Σ and Ξ to Σc and Ξc

and fromΣb andΞb. It is interesting to note that a similar pat-
tern is observed in mesons: the hyperfine splitting decreases
when going from ρ−π to D∗−D and to B∗−B. Also, there
is one Ξ 1/2+ ground state but two states for Ξc and Ξb. The
lowest-massΩ has J P = 3/2+, in the charm sector, two low-
mass Ωc states are known with J P = 1/2+ and 3/2+, the
Ωb spectrum has just one low-mass state with J P = 1/2+.

101 This inversion was predicted by Capstick and Isgur long before the
states were discovered [771].

9.4.5 Heavy baryons as three-quark systems

The spatial wave function
The orbital wave functions of excited states are classified into
two kinds of orbital excitations, the λ-mode and the ρ-mode
(see Eq. (9.1)). In heavy baryons with one heavy quark, the
λ-mode is the excitation of the coordinate between the heavy
quark and the light diquark, and the ρ-mode is the excitation
of the diquark cluster. In light-baryon excitations, the λ and ρ

oscillators are mostly both excited, e.g. to lλ = 1, lρ = 0 and
lλ = 0, lρ = 1, the two components of the wave function
having a relative + or − sign. In heavy baryons with one
heavy quark, the mixing between these two configurations is
small.

The two oscillators have different reduced masses,mρ and
mλ:

mρ = mq

2
, mλ = 2mqmQ

2mq + mQ
. (9.37)

The ratio of harmonic oscillator frequencies is then given by

ωλ

ωρ

=
√

1

3
(1+ 2mq/mQ) ≤ 1. (9.38)

In the heavy-quark limit (mQ →∞), the excitation energies
in the λ oscillator are reduced by a factor

√
3.

Diquarks
We first consider the light diquark. The two light quarks can
have either the symmetric flavor structure 6F or the anti-
symmetric flavor structure 3̄F . The spin of the light diquark
can be sqq = sl = 1 or sl = 0 leading to a symmetric
or an antisymmetric spin wave function. The color part of
the wave function is totally antisymmetric. Hence flavor and
spin wave functions are linked. In an S-wave, scalar (“good”
or g) and axial-vector (“bad” or b) diquarks can be formed.
The intrinsic quark spins couple to the internal orbital angu-
lar momentum lρ , leading to excited diquarks with orbital
excitations.

(lρ = 0, S)
{
sl = 0 (A), 3̄F (A), jqq = 0, (g)
sl = 1 (S), 6F (S), jqq = 1, (b)

(lρ = 1, A)

{
sl = 0 (A), 6F (S), jqq = 1, (g)
sl = 1 (S), 3̄F (A), jqq = 0/1/2, (b)

(lρ = 2, S)
{
sl = 0 (A), 3̄F (A), jqq = 2, (g)
sl = 1 (S), 6F (S), jqq = 1/2/3, (b)

· · ·
where we have denoted the total angular momentum of the
light diquark as jqq .

Coupling of angular momenta
Figure 240 shows how the orbital angular momentum and the
diquark spin couple to the total diquark angular momentum
jl . This in turn couples to the heavy-quark spin sQ giving
rise to spin doublets (or just spin-1/2 states for jl = 0). Note
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Fig. 240 Heavy baryons in P-wave. The light diquark couples to the
spin of the heavy quark. The light diquark of Λ and Ξ heavy baryons
are in the antisymmetric flavor 3̄F and in the symmetric 6F in the case
of Σ,Ξ ′ and Ω (Adapted from [2894])

the Λ and Ξ spin doublet with sl = 0 and 3̄F. In this case
the wave function is antisymmetric in spin and flavor, this is
a “good” diquark.

Only a few heavy baryons are known with L = 2: Λc

and Λb with spin-parity 3/2+ and 5/2+. The other expected
states seem to show up only in the higher-mass, less-explored
region. The two observed doublets can be assigned to a con-
figuration in which lρ = 2, Lλ = 0, and the diquark is in 3̄F

and sl = 0.

3̄F : L = 2⊗ sl = 0(A)– jl = 2

The diquark is a “good” diquark. Note that the states
Λc(2860), Λc(2880) with spin-parity 3/2+ and 5/2+ (L =
2) are belowΛc(2940)with 3/2−. The latter state has a “bad”
diquark and is excited to L = 1 in the ρ oscillator. In this
competition, the “good” diquark and λ excitation with L = 2
wins over “bad” diquark and ρ oscillator even though the
orbital angular momentum of Λc(2940) is L = 1!

Table 42 gives a survey of the coupling scheme of Qqq
baryons. The spin and orbital angular momentum of the two
light quarks couple to jq , and when combined with the heavy-
quark spin sQ , the final J P results. There are also states with
mixed excitations like lρ = 1, lλ = 1. These are unlikely to
be produced (see Sect. 9.2) and are not included here. Λ and
Ξ with sq = 0 and lρ = 0 have a “good” light diquark. For
the Λc we denote the light diquark by [u, d]. Note that also
one light and the heavy quark can be antisymmetric in their
spin and flavor wave function. We write Σb = [ub]s.

Heavy quark limit
When mQ → ∞, the heavy quark spin sQ is conserved.
Due to the conservation of the total angular momentum J ,
also the angular momentum carried by the light quarks is
conserved. Hence all interactions which depend on the spin of
the heavy quark disappear. Thus, the mass difference within a
spin doublet with, e.g., J P = 3/2+ and 1/2+, will disappear

Table 42 The λ- and ρ-mode assignments of the P and D-wave exci-
tations of singly-heavy baryons. lρ, lλ are orbital angular momenta of
the two oscillators, L the total orbital angular momentum, sq is the spin,
jq the total angular momentum of the diquark, and J the total spin

lρ lλ L sq jq Λ,Ξ Σ,Ξ ′,Ω J P

0 1 1 0 1 λ ρ 1/2−, 3/2−

0 1 1 1 0 ρ λ 1/2−

1 0 1 1 1 ρ λ 1/2−, 3/2−

1 0 1 1 2 ρ λ 3/2−, 5/2−

0 2 2 0 2 λ – 3/2+, 5/2+

2 0 2 0 2 ρ – 3/2+, 5/2+

0 2 2 1 1 – λ 1/2+, 3/2+

0 2 2 1 2 – λ 3/2+, 5/2+

0 2 2 1 3 – λ 5/2+, 7/2+

2 2 2 1 1 – ρ 1/2+, 3/2+

2 0 2 1 2 – ρ 3/2+, 5/2+

2 0 2 1 3 – ρ 5/2+, 7/2+

in the heavy-quark limit. Indeed, the mass differences

MΣ(1520)3/2+ − MΣ(1190) = 230 MeV

MΣc(2520)3/2+ − MΣc(2455) = 65 MeV

MΣb(5830)3/2− − MΣb(5820) = 20 MeV

decrease as mQ becomes large.

9.4.6 A guide to the literature

The first prediction of the full spectrum of baryons including
charmed and bottom baryons was presented by Capstick and
Isgur [771], 3 years before the first baryon with bottomness
was discovered. The publication remained a guideline for
experimenters for now 36 years! Capstick and Isgur used a
relativized quark model with a confining potential and effec-
tive one-gluon exchange. Based on the quark model, further
studies of the mass spectra of heavy baryons were performed.
They are numerous, and only a selection of papers can be
mentioned here.

Ebert, Faustov and Galkin calculated the mass spectra for
orbital and radial excitations and constructed Regge trajec-
tories [2895]. Yu, Li, Wang, Lu, and Ya [2896] calculated
the mass spectra and decays of heavy baryons excited in the
λ-mode. Li, Yu, Wang, Lu, and Gu [2897] restricted the cal-
culation – again based on the relativized quark model – to
the Ξc and Ξb families. In their model, all excitations are in
the λ-mode.

Migura, Merten, Metsch, and Petry [2898] calculated
excitations of charmed baryons within a relativistically
covariant quark model based on the Bethe–Salpeter-equation
in instantaneous approximation. Interactions are given by a
linearly rising three-body confinement potential and a fla-
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Table 43 Increase of baryon
masses with the number of
strange quarks

3n → 2ns 2ns → n2s n2s → 3s

Δ−(1232)3/2+ Σ−(1385)3/2+ Ξ−(1530)3/2+ Ω−3/2+

+155 MeV +148 MeV + 137 MeV

Σ0
c (2520)3/2+ Ξ0

c (2645)3/2+ Ω0
c (2770)3/2+

+128 MeV + 120 MeV

Σ0
c (2455)1/2+ Ξ ′0

c 1/2+ Ω0
c 1/2+

+121 MeV +116 MeV

Σ−
b (5816)1/2+ Ξ ′0

b 1/2+ Ω−
b 1/2+

+120 MeV +111 MeV

vor dependent two-body force derived from QCD instanton
effects. Valcarce, Garcilazo and Vijande [2899] performed
a comparative Faddeev study of heavy baryons with nonrel-
ativistic and relativistic kinematics and different interacting
potentials that differ in the description of the hyperfine split-
ting. The authors conclude that the mass difference between
members of the same SUF(3) configuration, either 3̄F or 6F ,
is determined by the interaction in the light-heavy quark sub-
system, and the mass difference between members of differ-
ent representations is mainly determined by the dynamics of
the light diquark.

Chen, Wei and Zhang [2900] derive a mass formula
in a relativistic flux tube model to calculate mass spec-
tra for Λ and Ξ heavy baryons and assign quantum num-
bers to states whose quantum numbers were not known.
Faustov and Galkin [2901] assigned flavor- and symme-
try dependent masses and form factors to diquarks and
calculated the masses of heavy baryons within a relativis-
tic quark–diquark picture. Quantum numbers are suggested
for the Ωc excitations [2902,2903] and other states with
unknown spin-parities. A further diquark model, again with
adjusted diquark masses, is presented by Kim, Liu, Oka,
and Suzuki [2904] exploiting a chiral effective theory of
scalar and vector diquarks according to the linear sigma
model.

QCD sum rules have been exploited to study P-wave heavy
baryons and their decays within the heavy quark effective the-
ory (see [2905] and Refs. therein). The low-lying spectrum
of charmed baryons has also been calculated in lattice QCD
with a pion mass of 156 MeV [2906]. The results – compar-
ing favorably with the data – are compared to earlier lattice
studies that are not discussed here.

All calculations reproduce the observed spectrum with
good success, with a large number of parameters. For the
reader, it is often not easily seen what are the main driv-
ing forces that generate the mass spectrum. Clearly, a con-
finement potential is mandatory, spin dependent forces are
necessary. In the following phenomenological part we try
to identify the leading effects driving the resonance spec-
trum.

9.4.7 Phenomenology of heavy baryons

We start with a simple observation: masses of baryons
increase when a u or d quark is replaced by an s quark
(see Table 43). For light baryons, this is known as U -
spin rule. The constituent s-quark mass decreases in heavy
baryons. Note that the difference of current quark masses is
ms − mn ≈ 124 MeV (see Table 43).

In Table 44 we show the mass difference of the lowest-
mass J P = 3/2− states with (u, d, s, c) or (u, d, s, b) quarks
and the J P = 1/2+ ground states: The mass differences are
surprisingly small. The N (1520)− N mass difference is 580
MeV, much larger than the mass differences seen here. In the
table, [ud] represents wave functions with a u, d quark pair
that is anti-symmetric in spin and flavor. These diquarks are
often called good diquarks. The presence of good diquarks
leads to a stronger binding. In the 4-plet, all three quark
pairs have such a component w.r.t. their exchange. We denote
this by [ud,us,ds]. Thus there are three good diquarks in the
wave function. This fact leads to the low masses of the 4-plet
members. The similarity of the mass splittings supports sim-
ilar interpretations of the four resonances from Λ(1520) to
Ξ0

b 3/2− .

In most publications, both resonances,Λc(2595)1/2− and
Λc(2625)3/2−, are discussed as 3-quark baryons. However,
Nieves and Pavao [2907] have studied these two resonances
in an effective field theory that incorporates the interplay
between Σ

(∗)
c π − ND(∗) baryon-meson dynamics and bare

P-wave cud quark-model state and suggest that these two
resonances are not heavy quark symmetry spin partners.
Instead, they see

Λc(2625)3/2−

as a dressed three-quark state while Λc(2595)1/2− is
reported to have a predominant molecular structure. Nev-
ertheless, the two states Λc(2625)3/2− and Λc(2595)1/2−
obviously form a spin doublet.

The mass shift in H atoms between the two ground states
with electron and proton spins parallel or antiparallel is called
hyperfine splitting. We borrow this expression to discuss the
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Table 44 Mass splitting between baryon ground states belonging to
the symmetric 20plet (with J P = 3/2+) and to the mixed-symmetry
20plet (with J P = 1/2+)

Ξ0
b 3/2− [us,ub,sb] Ξ0

b 1/2+ [us] δM = 310 MeV

Λ0
b 3/2− [ud,ub,db] Λ0

b 1/2+ [ud] δM = 300 MeV

Ξ+
c 3/2− [us,uc,sc] Ξ+

c 1/2+ [us] δM = 350 MeV

Λ+c 3/2− [ud,uc,dc] Λ+c 1/2+ [ud] δM = 400 MeV

Λ(1520) [ud,us,ds] Λ1/2+ [ud] δM = 400 MeV

Table 45 Mass splitting between baryons with fully symmetric wave
functions and baryons with antisymmetric quark pairs. The [us] indi-
cates an antisymmetric quark pair

δM [MeV] mq [GeV] δM · mq

Σb 3/2+ Λb [ud]b 0.211 ∼ 0.3 0.063

Σc 3/2+ Λc [ud]c 0.232 ∼ 0.3 0.070

Σ 3/2+ Λ [ud]s 0.268 ∼ 0.3 0.080

Δ 3/2+ N [ud]u 0.292 ∼ 0.3 0.088

Ξb 3/2+ Ξb [us]b 0.163 ∼ 0.45 0.073

Ξc 3/2+ Ξc [us]c 0.177 ∼ 0.45 0.080

Ξ 3/2+ Ξ [us]s 0.217 ∼ 0.45 0.098

Σ 3/2+ Σ [us]u 0.191 ∼ 0.45 0.086

Ξc 3/2+ Ξ
′
c [uc]s 0.067 ∼ 1.4 0.093

Σc 3/2+ Σc [uc]u 0.065 ∼ 1.4 0.090

Ξb 3/2+ Ξ
′
b [ub]s 0.020 ∼ 4.25 0.085

Σb 3/2+ Σb [ub]u 0.021 ∼ 4.25 0.089

difference between the ground states with all three quark
spins adding to J = 3/2 (and belonging to the symmetric
20-plet) and with those having J = 1/2 (that belong to the
mixed-symmetry 20-plet). We thus compare masses of the
fully symmetric 20s-plet with those from the 3̄-plet or 6-plet
within the 20m-plet (see Table 45). The two configurations
differ by the orientation of the heavy-quark spin relative to the
spin of the light diquark. According to the heavy-quark-spin
symmetry, this mass difference has to vanish withmQ →∞.
In the Table we assume constituent quark masses of 0.15 GeV
(u, d), 0.3 GeV (s), 1.25 GeV (c) and 4.1 GeV (b).

The J P = 3/2+ states have a fully symmetric flavor wave
function, the J P = 1/2+ states have an antisymmetric quark
pair (a good diquark) that is indicated in the list. Their effect
scales with 1/mq . The mass shift due to the presence of good
diquarks is expected for instanton-induced interactions.

Heavy baryons at higher mass:
Next we discuss the higher-mass negative-parity states. In
light-baryon spectroscopy, there are seven negative-parity Λ

states expected in the first excitation level: two singlet states
with J P = 1/2−, 3/2−, two octet states with intrinsic total
quark spin s = 1/2 and J P = 1/2−, 3/2−, and a J P =
1/2−, 3/2−, 5/2− triplet with s = 3/2. In light baryons,

bothλ andρ oscillator are coherently excited. In heavy-quark
baryons, the two oscillators decouple, and the λ and ρ modes
are well separated. The low-lying spin-doublet of P-wave
ΛQ states is dominated by a λ-mode excitation, the other
five expected states are excited in the ρ mode.

Unfortunately, only one negative-parity state at a higher
mass has been reported, the Λc(2940)3/2−. Its mass is 653
MeV above the Λ+c . We interpret this state as lρ excita-
tion with a diquark spin s = 1. The Λ(1690) 3/2− is only
570 MeV above the Λ, it is excited in both the λ and the ρ

mode.
The mass of Λc(2940)3/2− (with intrinsic orbital angular

momentum L = 1) is above the masses of the positive-parity
states Λc(2860)3/2+ and Λc(2880)5/2+ (having L = 2).
Yet, the mass of Λ(1690)3/2− falls well below the masses
of Λ(1890)3/2+ and Λ(1820)5/2+ for reasons discussed
above.

9.4.8 Pentaquarks

In 2015, the LHCb collaboration reported the observation of
two exotic structures in the J/ψp system, a broad resonant
structure with a Breit–Wigner width of about 200 MeV called
Pc(4380)+ and a narrow state called Pc(4450)+ [2885].
The exotic structures were observed in the reaction Λ0

b →
J/ψK− p. An excited three-quark nucleon cannot decay into
J/ψ p, this would violate the OZI rule. Hence the minimal
quark content is (cc̄uud). The findings met with great inter-
est; the publication is quoted more than 1600 times (2023,
October). Indeed narrow baryonic resonances with hidden
charm had been predicted several years before as dynami-
cally generated states [2908–2910].

A multitude of different interpretations of the observed
structures is offered in the literature, but none is accepted
anonymously. There are numerous reviews on tetra- and pen-
taquarks and their possible interpretations [1427,2692,2911,
2911–2914].

With increased statistics, Pc(4312)+ was confirmed and
the higher-mass Pc(4450)+ was shown to be split into two
narrow overlapping structures, Pc(4440)+ and Pc(4457)+
[2886]. The existence of the broad resonance was not con-
firmed. The data and a fit are shown in Fig. 241 which also dis-
plays some relevant thresholds. In addition, a further smaller
structure can be seen at 4380 MeV, close to the Σ+∗

c D̄0

threshold. A narrow structure here is expected in molecu-
lar models (see e. g. [2915]), but due to limited statistics
there was no attempt to describe it in the recent LHCb anal-
ysis [2886]. The resonant parameters – including the broad
structure at 4380 MeV – are reproduced in Table 46.

Quantum numbers J P = 3/2− and 5/2+ were pre-
ferred for Pc(4380)+ and Pc(4450)+. In the later publication
[2886], no quantum numbers are determined.
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Fig. 241 The J/ψ p mass distribution fitted with three BW ampli-
tudes and a sixth-order polynomial background. The thresholds for the
Σ+

c D̄0. (Adapted from [2886].)

In the reaction B0
s → J/ψ p̄ p a pentaquark-like struc-

ture, named Pc(4337)+, was observed in the J/ψ p̄ and
J/ψ p mass distributions [2916]. The significance, as deter-
mined from a 3-body amplitude analysis, is between 3.1 and
3.7 σ . Its Breit–Wigner parameters are incompatible with
the structures observed in Λb decays. The lighter state at
4312 MeV was not found in this reaction, highlighting the
importance of the production mechanism for the formation
of these resonances. However, it has been pointed out in
[2917] that in a region with many close-by thresholds, the
Breit–Wigner parameters measured in a particular channel
may differ significantly from the pole location.

Strange counterparts to these pentaquark states, e.g. res-
onances in the J/ψ Λ system, are denoted by Pcs and have
(cc̄uds) as minimal quark content. A peak has been reported
by LHCb in the reaction Ξ−

b → J/ψ ΛK− [2918]. Close to
the Ξ0

c D∗0 threshold a further peak was found, with a mass
and width given in Table 46, too.

The J/ψΛ system was also investigated in 2019 by CMS
[2920], exploiting the small phase space available in the B-
meson decay B− → J/ψ Λ p̄. The analysis showed that
the observed spectrum was incompatible with a pure phase
space distribution. Very recently, the LHCb collaboration
reported a new analysis of this process [2921]. Now, a signal
in the J/ψ Λ subsystem, with preferred quantum numbers
J P = 1/2−, was established at high significance, named
P0
cs(4338). Due to the presence of the second (anti)baryon,

the phase space in the B-meson decay is too small to access
the heavier pentaquark state found in the Ξb decay.

These structures have stimulated an intense discussion of
the nature of these structures. Do they originate from thresh-
old singularities due to rescattering in the final state leading

Table 46 J/ψp and J/ψΛ pentaquarks found by the LHCb collabo-
ration

Pc(4312)+: M = (4311.9 ± 0.7 +6.8
−0.6) MeV

[2886] Γ = (9.8 ± 2.7 +3.7
−4.5) MeV

Pc(4380)+: M = (4380 ± 30) MeV

[2885] Γ = (205 ± 90) MeV

Pc(4440)+: M = (4440.3 ± 1.3 +4.1
−4.7) MeV

[2886] Γ = (20.6 ± 4.9 +8.7
−10.1) MeV

Pc(4457)+: M = (4457.3 ± 0.6 +4.1
−1.7) MeV

[2886] Γ = (6.4 ± 2.0 +5.7
−1.9) MeV

Pc(4337)+: M = (4337 +7
−4
+2
−2) MeV

[2916] Γ = (29 +26
−12

+14
−14) MeV

P0
cs(4459): M = (4458.8 ± 2.9 +4.7

−1.1) MeV

[2918] Γ = (17.3 ± 6.5 +8.0
−5.7) MeV

P0
cs(4338): M = (4338.2 ± 0.7 ± 0.4) MeV

[2919] Γ = (7.0 ± 1.2 ± 1.3) MeV

to a logarithmic branching point in the amplitude? Are they
hadronic molecules like the deuteron? Are they compact or
triple-quark–diquark systems or states where a cc̄ center is
surrounded by light quarks?

The peaks are mostly seen very close to important thresh-
olds. Thus they could originate from threshold singularities.
We refer to a few publications [2689,2922–2924]. The LHCb
collaboration studied this hypothesis and found it incompat-
ible with the data, but the attempts continued [2925–2928].

Very popular are interpretations as bound states composed
of charmed baryons and anti-charmed mesons or of char-
monium states binding light-quark baryons. The pentaquark
states are then seen to be of molecular nature and be bound
by coupled-channel dynamics [2915,2929–2939]. Diquark–
triquark models were studied [2940–2943], and sum rules
are exploited in Refs. [2944,2945].

9.4.9 Concluding remarks

The study of hadrons with heavy quarks has developed into
a fascinating new field of particle physics. Particular excite-
ment is due to the discovery of unconventional structures that
are hotly debated. But also the “regular” heavy hadrons yield
very useful information on the interactions of quarks in the
confinement region.

10 Structure of the nucleon

Conveners:
Volker Burkert and Franz Gross
After discussion of the baryon spectrum in the previous sec-
tion, this section focuses on the nucleon, the most studied of
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all hadrons. Soon after the proton and neutron were estab-
lished as the constituents of atomic nuclei, experiments mea-
suring their magnetic moments μN found that these spin-
1/2 particles are not point-like elementary fermions with
expected μp = 1.0μN for the proton, and μn = 0 for the
neutron. Instead μp ≈ 2.5μN and μn ≈ −1.5μN , showing
that the nucleons have significant structure. The discovery
that the proton and the neutron are not point-like objects gave
birth to the field of hadron structure explorations discussed
in this section. Beginning with the Nobel prize winning mea-
surement of the finite size of the proton in elastic electron–
proton scattering experiments (Hofstadter, 1956) there have
been generations of electron scattering measurements study-
ing the proton and neutron form factors, reviewed by Andrew
Puckett

In 1968 experiments employing high-energy electrons
scattering from proton targets at SLAC found surpris-
ingly large inelastic cross sections, or structure functions,
which rather than falling rapidly with the exchanged four-
momentum squared Q2 (as would elastic cross sections) were
observed to “scale” with Q2. The observation of scaling sug-
gested scattering from point-like quarks in the proton, which
could most naturally be described in terms of parton dis-
tribution functions (PDFs). These PDF measurements have
shed light on the momentum distributions of the different
quark species (Wally Melnitchouk), and with the use of spin-
polarized electrons and polarized nucleon targets the quark
contributions to the nucleon spin have been precisely mea-
sured (Xiangdong Ji), putting significant challenges on the
theory of QCD to reproduce or predict the results of these
measurements.

As these studies continue, both in experiment with
high precision measurements, and in theory, new chal-
lenges have arisen with the discovery of the general-
ized parton distributions that lead to the assembly of 3-
dimensional tomographic images of the quark (and gluon)
transverse spatial and longitudinal momentum distribu-
tions employing deeply virtual exclusive processes (Andreas
Schafer and Feng Yuan). The challenges here will be
on the experiments to access these generalized parton
distributions (GPDs) and transverse momentum distribu-
tions (TMDs) from experiments like deeply virtual Comp-
ton scattering and deeply virtual meson production, and
on the phenomenology aiding the analysis. Some of the
measurements are underway at Jefferson Lab in several
experiment halls. The EIC will vastly extend the kine-
matic reach of the measurements into the gluon dominated
regime.

10.1 Form factors

Andrew Puckett

10.1.1 Introduction

Elastic scattering of nucleons by point-like, leptonic probes
is among the simplest observable processes sensitive to the
nucleon’s internal structure. The study of elastic electron–
nucleon scattering started in the 1950s with the pioneer-
ing measurements by Robert Hofstadter and collaborators
in HEPL (the High Energy Physics Lab) at Stanford [599]
at incident electron energies of up to 550 MeV. Among the
highlights of this work were the first conclusive demonstra-
tion of a deviation of the elastic electron–proton scattering
cross section from point-like behavior, and the first direct
measurement of the proton’s finite size, leading to the award-
ing of the 1961 Nobel Prize in Physics to Hofstadter “for his
pioneering studies of electron scattering in atomic nuclei and
for his thereby achieved discoveries concerning the structure
of the nucleons”.

In the Standard Model, the lepton–nucleon interaction
is purely electroweak. Due to the nucleon’s finite size and
complicated structure, the elastic scattering cross section
falls much more rapidly as a function of the squared four-
momentum transfer Q2 than the point-like scattering cross
section. Given the limitations of past, present, and planned
lepton–hadron scattering facilities, elastic scattering of lep-
tons by nucleons only occurs with sufficient probability to
be practically measurable at energy scales where electro-
magnetic interactions are dominant; i.e., at four-momentum
transfers Q2 � M2

W,Z , where MW (MZ ) ≈ 80(91) GeV
is the W (Z ) boson mass. As such, for most practical pur-
poses this process can be interpreted in the framework of
low-order perturbation theory in quantum electrodynamics
(QED). However, the elastic form factors of the nucleon for
charged- and neutral-current weak interactions are interest-
ing in their own right and accessible even at relatively low
energies in neutrino scattering [2946] and through parity-
violating asymmetries in polarized electron scattering that
are sensitive at leading order to the interference between pho-
ton and Z exchange amplitudes [2947–2949].

The use of elastic lepton–nucleon scattering as a precision
probe of nucleon structure and dynamics remains a highly
active area of investigation at low and high energies. The
improvements in energy reach and precision of these mea-
surements over decades have led to many important discover-
ies and surprises that have dramatically reshaped our under-
standing of the nucleon. This section will present a brief
summary of the status of the nucleon’s elastic scattering form
factors, their definition and physical interpretation, outstand-
ing challenges and problems, and the near-future outlook for
further advancements.
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Fig. 242 Feynman diagram for elastic eN scattering in the one-
photon-exchange approximation. Initial and final nucleons are repre-
sented by three lines each to indicate the nucleon’s three-quark valence
structure, while the circle represents the modification of the photon-
nucleon vertex function by the nucleon’s internal structure. See text for
details

10.1.2 Theoretical formalism

The starting point for the interpretation of elastic electron–
nucleon (eN ) scattering is the one-photon-exchange (OPE)
approximation, which is roughly analogous to the first Born
approximation and/or the plane wave impulse approximation
in non-relativistic quantum scattering theory. In the follow-
ing discussion the terms OPE and Born approximation will
be used interchangeably. The tree-level Feynman diagram for
eN → eN is depicted schematically in Fig. 242. An inci-
dent electron of four-momentum k ≡ (Ee,k) scatters from a
nucleon of mass M , assumed to be initially at rest in the lab
frame, with initial four-momentum P ≡ (EN ,p) = (M, 0).
The electron recoils with four-momentum k′ ≡ (E ′e,k′) and
the nucleon recoils with four-momentum P ′ ≡ (E ′N ,p’)
after absorbing the four-momentum transfer q ≡ k − k′.
Energy and momentum conservation in this two-body scat-
tering process dictate P ′ = P+q = (M+ Ee− E ′e,k−k′).
Together with the requirement that the final-state particles be
“on mass shell”; i.e., that they satisfy the relativistic energy–
momentum relation for a free particle (E2 = p2 + m2), the
kinematics of the elastic eN scattering process are entirely
specified by just two independent variables, commonly cho-
sen to be the incident electron energy Ee and the electron
scattering angle θe that are directly observed experimen-
tally. Another main variable of interest is the squared four-
momentum transfer Q2 ≡ −q2 = −(k − k′)2 > 0. In the
nucleon rest frame (or in the center-of-momentum frame, or
any other frame in which the initial momenta of the colliding
particles are collinear), the scattering process is independent
of the azimuthal scattering angle of the electron.

In most modern electron–nucleon scattering experiments,
it is safe to use the ultrarelativistic approximation for the
electron (|k| = Ee, |k′| = E ′e, k2 = k′2 = 0), as the inci-
dent beam energies required for sensitivity to the non-trivial
details of nucleon structure are generally quite large com-
pared to the electron mass. Moreover, the vast majority of
elastic electron–nucleon scattering data come from fixed-
target experiments, in which the target nucleus is at rest in
the lab frame. Unless otherwise noted, all of the following
expressions apply in the initial nucleon’s rest frame.

To develop intuition for the physical interpretation of elas-
tic eN scattering, it is useful to consider the closely related
process of ultrarelativistic electron scattering from a static
charge distribution ρ(r) with total charge Ze, given in the
OPE approximation by:

(
dσ

dΩe

)

= Zα2

4E2
e

cos2
(
θe
2

)

sin4
(
θe
2

) |F(q)|2 (10.1)

≡
(

dσ

dΩe

)

Mott
|F(q)|2, (10.2)

where Ee is the incident electron energy, θe is the electron
scattering angle, α is the fine structure constant, and F(q)
is the electron scattering form factor given by the Fourier
transform of the charge distribution:

F(q) ≡
∫

ρ(r)eiq·rd3r, (10.3)

with q ≡ k− k′ the three-momentum transfer in the scatter-
ing process. The Mott cross section as defined in Eq. (10.2)
describes the scattering of ultrarelativistic electrons from a
point-like target of charge Ze with zero spin and zero mag-
netic moment, in the limit where target recoil is negligible. In
the electron–nucleon scattering case, this corresponds to the
requirement Q2 � 2MEe. When target recoil is not negli-
gible, the electron loses energy in the collision, and the Mott
cross section is modified by the factor E ′e/Ee:

(
dσ

dΩe

)

Mott
= Zα2

4E2
e

cos2
(
θe
2

)

sin4
(
θe
2

)
E ′e
Ee

. (10.4)

In much of the modern literature, Eq. (10.4) is taken as the
definition of the Mott cross section, whereas in Mott’s orig-
inal paper, the target recoil factor E ′e/Ee is not included.
Hereafter, we will use the definition (10.4) unless otherwise
noted.

The most general form of the single-photon-exchange
amplitude M for elastic eN scattering consistent with
Lorentz invariance, gauge invariance, and parity conserva-
tion as required by QED, and under the assumption that the
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nucleon is a spin-1/2 fermion obeying the Dirac equation,
can be expressed using the Feynman rules of QED (see, e.g.,
[2140]) as follows (in “natural units” h̄ = c = 1):

M = 4παū(k′)γ μu(k)

(
gμν

q2

)

ū(P ′)Γ νu(P). (10.5)

Here M is the Lorentz-invariant single-photon-exchange
amplitude, ū and u represent free-particle Dirac spinors for
the incoming and outgoing particles, evaluated at the relevant
four-momenta, γ μ is a Dirac γ matrix, gμν is the Minkowski
metric tensor, and Γ ν represents the photon-nucleon vertex
function, given by:

Γ μ = F1(q
2)γ μ + iσμνqν

2M
F2(q

2), (10.6)

with σμν ≡ i
2

[
γ μ, γ ν

]
the antisymmetric tensor formed

from γ μ, γ ν . The form factors F1(q2) (Dirac) and F2(q2)

(Pauli) can be regarded as matrix elements of the electromag-
netic current operator between final and initial nucleon states.
They are real-valued functions of q2, which is the only inde-
pendent Lorentz scalar variable on which the photon-nucleon
vertex function Γ μ can depend. The convention (10.6) for
the γ ∗N vertex function is the most commonly used one
in the literature, and is constructed such that the amplitude
is real (assuming real-valued form factors).102 F1 and F2

represent the (electron) helicity-conserving and (electron)
helicity-flip amplitudes, respectively. The nucleon’s charge
and Dirac (“non-anomalous”) magnetic moment distribu-
tions determine the behavior of F1(q2), while F2(q2) mea-
sures the contribution of the “anomalous” magnetic moment
distribution to the scattering.

Experimentally, the following linearly independent com-
binations of F1 and F2, known as the Sachs electric (GE ) and
magnetic (GM ) form factors [2950], are more convenient:

GE = F1 − τ F2 (10.7)

GM = F1 + F2. (10.8)

The differential cross section in OPE is given in terms of the
Sachs form factors by [599,2950–2952]

dσ

dΩe
=

(
dσ

dΩe

)

Mott

εG2
E + τG2

M

ε(1+ τ)
, (10.9)

where τ and ε are kinematic parameters defined as

τ ≡ Q2

4M2 (10.10)

102 Since no other diagrams interfere with the OPE at the same order
in α, we are of course free to choose the phase of the OPE amplitude
arbitrarily without affecting physical observables.

Fig. 243 Q2 dependence of the ratio G2
E/(G

2
E+τG2

M ) for the proton,
representing the maximum fraction of the reduced cross section carried
by the electric term (at ε = 1). The central value and uncertainty band of
the curve are calculated from the global fit of Ref. [1076]. The dashed
line shows the ratio that would be obtained under the assumption of
form factor scaling (Gp

M = μpG
p
E )

ε ≡
[

1+ 2(1+ τ) tan2
(
θe

2

)]−1

. (10.11)

In the OPE approximation, ε can be interpreted as the longitu-
dinal polarization of the virtual photon [2952]. The electric
and magnetic contributions to the scattering can be sepa-
rated by measuring the cross section while varying the beam
energy and the scattering angle in such a way as to hold
Q2 constant while varying ε, a technique known as Longitu-
dinal/Transverse (L/T) separation or Rosenbluth separation.
The “reduced” cross section

σR ≡ ε(1+ τ)
(dσ/dΩe)Measured

(dσ/dΩe)Mott
,

is linear in ε, with slope (intercept) equal to G2
E (τG2

M ).
In the limit of very small Q2, corresponding to long-

wavelength virtual photons, the cross section behaves as if
the nucleon were a point particle of charge ze (z = +1(0)
for proton (neutron)) and magnetic moment μ = (z + κ) (in
units of the nuclear magneton), with κ the anomalous mag-
netic moment. In this limit, the form factors thus become
GE (0) = z and GM (0) = z + κ . For small but finite Q2

such that τ � εG2
E/G

2
M , the electric term dominates the

cross section, and if target recoil is neglected, Eq. (10.9)
takes the same form as Eq. (10.2), with GE ≡ F(q). Thus,
in the low-energy limit, the electric form factor can be identi-
fied with the Fourier transform of the charge density. Similar
reasoning leads to an interpretation of GM as a Fourier trans-
form of the nucleon’s magnetization density.

The Rosenbluth formula (10.9) describes unpolarized
electron–nucleon scattering. At large values of Q2, the mag-
netic term dominates the OPE cross section, and the sensitiv-
ity of the Rosenbluth method to GE vanishes (see Fig. 243).

123



Eur. Phys. J. C          (2023) 83:1125 Page 337 of 636  1125 

Fig. 244 Standard coordinate system for nucleon polarization compo-
nents in elastic eN scattering. The arrow labeled �P indicates the nucleon
polarization direction and illustrates the definitions of the angles θ∗ and
φ∗ between �P and the momentum transfer q. The x or “t” (transverse)
axis is parallel to the reaction plane but perpendicular to the momen-
tum transfer. The y or “n” (normal) axis is perpendicular to the reaction
plane defined by n̂ ≡ q̂ × k̂. The z or “!” (longitudinal) axis is along
the momentum transfer direction, which coincides with the outgoing
nucleon direction in the lab frame. The direction of the x axis is chosen
so that the Cartesian basis (x̂, ŷ, ẑ) is right-handed

As the use of electron scattering to investigate nuclear struc-
ture expanded during the 1960s and 1970s, and as the technol-
ogy to produce spin-polarized electron beams and nuclear tar-
gets was being developed and improved, several authors inde-
pendently developed the theory of spin-polarized elastic eN
scattering in the OPE approximation and examined the impli-
cations for future measurements of polarization observables
[2953–2956]. Nonzero asymmetries arise when the incident
electron beam is longitudinally polarized and either the target
nucleon is also polarized, or the recoil nucleon polarization
is measured, or both. Asymmetries involving transverse elec-
tron beam polarization are generally suppressed by factors of
me/Ee relative to longitudinal asymmetries, and while such
asymmetries have been measured and are interesting in their
own right, they are not ideal observables for measuring elec-
tromagnetic form factors, and they will not be considered
further in this section.

Figure 244 illustrates the “standard” coordinate system
used in most of the literature on polarized elastic eN scat-
tering. In the case where the target nucleon is polarized, the
asymmetry in the scattering cross section between positive
and negative electron beam helicities is given by

AeN ≡ σ+ − σ−
σ+ + σ−

(10.12)

= PbeamPtarg
[
At sin θ∗ cosφ∗ + A! cos θ∗

]
, (10.13)

where Pbeam is the longitudinal electron beam polarization,
Ptarg is the magnitude of the target nucleon polarization, and
the angles θ∗, φ∗ are defined in Fig. 244. The asymmetries
At and A! are given in terms of τ , ε, and the form factor ratio
r ≡ GE/GM by:

At = −
√

2ε(1− ε)

τ

r

1+ ε
τ
r2

A! = −
√

1− ε2

1+ ε
τ
r2 . (10.14)

Equations (10.14) show that the sensitivity of the double-spin
asymmetry AeN to the form factor ratio is generally highest
when the target is polarized perpendicular to the momentum
transfer but parallel to the scattering plane; i.e., along the
x direction in Fig. 244. Note also that the asymmetries are
sensitive to the ratio GE/GM , but not GE or GM separately.
When the target is unpolarized, the longitudinally polarized
electron transfers polarization to the outgoing nucleon. The
nonvanishing components of the transferred polarization in
OPE are

Pt = PbeamAt

P! = −PbeamA!. (10.15)

Here Pt and P! are the in-plane transverse and longitudi-
nal components of the recoil nucleon’s polarization, respec-
tively. The sign change of P! relative to A! reflects the
spin flip required to conserve angular momentum when the
nucleon absorbs a transversely polarized virtual photon. The
ratio Pt/P! is directly proportional to the form factor ratio
GE/GM :

GE

GM
= − Pt

P!

√
τ(1+ ε)

2ε
= − Pt

P!

Ee + E ′e
2M

tan

(
θe

2

)

(10.16)

Measurements of the differential cross sections, Eq. (10.9),
and polarization observables, Eqs. (10.14) and (10.16), in
elastic eN scattering are the main source of knowledge of
the nucleon’s electromagnetic form factors, which are among
the most important precision benchmarks for testing theoret-
ical models of the nucleon. Moreover, precise knowledge of
these form factors is required for the interpretation of many
different experiments in nuclear and particle physics. In the
next section, we summarize the existing data on nucleon form
factors.

10.1.3 Experimental data

Figures 245, 246, 247, 248 summarize the state of empir-
ical knowledge of the nucleon electromagnetic form fac-
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Fig. 245 (Approximate) World data for Gp
E/GD . “Direct L/T separa-

tions” are published point extractions ofGp
E from Rosenbluth plots. The

points labeled “Bernauer 2014” are the direct Rosenbluth extractions
from the Mainz A1 dataset [618,2957]. The data labeled “Xiong 2019”
are from the PRad experiment [2958]. The global fit is from [1076]. See
text for details

tors, as of this writing. The proton form factors Gp
E and

Gp
M extracted from cross section measurements, as well as

the neutron magnetic form factor Gn
M , can be described to

within ≈ 10% over most of the measured Q2 range by
Gp

E ≈ Gp
M/μp ≈ Gn

M/μn ≈ GD , where GD is the “dipole”
form factor defined as

GD =
(

1+ Q2

Λ2

)−2

, (10.17)

with the scale parameter Λ2 = 0.71 (GeV/c)2 defining the
so-called “standard dipole”. The neutron electric form factor
Gn

E has a very different Q2 dependence; since the neutron has
zero net charge, Gn

E (0) = 0. Nevertheless, the neutron rms
charge radius has been determined with good precision via
neutron–electron scattering length measurements (see Ref.
[616] and references therein). Existing measurements of Gn

E
in quasi-elastic electron scattering on bound neutrons in light
nuclear targets, shown in Fig. 247, exhibit a rapid rise with
Q2 to an appreciable fraction of GD (nearly ≈ 50% at the
highest Q2 for which we have reliable Gn

E data). Precise
high-Q2 measurements of Gp

E/G
p
M using the polarization

transfer method revealed that Gp
E starts falling much faster

than GD above 1 (GeV/c)2, while Gp
M/μp falls to about 70%

of GD at the highest measured Q2 values. Reliable neutron
form factor data only reach Q2 ≈ 3.4(4.5) (GeV/c)2 for
Gn

E (G
n
M ), but significant expansions in the Q2 reach of the

neutron data are anticipated in the near future.
The three-dimensional Fourier transform of GD gives an

exponentially decreasing charge density as a function of the
radial distance from the center of the nucleon, assuming a
spherically symmetric density. The mean square radius of the

Fig. 246 (approximate) World data forGp
M/(μpGD). The “Direct L/T

separations” are published point extractions of Gp
M from Rosenbluth

plots. The Kirk 1973 data [2959] and the Sill 1993 data [2960] are
point Gp

M extractions from single cross section measurements, with
updated radiative corrections as detailed in Ref. [2961]. The data labeled
“Christy 2022” are the point Gp

M extractions from the individual cross
section measurements published in Ref. [2961]. The points labeled
“Bernauer 2014” are the direct Rosenbluth extractions from the Mainz
A1 dataset [618,2957]. The global fit curve is that of Ref. [1076]. See
text for details

nucleon charge density is related to the slope of the electric
form factor in the limit Q2 → 0:

〈
r2
E

〉
= −6

dGE

dQ2

∣
∣
∣
∣
Q2=0

. (10.18)

For the standard dipole form factor, the implied charge radius

is
√〈

r2
E

〉
D = 0.81 fm, which is in rough agreement with

modern, precise determinations of the proton charge radius
from electron scattering and the spectroscopy of electronic
and muonic hydrogen. See Ref. [2962] for a very recent, in-
depth review of the experimental and theoretical status of the
proton charge radius.

Proton data and discussion
Figures 245 and 246 show most of the existing data for the
proton electric and magnetic form factors Gp

E and Gp
M/μp,

respectively, normalized to GD , over the entire measured
Q2 range. While not comprehensive, the data shown are suf-
ficiently representative of the Q2 coverage and precision of
the entire world data. The points shown as empty circles in
Figs. 245 and 246 are published point extractions of Gp

E and
Gp

M based on direct L/T separations from Rosenbluth plots,
and are taken from Refs. [2961,2963–2971]. These extrac-
tions are not entirely independent of each other in terms of
cross section input, as several of the analyses combined data
from multiple experiments at similar Q2 values.

The points shown as filled circles in Fig. 245 are based on
direct measurements of the ratio Gp

E/G
p
M using polarization
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Fig. 247 World data for neutron electric form factor Gn
E/GD . See text

for references, details

Fig. 248 World data for neutron magnetic form factor Gn
M/GD . See

text for references, details

observables, converted to Gp
E/GD values using the global fit

toGp
M from Ref. [1076]. The polarization data forGp

E include
measurements based on the polarization transfer technique
of Eq. (10.16) (Refs. [2972–2985]), and the beam-target
double-spin asymmetry method, Eq. (10.14) [2986–2988].
The points labeled “Bernauer 2014” in Figs. 245 and 246 are
the direct Rosenbluth separations from the Mainz A1 dataset
[618,2957]. The points at very low Q2 labeled “Simon 1980”
and “Xiong 2019” in Fig. 245 are direct extractions of Gp

E
from individual cross section measurements based on the
assumption of form factor scaling (Gp

M = μpG
p
E ) in the case

of Ref. [2989], or using the Kelly fit to Gp
M [610] in the case

of Ref. [2958]. In Fig. 246, the Gp
M values extracted from the

cross sections published in Refs. [2959,2960] are based on
the updated analysis in Ref. [2961], which used the “state-of-
the-art” radiative corrections described in Ref. [2990]. It must
also be noted that the global fits shown in Figs. 245 and 246
include phenomenological two-photon-exchange corrections

that havenot been applied to the published form factor extrac-
tions. These corrections tend to increase the value of Gp

M
by roughly 2–3% in the Q2 range where the discrepancy
between Rosenbluth and polarization results is largest.

The extraction of nucleon form factors from cross sec-
tion measurements generally requires corrections to account
for the effects of higher-order QED radiative processes in
order to isolate the OPE term from which G2

E and/or G2
M

can be determined. While each of these higher-order terms is
at least O(α) relative to the Born term, their combined effect
on the observed cross sections can be significant; typically
as much as 10–30% at modest-to-large Q2 [2991]. As a gen-
eral rule, the magnitude of the radiative correction (RC) to
the elastic cross section tends to increase at large Q2 val-
ues and/or large θe/small ε, and also depends on experiment-
specific parameters including detector acceptance and resolu-
tion, electron beam properties, and target geometry, material,
and density. Additionally, the calculation of the RC depends
strongly on whether the experiment detects the scattered elec-
tron only (most common), the recoil proton only (see, e.g.,
Ref. [2970]), or both final-state particles. For many experi-
ments, the RC calculation is an important source of uncer-
tainty in the extraction of the Born cross section, which is not
directly observable, and can dramatically change the slope
of the Rosenbluth plot in converting measured cross sections
to Born cross sections [2991].

At next-to-leading order in α, the “standard”, model-
independent RCs to ep → ep scattering include vacuum
polarization, vertex, and self-energy terms that are purely
virtual and depend only on Q2, Bremsstrahlung (real photon
emission), which depends strongly on both Q2 and ε and
modifies the reaction kinematics, and two-photon-exchange
(TPE), in the limit where one of the two exchanged pho-
tons is “soft”. The contribution of “hard” TPE, in which
both exchanged photons carry a “large” momentum, can-
not presently be calculated model-independently, and is
neglected in the standard radiative correction procedures. It is
thought to be largely responsible for the discrepancy between
cross sections and polarization observables [2992] in high-
Q2 extractions ofGp

E , and is presently the subject of vigorous
worldwide experimental and theoretical investigation. For a
recent review of the subject, see Ref. [2993].

For conventional RC, most of the earlier published extrac-
tions of the proton form factors relied on the work of Tsai
[2994] or Mo and Tsai [2995]. Following the initial dis-
covery of the rapid fall-off of Gp

E/G
p
M at large Q2 using

polarization transfer [2973], and the resulting large discrep-
ancy between two different observables sensitive (in princi-
ple) to the same fundamental property of the proton, Max-
imon and Tjon [2996] refined the mathematical treatment
of these corrections and removed many of the approxima-
tions made in the expressions of Mo and Tsai, including an
exact calculation of the soft Bremsstrahlung contributions.

123



 1125 Page 340 of 636 Eur. Phys. J. C          (2023) 83:1125 

Several authors [2961,2990,2997] have recently examined
the quantitative differences between the calculations of Ref.
[2995] and the more accurate approach of Ref. [2996], and
studied the impact of these differences on previously pub-
lished extractions of the form factors. Updating the published
cross sections to use the more modern RC prescriptions is a
non-trivial undertaking, especially for the older experiments,
since the required modifications depend on details of the
experiments and the associated data analyses that in some
cases were not thoroughly documented in the final publica-
tions.

The most recent and comprehensive effort thus far to
update published elastic ep cross sections to use “state-of-
the-art” RC in the high-Q2 region was described in Ref.
[2961]. The reanalysis focused on a subset of high-Q2 exper-
iments from Jefferson Lab and SLAC for which the original
publications provided sufficient details of the experimental
parameters and the RC prescriptions and cutoffs used that
they could be corrected in a self-consistent way [2961]. As
noted by the authors of [2961] and earlier by [2990], the effect
of updating the RC to the older SLAC data is to reduce, but
not eliminate, the magnitude and significance of the discrep-
ancy in the high-Q2 region. The new, precise cross sections
from Jefferson Lab’s Hall A [2961] extend the Q2 range for
which a statistically significant discrepancy between cross
sections and polarization observables is established.

In the polarization transfer method, the simultaneous mea-
surement of the recoil nucleon polarization components Pt
and P! offers many advantages in the control of experimen-
tal uncertainties. In particular, the form factor ratio can be
determined in a single measurement, eliminating uncertain-
ties resulting from changes in experimental parameters such
as the beam energy, detector angles, spectrometer magnetic
field settings, target polarization and spin direction, and oth-
ers. Moreover, the beam polarization and many other sources
of systematic uncertainty associated with recoil nucleon
polarimetry cancel in the ratio Pt/P!, see, e.g., Ref. [2982],
and reversal of the electron beam helicity reverses the direc-
tion of the recoil nucleon polarization while leaving all other
experimental parameters unchanged, providing for robust
cancellation of systematic effects associated with polarimeter
acceptance and/or detection efficiency [2998]. The dramat-
ically different behavior of Gp

E implied by the polarization
data has profound implications for theoretical modeling of
nucleon structure, as discussed below.

While polarization measurements of GE/GM are gener-
ally thought to have small systematic uncertainties, it must be
noted that the published data exhibit significant internal ten-
sion in the region 0.1–1 GeV2 where several high-precision
experiments give somewhat conflicting results [2975,2983–
2985,2987]. Despite this unresolved tension, polarization
observables are generally regarded as giving the most reli-
able determination of Gp

E at large Q2 values, due to their

superior sensitivity to GE as compared to the Rosenbluth
method, and their relative insensitivity to radiative correc-
tions [2999,2999–3001] and higher-order QED corrections
neglected by the standard RC procedures, such as hard Two-
Photon-Exchange (TPE) [2981,2982]. This property derives
from the fact that polarization asymmetries are ratios of polar-
ized and unpolarized cross sections, that tend to be affected
similarly by radiative processes. The Pt/P! ratio in the polar-
ization transfer method is a ratio of such ratios, and the model-
independent RC to this ratio tend to be utterly negligible com-
pared to the uncertainties in the presently measured range of
Q2 [2982]. Moreover, a precise search for evidence of hard
TPE contributions in this observable found no significant
effect [2981] at 2.5 GeV2, with the ratio μpG

p
E/G

p
M show-

ing no variation with ε in the range 0.15–0.8 with≈ 1% total
uncertainties.

Assuming that polarization measurements give the “true”
value of Gp

E , the fractional contribution of the εG2
E term to

the OPE cross section falls rapidly with Q2, as shown in
Fig. 243. Based on the global fit of Ref. [1076], the electric
term contributes at most 10% of σR at 2 (GeV/c)2, 2% at
5 (GeV/c)2, and even less at higher Q2, basically wiping out
any meaningful sensitivity to GE , since its contribution to σR

becomes comparable to the limits of experimental accuracy
and to the expected magnitude of higher-order QED correc-
tions that are theoretically and experimentally uncertain.

In addition to efforts to resolve the difficulties with Gp
E

at large Q2, there has been a renewed effort to improve the
precision of elastic ep scattering data at very low Q2, since
the CREMA collaboration first published an extremely pre-
cise extraction of the proton radius from Lamb shift mea-
surements in muonic hydrogen [3002], yielding a radius of
about 0.84 fm, smaller by roughly seven standard deviations
than the previous consensus value (at the time) of 0.88 fm
from electron–proton scattering and spectroscopy of ordi-
nary hydrogen. The Mainz A1 collaboration [618,2957] car-
ried out a systematic program of over 1,400 precision cross
section measurements spanning the Q2 range 0.003–1 GeV2

using the “traditional” method based on magnetic spectrome-
ters. They published several direct fits of Gp

E and Gp
M to their

cross section data, testing various functional forms to accu-
rately quantify the uncertainties. They also published direct
L/T separations for Q2 � 0.02 GeV2. While the Mainz Gp

E
extraction is in good agreement with the rest of the world
data, their Gp

M results, whether from global fits or direct L/T
separations, are in significant tension with the other world
data,103 as is evident from Fig. 246. The slower fall-off with
Q2 of the Mainz Gp

M implies a smaller magnetic radius;
indeed, the published Mainz extraction of the proton mag-

103 Note, however, that the Mainz dataset implies aGp
E/G

p
M ratio that is

consistent with the high-precision polarization measurements by Zhan
et al., Ref. [2984].
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Fig. 249 Comparison of PRad [2958] and Mainz A1 [618] elastic
ep→ ep cross sections, normalized to the “standard dipole” cross sec-
tion σD , calculated from Eq. (10.9) assuming Gp

E = Gp
M/μp = GD ;

i.e., ε(1+ τ)σD/σMott = G2
D

(
ε + μ2

pτ
)

netic radius r pM is about three standard deviations below the
consensus of extractions based on other world data.

More recently, the PRad collaboration [2958] performed
new ep → ep cross section measurements using a novel,
magnetic-spectrometer-free method involving precision cal-
orimetry, a windowless gas target, and a simultaneous mea-
surement of the pure electroweak process of Möller scat-
tering (e−e− → e−e−) to constrain the absolute cross
section normalization. Their measurements reached a mini-
mum Q2 of 0.0002 GeV2 with small statistical and system-
atic uncertainties, achieving a proton radius measurement of
rp ≈ 0.83 ± 0.01 fm, consistent with the muonic hydrogen
value.

Figure 249 shows the PRad and Mainz cross section data,
normalized to the “standard dipole” cross section, calculated
from Eq. (10.9) under the assumptionGp

E = Gp
M/μp = GD .

The low end of the PRad Q2 range is in a regime where the
cross section is indistinguishable from point-like behavior
within experimental precision; at the lowest Q2 of the PRad
dataset, G2

D ≈ 0.999. This is unsurprising given that the de

Broglie wavelength of the virtual photon λ = h̄c/
√
Q2 ≈

13 fm is large compared to rp at this Q2.

Neutron data and discussion
The neutron electromagnetic form factors are much more
difficult to measure accurately than those of the proton, due
primarily to the absence of free neutron targets of sufficient
density for electron scattering experiments at large Q2. The
small cross sections for high-energy electromagnetic inter-
actions can generally only be measured accurately in high-
luminosity experiments, and the neutron’s instability and
zero charge severely limit the number of free neutrons that
can be collected in a suitably small volume for a suitable

duration for such experiments. As such, essentially all knowl-
edge of neutron electromagnetic form factors at meaning-
fully large Q2 values comes from measurements of electron
scattering on bound neutrons in light nuclear targets such as
deuterium and 3He.

Since Gn
E (0) = 0, the cross section for elastic en scatter-

ing is dominated by the magnetic term over essentially the
entire measured Q2 range, even at relatively low Q2. The
neutron form factors are accessible experimentally through
a number of scattering observables on light nuclear tar-
gets, including cross sections and spin asymmetries. Model-
dependent extractions of neutron elastic form factors from
measurements of elastic electron–deuteron scattering have
also been attempted at relatively low Q2 values (see, e.g.,
[3003–3006]), but are subject to large theoretical and experi-
mental systematic uncertainties, and are generally considered
less reliable than extractions from measurements of quasi-
elastic scattering on bound nucleons in deuterium and/or
Helium-3, although they are qualitatively consistent.

Figures 247 and 248 show most of the existing data for
Gn

E and Gn
M , respectively, excluding extractions based on

elastic ed cross section measurements. For Gn
E , essentially

all reliable data of reasonable precision come from measure-
ments of polarization observables, since the (quasi)-elastic
(e, e′n) cross section has relatively low sensitivity toGn

E over
the entire accessible Q2 range. The data shown in Fig. 247
include extractions from asymmetry measurements on polar-
ized deuterium targets (Refs. [3007–3010]), polarized 3He
targets (Refs. [3011–3015]), and via recoil neutron polariza-
tion on unpolarized deuterium (Refs. [3016–3018]).

The most reliable known method to determine the neu-
tron magnetic form factor Gn

M is the so-called “ratio” or
“Durand” technique [3019], in which “neutron-tagged” and
“proton-tagged” quasi-elastic electron scattering on a deu-
terium target are measured simultaneously, and the ratio of
cross sections

2H(e, e′n)p/2H(e, e′ p)n

is measured. The simultaneous measurement of quasi-free
scattering on bound protons and neutrons in deuterium, com-
bined with the precise knowledge of the free proton cross
section, allows a determination of the free neutron cross sec-
tion with very small uncertainties. In particular, the elec-
tron acceptance and detection efficiency, the data acquisi-
tion deadtime, and the luminosity cancel exactly in the n/p
ratio, and nuclear effects such as Fermi motion and bind-
ing, final-state interactions, meson-exchange currents, and
others, as well as QED radiative corrections, tend to affect
the d(e, e′n)p and d(e, e′ p)n cross sections nearly identi-
cally [3020], for sufficiently tight cuts on the photon-nucleon
invariant mass W 2, and the angle θpq between the detected
nucleon’s momentum and the momentum transfer direc-
tion, determined from the scattered electron’s kinematics, to
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ensure exclusivity of the reaction. The main source of experi-
mental uncertainty with the ratio method is in the knowledge
of the acceptance/detection efficiency for protons and neu-
trons. Of the data shown in Fig. 248, Refs. [3020–3024] used
the ratio method, Refs. [3025–3028] extracted Gn

M from the
beam-target double-spin asymmetry in inclusive quasielastic
electron scattering on polarized Helium-3, and Refs. [3029–
3031] extracted Gn

M from absolute cross section measure-
ments in either inclusive scattering on deuterium or coinci-
dence d(e, e′n)p scattering. The low-Q2 data for Gn

M show
some inconsistencies, suggesting underestimated theoretical
or experimental systematic uncertainties in some of the older
measurements. The Super BigBite Spectrometer (SBS) Col-
laboration in Jefferson Lab’s Hall A recently collected data
using the ratio method to extend the knowledge of Gn

M to
Q2 = 13.5 GeV2 with very small statistical and systematic
uncertainties. The CEBAF Large Acceptance Spectrometer
(CLAS) collaboration in Jefferson Lab’s Hall B has also col-
lected data for Gn

M up to Q2 ≈ 10 GeV2, with qualitatively
different sources of systematic uncertainty. Both datasets are
currently under analysis.

10.1.4 Theoretical interpretation of nucleon form factors

As the spacelike electromagnetic form factors are among the
simplest, most clearly interpretable, and best-known mea-
surable dynamical properties of the nucleon, they consti-
tute important benchmarks for testing theoretical models.
Figure 250 shows the world data for the nucleon’s space-
like EMFFs together with selected theoretical models and
the expected results from the ongoing high-Q2 form factor
program in Hall A at Jefferson Lab by the Super BigBite
Spectrometer (SBS) collaboration. The SBS measurements
of the neutron magnetic form factor were completed dur-
ing the Oct. 2021–Feb. 2022 running period in Hall A, and
the data are currently under analysis. The SBS measurement
of Gn

E/G
n
M using a polarized 3He target is underway as of

October 2022 and will run through March of 2023, and the
polarization transfer measurements ofGn

E/G
n
M andGp

E/G
p
M

are expected to take data in 2023–2024. The expansion of the
Q2 range and precision of the proton and neutron data will
severely test theoretical models of nucleon structure.

The calculation of nucleon structure from first principles
in QCD is presently only possible using the methods of lat-
tice gauge theory. The accuracy of lattice QCD calculations
is rapidly improving with increases in computing power and
improvements in the control of systematic errors, and the
range of measurable quantities lattice QCD can predict con-
tinues to expand. Nevertheless, the prediction of nucleon
form factors and other observables of hard exclusive pro-
cesses from lattice QCD (see Refs. [609,611,3036,3037] and
references therein for recent efforts at low and high Q2) has
not yet reached a level of precision and accuracy commen-

surate with that of the experimental data, particularly at high
energies. As such, its predictions cannot yet be conclusively
“tested” by the form factor data. Instead, the existing data
serve to guide the improvement of the calculations. Mean-
while, the continued use of QCD-inspired phenomenological
models, approximations, effective theories, and continuum
methods provides valuable insight and improved understand-
ing of the relevant degrees of freedom and dynamical effects
at different energy scales when compared to the data.

For asymptotically large Q2 values, pQCD (perturba-
tive QCD) predicts the scaling behavior of the nucleon
form factors based on simple constituent counting rules and
helicity conservation [226]. For the nucleon, its three-quark
valence structure predicts F1 ∝ Q−4 and F2 ∝ Q−6 (see
the discussion in Sect. 5.9). While the proton data at the
highest measured Q2 values are in superficial qualitative
agreement with the pQCD scaling predictions, it has been
argued [3038,3039] that the pQCD mechanism of multi-
ple hard gluon exchange is not applicable to exclusive pro-
cesses in the presently accessible range of Q2. More recently,
Belitsky et al. considered the effects of both leading and
subleading twist contributions to the nucleon’s light-cone
wavefunctions in a pQCD analysis of the Pauli form fac-
tor F2, deriving the modified logarithmic scaling expres-
sion Q2F2/F1 ∝ ln2

(
Q2/Λ2

)
, with a range of values of

Λ ≈ 200−300 MeV describing the proton data rather well
[3040]. However, in an analysis of the quark flavor decom-
position of the spacelike FFs [3041] shortly following the
publication of data for Gn

E/G
n
M up to 3.4 (GeV/c)2 [3011]

and Gn
M up to 4.8 (GeV/c)2 [3020], it was noted that the neu-

tron Fn
2 /F

n
1 data do not follow this logarithmic scaling, at

least not for values of Λ similar to those fitting the proton
data.

Dispersion theoretical analysis, including models based
on the assumption of VMD (Vector Meson Dominance)
[3042], provide a coherent, self-consistent framework for the
joint interpretation of spacelike and timelike nucleon form
factors over the entire physical range of Q2. VMD-based
models were among the earliest to describe the global fea-
tures of the nucleon form factors and predicted the high-Q2

falloff of Gp
E/G

p
M decades before the polarization trans-

fer experiments. A key assumption of VMD and VMD-
based models is that the virtual photon-nucleon interaction
at low to intermediate Q2 is dominated by vector meson pole
terms, which contribute significantly to the dispersion inte-
grals connecting the spacelike and timelike regions through
the requirements of unitarity and analyticity of the form fac-
tors considered as functions of q2 in the complex plane. For a
recent review of the dispersion theoretical analysis of nucleon
EMFFs, see Ref. [3043].

As mentioned above, in the very low-energy limit, when
target recoil can be neglected, the form factors can be inter-
preted as three-dimensional Fourier transforms of the spa-

123



Eur. Phys. J. C          (2023) 83:1125 Page 343 of 636  1125 

Fig. 250 Data for all four nucleon electromagnetic form factors at
spacelike Q2 with selected theoretical models, the global fit from
[1076], and the projected results from the ongoing SBS program at
Jefferson Lab, plotted arbitrarily at the values from the global fit. Theo-
retical curves shown are the BLFQ calculations of Ref. [941] (Xu 2021),
the VMD-based model of Ref. [3032] (Lomon 2002), the GPD-based

model of Ref. [3033] (Diehl 2005), the covariant spectator model of Ref.
[3034] (Gross 2008), the DSE-based calculation of Ref. [2828] (Segovia
2014), and the quark–diquark model of Ref. [3035] (Cloet 2012). Data
references are the same as those given in the text and described in the
captions of Figs. 245, 246, 247, 248. See text for details

tial distributions of charge (GE ) and current (GM ) in the
nucleon. While this naive density interpretation is invali-
dated by relativity for finite momentum transfers, several
authors have extracted three-dimensional rest-frame densi-
ties from the form factors using model-dependent relativistic
prescriptions to relate the Sachs form factors measured at a
four-momentum transfer Q2 to the static rest frame densi-
ties. A common feature of such extractions is the identifi-
cation of the Sachs form factors GE and GM with Fourier
transforms of the Breit frame104 charge and current densi-
ties. The Breit frame densities are then modified by a boost
factor k2 = Q2/(1+ τ) relating Q2 to the wave number k in
the nucleon rest frame, and another model-dependent factor
relating the Sachs FF to the so-called “intrinsic” form factors
ρ̃(k), defined as Fourier–Bessel transforms of the rest frame

104 The Breit or “brick-wall” frame in elastic eN scattering is the frame
in which there is no energy transfer in the collision. It is related to the
nucleon rest frame by a boost along the momentum transfer direction,
with a boost factor γ = √1+ τ .

densities. The latter correction attempts to account for the
Q2-dependent boost of the nucleon wavefunction itself from
the rest frame to the Breit frame. Kelly [3044] used expan-
sions in a complete set of radial basis functions and a rela-
tivistic boost prescription consistent with the pQCD asymp-
totic behavior to minimize model-dependence and estimate
the uncertainties in the radial densities due to the finite Q2

range of the data. Among his key findings were a broader
charge density for the proton compared to its magnetization
density, consistent with the fall-off of the polarization data
for Gp

E/G
p
M , and a neutron charge density described by a

positive core surrounded by a negative exterior, consistent
with pion-cloud models.

While the three-dimensional radial densities extracted
from the form factors are necessarily model-dependent, a
model-independent density interpretation of the form factors
exists through sum rules relating the form factors to moments
of Generalized Parton Distributions (GPDs) [1081]. Miller
[3045,3046] showed that in the infinite momentum frame,
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the impact-parameter-space densities of charge and magne-
tization in the nucleon are two-dimensional Fourier–Bessel
transforms of the Dirac (F1) and Pauli (F2) form factors,
respectively. Examples of empirical extractions of the trans-
verse densities from the form factor data can be found in
Refs. [2867,3047]. In apparent contrast to model-dependent
extractions of 3D rest frame densities such as Kelly’s, the
neutron’s transverse charge density exhibits a negative core
surrounded by a positive exterior, contradicting the qualita-
tive predictions of several models.

The form factors also play an important role in efforts
to extract the GPDs from measurements of Deeply Virtual
Compton Scattering (DVCS) and other hard exclusive pro-
cesses. Through the aforementioned sum rules, the form fac-
tors F1 and F2 impose fairly powerful constraints on, respec-
tively, the vector (H) and tensor (E) GPDs that enter the Ji
sum rule for the nucleon spin decomposition [1081]. If good
measurements and/or models of the GPDs exist, they can be
used to predict the form factors [3048]. Alternatively, when
combined with the forward parton distributions measured in
deep inelastic scattering, the form factors can be used to con-
strain the GPDs [3033,3049], particularly at high Bjorken x
and/or large −t . Apart from the direct constraints, precise
knowledge of the form factors is also required for analy-
sis of experiments attempting to measure GPDs, to separate
the contributions of the DVCS and Bethe–Heitler processes,
which interfere at the same order in α and are experimentally
indistinguishable.

Constituent quark models (CQMs) have a long history in
nuclear physics and predate the emergence of QCD as the
accepted theory of strong interactions within the Standard
Model. For a review and modern perspective on the role of
the quark model in nuclear physics, see [513]. The early
non-relativistic constituent quark model was successful in
explaining the observed spectra of baryons and mesons as
qqq (fermionic) and qq̄ (bosonic) bound states, and mak-
ing qualitative predictions of meson and baryon masses and
magnetic moments. Indeed, one of the original motivations
for the introduction of the color quantum number prior to
the development of QCD was to preserve the Pauli exclu-
sion principle for low-lying baryon states, whose combined
spin/flavor/orbital quantum numbers are symmetric under the
exchange of any two quarks. This issue was particularly acute
for the spin-3/2 baryon decuplet. To explain dynamical prop-
erties of hadrons in terms of constituent quarks, a model for
the confining quark–quark interaction and the resulting quark
wavefunctions is needed. The “bare” u and d valence quark
constituents of nucleons appearing in the QCD Lagrangian
are almost massless compared to the nucleon mass. As such,
the nucleon, considered as the ground state of a bound sys-
tem of three light quarks, is characterized by a large ratio
of binding energy to constituent mass, making a fully rela-
tivistic treatment mandatory to obtain realistic phenomenol-

ogy and accurate descriptions of the data. A common feature
of CQM calculations of nucleon structure is the “dressing”
of the bare, almost-massless valence quarks by gluons and
quark–antiquark pairs, leading to massive constituent quarks
and/or diquarks as effective degrees of freedom, often carry-
ing their own internal structure. While a full review of rela-
tivistic constituent quark model calculations of nucleon form
factors is beyond the scope of this section, a fairly compre-
hensive overview is given in Ref. [3050] (see also Sect. 5).

In recent years, Hamiltonian light-front field theory has
emerged as a useful framework for the nonperturbative solu-
tion of invariant masses and correlated parton amplitudes
of self-bound systems [922]. Xu et al. recently applied this
framework to calculate the structure of the nucleon using the
method of Basis Light Front Quantization (BLFQ) [941];
see also Sect. 5.3. Their calculation used an effective light-
front Hamiltonian with quarks as the only effective degrees
of freedom, a transverse confining potential from light-front
holography supplemented by a longitudinal confinement, and
a one-gluon-exchange interaction with a fixed coupling. The
light-front wave functions resulting from the solution of this
Hamiltonian were then used to calculate the nucleon form
factors, parton distributions, and other dynamical properties.
The first form factor results from BLFQ [941], solved in
the valence space of three quarks, are compared to the data
and a selection of other theoretical models in Fig. 250. Such
comparisons indicate the need for improvements to the mag-
netic form factors within BLFQ, particularly in the low-Q2

region. Augmenting the BLFQ basis with dynamical gluons
may provide such improvements [953].

In recent years, significant progress has occurred in the
explanation and prediction of a wide range of measur-
able dynamical properties of hadrons in continuum non-
perturbative QCD [821], within the framework of Dyson–
Schwinger Equations (DSE). In this framework, the high-
Q2 behavior of proton and neutron form factors is very sen-
sitive to the behavior of the momentum-dependent dressed
quark mass function that governs the transition from mas-
sive, constituent-quark-like behavior at low energies to light,
parton-like behavior at high energies [2875]. Moreover, the
flavor decomposition of the form factors enabled by com-
bined proton and neutron measurements, soon to be extended
to Q2 values up to 10 GeV2, has the potential to elucidate
the importance of diquark correlations in nucleon structure
[793,3035]. Over the longer term, looking past the ongo-
ing SBS program, major efforts are underway to establish
intense polarized and unpolarized positron beams at Jeffer-
son Lab, which will facilitate precise e+ p/e− p comparisons
over a much larger range of Q2 and ε than presently avail-
able, hopefully leading to a decisive resolution of the Rosen-
bluth/polarization discrepancy for the proton, as part of a
larger physics program using positron beams [3051]. The
planned Electron-Ion Collider at Brookhaven National Lab-
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oratory should be capable of measuring the elastic ep cross
sections to a Q2 of up to 40–50 (GeV/c)2 [3052]. A pro-
posed “low-cost” upgrade [3053] of Jefferson Lab’s Contin-
uous Electron Beam Accelerator Facility (CEBAF) to a max-
imum energy of 20+ GeV using fixed-field alternating gra-
dient magnets to achieve 6–7 additional passes through the
CEBAF linear accelerators would enable further expansions
of the Q2 reach for Gp

E , Gn
E , and Gn

M to at least 20 GeV2.

10.2 Parton distributions

Wally Melnitchouk

10.2.1 Theoretical foundations

Parton distribution functions are the prototypical exam-
ples of QCD quantum correlation functions, which allow
high-energy lepton and/or hadron scattering processes to be
described in terms of quarks and gluons (or partons) (for
reviews see Refs. [3054–3058]). The PDF for a quark of fla-
vor i in a nucleon (moving with momentum p) is defined by
the Fourier transform of a forward matrix element of quark
bilinear operators, which in the A+ = 0 gauge can be written
as

fi/N (x, μ
2) = 1

4π

∫
dz− e−i xp+z−

× 〈N (p)|ψ̄i (z
−) γ+ ψi (0)|N (p)〉, (10.19)

where ψi is the quark field operator, x is the light-cone
momentum fraction of the proton carried by the parton, and
μ is the renormalization scale. Analogous expressions can
be written for antiquark and gluon PDFs, the latter in terms
of the gluon field strength tensor, F A

μν .
The utility of PDFs is that they allow one to relate various

high-energy scattering reactions, which would otherwise not
be easily related to one another, and make predictions for
new reactions in terms of the same set of PDFs obtained
from previous experiments. The key to this is the ability to
factorize the scattering process into a process-dependent, per-
turbatively calculable hard scattering cross section and the
process-independent, nonperturbative function parametrized
by the PDF. An important virtue of PDFs is that in the infinite
momentum frame (or on the light-front) they can be sim-
ply interpreted as probability densities describing how the
proton’s momentum is shared amongst the different parton
constituents, as a function of the fraction x of the proton’s
momentum carried by the parton [1341].

Since quarks and gluons have nonzero spin, the funda-
mental distributions are the PDFs for a specific helicity (spin
projection along the direction of motion), f ↑i and f ↓i , corre-
sponding to parton spins aligned and antialigned with the pro-
ton spin, respectively. Unpolarized scattering experiments
are therefore only sensitive to sums of the helicity PDFs,

fi = f ↑i + f ↓i , while measurements involving polarized
beams and/or targets are required to obtain information on
differences, Δ fi = f ↑i − f ↓i .

Traditionally, PDFs have been determined in global QCD
analyses by simultaneously fitting a wide variety of data for
large momentum transfer processes. Typically, the PDFs are
parametrized in terms of some functional form, the parame-
ters of which are determined by fitting the calculated cross
sections to data. Once the PDFs are determined at some
initial momentum transfer scale, the DGLAP Q2 evolution
equations (see Sect. 2.3) are used to compute them at all
other scales needed for the calculations. The standard data
sets used in global analyses include deep-inelastic scatter-
ing (DIS) of charged leptons from proton or nuclear targets
(or neutrinos from heavy nuclei), Drell–Yan (DY) inclusive
lepton-pair production in hadron–hadron scattering, and the
production of photons, W± or Z bosons, or jets at large trans-
verse momentum in hadronic collisions (see Sect. 10.2.2). We
discuss the specific reactions and relevant data sets in more
detail in the following.

10.2.2 Physical processes and experimental observables

Historically, the main source of information on proton PDFs
has been the DIS of leptons from protons or nuclei, starting
from the pioneering experiments at SLAC in the late 1960s.
In the one-boson exchange approximation, the differential
DIS cross section can be written as a product of leptonic and
hadronic tensors,

d2σ

dΩdE ′
∼ α Lμν Wμν,

where α is the fine structure constant, Ω = Ω(θ, φ) is the
laboratory solid angle of the scattered lepton, and E ′ is the
scattered lepton energy. Using constraints from Lorentz and
gauge invariance, the hadronic tensor Wμν can be decom-
posed into several independent terms,

Wμν = −g̃μν F1 + p̃μ p̃ν
p · q F2 + iεμναβ pαqβ F3

+iεμναβ

qα

p · q
[
sβ g1 +

(
sβ − s · q

p · q pβ
)
g2

]
,

(10.20)

where pμ and qμ are the nucleon and exchanged boson four-
momenta, g̃μν = gμν − qμqν/q2, and p̃μ = pμ − (p ·
q/q2)qμ. The nucleon polarization four-vector sβ satisfies
s2 = −1 and p · s = 0. The structure functions F1,2,3 and
g1,2 contain the complete information about the structure
of the nucleon in DIS, and are generally functions of two
variables, conventionally chosen to be the Bjorken scaling
variable x = Q2/2p · q and the exchanged boson virtuality
Q2. In the Bjorken limit, in which both Q2 and p · q →∞
(or invariant final state hadron mass W 2 = (p + q)2 =
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M2 + Q2(1 − x)/x → ∞), but x is fixed, the structure
functions become simple functions of x only.

Unpolarized scattering
For spin-averaged scattering, the nucleon structure is parame-
trized in terms of the vector F1 and F2 structure functions,
and the vector-axial vector interference F3 structure func-
tion, which requires weak currents. According to QCD fac-
torization theorems, the structure functions Fj ( j = 1, 2, 3),
can be written in factorized form as convolutions of hard
coefficient functions and PDFs, weighted by respective elec-
troweak charges,

Fj (x, Q
2) =

∑

i=q,q̄,g
e2
i

[
C j
i ⊗ fi

]
(x, Q2), (10.21)

where the convolution symbol is defined by [A ⊗ B](x) =∫ 1
x (dy/y)A(x)B(x/y). The coefficient functions Cij can be

computed perturbatively in a series in αs . At leading order
(LO) in αs , Cij is a δ function, and the structure functions
reduce to linear combinations of the PDFs,

F1(x) = 1

2

∑

q

e2
q q

+(x), (10.22a)

F2(x) = 2xF1(x), (10.22b)

F3(x) = 2
∑

q

gqV gqA q
−(x), (10.22c)

where q± = q ± q̄ denote the C-even (odd) flavor combina-
tions, and we use the short-hand notation q(x) ≡ fq(x) or
q̄(x) ≡ fq̄(x) for a quark or antiquark PDF of flavor q in the
proton, and g(x) ≡ fg(x) for the gluon PDF. The F3 struc-
ture function vanishes for photon exchange, but is nonzero
for the exchange of weak bosons, with gqV (A) representing
the vector (axial vector) coupling of the boson to the quark
q. Equation (10.22) correspond to the simple parton model
of inclusive DIS, in which the structure functions are inter-
preted as parton densities. At finite energies, the logarithmic
Q2 dependence from the evolution equations described in
Sect. 2.3, as well as residual Q2 dependence associated with
power corrections (see below), give corrections to the simple
parton model expectations. (Note also that at LO the Bjorken
x variable coincides with the parton momentum fraction;
however, at higher orders these are different.)

Many DIS experiments have been performed with charged
lepton beams on proton targets, which for neutral currents in
the one-photon exchange approximation constrain the fla-
vor combination 4u+ + d+ + s+ (Z boson exchange would
involve a different linear combination of PDFs, involving the
weak mixing angle, sin2 θW ). For a neutron, the correspond-
ing linear combination would be 4d+ + u+ + s+. In prac-
tice, free neutron targets do not exist, so deuterium is often
used as a proxy, which then requires nuclear corrections be
made to extract the free neutron structure information (see
Sect. 10.2.3).

Charged current neutrino and antineutrino interactions
constrain different combinations of q+ or q− PDFs for the
F1,2 or F3 structure functions, respectively, depending on the
type of target used, so that by combining data on different
targets and with different beams one can in principle isolate
specific combinations of q or q̄ . A special case is provided
by charm production in ν and ν̄ DIS, which is sensitive to the
s and s̄ PDFs, respectively (although in practice this involves
heavy targets for which model-dependent nuclear corrections
must be made).

The gluon PDF plays a lesser role in inclusive DIS, as it
enters the cross sections at higher order, O(αs). In practice,
it is mainly constrained through the Q2 dependence of the
structure functions, and the longitudinal structure function
FL , which depends on differences at higher order between
the left- and right-hand sides of Eq. (10.22b). The strongest
constraints on g(x) in DIS have come from the HERA ep
collider data at very small x values [3059].

Since the PDFs are universal, the functions appearing in
the DIS structure functions are the same as those that describe
the structure of the incoming hadrons in hadronic collisions.
In analogy with the QCD factorization for DIS, the cross
section for the high energy scattering of hadron A (momen-
tum pA) and hadron B (momentum pB) to an inclusive state
in which a particle C is identified (such as a vector boson,
photon, or jet) can generally be written as

σAB→CX (pA, pB) =
∑

a,b

∫
dxa dxb fa/A(xa) fb/B(xb)

× σ̂ab→CX (xa pA, xb pB), (10.23)

where xa and xb are the corresponding parton momentum
fractions, and σ̂ab→CX is the partonic cross section. For vec-
tor boson production (W±, Z0, or lepton pairs produced from
virtual photons), the process proceeds at LO through qq̄ anni-
hilation. In particular, the Drell–Yan lepton-pair production
cross sections in pp and pn collisions depend on the combi-
nations

σ pp ∼ 4u(xa) ū(xb)+ d(xa) d̄(xb)+ (xa ↔ xb)+ · · ·
σ pn ∼ 4d(xa) d̄(xb)+ u(xa) ū(xb)+ (xa ↔ xb)+ · · ·

where the ellipses indicate contributions from heavier quarks.
(The pn cross section is again obtained from deuterium data.)
As we discuss below, ratios of these cross sections at kine-
matics such that xa � xb, where the hadron A can be approx-
imated by its valence structure, can be used to constrain the
d̄/ū ratio. In contrast, the inclusive production of W± bosons
constrains products of the form q(xa) q̄ ′(xb) with specific
weights given by the appropriate CKM matrix elements.

For p p̄ collisions at the Tevatron, for example, at large
values of rapidity (very asymmetric values of xa and xb) at
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LO one has

σW+ ∼ u(xa) d(xb)+ d̄(xa) ū(xb) + · · ·
σW− ∼ d(xa) u(xb)+ ū(xa) d̄(xb) + · · ·
where the PDFs in the antiproton have been related to those in
the proton. For large and positive rapidity, xa > xb and the
antiquark PDFs can be neglected, so that these cross sec-
tions depend only on the u and d PDFs. Because of the
missing neutrino resulting from the W decays, one cannot
directly reconstruct the rapidity distributions, and typically
the charged lepton rapidity asymmetry for W± production is
presented. The decay process means that the constraints on
the PDFs are less direct, but such measurements still provide
useful constraints on the d/u ratio at moderate values of x .

Recent data from the ATLAS Collaboration at the LHC
[3060,3061] on W± and Z production and decay sug-
gested a rather larger strange quark sea than traditionally
obtained from neutrino scattering, with the ratio Rs =
(s + s̄)/(ū + d̄) ≈ 1.13 at parton momentum fraction
x ≈ 0.02, compared with the traditionally accepted value
of Rs ≈ 0.4 from neutrino scattering analyses. In contrast,
a simultaneous analysis of PDFs and fragmentation func-
tions including semi-inclusive π± and K± production data,
along with single-inclusive e+e− annihilation cross sections
into hadrons [665,3062], favored a strong suppression of the
strange PDF at intermediate x values, correlating with an
enhancement of the s → K− fragmentation function. The
question of the magnitude and shape of the strange (and anti-
strange) PDF remains a topic of considerable phenomeno-
logical interest.

Other observables that can constrain PDFs are inclusive
jet or photon, dijet, and photon + jet production cross sec-
tions. Generally, these have greater sensitivity to the gluon
PDF at large x than DIS reactions. Dijet production triple
differential cross sections yield more information than sin-
gle jet cross sections because the rapidity of the second jet is
also constrained, thereby helping to constrain the momentum
fractions of the PDFs. Direct or isolated photon production
can also constrain the gluon PDF through the subprocess
qg → γ q [3063]. Photon + jet production offers similar
constraints, but now the subprocesses are weighted by the
squared charge of the parton to which the photon couples. A
summary of the kinematic coverage of the existing datasets
used to constraint unpolarized PDFs is shown in Fig. 251.

Polarized scattering
For spin-dependent reactions, the structure functions g1 and
g2 are extracted from DIS measurements with longitudi-
nally polarized leptons scattered from a nucleon or nucleus
that is polarized either longitudinally or transversely relative
to the beam. For longitudinal beam and target polarization,
the difference between the cross sections for spins aligned
and antialigned is dominated by the g1 structure function,

Fig. 251 Kinematic coverage of datasets used in global QCD analy-
ses. The variable x represents Bjorken-x for DIS and Feynman-x for
vector boson and jet production, while the scale Q2 represents the four-
momentum transfer squared for DIS, the mass squared of the interme-
diate boson for vector boson production, and the transverse momentum
squared for jet production. A DIS cut of W 2 = 3 GeV2 is indicated in
the bottom right hand corner (solid back line)

while the g2 structure function requires measurements with
the target polarized transversely to the beam polarization. In
practice one often measures the polarization asymmetry A1,
which is given as a ratio of spin-dependent and spin-averaged
structure functions,

A1 = 1

F1(x)

[
g1(x)− 4M2x2

Q2 g2(x)
]
, (10.24)

where M is the nucleon mass. At small values of x2/Q2, the
asymmetry simplifies to A1 ≈ g1/F1.

In analogy with the unpolarized F1 structure function, the
structure function g1 can be expressed at LO in terms of
differences between quark distributions with spins aligned
and antialigned with that of the nucleon,

g1(x) = 1

2

∑

q

e2
q Δq+(x). (10.25)

The g2 structure function, on the other hand, does not have
a simple partonic interpretation. However, its measurement
provides information on the subleading, higher-twist contri-
butions which parametrize long-range multi-parton correla-
tions in the nucleon. The dependence on both spin-dependent
and spin-averaged structure functions in A1 illustrates the
need to consistently analyze both unpolarized and polarized
PDFs simultaneously, as will be discussed below.

As with unpolarized measurements, historically most con-
straints on spin-dependent PDFs have come from polarized
charged-lepton DIS experiments. For charged lepton scatter-
ing from polarized proton targets, the g1 structure function
depends on the combination 4Δu++Δd++Δs+, while for
the neutron the combination would be 4Δd++Δu++Δs+.
In practice, polarized 3He targets are usually used as effective
sources of polarized neutron, since the neutron carries almost
90% of the 3He spin, while polarized deuterons, which have
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equal proton and neutron spin contributions, are sensitive to
the isoscalar combination 5(Δu+ +Δd+)+ 2Δs+.

At next-to-leading order (NLO), the polarized gluon dis-
tribution Δg also enters in the g1 structure function. The
mixing with the quark flavor singlet contribution to g1 under
Q2 evolution can then be used to provide constraints on Δg.

Semi-inclusive DIS (SIDIS) provides additional inde-
pendent combinations of spin-dependent PDFs that can be
used to separate individual quark and antiquark flavors. At
high energies, production of hadrons h in the current frag-
mentation region, primarily pions or kaons, is proportional
to products of PDFs and quark → hadron fragmentation
functions. Typically, such experiments measure the semi-
inclusive polarization asymmetry, which at LO can be writ-
ten as a ratio of spin-dependent to spin-averaged SIDIS cross
sections,

Ah
1(x, z) =

∑
q e2

q

(
Δq(x) Dh

q (z)+Δq̄(x) Dh
q̄ (z)

)

∑
q e2

q

(
q(x) Dh

q (z)+ q̄(x) Dh
q̄ (z)

) ,

(10.26)

where Dh
q (z) is the fragmentation function for the scattered

quark to produce a hadron h with a fraction z of the quark’s
energy. For large z, the produced hadron has a high proba-
bility of containing the scattered parton, providing a tag on
the initial parton distribution.

The fragmentation functions Dh
q can be determined from

other reactions, such as inclusive single hadron production in
e+e− annihilation or pp collisions. One can then weight par-
ticular quark or antiquark flavors by selecting favored (such
as Dπ+

u or Dπ+
d̄

) or unfavored (Dπ+
d or Dπ+

ū ) fragmentation
functions for specific hadrons. The polarized strange quark
PDF Δs, in particular, can be constrained from SIDIS K pro-
duction data. The polarized gluon distribution Δg can also be
constrained from SIDIS data on charmed or high-pT hadron
production through the photon–gluon fusion process.

Inclusive particle production in polarized proton–proton
collisions provides an additional method of determining spin-
dependent sea quark and gluon PDFs. The cross sections for
the production of W± bosons in scattering longitudinally
polarized protons from unpolarized protons, �p p → W± X ,
depend on products of spin-dependent and spin-averaged
PDFs,

ΔσW+ ∼ Δd̄(xa) u(xb)−Δu(xa) d̄(xb),

ΔσW− ∼ Δū(xa) d(xb)−Δd(xa) ū(xb).

At large positive (negative) rapidities, xa � xb (xa � xb),
the cross sections are dominated by a single flavor, while at
mid-rapidities both u and d flavors contribute.

Inclusive jet (or π0) production in double-polarized
proton–proton scattering, �p �p → jet (or π0) + X , is sen-
sitive to the polarized gluon PDF. The first evidence for a
small, but nonzero Δg was observed by the STAR Collabo-

Fig. 252 As in Fig. 251 but for spin-dependent observables

ration at RHIC in jet data at
√
s = 200 GeV, although recent

Monte Carlo analysis [976] suggests that the sign ofΔg is not
unambiguously determined by these data. A summary of the
kinematic coverage of the existing datasets used to constraint
helicity PDFs is shown in Fig. 252.

10.2.3 Global QCD analysis

With the growing number of high energy scattering exper-
iments in the 1970s and 1980s came the need to system-
atically and uniformly analyze the data with the tools that
were being developed in perturbative QCD. The concept of
fitting datasets from various experiments globally with a sin-
gle set of quark, antiquark and gluon PDFs dates back to the
early analyses of Duke and Owens [3064] and Morfin and
Tung [3065]. Since then, a number of dedicated efforts have
been made worldwide to fit both unpolarized and polarized
scattering experiments in terms of spin-averaged and spin-
dependent PDFs.

The standard paradigm has been to parametrize the PDFs
at some input scale Q0 and then evolve using the appropriate
evolution equations to the scales needed for the calculation of
each experimental observable. The parameters of the PDFs
are estimated by comparing each calculated observable with
the data using χ2 minimization techniques. All of the global
PDF analysis groups use some variation of this approach,
although the details of the implementation differ between
different groups.

PDF parametrizations and constraints
A typical parametrization at the input scale Q0 for a generic
(unpolarized or polarized) PDF f is

x f (x, Q2
0) = a0 x

a1(1− x)a2 P(x), (10.27)

where P(x) represents a smoothly varying function, such as a
polynomial in x or

√
x , or more elaborate forms based on neu-

ral networks [3066] or self-organizing maps [3067]. Some of
the parameters in the input distributions can be determined
from physical constraints. For example, in the unpolarized
case the conservation of valence quark number gives for the
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first moments
∫ 1

0
dx u−(x, Q2

0) = 2,
∫ 1

0
dx d−(x, Q2

0) = 1, (10.28)

and zero for all other flavors, while the momentum sum rule
requires

∫ 1

0
dx x

[ n f∑

q

q+(x, Q2
0)+ g(x, Q2

0)
]
= 1, (10.29)

where the number of flavors at the input scale Q2
0 is usually

taken to be n f = 3.
In the polarized case the first moments of theC-even distri-

butions can be related to octet baryon weak decay constants.
For the isovector combination, corresponding to the Bjorken
sum rule,
∫ 1

0
dx (Δu+ −Δd+)(x, Q2

0) = gA, (10.30)

where gA = 1.270(3) is the nucleon axial charge, while for
the SU(3) octet one has
∫ 1

0
dx (Δu+ +Δd+ − 2Δs+)(x, Q2

0) = a8, (10.31)

where the octet axial charge a8 = 0.58(3) is extracted from
hyperon β-decays assuming SU(3) flavor symmetry [3068].
Note that the sum rules (10.28)–(10.31) are preserved under
Q2 evolution.

Power corrections
We should note that the theoretical results summarized above
have been obtained within the framework of perturbative
QCD in the limit when both Q2 and W are much larger
than all hadron mass scales, Q2,W 2 � M2, where the cross
sections are dominated by their leading twist contributions.
In actual experiments performed at finite beam energy E , the
maximum values of Q2 and W are limited, which restricts
the available coverage in Bjorken x . This is especially rel-
evant at large x in DIS, where for fixed Q2, as x → 1 the
final state hadron mass W decreases as one descends into
the region dominated by nucleon resonances at W � 2 GeV.
The resonance region may be treated using the concept of
quark–hadron duality [3069], although this goes beyond the
scope of the usual perturbative QCD analysis.

In the low-Q2 region, power corrections to the Bjorken
limit results that scale as powers of Λ2

QCD/Q
2 become

increasingly important. In the operator product expan-
sion, these are associated with matrix elements of higher
twist operators, associated with multi-parton correlations
which characterize the long-range nonperturbative interac-
tions between quarks and gluons. While providing glimpses
into the dynamics of quark confinement, the power correc-
tions are viewed as unwelcome backgrounds in efforts aimed

solely at extracting leading twist PDFs. Other subleading cor-
rections are associated with target mass corrections (TMCs),
which are of kinematical origin and arise from nonzero val-
ues of hadron masses [3070–3074].

Regardless of their origin, the various power suppressed
corrections to the leading twist results can be absorbed into
phenomenological functions, such as

Fi (x, Q
2) = FLT

i (x, Q2)+ hi (x)

Q2 + · · · , (10.32)

for an unpolarized structure function Fi , for example, where
FLT
i denotes the leading twist contribution. The higher twist

corrections are sometimes assumed to be multiplicative, with
the functions hi proportional to the leading twist contribu-
tion. Possible additional Q2 dependence of the higher twist
contributions, such as from radiative αs(Q2) corrections, is
usually neglected.

Nuclear corrections
Since nucleons bound in a nucleus are not free, the par-
ton distributions fi/A in a nucleus A deviate from a sim-
ple sum of PDFs in the free proton and neutron, fi/A �=
Z fi/p+(A− Z) fi/n , where Z is the number of protons. This
is especially relevant at small values of x , where nuclear shad-
owing effects suppress the nuclear to free isoscalar nucleon
(N ) ratio, fi/A/(A fi/N ) < 1, and at large x , where the effects
of Fermi motion, nuclear binding, and nucleon off-shellness
give rise to the “nuclear EMC effect” [3075–3077]. For spin-
dependent PDFs, the different polarizations of the bound
nucleons and nuclei also need to be taken into account.

In the nuclear impulse approximation, where scatter-
ing takes place incoherently from partons inside individual
nucleons, the PDF in a nucleus can be expressed as a con-
volution of the PDF in a bound nucleon and a momentum
distribution function fN/A of nucleons in the nucleus [3078–
3080]. The momentum distribution, or “smearing function”,
can be computed from nuclear wave functions, incorporating
nuclear binding and Fermi motion effects. Coherent rescat-
tering effects involving partons in two or more nucleons give
rise to nuclear shadowing corrections to the impulse approx-
imation, and such effects are typically important only in the
small-x region. In general, the relation between PDFs in a
nucleus and in a nucleon can be written as

fi/A =
∑

N=p,n

[
fN/A ⊗ fi/N

]+ δ(off) fi/A + δ(shad) fi/A,

(10.33)

where the term δ(off) fi/A represents nucleon off-shell or rel-
ativistic corrections that account for modification of the par-
ton structure of the nucleon in the nuclear medium. A similar
expression can be written for spin-dependent PDFs.

At large Q2 the smearing function has a probabilistic inter-
pretation in terms of the light-cone momentum fraction y of
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the nucleus carried by the struck nucleon. Typically, the func-
tion fN/A is steeply peaked around y ≈ 1, becoming broader
with increasing mass number A as the effects of binding
and Fermi motion become more important. In the limit of
zero binding, fN/A(y) → δ(1 − y), and one recovers the
free nucleon case. This assumption has often been made in
global PDF analyses. More recently, however, the important
role of nuclear corrections has been more widely appreci-
ated, especially in connection with extractions of the free
neutron structure function data from measurements involv-
ing deuterons and other light nuclei [3080–3086].

For neutrino scattering, to increase the relatively low
rates and obtain sufficient statistics for analyses such as
strange PDF extraction [3087,3088], experiments have usu-
ally resorted to using heavier nuclear targets, such as iron
or lead. Extractions from such data are complicated by the
presence of nuclear corrections in neutrino structure func-
tions [3089,3090], as well as effects of the nuclear medium
on the charm quark propagation in the final state [3091].

For spin-dependent scattering, the scarcity of data and
larger uncertainties at small x and at high x , where nuclear
corrections are most prominent, has meant that most global
analyses have relied exclusively on the effective polariza-
tion ansatz, in which the polarized PDF in the nucleus Δ fi/A
is related to the polarized PDFs in the proton and neutron
as Δ fi/A ≈ 〈σ 〉p Δ fi/p + 〈σ 〉n Δ fi/n , where 〈σ 〉p(n) is the
average polarization of the proton (neutron) in the nucleus.
In practice, along with polarized protons, only polarized deu-
terium and 3He nuclei have been used in DIS experiments.
As experiments at high luminosity facilities such as Jefferson
Lab at 12 GeV push to explore the higher-x region, nuclear
corrections from smearing and off-shell effects will become
more relevant.

Uncertainty quantification
There are several sources of PDF uncertainties that enter in
global QCD analyses. These include uncertainties on the
experimental data, the approximations used in computing
the partonic cross sections, and the parametrizations used to
describe the PDFs. The experimental errors on the data can
be directly propagated to the fitted PDFs. The most com-
mon method for implementing this is the Hessian method,
described in Ref. [3092]. The elements of the Hessian matrix
are given by partial derivatives of the χ2 function,

Hi j = 1

2

∂2χ2

∂ai ∂a j
, (10.34)

where ai denotes the i th PDF parameter. The Hessian matrix
is generated during the minimization procedure and its
inverse gives the error matrix. The eigenvectors of the error
matrix can then be used to define eigenvector parameter sets,
from which the error bands for the PDFs or for specific pro-
cesses are calculated. An important point to note is that the

error bands generally depend on a χ2 tolerance. Mathemat-
ically, the expectation is that the 1σ parameter errors corre-
spond to an increase of χ2 by one unit from the minimum
value, Δχ2 = 1. However, it has been suggested [3093] that
inconsistencies between different data sets should be han-
dled by introducing a larger value to be used, Δχ2 > 1. This
“χ2 tolerance” varies between groups (Δχ2 ∼ 10−100),
and allowance must be made for this when comparing the
resulting error bands.

On the other hand, it has been argued [3094] that the tol-
erance criterion effectively changes the likelihood function,
which is usually defined in terms of the χ2 function. In con-
trast, neural network based approaches suggest that the use
of a tolerance criterion is not necessary [3066,3095–3097].
In practice, the similar size of the uncertainties obtained in
such different approaches may be coincidental and due to
the likelihood deformation and resulting uncertainty infla-
tion, as observed in a recent comparative study using toy
data [3094]. Furthermore, concern has also been expressed
[3098] that a meta-analysis, such as PDF4LHC [3099], that
combines existing PDFs from different groups may obscure
the fundamental connection between experimental data and
theory and hide the true meaning of the uncertainties, if these
ultimately originate from different choices of the likelihood
function.

An alternative to the usual linear propagation of errors
in the Hessian method which avoids ambiguities associated
with tolerance criteria, and which is useful for minima that
are not well behaved or defined, is the Monte Carlo method.
To propagate the experimental errors a number of replica
data sets are randomly generated within the original errors,
and these replica sets are then fitted with the resulting replica
PDF sets treated using standard statistics [3096]. The central
values are computed as the averages over replicas, while the
uncertainties are given by the envelope of predictions.

In practice, the data resampling method has been used by
the NNPDF [975,3100] and JAM [665,976,3086] collabora-
tions, although these groups differ in their approach to PDF
parametrizations. While the JAM collaboration uses a tradi-
tional polynomial functional form for the function P(x) in
Eq. (10.27), the NNPDF group implements a similar basic
parametric form that is supplemented by a series of trained
neural network weights. The dependence on the functional
form for the PDF can be minimized by choosing a flexible
parametrization with parameters that are well-constrained by
data. Outside of kinematic regions covered by data, the PDFs
are not constrained, and care must be taken when using them
in extrapolated regions at small or large x .

The approximations made in computing partonic cross
sections naturally introduce uncertainties in PDFs, although
these can be rather difficult to quantify reliably. One of these
is the uncertainty arising from the truncation of the perturba-
tive series. These can be estimated to some extent by compar-
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ing LO, NLO, NNLO, and recently even approximate N3LO
[3101] fits, although not all processes are known to the same
accuracy. The topic of “missing higher order uncertainties”
and how to estimate them has in fact attracted some attention
recently in global PDF fitting efforts [3057].

Perturbative QCD calculations also depend to some degree
on the choices made for the renormalization and factorization
scales for each physical process. The choices will change the
results for different processes, and the fitted PDFs must com-
pensate these changes. A closely related issue is the choice of
the strong running coupling αs(MZ ), which is fitted together
with the PDF parameters in some analyses, and fixed to the
global average in others. Finally, the choice of data sets and
kinematic cuts can of course affect the extracted PDFs, and
these choices and the reasons for them need to be assessed
when drawing conclusions from PDF comparisons.

10.2.4 Spin-averaged PDFs

Using the technology outlined in the previous sections, a
number of global QCD analyses efforts have produced sets of
unpolarized proton PDFs, with groups in Europe and the the
US at the forefront of the data analyses. The European groups
include the UK-based MSHT [1107] group and the ABM
[3102] group, which use standard global fitting methodol-
ogy; the HERAPDF [3059] analysis, which includes only
data from the H1 and ZEUS experiments at HERA; and pre-
viously the Dortmund [3103] group, which pioneered the
approach of dynamically generating PDFs through Q2 evo-
lution from a low input scale. More recently, the NNPDF
[3100] collaboration introduced an approach based on neu-
ral networks.

US-based efforts have centered around the CTEQ collab-
oration, which involves two derivative analyses of nucleon
PDFs, by the CT (CTEQ-Tung et al.) [663] and CJ (CTEQ-
Jefferson Lab) [3084] groups. The former focuses more
on LHC-related phenomenology, while the latter has devel-
oped methodologies needed for describing data over a broad
energy range including the low-Q2 and W domain. The
Jefferson Lab-based JAM [3086,3104] collaboration uses a
Monte Carlo approach with simultaneous determination of
PDFs and other types of distributions, such as fragmenta-
tion functions and spin-dependent PDFs. In the following we
illustrate the current state of knowledge of the spin-averaged
proton PDFs, including the u and d valence quark distribu-
tions and the flavor structure of the proton sea.

Valence quark distributions
Valence quarks give the global properties of the nucleon, such
as its baryon number and charge. Knowledge of their momen-
tum distributions is important for many reasons, especially
at high values of x , where a single quark carries most of the
nucleon’s momentum. The large-x region is a unique test-

Fig. 253 Valence u and d quark PDFs versus x from several global
QCD analyses: JAM21 [3086], NNPDF [664], ABMP [3102], CJ15
[3084], and CT18 [663] at a scale Q2 = 10 GeV2

Fig. 254 Impact of various data sets on thed/u ratio at Q2 = 10 GeV2,
using the CJ15 PDFs set [3084]

ing ground, for example, for various nonperturbative models
of the nucleon [1088,1341,3081,3105,3106]. Reliable deter-
mination of PDFs at large x is also important for searches for
new physics beyond the Standard Model in collider experi-
ments at the LHC [3098,3107].

The valence u and d PDFs are illustrated in Fig. 253 from
several PDF groups. The u quark PDF is fairly well con-
strained (due to its larger charge) by the relatively abundant
proton DIS data that have been collected over several decades
at SLAC, CERN, DESY and Jefferson Lab. The d quark
distribution, on the other hand, relies in addition on neu-
tron structure functions, whose determination requires both
proton and deuteron DIS data. Studies of nuclear effects in
the deuteron suggest that the uncertainties related to nucleon
interactions increase significantly at large x [3081], leading
to large uncertainties in the d/u PDF ratio for x � 0.6, as
Fig. 254 illustrates. Inclusion of tagged deuteron data from
the BONuS experiment at Jefferson Lab [3108,3109], and in
particular the lepton and W boson asymmetry data from p p̄
collisions at the Tevatron [3110–3112], reduces the uncer-
tainty considerably in the experimentally constrained region
up to x ∼ 0.8.
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Fig. 255 Comparison of x(d̄ − ū) with different combinations of
datasets [3104]: DIS only, excluding NMC (gold band); with NMC
(gray); with W , Z , and jet production from RHIC, Tevatron, and the
LHC (green); with NuSea (blue); and finally with the SeaQuest DY and
STAR W -lepton ratio (red)

Light quark sea
Because inclusive DIS measures only C-even combinations
of PDFs, q+, to disentangle quark from antiquark contribu-
tions requires other types of observables, such as the DY
cross sections, where the q and q̄ PDFs are weighted dif-
ferently. As discussed in Sect. 10.2.2, ratios of pd to pp
cross sections at xa � xb are directly sensitive to the ratio
d̄/ū. The flavor asymmetry d̄ − ū is illustrated in Fig. 255,
which shows the impact of various data sets. Starting with
inclusive DIS data only and excluding data from the NMC
experiment, the asymmetry is consistent with zero within
large uncertainties. Including the NMC data [3113,3114],
the asymmetry gives an indication of deviation from zero
in the range 0.01 < x < 0.2. When W -lepton, recon-
structed W and Z boson, and jet production data from
RHIC, Tevatron, and LHC are further included (but not the
new STAR data [3115]), the asymmetry becomes signif-
icantly larger, and more distinguishable from zero below
x = 0.3.

The new constraints come primarily from the high-
precision W asymmetry measurements from the Tevatron
and LHC, which are sensitive to ū and d̄. The further addition
of the NuSea DY data [3116] greatly decreases the uncer-
tainty, showing that these data provide a strong constraint
on the asymmetry even when compared to the Tevatron and
LHCW -lepton asymmetries. Finally, the inclusion of the new
SeaQuest [3117] and STAR [3115] data reduces the uncer-
tainty on the asymmetry even further, while increasing the
magnitude at x � 0.2. The behavior of the asymmetry seen
in Fig. 255 is consistent with expectations from nonpertur-
bative models of the nucleon in which the excess of d̄ over
ū in the proton sea has been that associated with chiral sym-
metry breaking, and the consequent prevalence of the virtual
p→ nπ+ dissociation [3118–3120].

Strange quarks
The strange quark distribution has generally been more dif-
ficult to determine experimentally than the nonstrange sea.
While the size of the strange to nonstrange ratio Rs has been
controversial, with values ranging from Rs ≈ 0.4 from neu-
trino DIS at x ≈ 0.02 to Rs ≈ 1 from analyses that included
ATLAS data on W/Z production [3060,3061], an indepen-
dent and underutilized source of information at lower ener-
gies is semi-inclusive production of pions or kaons. Analysis
of SIDIS data has often been complicated by the need to
know both the PDFs of the initial state and the fragmenta-
tion functions describing hadronization to the final state, as
assumptions about the latter can lead to significant differ-
ences in the extracted PDFs [3121,3122]. For any definitive
conclusion a combined analysis of PDFs and fragmentation
functions is necessary, which was first performed by the JAM
group [665,3062].

Including data from the standard datasets used for unpo-
larized PDFs, along with SIDIS multiplicities and e+e− anni-
hilation data to constrain the fragmentation functions [3123],
the most striking result of the simultaneous JAM fit was
a significantly reduced strange quark PDF compared with
that reported by ATLAS. In particular, the strange to non-
strange ratio was found in the JAM global QCD analysis to
be Rs ≈ 0.2−0.3 at x ∼ 0.02 [3123], as Fig. 256 illus-
trates, in contrast to values of Rs ∼ 1 inferred from the
ATLAS data [3060,3061]. The most significant source of
the strange suppression is the SIDIS and SIA K produc-
tion data. Without these data, the s+ PDF is poorly con-
strained, in contrast to the light flavor sea, which is not
strongly affected by the SIDIS multiplicities. Consequently,
while the ratio Rs varies over a large range without SIDIS
(and SIA) data, and at low x is compatible with Rs ≈ 1,
once those data are included its spread becomes dramatically
reduced.

Note that while the original ATLAS PDF fit [3060,3061]
was consistent with Rs ∼ 1 for all x � 10−3, the more recent
ATLAS analysis [3124] including newW/Z + jet data gives a
strongly suppressed Rs at x � 0.01 with significantly smaller
uncertainties, and more in line with other determinations. The
ratio at smaller x (x ≈ 0.023) remains unsuppressed, how-
ever, consistent with the earlier ATLAS results and higher
than most PDF parametrizations [3124].

The SIDIS K± production data could also in principle
discriminate between the s and s̄ PDFs, which could have
different x dependence [3125–3130]. As shown in Fig. 256,
however, the current data do not indicate any significant
s− s̄ asymmetry within uncertainties. Future high-precision
SIDIS data from Jefferson Lab or the Electron-Ion Collider
may allow more stringent determinations of the s and s̄ PDFs
[3131], as would inclusion of W + charm production data
from the LHC [3132,3133].
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Fig. 256 Sum and difference of the s and s̄ PDFs from several global
QCD analyses, as in Fig. 253

Fig. 257 Unpolarized gluon PDF xg from various QCD global analy-
ses at a scale of Q2 = 10 GeV2 from several global QCD analyses, as
in Fig. 253

Gluons and heavy quarks
Gluons play an important role in the study of nucleon struc-
ture, contributing some 50% of the nucleon’s overall (linear)
momentum, and indirectly provide some constraints on quark
PDFs through the momentum sum rule, Eq. (10.29). Since
photons do not couple directly to gluons, the constraints on
the gluon PDF g(x) from DIS come via the Q2 evolution
of the F2 structure function at low values of x . In addition,
measurements at HERA of the longitudinal structure func-
tion, which has a leading contribution at O(αs) through the
γ ∗g → qq̄ process, have allowed g(x) to be relatively well
determined at low x . More directly, inclusive jet and pho-
ton production cross sections at hadron colliders have con-
strained g(x) at moderate x values, although there is some-
what more uncertainty in the behavior at high x . A survey of
various determinations of the gluon PDF at Q2 = 10 GeV2

is illustrated in Fig. 257 for the same set of PDF parametriza-
tions as in Fig. 253.

Since that the gluon PDF is accompanied by αs in DIS
structure functions, in practice there is a correlation between
the value ofαs obtained in global PDF analyses and the shape
of gluon distribution, with larger αs leading to a smaller g(x)
at small x and (via the momentum sum rule correlation) a
larger g(x) at large x . An interesting question is whether αs
should be fitted as a parameter in global analyses or, since
it is a parameter of the QCD Lagrangian and should be the
same for all processes, fixed to the world average value for
αs(MZ ). Comparisons of results with αs(MZ ) fitted or fixed
may indicate which processes are responsible for any differ-
ences [3103].

A related question is the shape of heavy quark PDFs,
such as the charm distribution, which is known to contribute
∼ 30% of the total F2 measured at HERA at small x values.
Here the main production mechanism is photon-gluon fusion,
so that data on inclusive charm production could also pro-
vide valuable constraints on the gluon PDF in the nucleon.
The question of whether there is a sizable nonperturbative
charm component at a low energy input scale [3134–3138]
also remains controversial [3139–3141], with recent analyses
claiming both positive [3142] and negative evidence [3143].

10.2.5 Spin-dependent PDFs

Considerable progress has been made in understanding the
spin structure of the nucleon since the first precision polar-
ized DIS experiments at CERN in the late 1980s indi-
cated an anomalously small fraction of the proton spin car-
ried by quarks. A rich program of spin-dependent inclusive
and semi-inclusive DIS, as well as polarized proton–proton
scattering experiments has followed, vastly improving our
knowledge of spin-dependent PDFs of the nucleon over the
last two decades. While the spin-dependent data have not
been as abundant as those available for constraining spin-
averaged PDFs, several dedicated global QCD analyses of
spin-dependent PDFs to be performed. The main current
global efforts include the DSSV group [1294,3144,3145],
the NNPDF collaboration [975,3146], and the JAM col-
laboration [974,3147], extending earlier efforts by the LSS
[3121], BB [3148], KATAO [3149] and AAC [3150] groups.

Polarized valence quarks
As for the unpolarized PDFs, the spin-dependent Δu+ distri-
bution is the most strongly constrained helicity PDF, largely
by the proton g1 structure function data. The corresponding
Δd+ distribution, which has a negative sign, is smaller in
magnitude compared withΔu+ and has larger relative uncer-
tainties, especially at intermediate and large values of x . The
size of the uncertainties depends somewhat on the theoretical
assumptions made for the distributions. For example, if one
assumes only the SU(2) symmetry constraint (10.30) for the
difference Δu+ − Δd+, the uncertainties on the individual
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Fig. 258 Polarized xΔu+ and xΔd+ PDFs from the JAM analysis
[976] for various scenarios: assuming SU(2) symmetry (10.30) (yellow
bands), SU(3) symmetry (10.31) (blue bands), and in addition the PDF
positivity constraint (red bands)

Δu+ and Δd+ PDFs are significantly larger than assuming
in addition the SU(3) symmetry relation (10.31) involving
also the strange polarization Δs+.

This is illustrated in Fig. 258 for the JAM parametriza-
tion [976], which also shows the result of a fit that enforces
in addition positivity constraints on the unpolarized PDFs.
Whether spin-averaged PDFs need to be positive beyond LO
in αs has been debated recently in the literature [3151], and
generally it is understood that the positivity constraint should
hold only at LO [3152]. The general features of the Δu+ and
Δd+ PDFs in Fig. 258 are similar to those found by other
global QCD analysis groups [975,3145], which reflects the
common origin in the constraints on these PDFs from pro-
ton and neutron DIS data. In contrast, without the additional
assumption of SU(3) symmetry [974,3153], the strange
helicity PDF remains largely unconstrained [976,1295].

Polarized sea quarks
Since inclusive polarized DIS experiments measure C-even
combinations of PDFs, Δq+, additional constraints, either
from theory or experiment, are needed to separate the indi-
vidual quark and antiquark distributions. Additional experi-
mental constraints come from the semi-inclusive production
of hadrons, in which spin-dependent PDFs are weighted by
fragmentation functions, as well as particle production in
polarized hadron collisions, which involve products of spin-
dependent (and spin-averaged) PDFs.

The strongest constraints on the polarization of the sea
have come from recent W -lepton production data from polar-
ized protons collisions at RHIC [3154–3156]. The effect of
the polarized W data is a clear nonzero antiquark asymmetry
Δū −Δd̄ for 0.01 � x � 0.3, as Fig. 259 illustrates for the
recent JAM analysis [3147]. Qualitatively similar, although
not as pronounced, behavior was also observed in the earlier
DSSV [3145] and NNPDF [975] fits, although these made
stronger theoretical assumptions about PDF positivity and
SU(3) symmetry. The observed polarized sea asymmetry is

Fig. 259 Polarized sea quark asymmetry x(Δū −Δd̄) from the JAM
[3147], NNPDF [975] and DSSV [3145] analyses

Fig. 260 Monte Carlo replicas for the gluon helicity PDF xΔg fitted
under various theory assumptions according to the SU(2) (yellow lines),
SU(3) (blue lines) and SU(3)+positivity (red lines) scenarios [976]

also similar to expectations from some nonperturbative mod-
els of the nucleon [3157–3160].

Polarized gluons
The sign and magnitude of the gluon polarization is a critical
component to understanding the decomposition of the pro-
ton’s spin amongst its quark and gluon constituents. The first
clear indication of a positiveΔg came from analysis of RHIC
jet production data in polarized proton–proton collisions,
which were used by the DSSV group to extract a nonzero
signal for gluon momentum fractions between x ≈ 0.05
and ≈ 0.2. More recently, the JAM collaboration [976] per-
formed a simultaneous global fit to unpolarized and polar-
ized data, testing in particular the sensitivity to theoretical
assumptions about axial charges and PDF positivity.

The results of the simultaneous analysis, illustrated in Fig.
260, show that indeed the gluon helicity can depend strongly
on the constraints imposed. Interestingly, without restricting
PDFs to be positive and assuming SU(3) flavor symmetry for
the axial vector charges, existing polarized data allow solu-
tions containing negative gluon polarization, in addition to
the standard positive gluon solutions found in earlier anal-
yses, giving equally acceptable descriptions of the data. A
negative gluon polarization would imply rather large quark
or gluon orbital angular momentum contributions, in order
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to satisfy the proton spin sum rule. It will be important to
verify the sign and magnitude of the gluon polarization in
future experiments [3161], as well as explore possible insight
gained from lattice QCD calculations [3162].

10.2.6 Outlook

Our knowledge of the detailed partonic structure of the
nucleon has improved tremendously in recent years, thanks
to high precision experiments and advances in computational
and data analysis methods. With planned measurements at
facilities such as Jefferson Lab, the LHC, and the future
Electron-Ion Collider (EIC) [3163], we can look forward to
further breakthroughs in addressing long-standing questions
about the momentum and spin distributions of quarks and
gluons in the nucleon.

The new experiments will probe hitherto unexplored cor-
ners of kinematics in which PDFs have been difficult to deter-
mine. An example is the behavior of PDFs and PDF ratios
such as Δq+/q+ in the limit as x → 1, which are particu-
larly sensitive to the details of nonperturbative quark–gluon
dynamics [3081,3164]. The new data will allow one to test
basic theoretical assumptions such as SU(2) and SU(3) sym-
metry, PDF positivity, and charge symmetry in PDFs. The
latter, which is expected to be broken by light quark mass
differences, mu �= md , and by electromagnetic corrections,
will need to be taken into account if one hopes for PDF accu-
racy at the few-percent level. Further inroads into solving
the proton spin puzzle, through the determination of the total
spin contributions from quarks, antiquarks and gluons, will
require measurements of spin structure functions down to
smaller values of x [3165,3166], which will be one of the
focuses of the EIC program [3163].

The aim of few-percent precision in PDFs will also require
a more systematic treatment of radiative effects, which in
the past have been treated using approximate prescriptions.
Recently, a combined QED+QCD approach to factorization
has been developed [3167], and while the differences with the
traditional methods are not large for inclusive processes, for
more exclusive reactions, such as semi-inclusive DIS [3168],
the simultaneous paradigm of self-consistently incorporating
QED and QCD effects and determining different types of
distributions within the same analysis will be necessary.

Along with the new measurements, it is likely that com-
plementary information will be needed from lattice QCD
simulations, especially for quantities that will be difficult to
access from experiment. Indeed, the first exploratory simulta-
neous analyses of experimental and lattice data have already
been made recently [1090,3169]. Future success in mapping
out and understanding the quark and gluon structure of the
proton will thus require a coordinated effort on the multi-
ple fronts of experiment, theory, lattice simulation, and data
analysis.

10.3 Spin structure

Xiangdong Ji
The nucleon (proton and neutron) is a spin-1/2 composite
particle made from three valence quarks. Every model of the
nucleon gives an explanation for its spin structure [3170–
3174], from the Skyrme model [3170], to Gell-Mann and
Zweig’s quark model [3171,3172], and to many other models
popular in 1970s and 1980s [3173,3174]. The simplest and
most successful one is the quark model which, among others,
inspired the discovery of QCD [55], predicted that the entire
nucleon spin is carried out by the three valence quarks [31,
2719,3175]. The non-relativistic quark model has indeed a
simple explanation for the nucleon spin and the associate
magnetic moments [31], also for their excited states [2719]:
Three constituent quarks are all in the s-wave orbit in the
nucleon, and their spins couple to 1/2 in a way consistent
with the SU(2spin×3flavor), a combined spin-flavor symmetry
group [3175].

The quark-model picture for the spin was put under a test
through polarized deep-inelastic scattering (DIS) on a polar-
ized proton [3176]. The EMC collaboration made the first
definitive measurement for the fraction of the proton spin
carried by quarks in 1987 [3177,3178], and the result

ΔΣ(Q2=10.7GeV2) = 0.060± 0.047± 0.069, (10.35)

is consistent with zero. The discrepancy has inspired large
amount of experimental and theoretical studies which have
been summarized in a number of excellent reviews [3179–
3183]. Perhaps the most important lesson we have learned
is that the QCD quarks probed in polarized DIS are very
different from those in the constituent quark models, and
that QCD has a much more sophisticated way to build up the
proton spin.

Understanding the nucleon spin in QCD remains an
important challenge in hadron structure physics, particularly,
in experiment. In the following, we will briefly review the
current status and future perspective for this topic, focusing
on the questions such as: does it make sense to talk about the
different parts of the proton spin? What will be an interest-
ing decomposition for the spin? To what extent do we believe
that we can measure these parts experimentally? How can we
calculate these contributions in fundamental theory and put
them to experimental tests?

10.3.1 Spin sum rules in QCD

Angular momentum (AM) or spin structure of a compos-
ite system can be studied through various contributions to
the total. In quantum field theories, the individual parts are
renormalization scale and scheme dependent, although the
total is not. The most popular convention in the literature
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is to use dimensional regularization and modified minimal
subtraction, indicated by the dependence on the scale μ. To
understand the proton spin, we can start from QCD AM oper-
ator expressed in terms of individual sources,

�JQCD =
∑

α

�Jα(μ) . (10.36)

Through the above, one can express the total spin 1/2 as con-
tributions from different parts. This has been one of the main
methods to explore the origins of the proton spin in the liter-
ature. Since the individual contributions are the expectation
values of the AM sources in the entire wave function, they
are neither integers nor half-integers: they are the quantum
mechanical average of probability amplitudes.

There exists more than one way to split the AM and
derive spin sum rules for the proton. However, a physically-
interesting spin sum rule shall have the following properties:

Experimental measurability
The overwhelming interest in the proton spin began with
the EMC data. Much of the followup experiments, includ-
ing polarized RHIC [3184], Jefferson Lab 12 GeV upgrade
[3185] and Electron-Ion Collider (EIC) [1293,3186], have
been partially motivated to search a full understanding of the
proton spin.

Frame Dependence
Since spin is an intrinsic property of a particle, one nat-
urally searches for a description of its structure indepen-
dent of a reference frame. How the individual contributions
depend on the proton momentum or reference frame requires
understanding of the Lorentz transformation properties of �Jα .
Moreover, the longitudinal and transverse spins behave dif-
ferently under frame transformation and therefore have very
different experimental implications. Since the proton struc-
ture probed in high-energy scattering is best described in the
infinite momentum frame (IMF), a partonic picture of the
spin is phenomenologically interesting to explore.

In the rest frame, the proton state | �P = 0, �s〉 can be defined
with the angular momentum quantized along �s,

�s · �J
∣
∣
∣ �P = 0, �s

〉
= 1/2

∣
∣
∣ �P = 0, �s

〉
, (10.37)

where we have dropped the “QCD” subscript on �J . Boosting
the above to an arbitrary Lorentz frame, one has (h̄ = 1)

(−WμSμ)|PS〉 = 1/2|PS〉 , (10.38)

where |PS〉 have definite four-momentum Pμ and spin polar-
ization four-vector Sμ, Sμ = (γ �s · �β, �s + (γ − 1)�s · β̂β̂)
with SμSμ = −1, PμSμ = 0, β̂ the direction of �β = �v/c,
γ = (1−β2)−1/2 the boost factor, and Wμ is the relativistic
spin (or Pauli–Lubanski) four-vector (ε0123 = 1) [3187]

Wμ = −1

2
εμαλσ JαλPσ /M, (10.39)

= γ ( �J · �β, �J + �K × �β) (10.40)

where �K is the Lorentz-boost operator defined in terms of the
0 i components of the Lorentz generator Jαβ . In the second
line of the equation, we have replaced the four-momentum
operator Pσ by its eigenvalue specifying a Lorentz frame �β.
One can use Eq. (10.38) to develop spin sum rules in any
frame,

〈PS|(−WμSμ)|PS〉 = 1/2 , (10.41)

by expressing the left-hand side as the sums of expectation
values. Thus the covariant spin is not only related to the AM
operator but also to the boost �K . However, it is desirable to
develop a spin picture in terms of the AM operator alone in
a general Lorentz frame.

Without loss of generality, one can assume the proton
momentum is along the z-direction �Pz = (0, 0, Pz). In the
case of longitudinal polarization, one has �sz = (0, 0, 1),
−WμSμ = J z , and Eq. (10.41) becomes the total helicity,

〈PSz |J z |PSz〉 = 1/2 , (10.42)

which is boost-invariant along the z-direction. This is a start-
ing point to construct helicity sum rules. Since the helicity is
independent of momentum, the individual contributions are
generally sub-leading order in high-energy scattering.

For transverse polarization along the x-direction, �sx =
(1, 0, 0) , and Eq. (10.41) becomes

〈PSx |γ (J x − βK y)|PSx 〉 = 1/2 , (10.43)

which contains the boost operator K y from the transforma-
tion of J x under the Lorentz boost along z. Since �K and �J
transform under Lorentz transformation as (1, 0)+(0, 1), we
can deduce separate relations:

〈PSx |J x |PSx 〉 = γ /2

〈PSx |K y |PSx 〉 = γβ/2,

true as expectation values. Therefore a transverse polariza-
tion sum rule from the AM operator starts from

〈PSx |J x |PSx 〉 = γ /2. (10.44)

Because the transverse angular momentum J x depends on
the longitudinal momentum of the proton, its expectation
value grows under boost, a fact less appreciated in the liter-
ature.

To obtain a spin sum rule, we need an expression for the
QCD AM operator. It can be derived through Noether’s the-
orem based on space-time symmetry of the QCD lagrangian
density. Straightforward calculation yields the canonicalAM
expression [3188]

�JQCD =
∫
d3�x

[
ψ

†
f

1
2
�Σψ f + ψ

†
f �x × (−i �∂)ψ f

+ �Ea × �Aa + Ei
a(�x × �∂)Ai

a

]
, (10.45)
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where ψ f is a quark field of flavor f , �Σ = diag(�σ , �σ) with
�σ the Pauli matrices, Ai

a vector potentials of gauge fields
with color a = 1, . . . 8, Ei

a color electric fields, and the con-
traction of flavor and color indices is implied. The above
expression contains four different terms, each of which has
clear physical meaning in free-field theory. The first term
corresponds to the quark spin, the second to the quark orbital
angular momentum (OAM), the third to the gluon spin, and
the last one to the gluon OAM. Apart from the first term,
the rest are not manifestly gauge-invariant under the general
gauge transformation Aμ → U (x) (Aμ + (i/g)∂μ)U †(x).
However, the total is invariant under the gauge transforma-
tion up to a surface term at infinity which can be ignored in
physical state matrix elements.

On the other hand, using the Belinfante improvement pro-
cedure (Belinfante, 1939) one can obtain a gauge-invariant
form [1081],

�JQCD =
∫

d3x

[

ψ
†
f

1

2
�Σψ f + ψ

†
f �x × (−i �∇ − g �A)ψ f

+�x × ( �E × �B)
]
. (10.46)

All terms are manifestly gauge invariant, with the second
term as mechanical or kinetic OAM, and the third term gluon
AM.

Helicity sum rule
Using Eq. (10.42) and the gauge-invariant QCD AM in Eq.
(10.46), one can write down a helicity sum rule [1081],

1

2
ΔΣ(μ)+ Lz

q(μ)+ Jg(μ) = 1/2 (10.47)

where ΔΣ/2 is the quark helicity contribution, and Lz
q is

quark OAM contribution. Together, they give the total quark
AM contribution Jq . The last term, Jg , is the gluon contribu-
tion. Both contributions can be obtained from the twist-two
form factors of the energy–momentum tensor Tμν [1081]
(see below). One important feature of the above sum rule
is that it is independent of the proton’s momentum [3189].
This is an important feature because the sources of the proton
spin does not depend on observer’s reference frame so long
as helicity is a good quantum number.

On the other hand, the canonical form of the AM operator
in Eq. (10.45) allows deriving an infinite number of helic-
ity sum rules with choices of gauges and/or frames of ref-
erence [3182,3190]. The usefulness of such sum rules are
questionable as they are not relevant to experiment. How-
ever, the gluon spin contribution in the IMF and light-cone
gauge A+ = 0 is measurable. Jaffe and Manohar proposed
a canonical spin sum rule in a nucleon state with Pz = ∞
[3188],

1

2
ΔΣ +ΔG + !q + !g = 1

2
(10.48)

where ΔG is the gluon helicity and !q,g are quark and gluon
OAM, respectively. Considerable attention has been given to
the above sum rule because of its relevance to high-energy
scattering. For example, the total quark helicity contribution
can be written in terms of parton sum rule,

ΔΣ =
∫ 1

−1
dx(Δu(x)+Δd(x)+ · · · ) , (10.49)

where Δq(x) is the quark helicity distribution function.
Moreover, ΔG has been defined and measured experimen-
tally as the first moment of the gauge-invariant polarized
gluon distribution [3191]

ΔG(Q2) =
∫ 1

0
dx Δg(x, Q2) ,

Δg(x) = i

2x(P+)2

∫
dλ

2π
eiλx

× 〈PS|F+α(0)W (0, λn)F̃ +
α (λn)|PS〉,

(10.50)

where F̃αβ = 1
2ε

αβμνFμν , and the light-cone gauge link
W (λn, 0) is defined in the adjoint representation of SU(3).
In the light-cone gauge A+ = 0, the nonlocal operator
in Eq. (10.50) reduces to the free-field form in the Jaffe-
Manohar sum rule. Additionally, one can write a parton sum
rule for each of the OAM contributions

!q =
∫ 1

−1
dx!q(x) , (10.51)

!g =
∫ 1

−1
dx!g(x) , (10.52)

which give a more detailed picture of AM distributions in par-
tons compared with the frame-independent sum rule above.

It appears that one can define a gauge-variant quantity
which can be measured in experiment! This has inspired
much debate about the gauge symmetry properties of
the gluon spin operator and myriads of experimentally-
unaccessible spin sum rules [3182]. It turns out, however,
that the key is not about generalizing the concept of gauge
invariance, it is about the proton state in the IMF [3192]. In
particular, A+ = 0 is a physical gauge as it leaves the trans-
verse polarizations of the radiation field intact. This justifies
the physical meaning of �E × �A = �E⊥ × �A⊥ as the gluon
spin (helicity) operator in the Jaffe-Manohar sum rule.

Comparing the two helicity sum rules Eqs. (10.47) and
(10.48) above, they must be related in some way in the IMF.
In fact, their relation is [3193,3194]

Jg = ΔG + !g + !int (10.53)

Lq = !q − !int (10.54)
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where !int represents the interaction AM and does not have
a simple parton interpretation.

Transverse spin sum rules
For transverse polarization, a spin sum rule is less straight-
forward and much controversy exists in the literature [3182,
3195]. First of all, the transversely-polarized proton is not an
eigenstate of the transverse AM operator. Second, the expec-
tation value of the transverse AM has a intriguing frame
dependence due to the center-of-mass contribution, which
must be properly subtracted. Finally, there are two contri-
butions to the transverse AM which transform differently
under Lorentz boost and must combine properly to gener-
ate the total result. The delicate balance of two contributions
entails two separate transverse spin sum rules.

The transverse spin has a simple frame-independent sum
rule [3196],

Jq + Jg = 1/2 , (10.55)

which is the same as the helicity sum rule due to Lorentz
symmetry. One can separate the contributions to the quark
into spin and orbit ones, however, such a separation is frame-
dependent and therefore less interesting.

In the IMF, the above sum rule becomes partonic sum rules
[3195,3197],

Jq =
∫ 1

−1
dx Jq(x) , (10.56)

Jg =
∫ 1

−1
dx Jg(x) , (10.57)

where Jq(x) and Jg(x) are twist-2 transverse angular
momentum densities of the quarks and gluons. They are
related to quark and gluon unpolarized densities and gener-
alized parton distributions through Jq(x) = (1/2)x(q(x) +
Eq(x)) and Jg(x) = (1/2)x(g(x)+ Eg(x)).

The second transverse spin sum rule can best be discussed
in the IMF, where there is a sub-leading partonic sum rule for
the transverse spin, corresponding to the twist-three part of
the canonical angular momentum density J⊥ in Eq. (10.45).
In a simple form, one can write [3198]

1

2
ΔΣT +ΔGT + !qT + !gT = 1

2
. (10.58)

The various terms have partonic interpretations in the IMF,

ΔΣT =
∫ 1

−1
dxgT (x) , (10.59)

ΔGT =
∫ 1

−1
dxΔGT (x) , (10.60)

!qT =
∫ 1

−1
dx!qT (x) , (10.61)

!gT =
∫ 1

−1
dx!gT (x) , (10.62)

where gT (x) = g1(x) + g2(x) and GT (x) are transverse
spin densities of quarks and gluons, respectively, and !qT
and !gT are the corresponding twist-three transverse OAM
densities. Because of Lorentz symmetry, the values of these
integrated quantities with T are exactly the same as the ones
without T in Jaffe-Manohar sum rule. However, the parton
densities for the transversely polarized proton are different
from those in the longitudinally polarized one. For instance,
for the quark spin, the difference is the well-known g2(x)
structure function.

10.3.2 Lattice calculations

At present, the only systematic approach to solve the QCD
proton structure is the lattice field theory [97], see, Sect. 4.
There are less systematic approaches such as Schwinger–
Dyson (Bethe–Salpeter) equations [800] and instanton liquid
models [1410] in which a certain truncation is needed to find
a solution, see, Sect. 5. Although much progress has been
made in these other directions, we focus on the lattice QCD
method.

A complete physical calculation on the lattice faces a num-
ber of obstacles. First the angular momentum is flavor-singlet
quantity, and as such, one needs to compute the disconnected
diagrams for the quarks. Since up and down quarks are light,
computational demands at the physical pion mass are very
high. Moreover, one also has to compute gluon observables
to complete the picture, which is known to be very noisy.
At the same time, one needs to keep the lattice space suf-
ficiently small and the physical volume large enough. All
of these add up to an extremely challenging task. However,
a computation with all these issues considered has become
possible recently, see for example Ref. [3204]. An additional
challenge is present in computing light-cone correlations
with a real time variable. The recent development of large-
momentum effective theory (LaMET) has opened the door
for such computations [637,638,646].

The matrix elements of local operators, ΔΣ , Jq and Jg
are relatively simple to calculate using the standard lattice
QCD technology. Much progress has been made in under-
standing the content of manifestly gauge-invariant helicity
sum rule in Eq. (10.47), and also the transverse spin sum rule
in Eq. (10.55).

The first calculations have been about the ΔΣ from dif-
ferent quark flavors. A large amount of work has been sum-
marized in a recent review [3205]. Three most recent calcu-
lations are in Refs. [3199–3201], with some at the physical
quark mass. Table 47 is taken from Ref. [3203] and shows
a summary of the recent lattice results on the quark helic-
ity. The strange quark contribution was also calculated in
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36
] Refs. [3206,3207] through the anomalous Ward identity, and

Δs + Δs̄ = −0.0403(44)(78). The total quark spin contri-
bution to the proton helicity is about 40%.

To calculate the total quark orbital and gluon AM contri-
butions, one can start with the AM density, Mμνλ, of QCD,
from which the AM operator is defined. It is well-known that
the AM density is related to the energy–momentum tensor
(EMT) Tμν through [3188],

Mμνλ(x) = xνTμλ − xλTμν. (10.63)

The individual contributions to the EMT, hence AM density,
can be written as the sum of quark and gluon parts,

Tμν = Tμν
q + Tμν

g , (10.64)

where

Tμν
q = 1

2

[
ψ̄γ (μi

−→
D ν)ψ + ψ̄γ (μi

←−
D ν)ψ

]
, (10.65)

Tμν
g = 1

4
F2gμν − FμαFν

α , (10.66)

where Tq includes quarks of all flavor. The expectation values
of the AM densities can be derived from the off-forward
matrix elements of EMT [1081],

〈P ′S|Tμν
q/g(0)|PS〉 = Ū (P ′S)

[
Aq/g(Δ

2)γ (μ P̄ν)

+ Bq/g(Δ
2)

P̄(μiσν)αΔα

2M

+ Cq/g(Δ
2)

ΔμΔν − gμνΔ2

M

+C̄q/g(Δ
2)Mgμν

]
U (PS) , (10.67)

where P̄ = (P + P ′)/2, Δ = P ′ − P , and A, B, C and C̄
are four independent form factors. It has been shown that

Jq = 1/2(Aq(0)+ Bq(0)) (10.68)

and similarly for the gluon.
The calculation of the total quark and gluon angular

momenta started from Ref. [3208] in which the quark part
including the disconnected diagrams was calculated without
dynamical quarks. The result is the total quark contribution
is Jq = 0.30 ± 0.07, i.e. 60%; therefore about 40% of the
proton spin must be carried by the gluon. Following other
quenched studies [3209,3210], dynamical simulations took
over [3211–3215]. A complete study of the angular momen-
tum decomposition was made in Ref. [3206] in quenched
formalism, and later in Ref. [3199]. It was found that the
quark orbital angular momentum contributes about 47% and
gluon angular momentum contributes 28%.
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Fig. 261 (upper) Proton spin decomposition in terms of different quark
flavors and gluon from Ref. [3204]. (lower) Spin decomposition in terms
of quark helicity, OAM and gluon contributions from Ref. [3216]

A complete dynamical simulation at the physical pion
mass has been finished recently [3204]. It was found that
the total quark spin contribution is about 38.2%, and the
orbital angular momentum contribution of the quarks is about
18.8%, much reduced compared with quenched simulations.
The total gluon contribution is 37.5%. The resulting picture
is shown in Fig. 261. The total spin is 94.6% with an error bar
of 14.2%. The spin decomposition in terms of the total quark
helicity ΔΣ = Δu + Δd + Δs, and quark OAM, and the
gluon Jg for n f = 2+ 1 has been calculated in Ref. [3216].

Calculation of the gluon helicity has not been possible for
many years because it is intrinsically a light-cone quantity.
However, a progress in 2013 was made by studying the frame
dependence of non-local matrix elements. One can match
the large-momentum matrix element of a static “gluon spin”
operator, which is calculable in lattice QCD, to ΔG in the
IMF [3192]. This idea was a prototype of LaMET, which was
soon put forward as a general approach to calculate all parton
physics [637,638]. Using LaMET, one can also calculate the

polarized gluon helicity distribution Δg(x) in a region of
x ∼ 0.2−0.8. However, the approach does not allow one to
calculate the integrated ΔG starting from spatial correlation
functions of gluon field strength.

The computation of parton OAM on lattice has been sug-
gested in terms of lattice phase-space Wigner distribution,
in which a quark bilinear non-local operator form factor is
calculated [3217,3218]. The non-local operator contains a
Wilson line to make it gauge invariant. The canonical OAM
can be constructed with Wilson lines along the main direc-
tion of the proton momentum going to infinity. One can in
principle obtain the local gauge invariant OAM with a Wilson
line connecting the two quark fields with a straight line. The
result seems to be consistent with the calculation discussed
above. The result in Ref. [3218] suggests that the isovector
canonical OAM has a different sign from the mechanical one,
and with a magnitude about 40% larger. One issue with this
type of calculation is the renormalization, which can be done
with LaMET matching.

One can also calculate the total parton OAM using
local operators in a fixed gauge [3219] following the sim-
ilar approach for the gluon helicity. Matching coefficients
between IMF and finite momentum frame have been calcu-
lated. One particular feature of the calculation is fixed-gauge
which is challenging both on lattice and QCD perturbation
theory. On lattice, local gauge condition can lead to the Gri-
bov copies; on the other hand, perturbation theory in a phys-
ical gauge requires better understanding at large orders.

Finally, the spin structure of the nucleon in the IMF
requires calculations of various light-cone distributions,
which include the quark and gluon helicity distributions
Δq(x), and ΔG(x), OAM distributions Jq(x) and Jg(x)
through GPDs, and OAM distributions !q(x), !g(x), g2(x),
ΔGT (x), !qT (x), and !gT (x).

Shown in Fig. 262 are twist-2 angular momentum den-
sities of up and down quarks in a transversely-polarized
nucleon, obtained from phenomenological fit to lattice form
factors and generalized parton distributions (GPDs) [3220].
They can be compared with direct lattice calculations and
experimental data to be discussed below.

10.3.3 Experiments and phenomenology

Since the EMC experiments, there have been extensive exper-
imental efforts around the globe to investigate the quark
and gluon spin contributions to the proton spin, with two
important improvements: higher precision and wider kine-
matic coverage. Majority of these efforts continued in line
of the EMC experiment, measuring the polarized structure
functions in inclusive DIS with polarized lepton on polar-
ized target (proton, neutron, deuteron). Two important new
initiatives have also emerged. First, the DIS experiment facil-
ities extended their capabilities to measure the spin asymme-
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Fig. 262 Angular momentum density distributions of up and down
quarks in a transversely polarized proton, fitted to lattice form factors
and GPDs [3220]

tries in the semi-inclusive hadron production in DIS (SIDIS),
which can help to identify the flavor structure in the polarized
quark distributions. Second, the Relativistic Heavy Ion Col-
lider (RHIC) at the Brookhaven National Laboratory (BNL)
started the polarized proton–proton experiments. This facil-
ity opened new opportunities to explore the proton spin, in
particular, for the helicity contributions from gluon and sea
quarks (see the previous subsection for experimental data and
analysis).

To take into account the constraints from all experiments,
it is important to perform a global analysis of the polarized
parton distributions from the world-wide data. In these anal-
yses, one has to make some generic assumptions about the
functional form (in terms of the unpolarized parton distri-
butions) with a few parameters to fit to data, see, e.g., Refs.
[975,3144,3202], where perturbative corrections have been
included up to next-to-leading order. Very interesting results,
in particular, for the double spin asymmetries in inclusive
jet production from the RHIC experiments have provided
more strong constraint on the gluon spin [3222], see Fig. 263.
This promises great potential for future RHIC experiments
to further reduce the uncertainties due to greater statistics
[1276,3223].

The total quark spin contribution to the proton spin ΔΣ

has been well determined from the DIS measurements. For
this quantity, all of the global fits agree well with each other,
which essentially gives Σq ≈ 0.30 with uncertainties around
0.05. However, for sea quark polarizations including ū, d̄
and s (s̄), there exist great uncertainties, in particular, for the
strange quark polarization [975,1295,3144], which mainly
comes from SIDIS measurements from HERMES and COM-
PASS. Recently, it was also found that the W boson spin
asymmetries at

√
s = 500 GeV RHIC have also improved

the constraints on ū and d̄ polarization [3224].

Fig. 263 (upper) Double spin asymmetry in inclusive jet production
at RHIC and (lower) constraints on the gluon helicity contribution to
the proton spin. Source: Ref. [3144]

The OAM of the quarks may be extracted from measure-
ment of GPD [1081],

Jq = 1

2
Σq + Lq = lim

t→0

1

2

∫
dxx

[
Hq (x, ξ, t)+ Eq (x, ξ, t)

]
,

(10.69)

where Jq is the total quark contribution to the proton spin,
H and E are GPDs. After subtracting the helicity contri-
bution ΔΣ from various experiments, the above equation
will provide the quark OAM contribution to the proton spin.
The GPDs can be measured in many different experiments,
for example, deeply virtual compton scattering (DVCS) and
hard exclusive meson production. Experimental efforts have
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Fig. 264 Model-dependent constraints on the up and down quark total
angular momentum from DVCS measurement at JLab. Source: Ref.
[3221]

been made at various facilities, including HERMES at DESY,
Jefferson Lab, and COMPASS at CERN.

In real photon exclusive production in DIS process, the
DVCS amplitude interferes with the Bethe–Heitler (BH)
amplitude. This will, on one hand, complicate the analysis of
the cross section, on the other hand, provide unique opportu-
nities to direct access the DVCS amplitude through the inter-
ference. To obtain the constraints on the quark OAMs from
these experiments, we need to find the observables which
are sensitive to the GPD Es. Experiments on the DVCS from
JLab 6 GeV Hall A [3221] and HERMES at DESY [3225]
have shown strong sensitivity to the quark OAM in nucleon,
see, e.g., Fig. 264. In these experiments, the single spin asym-
metries associated with beam or target in DVCS processes are
measured, including the beam (lepton) single spin asymmetry
and (target) nucleon single spin (transverse or longitudinal)
asymmetries.

A less model-dependent approach to extract the AM
information from DVCS or similar experiments is to per-
form a global analysis. Several theory groups have been
working on global analyses of the DVCS and DVEM pro-
cesses [3226–3228]. Recently, a framework to make gen-
eral analysis of GPDs similar to CTEQ program [1082],
called GPDs through universal momentum parametrization
(GUMP) [3220], has been proposed based on the previous
work on conformal moments expansion [3229,3230]. The
framework, once including the ξ dependence, can be used to
fit experimental cross sections and asymmetries. In this way,
the quark AM extracted will have less systematic error. In
addition, this approach allows us to get the twist-2 quark AM

densities, Jq(x), with constraints from experimental data.
A number of important AM densities in the spin sum rules
depend on information from twist-3 GPDs, such as canon-
ical OAM densities in both longitudinally and transversely
polarized proton. Extracting the relevant GPDs from exper-
imental data will be very challenging due to the kinematic
suppression.

For the gluon GPDs and AM density Jg(x), one of the
most interesting processes is heavy quarkonium production
in hard exclusive DIS. This is in particular important at the
EIC machine. In early 2020, DOE announced that the next
major facility for nuclear physics in US will be a high-energy
high-luminosity polarized EIC to be built at BNL. The pri-
mary goal of the EIC is to precisely image gluon distributions
in nucleons and nuclei, revealing the origin of the nucleon
spin and exploring the new QCD frontier of cold nuclear
matter [1293,3186].

The EIC will impact our understanding of nucleon spin in
many different ways. In the following, we highlight some of
these impacts. First, the quark and gluon helicity contribu-
tions to the proton spin is the major emphasis of the planned
facility. With the unique coverage in both x and Q2, the EIC
would provide the most powerful constraints onΔΣ andΔG
[1293]. Also shown in Fig. 265 are the projected uncertainty
reductions with the proposed EIC machine. Clearly, the EIC
will make a huge impact on our knowledge of these quanti-
ties, unmatched by any other existing or anticipated facility.

Second, the sea quark polarization will be very precisely
determined through SIDIS. With much large Q2 and x cov-
erage, SIDIS at EIC will provide unprecedented kinematic
reach and improve the systematic uncertainties. In Fig. 265,
we show the example of sea quark polarization constraints
from the EIC pseudo-data simulations.

Third, there will be a comprehensive program on research
of GPDs at the EIC. As discussed above, the GPDs pro-
vide first hand constraints on the total quark/gluon angular
momentum contributions to the proton spin. Moreover, they
also provide important information on the nucleon tomogra-
phy, especially, the 3D imaging of partons inside the proton.
With wide kinematic coverage at the EIC, a particular exam-
ple was shown in Fig. 265 that the transverse imaging of the
gluon can be precisely mapped out from the detailed mea-
surement of hard exclusive J/ψ production in DIS processes.

Finally, we would like to emphasize theoretical efforts
are as important as the experiments to answer the nucleon
spin puzzle. An important question concerns the asymptotic
small-x behavior for the spin sum rule. There have been some
progresses to understand the proton spin structure at small-
x from the associated small-x evolution equations [3231–
3239]. More theoretical efforts are needed to resolve the con-
troversial issues raised in these derivations. The final answer
to these questions will provide important guidance for the
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Fig. 265 The planned electron-ion collider (EIC) at BNL, NY, USA.
Highlights of the EIC impact on our understanding of nucleon spin: total
quark/gluon helicity contributions to the proton spin; sea quark helic-

ity distribution using semi-inclusive deep inelastic scattering; nucleon
tomography of the 3D gluon density in the transverse plane for different
momentum fractions. (This figure from Ref. [1293])

future EIC, where proton spin rum rule is one of the major
focuses.

For additional discussion of these issues, see Sect. 10.2.

10.4 Nucleon tomography: GPDs, TMDs and Wigner
distributions

Andreas Sch“afer and Feng Yuan
Exploring the nucleon is of fundamental importance in sci-
ence, starting from Rutherford’s pioneering experiment one
hundred years ago where he investigated the internal structure
of atomic matter [3240]. Following this effort, the scientific
developments in the last century have revealed the most fun-
damental structure of the matter in our universe: the nucleus
is made of nucleons (protons and neutrons) and the nucleon
is made of partons: quarks and gluons. In particular, inclu-
sive DIS experiments probe the parton distribution functions
which describe the momentum distributions of the partons
inside the nucleon, see, Sect. 10.2.

On the other hand, the inclusive measurements of the
above processes only probe one dimension of the parton dis-
tributions, where the PDF represents the probability distri-
bution of a particular parton (quark or gluon) with a certain
fraction x of the nucleon momentum in the infinite momen-

tum frame. In recent years, the hadron physics community
is pursuing an extension of this picture to include the trans-
verse direction. The goal is to obtain a three-dimensional
tomography of parton densities inside the nucleon. In some
sense, these efforts continue the original Rutherford experi-
ment to map out the internal structure of a nucleon in three
dimensions.

The nucleon is assumed to move in the ẑ-direction.
Its structure in transverse direction can be either analysed
in coordinate space using generalized parton distributions
(GPDs) [1081,1286,3241–3246], or in momentum space
using transverse momentum dependent parton distributions
(TMDs) [1272,1284,3247,3248]. References [964,3249]
introduce the impact parameter dependent parton distribu-
tions, which are Fourier transforms of GPDs in certain kine-
matics and which are the desired parton densities in coordi-
nate space.

The information parametrized by GPDs and TMDs is con-
tained in “mother distributions”, the so-called Wigner distri-
butions [3250,3251]. Wigner distributions were introduced
by Wigner in 1930s as phase space distributions in quantum
mechanics,

W (r, p) =
∫

dηeipηψ∗
(
r − η

2

)
ψ

(
r + η

2

)
, (10.70)
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where r and p represent the coordinate and momentum space
variables, respectively, and ψ is the wave function. When
integrating over r (p), one gets the momentum (probability)
density from the wave function, which is positive definite.
For arbitrary r and p, the Wigner distribution is not posi-
tive definite and does not have a probability interpretation.
This reflects the fact that the Wigner distribution contains
all quantum mechanical information contained in ψ , which
goes beyond probabilities.

Following this concept, we can define the Wigner distribu-
tion for a quark in a nucleon with momentum P [3250,3251],

WΓ (x, k⊥, �r) =
∫

dη−d2η⊥
(2π)3 eik·η

× 〈P|Ψ
(
�r − η

2

)
Γ Ψ

(
�r + η

2

)
|P〉,

(10.71)

where x represents the longitudinal momentum fraction car-
ried by the quark, k⊥ is the transverse momentum, �r the coor-
dinate space variable, and Γ the Dirac matrix to project out
a particular quark distribution. The quark field Ψ contains
the relevant gauge link to guarantee gauge invariance of the
above definition [3250]; see more discussions below. We can
also define the Wigner distribution for gluons accordingly.

If we integrate the Wigner distribution over rz , we obtain
the transverse Wigner distribution,

WT
Γ (x, k⊥, r⊥)

=
∫

drzdη−d2η⊥
(2π)3 eik·η〈P|Ψ

(
�r − η

2

)
Γ Ψ

(
�r + η

2

)
|P〉

=
∫

d2q⊥dη−d2η⊥
(2π)5

eiq⊥·r⊥eik·η

×
〈
P + q⊥

2

∣
∣
∣Ψ

(
−η

2

)
Γ Ψ

(η

2

) ∣
∣
∣P − q⊥

2

〉

where we have introduced a wave package for the nucleon
state to derive the last equation. The Wigner distribution func-
tions are also referred to as generalized TMDs (GTMDs)
[3252,3253]. They can be interpreted as phase space (r⊥,k⊥)
distributions of a parton in the transverse plane perpendicular
to the nucleon momentum direction.

The Wigner distribution functions reduce to the TMDs
and GPDs upon integration over certain kinematic variables.
For example, when integrated over r⊥, the above distribution
leads to the transverse momentum dependent quark distribu-
tions,

f (x, k⊥) =
∫

dη−d2η⊥
(2π)3 eik·η〈P|Ψ

(
−η

2

)
Γ Ψ

(η

2

)
|P〉.
(10.72)

On the other hand, if we integrate out k⊥, we obtain the
impact parameter dependent quark distribution [964], which
is the Fourier transform of the GPDs at ξ = 0,

f (x, b⊥) =
∫

d2Δ⊥
(2π)2 e

iΔ⊥·b⊥
∫

dη−

2π
eik·η

×
〈

P + Δ⊥
2

∣
∣
∣
∣Ψ

(

−η−

2

)

Γ Ψ

(
η−

2

) ∣
∣
∣
∣P −

Δ⊥
2

〉

=
∫

d2Δ⊥
(2π)2 e

iΔ⊥·b⊥H(x, ξ, t)|ξ=0 . (10.73)

Here, t = − �Δ2⊥ and H(x, ξ, t) represents one of the GPDs
(definitions will be given below).

The relations between these different functions are often
illustrated by the cartoon in Fig. 266 which is, however, some-
what symbolic. Just like the Wigner distribution in quantum
mechanics contains the full information of the wave function
ψ , a Wigner function in quantum field theory (QFT) con-
tains the full complexity of QFT, including its dependence
on the chosen renormalization and factorization scheme. For
example TMDs depend on the two scaling variables μ and ζ ,
while PDFs depend only on μ. Consequently equations like

f (x)
?!=

∫
d2k⊥ f (x, k⊥) (10.74)

are only valid up to scheme dependent subtraction/renormali-
zation factors or even matching functions. This has sig-
nificant consequences. For example, usually, the lhs of
Eq. (10.74) fulfills a different evolution equation than the rhs.
Thus, when comparing the results of different phenomeno-
logical TMD fits or lattice calculations one has to convert
them into the same scheme.

For other functions there is no such complication. For
example, the x integral of GPDs is equal to form factors,
e.g., F1(Q2) = ∫

dxH(x, ξ, t = −Q2). This being said,
such complications as well as the μ and ζ dependence are
usually suppressed to simplify notation and we do the same
in this review.

The status and perspective of both the collinear PDFs and
nucleon form factors have been well covered in this review,
see, Sects. 10.1 and 10.2.

The tomographical information inherent to Wigner dis-
tributions is best illustrated by the resulting intuitive and
rigorous method to define the quark/gluon orbital angular
momentum (OAM). This follows the concept of the Wigner
distribution as a phase-space distribution, i.e., to compute the
physical observable, one takes the average over the phase-
space as if it were a classical distribution,

〈Ô(r, p)〉 =
∫

drdpW (r, p)O(r, p) . (10.75)

Since the orbital angular momentum represents the quantity
�r × �p, we obtain the quark/gluon OAM from the integral of
�r × �p multiplied with the Wigner distribution.
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Fig. 266 Transverse momentum dependent parton distributions and the generalized parton distributions are unified in the Wigner distributions.
This plot is adopted from Ref. [1293]

For the parton Wigner distribution, one first realizes that
a gauge invariant parton distribution must include a gauge
link extending from the location of the parton to infinity.
An optimal choice for high-energy collisions is a gauge link
along the relevant light-cone direction nμ,

ΨLC (ξ) = P

[

exp

(

−ig
∫ ±∞

0
dλ n · A(λn + ξ)

)]

ψ(ξ) ,

(10.76)

where P indicates path ordering. The above defined gauge
link can go to +∞ or −∞; see more discussions below.
In practical applications, we can also choose a straight-line
gauge link along the direction of the spacetime position ξμ,

ΨFS(ξ) = P

[

exp

(

−ig
∫ ∞

0
dλ ξ · A(λξ)

)]

ψ(ξ) .

(10.77)

This link reduces to unity when ξ · A(ξ) = 0 (the Fock–
Schwinger gauge). With the above definitions, we can write
down the quark Wigner distribution as,

WP (k+= x P+, �b⊥, �k⊥)
= 1

2

∫
d2 �q⊥
(2π)3

∫
dk−

(2π)3 e
−i �q⊥·�b⊥

〈 �q⊥
2

∣
∣
∣
∣ŴP (0, k)

∣
∣
∣
∣−

�q⊥
2

〉

,

(10.78)

with the Wigner operator,

ŴP (�r , k) =
∫

ΨP (�r − ξ/2)γ+ΨP (�r + ξ/2)eik·ξd4ξ,

(10.79)

where P denotes the path and is either LC or FS, �r is
the quark phase-space position, and k the phase-space four-
momentum.

Fig. 267 Distributions in impact parameter space of the mean trans-
verse momentum of an unpolarized u-quark in a longitudinally polar-
ized nucleon, taken from Ref. [3254]. The nucleon is polarized perpen-
dicular to the plane, while the arrows show the size and direction of
the mean transverse momentum of the quarks. This gives an intuitive
picture of the quark orbital angular motion inside the nucleon

It can be shown that the total OAM is given by the parton’s
Wigner distribution,

Lq = 〈PS| ∫ d3�r ψ(�r)γ+(�r⊥ × i �D⊥)ψ(�r)|PS〉
〈PS|PS〉

=
∫

(�b⊥ × �k⊥)WFS(x, �b⊥, �k⊥)dxd2 �b⊥d2�k⊥ , (10.80)

which provides a gauge-invariant expression for the parton’s
OAM [3196,3255].
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Similarly, the canonical OAM in light-cone gauge fulfills
the simple but gauge-dependent parton sum rule in the quan-
tum phase space [3253,3254,3256],

!q = 〈PS| ∫ d3�r ψ(�r)γ+(�r⊥ × i �∂⊥)ψ(�r)|PS〉
〈PS|PS〉

=
∫

(�b⊥ × �k⊥)WLC (x, �b⊥, �k⊥)dxd2 �b⊥d2�k⊥ . (10.81)

The above two OAMs, Lq and !q , correspond to the quark
OAMs in the Ji and Jaffe-Manohar spin sum rules, respec-
tively, discussed in Sect. 10.3. Similar conclusions hold for
the gluon OAMs as well.

Therefore, the Wigner distribution, to some extend, con-
tains the parton OAMs in two different spin sum rules. This
further illustrates that the difference between them comes
from the gauge link direction. A recent lattice QCD calcula-
tion has shown that the quark OAMs can be obtained from
the quark Wigner distributions and the difference between
Lq and !q has been demonstrated [3217,3218].

In the last years a number of studies have directly probed
the quark/gluon OAM contributions [3257–3261] applying
the Wigner distribution for hard exclusive processes. For
example, the single longitudinal target-spin asymmetries in
hard exclusive dijet production in lepton–nucleon collisions
[3257,3258] and the double spin asymmetries in this pro-
cess [3261] can provide crucial information on the gluon’s
canonical OAM contribution.

The determination of Wigner distributions is thus an
important challenge for future studies; see discussions in the
end of this subsection. The crucial point is that there exists
a well-defined, standardized way to link nucleon tomog-
raphy to Wigner distributions constructed from light-cone
wave functions [3254]. As an example we show in Fig. 267
the average transverse momentum flow in impact parame-
ter space for u-quarks inside the proton. While this result is
model dependent, it has the great advantage of providing an
intuitive image of the quark orbital motion distribution inside
a hadron.

Generalized parton distributions
The GPDs are one of the projections from the Wigner distri-
butions. They are extensions of the usual collinear parton dis-
tributions discussed in Sect. 10.2 and defined as off-forward
matrix elements of the hadron. For example, for the quark
GPDs, we have [1079,1081,1286,3242–3245]
∫

dλ

2π
eiλx 〈P ′S′|Ψ q

(

−λ

2
n

)

�nΨq

(
λ

2
n

)

|PS〉 (10.82)

= U (P ′)
[

Hq (x, ξ, t)�n + Eq (x, ξ, t)
σαβnαΔβ

2Mp

]

U (P) ,

where Δ = P ′ − P with t = Δ2, x is the light-cone momen-
tum fraction of the quark, and the skewness parameter ξ is
defined as ξ = (P−P ′) ·n/(P+P ′) ·n. In the forward limit,

Fig. 268 Transverse profiles for the up quark distribution in transverse
coordinate space as a function of x

we have ξ = 0 and t = 0, and the GPDs reduce to the usual
collinear PDFs. The x-moments of GPDs lead to not only the
electromagnetic form factors but also the gravitational form
factors [1081], one of which produces the spin sum rule as
discussed in the previous subsection.

Depending on the polarization of the quark and the
nucleon states, the leading-twist quark GPDs contain eight
independent distributions. The GPDs can be measured in
many different experiments, for example, DVCS and hard
exclusive meson production. Experimental efforts have been
made at various facilities, including HERMES at DESY, Jef-
ferson Lab, and COMPASS at CERN. It will be a major focus
of the future EIC as well.

Nucleon tomography in terms of the GPDs is best illus-
trated in the impact parameter dependent parton distribution
of Eq. (10.73). From that, we can define the transverse quark
density profile [3249]:

ρq(x, b) =
∫

d2Δ

(2π)2 e
−iΔ·bHq(x,−Δ2) . (10.83)

An important feature of the above distribution is how it
changes with longitudinal momentum fraction x . In Fig. 268,
we show the transverse density profile for the up quark from
the GPD parameterizations of [3226]. The plot shows that
the transverse profile in coordinate space becomes wider at
smaller x . At large x , however, it approaches a point-like
structure, which means there is no t dependence of the GPD
quark distribution, a result consistent with large-x power
counting for GPDs [3262]. One of the primary goals of the
GPD program at the JLab-12GeV and the EIC is to map out
the x-dependence of the GPDs and the tomographic images
for both quarks and gluons.

Most interestingly, when the nucleon is transversely polar-
ized, the parton distribution in the transverse plane will be
asymmetric due to the contribution from the GPD E [3249],

ρX
q (x, b)

=
∫

d2Δ

(2π)2 e
−iΔ·b

(

Hq(x,−Δ2)+ iΔY

2M
Eq(x,−Δ2)

)
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Fig. 269 Plots of the intrinsic quark densities ρX
q,In(x, b) for both u

and d quarks in a transversely polarized proton (in the X direction) at
x = 0.3. Both the u and d quark densities are shifted in the Y direction
and contribute to the angular momentum J X . While the u contributions
are positive (+Y direction) and the d contributions are negative (−Y
direction). These plots are adopted from Ref. [3220]

= Hq(x, b)− 1

2M

∂

∂bY
Eq(x, b) , (10.84)

where Hq(x, b) and Eq(x, b) are the 2-dimensional Fourier
transformations of Hq(x,−Δ2) and Eq(x,−Δ2), respec-
tively, and the nucleon is polarized in the X direction. This
asymmetric distribution has attracted strong interest in the
hadron physics community and it was argued that it might be
related to the single spin asymmetry phenomena in hadronic
processes [3249]. It has also been found in a lattice simula-
tion [3263].

In order to factor out the transverse displacement from
the nucleon’s center of momentum and its contribution to the
transverse polarization, one can introduce an intrinsic quark
density [3198],

ρX
q,In(x, b) =

∫
d2Δ

(2π)2 e
−iΔ·b [

Hq(x,−Δ2)

+ iΔY

2M

(
Hq(x,−Δ2)+ Eq(x,−Δ2)

)]

= Hq(x, b)− 1

2M

∂

∂bY
(
Hq(x, b)+ Eq(x, b)

)
,

(10.85)

from which one can reproduce the transverse polarization
sum rule; see Sect. 10.3. In Fig. 269, we show the intrinsic
transverse density for u and d quarks at x = 0.3 from the
analysis of the GPD quark distribution of [3220]. Clearly, the
quarks have non-zero transverse displacement, which con-
tributes to the transverse angular momentum of the nucleon.

The theoretical framework has been well developed for
the GPD studies with established QCD factorization for the
associated exclusive processes [1288–1290]. Higher order
perturbative QCD corrections have been calculated in a num-
ber of publications [1290,3264–3272]. The first computation
of next-to-next-leading order corrections for DVCS has also
been reported recently [3273]. However, since GPDs depend

on three variables (x ,ξ ,t) in addition to the scale variable μ, it
is much more difficult to extract them from experiment than
PDFs (which only depend on x).

Pioneering phenomenological work has been carried
out in Refs. [1286,3226,3230,3269,3274,3275]. In the last
years, progress has also been made toward a global analysis
of GPDs from a wide range of experiments [3220,3276–
3282]. Especially, the twist-2 and twist-3 results were re-
derived with an optimal light cone coordinate and full kine-
matics adopted [3280–3282]. A dedicated program based on
earlier developments of Ref. [3274] has been proposed in
Ref. [3220]. All these theory advances are crucial for a suc-
cessful campaign to determine GPDs from DVCS and other
hard exclusive processes measured at JLab-12 GeV and the
planned Electron-Ion Collider.

Lattice QCD can be used to study these GPDs as well.
Employing the LaMET formalism, exciting results on the
x-dependence of the GPD quark distributions have already
been obtained [671,3283]. We expect many more such sim-
ulations to emerge in the future, as well as combined fits to
experimental and lattice data.

Transverse Momentum Dependent Parton Distributions
Theoretical studies of TMDs started long ago (see, for exam-
ple, Ref. [1272]). In recent years great progress was made in
the exploration of these distribution functions and the associ-
ated single spin asymmetry phenomena. In particular, TMDs
provide not only an intuitive illustration of nucleon tomog-
raphy, as we discussed above, but also the important oppor-
tunities to investigate the specific nontrivial QCD dynamics
associated with their physics: QCD factorization, universal-
ity of the parton distributions and fragmentation functions,
and their scale evolutions.

Different from the collinear PDFs discussed in Sect. 10.2,
the TMD parton distributions can not be studied in inclu-
sive processes. We have to go beyond that and explore semi-
inclusive hard processes, where a hard momentum scale is
involved in addition to the transverse momentum of the final-
state particle produced. For example, we can study the TMD
quark distributions in semi-inclusive DIS (SIDIS), where the
virtual photon (with virtuality Q) scatters off the hadron
and produces a final state hadron in the current fragmen-
tation region. The hadron’s transverse momentum Ph⊥ has
to be much smaller than the hard momentum Q. Because
of Ph⊥ � Q, this process can be factorized into the TMD
quark distribution convoluted with the TMD fragmentation
function. Similarly, the Drell–Yan lepton pair production (or
W/Z -boson, Higgs boson production) in hadronic collisions
can be described by the convolution of two TMD parton dis-
tributions with transverse momentum q⊥ � Q. A related
process in e+e− annihilation into two back-to-back hadrons
can be factorized as a convolution of two TMD fragmentation
functions.
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Fig. 270 The leading order transverse momentum dependent quark
distributions depend on the polarization of the quark (rows) and the
nucleon (columns)

The TMD quark distributions can be defined by the fol-
lowing matrix [1272,1284,1297,1310,3247,3248],

M̂αβ(x, k⊥) =
∫

dy−d2y⊥
(2π)3 e−i x P+·y−+i �k⊥·�y⊥

×〈PS|Ψ β(y
−, y⊥)Ψα(0)|PS〉 , (10.86)

where x is the longitudinal momentum fraction and k⊥ the
transverse momentum carried by the quark. The quark field
Ψ (y) contains a gauge link as defined in Eq. (10.76). This
definition contains a light-cone singularity from higher order
corrections. The regulation and subtraction procedure defines
the scheme of the TMD distributions. Obviously, in the the-
oretical limit in which contributions from all orders and all
twists are taken into account, physical quantities have to be
scheme independent. (At the most simple level this was actu-
ally shown explicitly in Ref. [3284] but it has to be true also
non-perturbatively.) Often, however (e.g. in event genera-
tors), rather specific models are used for which this is not the
case. In these cases the fitted TMDs and thus the result of
hadron tomography can be strongly scheme/model depen-
dent (see e.g. Ref. [3285]). Calculating the model-specific
matching factors or functions between such a scheme and
the usual TMD factorization scheme is often not possible.
This should flag a warning that one has to be careful when
comparing fitted TMDs from different sources. The leading
order expansion of the above matrix contains eight indepen-
dent quark TMDs, depending on the polarization of the quark
(varying horizontally) and the nucleon (varying vertically) in
Fig. 270. The gauge link direction plays an essential role in
the naive time-reversal-odd TMD quark distributions, includ-
ing the quark Sivers function f ⊥1T (x, k⊥) and Boer-Mulders
function h⊥1 (x, k⊥).

The spin-average quark distributions are symmetric in the
transverse plane. However, if the nucleon (or the quark)
is transversely polarized, the quark distribution shows an
azimuthal asymmetry. In particular, the TMD quark Sivers
functions quantify these asymmetries in the transverse
momentum space. In Fig. 271, we show one of the resulting

Fig. 271 The quark Sivers function represents the asymmetric distri-
bution of a quark in transverse momentum space when the nucleon is
polarized along the ŷ-direction. This plot is adopted from a phenomeno-
logical study [3286]

distributions for the quark (averaged over x) in transverse
momentum space in a transversely polarized nucleon. The
TMD distribution comes from the fit to the associated single
transverse spin asymmetries in semi-inclusive hard processes
[3286].

For the quark Sivers function, because of the initial/final
state interaction (represented by the gauge link pointing to
−∞ or +∞ in the quark distribution definition) difference,
they differ by signs for semi-inclusive hadron production
in DIS (SIDIS) and Drell–Yan processes [1296,1297,1309,
1310,3287,3288]. This leads to a sign change between the
SSAs in SIDIS and Drell–Yan processes,

Sivers SSA|DY = −Sivers SSA|DIS . (10.87)

This nontrivial result still holds when gluon radiation contri-
butions are taken into account [1320,3289–3291]. It is very
important to test this nontrivial QCD prediction by com-
paring the SSAs in these two processes. The Sivers single
spin asymmetries in SIDIS processes have been observed by
the HERMES [3292,3293], COMPASS [3294–3297], and
JLab [3298,3299] collaborations. There have been signifi-
cant efforts to measure the Sivers asymmetries in Drell–Yan
process at COMPASS [3300] and that of W± production at
RHIC [3301]. The analyses of these data provide an indi-
cation for a sign change [3302], but no proof. More precise
measurements are needed to confirm this crucial property.

In TMD factorization for semi-inclusive hard processes
[1267,1272,1280,1283,1911], collinear and soft gluon radi-
ations are factorized into the TMD parton distributions or
fragmentation functions and the associated soft factors. As
for the integrated parton distribution functions, these gluon
radiation contributions can be resummed to all orders by solv-
ing the relevant evolution equations. This resummation is
referred to as TMD or Collins–Soper–Sterman resummation
[1280]. As a result, the factorization simplifies the differential
cross section to a convolution of soft factor-subtracted TMD
distributions and/or fragmentation functions [1267], where
the hard momentum scale is chosen as factorization scale
μF = Q. As an example, in Fig. 272, we show the TMD up
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Fig. 272 TMD up-quark distributions f (sub)
u (x, k⊥) (for x = 0.1) as

functions of the transverse momentum k⊥ (GeV) at three different scales
Q2 = 2.4, 10, 90 (GeV2). This plot is adopted from Ref. [3284]

quark distribution f (sub)(x = 0.1, kT , μF = Q) as a func-
tion of the transverse momentum at different scales. Clearly,
the resummation/scale evolution leads to broadening effects
for TMD distributions at higher scales. Based on these devel-
opments, recent global analyses have achieved high precision
for the unpolarized TMD quark distribution and fragmenta-
tion functions fitted to data from various semi-inclusive hard
processes [3303–3306]. Of course, further theoretical devel-
opments are still needed to answer crucial questions concern-
ing TMD factorization at lower scale SIDIS and the question
how non-perturbative effects affect the matching between
the TMDs and collinear PDFs [3306–3309]. Upcoming data
from the JLab-12 GeV program should significantly improve
our understanding of these issues in the near future.

In addition, progress has been made in studying the scale
evolution for the quark Sivers function and the associated
quark–gluon–quark correlation functions [1317,1318,3310–
3314], and the QCD resummation for the SSA observables
[3314–3318]. These resummation effects have been taken
into account in a recent phenomenological study of all single
spin asymmetries associated with the quark Sivers function
in a global analysis using (N3LO) evolution for the TMDs
[3286,3302].

There have also been significant progresses toward lat-
tice calculations of TMDs [672,675,676,3319–3330] in the
last few years, partially again based on the LaMET formal-
ism. The TMD evolution kernel was calculated from lattice
QCD [672,674,676,3327,3328] for perturbative and non-
perturbative [3305,3306,3331] impact parameters b and the
result agreed with that of a fit to experimental data [3285].
This motivates great hopes for future combined TMD fits to
experimental and lattice data. We also expect lattice simula-
tion of the single spin asymmetries associated with the quark
Sivers function, using the perturbative matching derived in
Ref. [3323].

More recently, important developments have taken place
addressing the connections between the TMD formalism and
small-x saturation physics. Small-x gluon saturation is best

described in the color-glass-condensate (CGC)/color-dipole
formalism [3332–3336], for which the so-called unintegrated
gluon distributions (UGDs) are essential elements. What has
been shown in the recent papers [3337–3343] is that these
UGDs are the same as the TMD gluon distribution functions
at small-x . Meanwhile, considerable progress has also been
made in computing Sudakov double logarithms in the small-x
formalism [3344–3349]. These computations provide a solid
theoretical foundation for further rigorous investigations that
probe the dynamics of the saturation regime with hard pro-
cesses. We anticipate that in the foreseeable future a unified
picture of nucleon structure will emerge that covers the whole
kinematic domain, including small and large x .

Direct access to the Wigner distributions
It was generally believed that the parton Wigner distribu-
tions are not directly measurable in high energy scattering.
However, it was realized recently that the Wigner distribution
could be measured through hard exclusive processes [3350–
3352]. In particular, it was shown in Ref. [3350] that the
small-x gluon Wigner distribution is connected to the color
dipole S-matrix in the CGC formalism [3332–3336], that
diffractive dijet production in ep/eA collisions [3350,3353–
3357] may provide a direct probe of this gluon Wigner
distribution. Additionally, semi-hard gluon radiation in this
process or ‘trijet’ diffractive production has been shown to
probe the color-dipole amplitude in the adjoint representation
[3358,3359]. This demonstrates that a new class of diffrac-
tive processes, including semi-inclusive diffractive DIS [864]
can provide crucial information on the gluon Wigner distri-
butions at small-x . Extension to other processes, in particular,
those at moderate and large x will be interesting to follow
as well. We expect more research along this direction in the
future.

To summarize this subsection: There has been great
progress in both experiment and theory for GPD and TMD
physics. Of course, challenges are still there in both fields. We
would like to emphasize that data from future experiments,
including the 12 GeV upgrade of JLab, COMPASS and the
planed EIC experiments, together with theory developments,
will lead us to a complete 3D tomography of the nucleon.

11 QCD at high energy

Conveners:
Gudrun Heinrich and Eberhard Klempt
The core of high energy collisions consists in a hard scat-
tering of two partons, where the momentum transfer is very
large and therefore the process can be calculated perturba-
tively. The enormous progress in the calculation of QCD
corrections beyond the leading order in perturbation theory
is described by Gudrun Heinrich. The scattered partons can
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emit soft or nearly collinear gluons. In kinematic regions
where the phase space for such emissions is restricted, large
logarithms arise, which can spoil the perturbative conver-
gence. Due to the universal structure of infrared divergent
QCD radiation, such logarithms can be resummed analyti-
cally to all orders to restore the predictive power of the per-
turbative description in these kinematic regions, as described
by Simone Marzani.

At the intermediate stage between the hard interaction and
hadronization, the radiation of gluons from quarks and the
splitting of gluons into secondary quarks and gluons, forming
a cascade of emissions, can be described by parton showers.
The development of these parton showers and our under-
standing of these processes are described by Frank Krauss.

Once these showers of partons have evolved to low ener-
gies, the process of hadron formation sets in. At these ener-
gies, the strong coupling is large, such that bound states are
formed, which cannot be described perturbatively anymore.
The description of hadronization needs to rely on parameters
extracted from data. These parameters are tuned in Monte
Carlo simulations. Torbjörn Sjöstrand gives a detailed view
of different stages of the collision process and of their simu-
lation.

The reconstruction of jets by reliable jet algorithms and
the identification of the primary source, gluons or quarks of a
certain flavor, is very important to extract information about
the underlying particle dynamics from the data. Jet substruc-
ture variables can provide essential information about the
decay of heavy particles leading to boosted jets, as described
by Bogdan Malaescu, Dag Gillberg, Steven Schramm, and
Chris Young.

11.1 Higher-order perturbative calculations

Gudrun Heinrich

11.1.1 Introduction

The property of asymptotic freedom of QCD, together with
the fact that short- and long-distance effects in QCD can be
factorized up to power corrections, allows us to describe pro-
cesses with high momentum transfer as a perturbative series
in the strong coupling αs , as illustrated in Eq. (11.1). For
example, the cross section for a process such as the produc-
tion of a Higgs boson through the collision of two protons
with momenta pa and pb, pa + pb → H + X , has the form

σpp→H+X =
∑

i, j

∫ 1

0
dx1 fi/pa (x1, αs , μF )

×
∫ 1

0
dx2 f j/pb (x2, αs , μF ) σ̂i j→H+X (αs(μR), μR, μF )

+O
(
Λ

Q

)p

, (11.1)

where the partonic cross section σ̂i j→H+X can be expanded
as

σ̂i j→H+X = α2
s σ̂

(0) + α3
s σ̂

NLO + α4
s σ̂

NNLO + · · · (11.2)

The renormalization of ultraviolet singularities appearing in
loop corrections leads to a dependence of both αs and the
partonic cross section on the renormalization scale μR . Sim-
ilarly, the absorption of collinear singularities into the “bare”
parton distribution functions leads to a dependence on the
factorization scale μF . The functions fi/pa (x, αs, μF ) are
the (physical) parton distribution functions (PDFs), which
can be interpreted as probabilities to find a parton of type i
with momentum fraction x of the “parent” momentum pa in a
proton (or, more generally, a hadron). This makes an assump-
tion of collinearity of the parton’s momentum with pa , there-
fore the factorisation described by Eq. (11.1) is also called
collinear factorisation. For more details about parton distri-
bution functions we refer to Sect. 10.2. Factorization holds up
to the so-called power corrections of order (Λ/Q)p, where
the power p is process-dependent and larger than one for
observables that are sufficiently inclusive over the hadronic
final state, see, however, Ref. [180].

In Eq. (11.2), the partonic cross section at leading order
(LO) in an expansion in αs is denoted by σ̂ (0), where for
the sake of clarity the powers of the strong coupling have
been extracted. The next-to-leading order (NLO) cross sec-
tion comes with one more power of αs relative to LO, the
next-to-next-to-leading order (NNLO) cross section with two
more αs powers than LO, etc. Of course such an expansion
also can be performed for the electroweak corrections, how-
ever, as α/αs(MZ ) � 0.1, the QCD corrections are usually
larger, except in kinematic regions where logarithms of the
form α ln(M2

W /ŝ) grow large. The dependence of the cross
section dσpp→H+X onμR andμF is an artifact of the trunca-
tion of the perturbative series. Therefore, the dependence on
these unphysical scales becomes weaker as more perturba-
tive orders are calculated. The variation of the cross section as
these scales are varied around a central scale – which should
be chosen to be close to the energy at which the hard inter-
action takes place – therefore can be used as an estimate of
the theoretical uncertainty due to missing higher orders.

Higgs boson production in gluon fusion is somewhat spe-
cial, as the leading order amplitude is already loop-induced,
and because the NLO QCD corrections are of the order of
100%, which makes the inclusion of QCD corrections beyond
NLO a necessity for a satisfactory description of the data.

The perturbative expansion in powers of αs is particu-
larly reliable for inclusive observables. If the phase space
for QCD radiation is restricted, large logarithms can appear,
which spoil the convergence of the perturbative series in αs .
This requires so-called resummation, as described in detail
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in Sect. 11.2. Here we will focus on calculations at a fixed
order in the strong coupling.

11.1.2 Developments and status

Next-to-leading order QCD corrections
The development of systematic techniques for NLO QCD
corrections started in the 1980s with seminal work on e+e−–
annihilation to jets [3360–3362] and hadron–hadron scat-
tering [197], followed by pioneering developments of tech-
niques for one-loop calculations based on Feynman diagrams
and tensor reduction [3363–3366]. In parallel, subtraction
methods for soft and collinear real radiation were established
[199,3367], leading to the first differential NLO calculations
of 2-jet production in hadronic collisions [3368–3370], while
the first NLO calculation of 3-jet production in hadronic col-
lisions only appeared 10 years later [3371].

The calculation of NLO cross sections for (n−2)-jet pro-
duction in hadronic collisions (or for (n−1)-jet production in
e+e−–annihilation, as well as the calculation of amplitudes
obtained by crossing) involves n-parton one-loop amplitudes
and (n+1)-parton tree-level amplitudes with up to one unre-
solved (soft or collinear) parton, see Fig. 273. The efficient
calculation of one-loop n-point amplitudes for n ≥ 5 repre-
sented a major challenge in the 1990s and led to the develop-
ment of more efficient methods to calculate one-loop n-point
amplitudes, based on the idea to exploit analytic properties
of loop integrals if propagators are put on-shell (so-called
“unitarity cuts”) [200,3372–3374]. The emergence of meth-
ods to perform these cuts numerically [3375–3377], together
with the automation of subtraction methods for unresolved
real radiation at NLO, led to a new level of efficiency, result-
ing in the availability of NLO QCD predictions for multi-
particle scattering which were considered unfeasible some
years before, such as 5-jet production at the LHC [3378], top-
quark pair production with up to 3 jets [3379], Wbb̄ produc-
tion with up to 3 light jets [3380], or the NLO QCD and EW
corrections to off-shell t t̄W production at the LHC, involving
one-loop 10-point integrals [3381]. It also led to the develop-
ment of automated tools providing one-loop amplitudes for
fully differential NLO predictions [3376,3382–3388]. This
remarkable jump in efficiency is often called the “NLO rev-
olution”.

Beyond NLO
The next step, towards fully differential NNLO predic-
tions, required not only major progress in the calculation of
two-loop integrals, but also the development of subtraction
schemes for infrared (IR) divergent real radiation where up
to two particles can be unresolved.

Multi-loop amplitudes
First, the developments regarding loop integrals with two or
more loops will be considered. A very important parame-

Fig. 273 Building blocks of an NxLO calculation for processes where
the leading order is at tree level (in contrast to loop-induced). The higher
order diagrams are only representatives of their class, the number of
diagrams grows rapidly with the perturbative order

ter characterising a Feynman integral besides the number of
loops and legs is the number of kinematic/mass scales. As
an example, it is instructive to consider the development of
the calculation of 2-loop 4-point integrals (2 loops, 4 legs):
the analytic calculation of the planar [3389] and non-planar
[3390] two-loop 7-propagator diagrams with massless propa-
gators and light-like legs has been performed in 1999, numer-
ical checks of these results in the Euclidean region were
performed in Ref. [3391], the calculation of such integrals
with one off-shell leg was completed soon after [3392,3393].
The first results for two-loop 4-point amplitudes with mas-
sive propagators have been achieved by a numerical method
[3394,3395], leading to NNLO predictions for top quark pair
production in hadronic collisions [3396]. The analytic calcu-
lation of two-loop 4-point integrals with two massive legs and
massless propagators, entering for example the production of
Z -boson pairs or a W+W− pair, was completed around the
year 2015 for both the on-shell as well as for the off-shell case
[3397–3402]. However, the step to include massive propaga-
tors leads out of the function class (so-called multiple poly-
logarithms) describing the above-mentioned objects analyti-
cally. Therefore, the calculation of two-loop 4-point integrals
with both massive propagators as well as massive final state
particles was performed numerically before analytic results
appeared, examples are the two-loop QCD corrections to
Higgs boson pair production [3403,3404], Higgs+jet pro-
duction [3405], gg → ZH [3406–3408] and gg → VV
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Table 48 Timeline for the availability of full NNLO cross sections at
hadron colliders (or NLO cross sections for loop induced processes)
based on two-loop four-point or five-point integrals with an increasing
number of mass scales. “HTL” denotes the heavy top limit, “QCD-
EW DY” denotes mixed QCD-electroweak corrections to the Drell–Yan
process

Indep. kinem.
scales

Massive/off-
shell legs

Internal
masses

Process Full σ

2 → 2

2 0 0 γ γ 2011

2 0 0 j j 2017

2 0 0 γ + j 2017

3 2 1 t t̄ 2013

3 2 0 VV 2014

4 2 0 VV ′ 2015

3 1 0 V + j 2015

3 1 0 H + j (HTL) 2015

4 2 1 HH 2016

4 1 1 H + j 2018

3 0 1 gg→ γ γ 2019

4 2 1 gg→ Z Z 2020

4 2 1 gg→ WW 2020

5 2 1 gg→ ZH 2021

4 2 1 QCD-EW DY 2022

2 → 3

4 0 0 3γ 2019

4 0 0 γ γ j 2021

4 0 0 3 j 2021

5 1 0 Wbb̄ 2022

with massive loops [3409–3411], where V denotes a mas-
sive vector boson. Thus, one can roughly say that it took
almost 20 years to increase the number of independent mass
scales entering these diagrams from two (s12, s23), to five
(s12, s23,mt ,mV ,mV ′), where si j = (pi + p j )

2 and V ′
denotes a boson with invariant mass different from V . The
timeline of available predictions for (differential) cross sec-
tions based on these integrals is shown in Table 48, illustrat-
ing how an additional mass scale increases the complexity. It
is noteworthy that all integrals with massive propagators, i.e.
with a non-zero entry in the third column, have been calcu-
lated with numerical methods. For processes with jets in the
final state, the subtraction of IR divergent real radiation was
the bottleneck, not the availability of the two-loop integrals.

More details on the methods employed for these calcula-
tions can be found e.g. in Refs. [215,3412,3413].

Real radiation
For many 1 → 3 or 2 → 2 processes, such as e+e− → 3 jets
or di-jet production in hadronic collisions, the knowledge
of the two-loop amplitudes was not the main bottleneck
on the way to fully differential predictions at NNLO. Effi-

cient schemes to treat the infrared (IR) divergent real radi-
ation needed to be developed, and the emergence of several
schemes led to an explosion in the availability of NNLO
results for LHC processes with up to two particles or jets in
the final state after 2015, a development which is sometimes
referred to as the “NNLO revolution”. The main methods to
treat IR divergent real radiation beyond NLO can roughly be
classified into two categories: (i) methods based on subtrac-
tion, and (ii) methods based on partitions of the phase space
into IR-sensitive regions and hard regions, sometimes also
called “slicing methods”. The latter introduce a dependence
on a resolution variable which cancels once the IR-sensitive
and hard regions are combined. Subtraction methods aim
at a local subtraction of the IR singular structures, i.e. a
cancellation of singularities point-wise in the phase space,
while for slicing methods the compensations are non-local.
This non-locality can lead to large numerical cancellations,
however, power corrections in the resolution variable can
be included to mitigate their impact. Reviews about recent
developments in IR subtraction schemes can be found e.g. in
Refs. [214,3413,3414]. The main methods are summarized
in Table 49.

The extension of methods to isolate IR divergent real radi-
ation to N3LO, i.e. the case of up to three unresolved partons,
in particular in the presence of tagged colored particles or jets,
is one of the current challenges in the field of high precision
perturbative QCD calculations.

While the complete automation of NNLO calculations is
probably not feasible in view of efficiency optimisations that
are process specific, libraries with a large collection of codes
providing NNLO predictions are available, such as matrix
[3452], nnlojet [3419] or mcfm [3459].

Current frontier and recent developments
As shown in Fig. 273, the calculation of NxLO corrections
to processes with (n − 2) identified particles or jets in the
final state in hadronic collisions (where the leading order
is a tree amplitude, as contrasted to loop-induced amplitudes
such as Higgs boson production in gluon fusion), requires the
calculation of amplitudes with x − j loops and n + j legs,
where j = 0, . . . , x . The current frontier is, roughly speak-
ing, x + n ≥ 6, having in mind 2 → 3 processes at NNLO,
2 → 1 processes at N3LO or 4-loop form factors. However,
the type of the involved particles is very important for the
complexity of the calculation: all available complete N3LO
results to date involve only color singlets in the final state,
see e.g. Refs. [3460–3464] for the Drell–Yan process, Refs.
[206,3465–3468] for Higgs boson production in gluon fusion
in the heavy top limit and Ref. [3469] for V H production.
Inclusive N3LO results are also available for Higgs [3442]
and Higgs pair [3470] production in vector boson fusion
(VBF), Higgs pair production in gluon fusion in the heavy
top limit [3471] and Higgs production in bottom quark fusion
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Table 49 Methods for the
isolation of IR divergent real
radiation at NNLO and up to
three examples of their
application

Method NNLO examples

Subtraction

Antenna subtraction e+e− → 3 jets [3415,3416],

[3417,3418] pp→ 2 jets [3419,3420],

pp→ WH j [3421]

Sector-improved residue subtraction [3422–3424] pp→ t t̄ [3396],

pp→ W + c-jet [3425],

pp→ 3 jets [3426]

Nested soft-collinear subtraction [3429–3431] pp→ V H [3427,3428],

VBF H [3432],

mixed QCD-EW to

Drell–Yan [3433–3435]

ColorFul [3436,3437] e+e− → 3 jets [3438],

H → bb̄ [3439]

Projection to Born [3440,3442] VBF H [3440],

VBF HH [3441],

single top [3443,3444]

Local analytic subtraction [3445–3447] e+e− → 2 jets [3445]

4-dimensional schemes [214,3449] γ ∗ → t t̄ [3448] (inclusive)

Slicing

qT [3450,3451] VV ′ [3452], t t̄ [3453],

mixed QCD-EW to

Drell–Yan [3454,3455]

N-jettiness [1816,2020,2021] V + j [2020,3456],

H + j [3457,3458],

di-boson [3459]

[3472,3473]. The extension to colored final states requires
advances in the treatment of IR divergent real radiation, for
example N -jettiness soft and beam functions at this order,
see e.g. Refs. [2027,3474–3478] or triple collinear splitting
functions [3479,3480], see also Ref. [3414] for more details.

Another ingredient which is needed to be consistent at this
order are N3LO parton distribution functions, see Ref. [3101]
for recent progress.

For processes such as Higgs boson decays into heavy
quarks or the production of heavy quarks at e+e− colliders
at three loops, massive 3-loop form factors need to be calcu-
lated, and the presence of the additional mass scale substan-
tially increases the complexity of the calculation. Analytical
and semi-numerical methods have pushed these calculations
quite far [3481–3487].

Only very few results for three-loop amplitudes with more
than three legs exist. Remarkable recent results are the 3-
loop amplitudes for qq̄ → γ γ [3488], gg → γ γ [3489],
qq̄ → q ′q̄ ′ [3490], qq̄ → gg [3491] and gg → gg [3492].
For the case of one massive external leg, results for planar
master integrals exist [3493].

Another highlight on the 3-loop front is the calculation of
the NNLO corrections to Higgs boson production in gluon
fusion with full top quark mass dependence [3494], which
involves the calculation of 3-loop integrals with two mass
scales.

Considering x = 2, n = 5, i.e. processes involving 2-
loop 5-point integrals, again the number of mass scales is the
critical measure of complexity. Results for complete cross
sections have been achieved for processes involving only
massless particles: pp → 3γ [3495,3496], pp → γ γ j
[3497–3500] and pp → 3 jets [3426], as well as for the
process pp→ Wbb̄ [3501,3502].

At four loops, the computation of form factors has seen
enormous progress in the past few years [3503], culminating
in the calculation of the complete analytic expressions for
the photon-quark and the Higgs-gluon form factors at 4-loop
order [1959]. These form factors will serve as building blocks
for a future complete N4LO calculation of the Drell–Yan
process and Higgs boson production in gluon fusion in the
heavy top limit. N4LO results for gg → H in the large-N
soft-virtual approximation already exist [3504]; results for
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soft corrections to deeply inelastic scattering (DIS) at 4-loop
order are also available [3505].

Results at five and more loops mainly involve two-
point functions, entering for example the calculation of β-
functions, such as the 5-loop β-function in QCD [3506–
3509] or in scalar theories [3510]. Five-loop contributions
to the anomalous magnetic moment of the electron have
been calculated in Refs. [3511–3514]. Results for anomalous
dimensions at six [3515,3516] or seven loops and beyond
[3517,3518] are available for scalar theories.

11.1.3 Phenomenology

The progress described above concerning precision calcu-
lations in QCD has led to a plethora of phenomenological
results at unprecedented precision, such as determinations of
the strong coupling described in Sect. 3.2, determinations of
the W -boson mass, precision measurements in Higgs- and
electroweak physics (see Sects. 12.4, 12.3) and top quark
physics (see Sect. 12.5). Advances in jet algorithms and jet
substructure measurements (see Sects. 12.2 and 11.5)) also
play a major role in the LHC precision program. Cross sec-
tions for inclusive jet production can be measured at the LHC
with an uncertainty of about 5% for central rapidities. This
poses challenges on the theory side, in particular it requires
a judicious choice of the central scale, as some choices can
induce infrared-sensitive contributions [3519]. Furthermore,
the transverse momenta of the jets can reach values around
4 TeV, making the combination of NNLO QCD corrections
with NLO electroweak corrections indispensable to describe
the high-pT region correctly. In order to make such precision
calculations usable efficiently for PDF fits or αs determina-
tions, it is also important to have them available in a flexible
format, for example in the form of fast interpolation grids,
see e.g. Ref. [3520] for more details.

Together with ongoing progress in reducing PDF uncer-
tainties, as well as in controlling non-perturbative effects and
parton shower uncertainties (see e.g. Sects. 11.4, 11.3), pre-
cision phenomenology at hadron colliders has reached a level
which was unthinkable 50 years ago when QCD was “born”.

11.1.4 Outlook

The calculation of perturbative higher order corrections in
QCD at high energies is a success story. Inventive new meth-
ods have been developed to deal with the increasing level
of complexity at higher perturbative orders. These techni-
cal advances were accompanied by a better understanding of
important phenomenological concepts, such as infrared-safe
observables and jet algorithms, and of the limitations of fixed-
order perturbation theory. These developments went hand in
hand with increasingly precise measurements of QCD pro-

cesses at high energy colliders, and they are important pillars
of the search for physics beyond the Standard Model.

While the uncertainties due to the truncation of the per-
turbative series were the dominant theory uncertainties for a
long time in the 50-years history of QCD, for processes where
the N3LO level of QCD corrections is reached it became
clear that other uncertainties, such as PDF uncertainties,
parton shower uncertainties, quark mass effects, paramet-
ric uncertainties (e.g. in αs,mt ) or power-suppressed and
non-perturbative contributions need to be considered with
high priority as well. Being able to control them will play an
important role in the next 50 years of QCD and in the search
for physics beyond the Standard Model.

11.2 Analytic resummation

Simone Marzani

11.2.1 Large logarithms

QCD processes that involve high-momentum transfer, usu-
ally referred to as “hard processes”, can be described in per-
turbation theory. In this framework, theoretical precision is
achieved by computing the cross section σ for an observ-
able V , which we assume having the dimension of an energy
scale, including higher- and higher-order corrections in the
strong coupling αs , i.e. the so-called fixed-order expansion:

σ (V) = σ0 + αs σ1 + α2
s σ2 + α3

s σ3 +O(α4
s ), (11.3)

where the leading order (LO) contribution σ0 is the Born-
level cross section for the scattering process of interest. Sub-
sequent contributions in the perturbative expansion σx con-
stitute the (next-to)x -leading (NxLO) corrections. In the lan-
guage of Feynman diagrams, each power of αs corresponds
to the emission of an additional QCD parton, either a quark
or a gluon, in the final state or to a virtual correction. Note
that, with respect to Eq. (11.2), the explicit dependence on
the observable V has been highlighted.

Calculations of Feynman diagrams are plagued by the
appearance of divergences of different nature. Loop-diagrams
can exhibit ultra-violet singularities. Because QCD is a renor-
malizable theory, such infinities can be absorbed into a redef-
inition of the parameters that enter the Lagrangian. Through-
out this discussion, it is understood that such renormalization
has already occurred. Real-emission diagrams exhibit singu-
larities in particular corners of the phase-space. More specif-
ically, these singular contributions have to do with collinear,
i.e. small-angle, splittings of massless partons and emissions
of soft gluons, either off massive or massless particles. Virtual
diagrams also exhibit analogous infra-red and collinear (IRC)
singularities, and rather general theorems [3521–3523] state
that such infinities cancel when real and virtual corrections
are added together, thus leading to observable transition prob-
abilities that are free of IRC singularities. Moreover, in order
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to be able to use the perturbative expansion of Eq. (11.3),
one has to consider observables V that are “IRC safe”, i.e.
measurable quantities that do not spoil the above theorems.

The theoretical community has put a huge effort in com-
puting higher-order corrections, as discussed in detail in
Sect. 11.1. One of the main challenges in this enterprise is
the treatment of the infra-red region and the cancellation of
the singular contributions between real and virtual diagrams.
Furthermore, the emissions of soft and/or collinear partons
are also problematic because they can generate large loga-
rithmic terms in the perturbative coefficients σx , thus invali-
dating the fixed-order approach. The expansion of Eq. (11.3)
works well if the measured value of the observable isV � Q,
where Q is the scale which characterizes the hard process.
However, it loses its predictive power if the measurement of
V � Q confines the real radiation into a small corner of
phase-space, while clearly leaving virtual corrections unre-
stricted. For IRC safe observables, soft and collinear singu-
larities cancel, but logarithmic corrections in the ratio V/Q
are left behind, causing the coefficients σx to become large,
so that αx

s σx ∼ 1. Because these logarithmic corrections are
related to soft and/or collinear emissions, one can expect at
most two powers of L = ln Q

V for each power of the strong
coupling:

σ (V) = σ0 + αs

(
σ12L

2 + σ11L + . . .
)

+ α2
s

(
σ24L

4 + σ23L
3 + . . .

)
+O(αn

s L
2n).

(11.4)

All-order resummation is then a re-organization of the above
perturbative series. For many observables of interest, the
resummed expression exponentiates, leading to

σ (V) = σ0 g0(αs)

× exp [Lg1(αs L)+ g2(αs L)+ αsg3(αs L)+ . . . ] ,
(11.5)

where g0 is a constant contribution which admits an expan-
sion in αs . In analogy to the fixed-order terminology, the
inclusion of the contribution gx+1, i ≥ 0, leads to (next-
to)x -leading logarithmic (NxLL) accuracy.

Fixed-order Eq. (11.3) and resummed Eq. (11.5) expan-
sions are complementary. On the one hand, fixed-order cal-
culations fail in particular limits of phase-space, indicating
the need for an all-order approach. On the other hand, all-
order calculations are only possible if particular assumptions
on the emission kinematics are made. Thus, the most accu-
rate theoretical description for the observable V is achieved
by matching the two approaches

σmatched(V) = σ f.o.(V)+ σ res(V)− σ d.c.(V), (11.6)

where the third contribution corresponds to the expansion of
the resummation to the order we are matching to and it is
subtracted in order to avoid double counting. For instance,
if we were to match the resummed expression Eq. (11.5),
computed to some logarithmic accuracy to a fixed-order cal-
culation, see Eq. (11.4), performed at NNLO, σ d.c. would
correspond to the expansion of the resummed result up to
second order in the strong coupling, relatively to Born term.
Furthermore, we note that, if the resummation is computed at
high-enough accuracy, the dangerous logarithmic corrections
cancel between σ f.o. and σ d.c. and all the large contributions
are resummed in σ res.

All-order resummation is possible because (squared)
matrix element and phase-space factorize in certain kine-
matic limits. Different methods to achieve such factorization
have been developed in the literature. For instance, factor-
ization can be obtained by studying directly QCD ampli-
tudes and cross-sections in the soft and collinear limits.
Then, resummation can be achieved by iteratively identi-
fying factorization and exponentiation properties of QCD
matrix elements and cross-sections [171,3524,3525]. Other
approaches instead introduce non-local correlation oper-
ators, such as Wilson lines, and exploit their renormal-
ization group evolution [3526]. Finally, one can construct
soft-collinear effective field theories (SCET) to describe
the soft and collinear degrees of freedom of QCD [1801–
1804,1831,1901,1903] (see Sect. 6.4, and, for instance, Ref.
[3527] for an extensive review). There is a rich literature
describing similarities and differences of the various resum-
mation approaches, see e.g. [3528–3533]. In this presentation
we will mostly follow the iterative point of view.

11.2.2 Transverse-momentum resummation

The transverse momentum (QT = pZT , p
W
T , pHT ) distribu-

tion of electroweak final states at hadron colliders is one of
the most extensively investigated observables in QCD. Stud-
ies of QT spectra and related angular correlations of lepton
pairs produced via the Drell–Yan (DY) process provide us
with a useful testing ground for an even more interesting
Higgs and new physics program. These processes are char-
acterized by the presence of two distinct scales: the measured
QT and the invariant mass of the final-state Q, which is close
to the mass of the electroweak boson for on-shell production.
Therefore, if we are interested in phase-space regions where
QT � Q, large logarithmic corrections appear. They should
be accounted for to all orders, in order to achieve an accurate
theoretical description of these observable distributions.

Furthermore, one aspect of physics at hadron colliders that
becomes important at small QT is the role of non-perturbative
effects commonly attributed to the intrinsic transverse motion
of partons within the proton. One may therefore view any
opportunity to compare precise perturbative predictions with
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accurate experimental data for DY lepton pairs as a chance
to assess the size of non-perturbative physics; physics which
also affects the Higgs QT spectrum.

The literature on QT resummation is vast and since the
seminal papers, which date back to the late 1970s, early
1980s, e.g. [1280,3534], there has been a continuous effort in
producing accurate theoretical predictions that can describe
the experimental data. For example, high logarithmic accu-
racy [1947,3535–3542] has been achieved and computer
programs that allow one to compute NNLL predictions
matched to next-to-leading order (NLO) for the QT distribu-
tion in case of colorless final states in hadron collision have
been available for a long time, e.g. [3536,3537,3543–3548].
Fixed-order predictions have reached NNLO accuracy and
the resummation can be now performed to N3LL accuracy
[207,1946,3549–3552]. Results with partial N4LL resum-
mation have also been recently obtained [3464].

Moreover, observables such as φ∗ [3553,3554] that
exploit angular correlations to probe similar physics as QT ,
while being measured with even better experimental resolu-
tion, have triggered theoretical studies to extend the formal-
ism of QT resummation to these new variables [3545,3555–
3558].

In this section we review the main ingredients of QT

resummation for an electroweak final state, i.e. Higgs or DY.
For simplicity, we are going to consider distributions which
are fully inclusive in the electroweak boson decay products,
as well as integrated in the boson’s rapidity. The extension to
more differential distributions, including fiducial cuts on the
final-state particles, is possible. For convenience, we work
at NLL and, as further simplification, we explicitly consider
only the flavor-diagonal contributions, while restoring full
flavor-dependence in the end.

We compute the differential distribution for the transverse
momentum of the boson (Higgs or Z/γ ∗). At Born level, we
have gg→ h or qq̄ → Z/γ ∗, so the boson has no transverse
momentum, i.e. the distribution is proportional to δ(2) (QT ),
where QT is the two-dimensional transverse-momentum.
When computing higher perturbative orders, we must include
contributions with additional partons i in the final state. Thus,
the boson can acquire a nonzero transverse momentum, such
that QT = −∑

i kT i . Resummation is relevant when the
transverse momentum is much smaller than the mass (or
virtuality) of the electroweak boson, Q2

T = |QT |2 � Q2.
This can happen in two situations: either all recoiling partons
have small transverse momenta or their transverse momenta,
although not individually small, mostly cancel in their vector
sum. Both these mechanisms must be taken into account and,
as we shall shortly see, this can be achieved if QT resumma-
tion is performed in Fourier space. If we denote with b the
conjugate variable to QT , then the small-QT region corre-
sponds to large b = |b| and logarithms of QT are mapped
into logarithms of 1/b.

Thus, we consider the emission of an arbitrary number
of collinear gluons off the incoming hard legs. The partonic
cross-section can be written as

d2σ

dQT
= σ born

cc̄→F

∞∑

n=0

1

n!
n∏

i=1

∫
[dki ] (2Cc)

αs(kT i )

2π

×
[

zN−1
i P̄ real(zi ) δ

(2)

(

QT +
∑

i

kT i

)

+ P̄virtual(zi ) δ
(2) (QT )

]

Θ (kT i − Q0)

×Θ

(

1− zi + kT i
Q

)

, (11.7)

where we have taken Mellin moments with respect to the lon-
gitudinal momentum fractions zi . The emitted gluon phase

space is [dki ] = dzi
dk2

T i
k2
T i

dφi
2π and Cc = CF ,CA is the

appropriate color factor. The first Θ function expresses the
fact that emissions below the cut-off Q0 belong to the non-
perturbative region of the proton wave-function, while the
second one correctly accounts for the large-angle soft region
of phase-space. In order to achieve NLL accuracy, the strong
coupling αs has to be evaluated at two loops, in the CMW
scheme [171]. The emission probability is described by the
real and virtual matrix elements (see e.g. App. E of Ref.
[3559]):

P̄ real(z) =
{

1+z2

1−z , for a quark,
2z

1−z + 2(1−z)
z + 2z(1− z), for a gluon; (11.8)

P̄virtual(z) = (−1)

⎧
⎪⎨

⎪⎩

1+z2

1−z , for a quark,
2z

1−z + z(1− z)

+n f TR(z2 + (1− z)2), for a gluon.

(11.9)

For later convenience, we also introduce the leading order
regularized splitting functions

Pqq(z) = αs

2π
CF

[
1+ z2

1− z

]

+
,

Pgg(z) = αs

2π
2CA

[(
z

1− z
+ z(1− z)

2

)

+

+ 1− z

z
+ z(1− z)

2
− 2

3
n f TRδ(1− z)

]

,

(11.10)

and the corresponding anomalous dimensions

γcc(N , αs) =
∫ 1

0
zN−1Pcc(z), c = q, g. (11.11)
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We note that virtual corrections in Eq. (11.7) do not change
the transverse momentum QT and trivially exponentiate. The
real-emission contribution is also factorized, with the excep-
tion of the two-dimensional delta-function constraint. This is
where Fourier moments with respect to the two-dimensional
vector QT become helpful. We can exploit the relation

δ(2)

(

QT +
∑

i

kT i

)

= 1

4π2

∫
d2b eib·QT

n∏

i=1

eib·kT i ,

(11.12)

to fully factorize the real-contribution in Eq. (11.7). We
obtain

W real(b, N ) =
∞∑

n=0

1

n!
n∏

i

∫
[dki ] zN−1

i (2Cc)
αs(kT i )

2π

× P̄ real(zi )e
ib·kT iΘ (kT i − Q0)

×Θ

(

1− zi + kT i
Q

)

. (11.13)

The series in Eq. (11.13) sums to an exponential. Thus, the
resummed exponent is obtained by putting together real, vir-
tual and PDF (kT i < Q0) contributions:

R(b, N ) = 2Cc

∫
[dk]αs(kT )

2π
Θ (kT − Q0)Θ

(

1− z + kT
Q

)

×
(
−zN−1 P̄ real(z)eib·kT − P̄virtual(z)

)

+ 2
∫ Q2

Q2
0

dk2
T

k2
T

γcc(N , αs(kT )). (11.14)

By rewriting zN−1 = 1+(zN−1−1) and using the definitions
in Eqs. (11.8), (11.9), and (11.10), we are able to reshuffle
the contributions to the resummed exponent as follows

R(b, N ) = −
∫ Q2

Q2
0

dk2
T

k2
T

∫ 2π

0

dφ

2π

(
1− eib·kT

)

×
[ ∫ 1− kT

Q

0
dz

αs(kT )Cc

π
P̄virtual(z)

− 2γcc(N , αs(kT ))

]

+O
(
kT
Q

)

. (11.15)

The factor
(
1− eib·kT

)
essentially acts as a cut-off on the kT

integral. At NLL we have105

R(b, N ) = −
∫ Q2

b2
0/b

2

dk2
T

k2
T

[ ∫ 1− kT
Q

0
dz

αs(kT )Cc

π
P̄virtual(z)

105 See Ref. [3560] for a generalization of this approximation to higher-
logarithmic accuracy.

− 2γcc(N , αs(kt ))

]

= − ln Sc + 2
∫ Q2

b2
0/b

2

dk2
T

k2
t

γcc(N , αs(kt )), (11.16)

b0 = 2e−γE , where γE is the Euler constant. Thus, we
have successfully separated two distinct contributions: the
Sudakov form factor (Sc), computed here at NLL accuracy
(and systematically improvable) and a DGLAP contribution,
which evolves the PDFs from the hard scale Q down to b0/b.
Note that here we have only considered flavor-diagonal split-
tings. Off-diagonal ones do not alter the Sudakov form factor
and they are fully taken into account by the complete DGLAP
evolution.

Taking into account all the above effects, the all-order
transverse momentum distribution for the production of an
electroweak final state F from initial-state partons c and c̄
can be written

dσ

dQ2
T

= σ born
cc̄→F

∫
dx1

∫
dx1

∫ ∞

0
db

b

2
J0(bQT )Sc(b, Q)

×
∫

dz1

∫
dz2 δ

(

1− z1z2
x1x2s

Q2

)

×
[

HF
cc̄ (αs(Q))Cca1

(
z1, αs

(
b0
b

))
Cc̄a2

(
z2, αs

(
b0
b

))

+ H̃ F
cc̄ (αs(Q))Gca1

(
z1, αs

(
b0
b

))
Gc̄a2

(
z2, αs

(
b0
b

)) ]

× fa1

(
x1,

b0
b

)
fa2

(
x2,

b0
b

)
, (11.17)

where we have introduced the Bessel function J0 and the sum
over a1, a2 is understood. The functions Gab, Cab, HF

ab, H̃ F
ab

can be computed in perturbation theory, while fa denotes the
the parton distribution functions. For Standard Model Higgs
production we have F = h, c = c̄ = g, and H = H̃ , while
for DY production we have F = Z/γ ∗ and c = q, and
Gq,a = Gq̄,a = 0. As already mentioned, different resum-
mation formalisms exist in the literature. They all agree at
the perturbative accuracy they claim, but they may numeri-
cally differ because of subleading effects. As an example, in
Fig. 274 we show a comparison between the resummed and
matched calculation of Ref. [3552] and LHC data, collected
by the ATLAS collaboration [3561].

11.2.3 Jets and their substructure

All-order techniques not only allow us to probe the dynamics
of electroweak bosons that recoil against QCD radiation, as
discussed above, but can be employed to study the properties
of the radiation itself in great detail. If we look at hadronic
final states, we realise that QCD radiation is not uniformly
distributed, but rather concentrated in collimated sprays of
hadrons that are called jets. Jets really live at the boundary
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Fig. 274 The lepton pair transverse momentum distribution measured
by the ATLAS collaboration at the LHC [3561] is compared to a
resummed and matched calculation. QT resummation is performed at
N3LL logarithmic accuracy and it is matched to the N3LO fixed-order
result, with respect to the Born process, which corresponds to NNLO
accuracy for the transverse momentum distribution. The plot is taken
from Ref. [3552]

between experimental and theoretical particle physics and
are abundantly used by both communities. They allow us to
describe complex final states in terms of a few objects rather
than hundreds of particles. Furthermore, from a theoretical
point of view, jets are closely related to quarks and gluons,
i.e. the degrees of freedom of perturbative QCD. Thus, the
algorithms that are used to define jets must have good theoret-
ical and experimental properties. For instance, jet algorithms
should be IRC safe, so that they yield finite cross-sections
when evaluated in perturbation theory [185].

Modern jet algorithms are based on the concept of sequen-
tial recombination. Pairwise distances (di j ) between particles
and so-called distances from the beam (di B) are evaluated
in order to decide whether to recombine two particles. The
metric used to evaluate these distances characterizes the jet
algorithm. Nowadays, the most popular group of jet algo-
rithm is the generalized kT family, for which the metric is
defined by

di j = min
(
p2p
T i , p

2p
T j

) ΔR2
i j

R2 , di B = p2p
T i , (11.18)

where pT i , pT j are the particles’ transverse momenta and
ΔR2

i j is their distance in the azimuth-rapidity plane. R is an
external parameter, which plays the role of the jet radius. Dif-
ferent choices for the parameter p are possible. For instance,
p = 0 corresponds to the so-called Cambridge–Aachen
(C/A) algorithm [189,190], with a purely geometrical dis-
tance. For p = 1 we have the kT -algorithm [191,3562],
which by clustering particles at low pT first, is likely to
faithfully reconstruct a QCD branching history. Finally, with

the choice p = −1 we obtain the anti-kT algorithm [193],
which clusters soft particles around a hard core, producing
fairly round jets in the azimuth-rapidity plane. It is interesting
to note that all algorithms of the generalized kT family act
identically on a configuration with just two particles: they
are recombined if ΔRi j < R. More details about jets can
be found in Sect. 11.5. Although incredibly useful for phe-
nomenology, jet algorithms introduce resolution parameters,
such as the jet radius R, rendering the computation of jet
properties a multi-scale problem.

In the past decade, many observables have been devised to
study the internal properties of high-pT jets, see for instance
[3563]. The simplest example of such observables is the jet
invariant mass, which is defined as

m2
jet =

⎛

⎝
∑

i∈jet

pi

⎞

⎠

2

, ρ = m2
jet

R2 p2
T

, (11.19)

where pi are the jet constituents’ four-momenta and, in order
to emphasise the multi-scale nature of the problem, we have
also introduced the dimensionless ratio ρ. This ratio is small
in the boosted regime mjet � Rpt , which is of particular
interest at the LHC. As previously discussed, when scales
become widely separated, logarithms (of ρ in this case)
become large and in order to obtain reliable predictions for
this observable, we need to perform all-order calculations.

We do not report here the details of the resummed calcu-
lation for the jet mass distribution, which is closely related to
the one of the thrust event shape [3525,3564,3565], but rather
we stress similarities and differences with respect to QT

resummation, described above. Large logarithmic correc-
tions always arise from the emission of soft and/or collinear
partons. However, final-state four-momenta are combined
differently in the two observables and therefore a differ-
ent integral transform is needed to diagonalize the invariant
mass δ-function. Furthermore, because we are interested in
the dynamics of a high-pT isolated jet, emissions collinear
to the incoming legs do not significantly alter the jet prop-
erties, leading to a simplified treatment of the PDF contri-
butions. However, there is a major complication that arises
when performing calculations with jets. Only emissions that
are recombined into the jet contribute to the invariant mass,
making it an example of a non-global observable [3566]. As it
turns out, the presence of phase-space boundaries noticeably
complicates the structure of soft-emissions and essentially
invalidates simple exponentiation. Furthermore, the actual
shape of the boundary depends on the jet algorithm of choice.
For instance, in the presence of many soft emissions together
with a hard parton, the anti-kT algorithm will always clus-
ter all soft gluons to the hard parton, behaving as a rigid
cone algorithm, while the choice of different algorithms, such
as C/A or kT , can give rise to more complicated clustering
sequences, see e.g. [3567] and references therein. The calcu-
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Fig. 275 The Les Houches Angularity (LHA) distribution, which cor-
responds to κ = 1, α = 0.5 in Eq. (11.20) measured by the CMS collab-
oration at the LHC [3576]. The data are compared to the resummed and
matched calculation (NLL+NLO), supplemented by non-perturbative
corrections [3577,3578] and to the prediction obtain with a state-of-
the-art Monte Carlo simulation using Sherpa at NLO QCD accuracy
[3579]. The plot is taken from Ref. [3578]

lation of non-global logarithms constitutes the bottle-neck of
jet calculations but thanks to an extraordinary effort of dif-
ferent groups, they can now be resummed at high accuracy
[1824,2037,3568–3574].

The calculation techniques developed for the jet mass have
been extended to other jet substructure observables. An inter-
esting example is the family of jet angularities [3575]. These
probe both the angular and the transverse momentum distri-
bution of particles within a given jet. They are defined from
the momenta of jet constituents as follows:

λκ
α =

∑

i∈jet

(
pT,i∑

j∈jet pT, j

)κ (
Δi

R

)α

, (11.20)

where

Δi =
√
(yi − yjet)2 + (φi − φjet)2, (11.21)

is the azimuth-rapidity distance of particle i from the jet axis.
Jet angularities are IRC safe for κ = 1 and α > 0. In Fig. 275
we show a comparison between LHC data collected by the
CMS collaboration [3576], for the so-called Les Houches
Angularity (LHA), which corresponds to setting κ = 1 and
α = 0.5, and a resummed calculation performed at NLL
accuracy [3577,3578].

Despite the remarkable perturbative accuracy that can be
achieved for jet observables, non-perturbative corrections
due to the hadronization process or originating from multiple-
parton interactions or pile-up, are rather large. Indeed, the
resummed curve in Fig. 275 has been corrected for non-

perturbative effects, which are important to ensure agreement
with the data at small values of the angularity. The situation
can be greatly improved if one considers “grooming” and
“tagging” algorithms. Broadly speaking, a grooming proce-
dure takes a jet as an input and tries to clean it up by removing
constituents which, being at wide angle and relatively soft,
are likely to come from contamination, such as the under-
lying event or pile-up. A tagging procedure instead focuses
on some kinematic variable that is able to distinguish signal
from background, such as, for instance, the energy sharing
between two subjets within the jet, and cuts on it. Many of the
algorithms on the market usually perform both grooming and
tagging and a clear distinction between the two is difficult.
Regardless of their nature, these algorithms try to resolve jets
on smaller angular and energy scales, thereby introducing
new parameters. This further challenges our ability of com-
puting predictions in perturbative QCD. However, if these
algorithms are properly designed, they can effectively reduce
contamination from non-perturbative physics, while main-
taining calculability. An example of this is SoftDrop [1915].
This procedure steps backward through the C/A clustering
tree of a jet and iteratively checks whether the transverse
momenta of the two branches satisfy the condition

min(pT 1, pT 2)

pT 1 + pT 2
> zcut

(
Δ12

R

)β

. (11.22)

The difficulty posed by substructure algorithms in general,
and SoftDrop in particular, is the presence of new parame-
ters, such as zcut and β, that slice the phase-space for soft
gluon emission in a non-trivial way, resulting in potentially
complicated all-order behavior of the observable at hand. In
the soft limit, the SoftDrop criterion reduces to

z > zcut

(
θ

R

)β

⇒ ln
1

z
< ln

1

zcut
+ β ln

R

θ
, (11.23)

where z is the momentum fraction and θ the opening angle.
For β > 0, collinear splittings always satisfy the SoftDrop
condition, so a SoftDrop jet still contains all of its collinear
radiation. The amount of soft-collinear radiation that sat-
isfies the SoftDrop condition depends on the relative scal-
ing of the energy fraction z to the angle θ . As β → 0,
more of the soft-collinear radiation of the jet is removed,
and in the β = 0 limit, all soft-collinear radiation is removed
[1916,3580]. Therefore, we expect the coefficient of the dou-
ble logarithms in observables like the groomed jet mass, the
origin of which is soft-collinear radiation, to be proportional
to β. In the strict β = 0 limit, collinear radiation is only
maintained if z > zcut. Because soft-collinear radiation is
vetoed, the resulting jet mass distributions will only exhibit
single logarithms, as emphasized in [1916,3580]. Moreover,
non-global logarithms are found to be power-suppressed for
β > 0, and absent for β = 0. Finally, for β < 0, there are
no logarithmic structures for observables like groomed jet
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mass at arbitrarily low values of the observable. For exam-
ple, β = −1 roughly corresponds to a cut on the relative
transverse momentum of the two subjets under scrutiny.

The above understanding can be formalized into actual
calculations and the resummation of a variety of observ-
ables measured on SoftDrop jets has been performed to
N3LL [1826,1939]. This outstanding theoretical accuracy,
together with reduced sensitivity to non-perturbative cor-
rections, make SoftDrop jets a particularly powerful way to
probe QCD dynamics and jet formation.

11.2.4 Outlook

In this brief overview we have introduced resummation as
a powerful tool that we can use to augment the ability of
perturbative calculations to describe the data. We have given
two examples of multi-scale processes, namely the transverse
momentum of an electroweak boson and the Les Houches
(jet) Angularity, for which the inclusion of all-order effects
is mandatory in order to be able to describe the data.

Resummation provides us with the right tools to study
emergent phenomena in QCD, such as jet formation and it
allows us to scrutinise fundamental properties of the the-
ory. The concept of factorization, i.e. the ability of sepa-
rating physical effects happening at different energy scales,
is the foundation of the whole resummation program that
we have discussed. Even more generally, we can say any
QCD calculation, being it done at fixed-order or at the
resummed level, requires some notion of factorization. Of
particular importance is the collinear factorization theorem
[242] that allows us to separate the perturbative, i.e. calcula-
ble, part of a process from the non-perturbative one, which
can be described in terms of parton distribution (or frag-
mentation) functions. Resummation techniques allows us to
uncover limitations and possible breakdowns of factorization
[1897,3581], which typically happen at perturbative orders
that are too high to be reached with fixed-order techniques.
Thus, despite resummation being based on the soft/collinear
approximation of the perturbative approximation of QCD, it
opens up a window to fundamental aspects of the theory:

Resummation just scratches the surface of QCD. But it
makes a mark.106

11.3 Parton showers

Frank Krauss

11.3.1 Motivation

Producing charged particles in a high-energy collision initi-
ates the emission of secondary bremsstrahlung quanta. Due

106 George Sterman, CTEQ school 2006.

to the large strong coupling and because of the gluon self-
coupling, the radiation of gluons is of particular relevance,
and tens or even hundreds of secondary quarks and gluons
can be produced in a cascade of emissions.

Apart from the wish to correctly describe particle produc-
tion at collider experiments in all its facets, and preferably
based on first principles, there is another, more practical rea-
son why this process of multiple parton emission is of great
phenomenological relevance. The confinement property of
QCD prevents quarks and gluons to be directly observed and
instead, they manifest themselves through hadrons, which
constitute the observable final states. Unfortunately, to date,
only phenomenological models for the dynamical transition
from quarks and gluons to hadrons in a process aptly dubbed
hadronization have been developed, which rely on a large
number of parameters which have to be fitted – “tuned”
– to experimental data. Clearly, such a programme is sen-
sible only, if the parameters are sufficiently independent
from the hard process and rather depend on the properties
of the parton ensembles at a common low scale. This is
realized by casting the multiple emission of the secondary
quanta, the parton cascade, into algorithms that systemat-
ically evolve the few original partons in the hard process
at a scale of large momenta Q into resulting many–parton
ensembles resolved at a lower scale Q0, at which hadroniza-
tion sets in. The resulting algorithms are called parton show-
ers, and one might think of them as numerical implemen-
tations of a renormalization–group equation that connects
these two scales, Q and Q0. They form an integral part of
modern event generators Herwig [3582], Pythia [3583],
and Sherpa [3579].

11.3.2 Parton shower realizations

Some first intuition about parton showers can be gained from
the (quasi-classical) spectrum of gluons emitted by a fast
moving color charge,

dng = αS

π

dω

ω

d2 p⊥
p2⊥

, (11.24)

exhibiting its characteristic divergent structure in the limit
where the emitted gluon becomes soft, with it energy ω→ 0,
or collinear with respect to the emitter, with its transverse
momentum p⊥ → 0. These well-known soft and collinear
divergences, typical for quantum field theories with massless
(vector) particles cancel for physically meaningful observ-
ables when both real and virtual emissions are taken into
account [3584,3585]. In parton showers, which aim to sim-
ulate the emission of real quanta, this is implicitly taken into
account, by demanding that the emitted partons are resolv-
able with a minimal energy and transverse momentum; diver-
gences in unresolvable emissions then cancel those from vir-
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tual corrections. Such a constraint is effectively realized for
example by demanding a minimal transverse momentum,
k⊥ > Q0 in emissions. The integrated spectrum depends
logarithmically on the cut-off, and small values of Q0 over-
coming the smallness of αs necessitate the resummation of
the infrared logarithms.

This physical picture is encoded in probabilistic language,
by constructing a Sudakov form factor

ΔN→N+1(Q, Q0)

= exp

⎧
⎪⎪⎨

⎪⎪⎩
−

Q2∫

Q2
0

dΦN→N+1(t, z, φ)KN→N+1(ΦN→N+1)

⎫
⎪⎪⎬

⎪⎪⎭
,

(11.25)

which yields the probability for an N -particle configuration
with momenta { p̃} not to emit another particle (and there-
fore not to turn it into an (N + 1)-particle configuration with
momenta {p}). The phase space element for the emission,
ΦN→N+1(t, z, φ), will depend on (1) the ordering param-
eter t defined below; (2) the splitting parameter z given by
the light-cone momentum fraction or energy fraction of the
emitted particle; and (3) the azimuth angle φ, fixing the
orientation of the emitted particle in the transverse plane
of the mission. The emission kernel KN→N+1(ΦN→N+1)

depends on the phase space of the emission and on the
strong coupling αS(p2⊥), with the transverse momentum as
preferred scale choice. In the collinear limit, t → 0 with
finite z, the kernel for a specific emitter (i j) splits into par-
ticles i and j and reduces to the well-known corresponding
DGLAP splitting kernels. In the soft limit, z → 0 which
also forces t → 0, the kernel should approach the eikonal
form,

lim
z→0

KN→N+1(ΦN→N+1(t, z, φ)) ∝ (pi · pk)
(pi · p j )(p j · pk) ,

(11.26)

where k denotes the color spectator. Owing to the cur-
rent standard of using the leading-color approximation in
the parton shower construction, k can be uniquely cho-
sen.

Individual simulated events are seeded by the hard pro-
cess, evaluated at a fixed perturbative order, and dressed
afterwards with the parton shower. In marked contrast to
the forward evolution of the final-state parton shower, the
parton shower in the initial state is described by a back-
ward evolution, back to the initial beam particles and to a
fixed, pre-defined state. To enforce that the backward evolu-
tion of the parton shower arrives at the correct initial state,
while respecting the evolution of its internal structure, emis-
sions are weighted by a ratio of parton distribution func-

tions [3586],

KN→N+1(ΦN→N+1(t, z, φ)) ∝
fi (x(i j)/z, μ2

i j )

f(i j)(x(i j), μ2
(i j))

.

(11.27)

In this way the particle (i j), resolved at scale μ2
(i j) and with

momentum fraction x(i j), is replaced by the new initial-state
particle i , resolved at a lower scale μ2

i < μ2
(i j) and with a

larger momentum fraction xi = x(i j)/z.
The choice of a parton-shower realization has an impact

on the accuracy with which the radiation pattern is sim-
ulated. In first-generation parton-shower implementations,
the ordering parameter t is either identified with the virtual
mass of the parton before emission, t = p2

(i j) = (pi + p j )
2

[3587,3588] or with the (scaled) opening angle of the emis-
sion, t = E2

(i j)(1 − cos θi j ) [3589,3590]. When the regular
parts of the (massless) DGLAP splitting kernels at O(αS)

are used, suitably limiting the allowed range for z accounts
for the effect of finite masses. Careful analysis of the radia-
tion pattern indicated that angular ordering is an important
ingredient to the correctness of the simulation. The order-
ing accounts for color coherence effects, and introduces an
explicit veto on increasing opening angles of the virtuality-
ordered parton showers. In contrast, the dipole shower for-
mulation [3591] in Ariadne [3592] explicitly fills the Lund
plane [3593] in transverse momentum p2⊥ and rapidity y of
emissions. By setting the ordering parameter t = p2⊥ with
the identification of p2⊥ as the inverse of the eikonal from
Eq. (11.26), it fulfils the color coherence requirements that
give rise to angular ordering [3594]. A similar approach has
been chosen in Vincia [3595], and extended to include ini-
tial state showering and other improvements. The same logic
– using a form of transverse momentum as ordering param-
eter – was usually also chosen in the second-generation par-
ton showers, for example in Refs. [3596–3599]. The explicit
inclusion of mass effects in the splitting kernels forces to
identify the splitting parameter z with a light-cone momen-
tum fraction. To systematically include universal higher-
order effects K from the two-loop cusp anomalous dimen-
sion, the customary CMW scheme [171] replaces

αS(p
2⊥) −→ αS(p

2⊥)
[

1+ K
αS(p2⊥)

2π

]

,

K =
(

67

18
− π2

6

)

CA − 10

9
TRn f , (11.28)

where n f is the number of active flavors and CA and TR =
1/2 are the usual QCD factors. Once an emission, param-
eterized by t , z, and φ, has been found, the emission kine-
matics needs to be constructed, including the compensation
of the transverse momentum of the emitted particle. Choices
range from being local, i.e. contained to the splitter–spectator
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pair, to global, i.e. distributed over the full N -particle ensem-
ble. They often reflect a preference for those schemes that
lend themselves to a direct matching to infrared subtraction
schemes for next-to leading order calculations such as the
Catani–Seymour subtraction [199]. While these considera-
tions sound like a minor technical detail, subtle differences
in fact have an impact on the overall accuracy, as discussed
below.

11.3.3 (N)NLO matching

Despite their success in describing the logarithmically-
enhanced soft and collinear regimes of emission phase space,
parton showers usually lack accuracy in the hard, wide-angle
regions of phase space, the realm of fixed-order perturbative
corrections, and they do not capture potentially large higher-
order corrections to inclusive cross sections. Therefore the
resummation implicit in the parton shower has to be matched
to fixed-order calculations. Defining, respectively, BN (ΦN ),
VN (ΦN ), and RN (ΦN+1) the Born-level, virtual and real
corrections to a given process, and suppressing their phase
space arguments in the following, a calculation – accurate in
next-to leading order (NLO) – can schematically be written
as

dσ (NLO) = dΦN

[
BN + ṼN

]
+ dΦN+1 [RN −DN ] ,

(11.29)

with the infrared subtracted virtual correction ṼN (ΦN ) =
VN (ΦN )+ BN (ΦN )⊗ I(ΦN ) and the real subtraction term
D(ΦN+1) = B(ΦN ) ⊗ S1(ΦN→N+1) both written in fac-
torized form, and where I emerges from S1 by analytically
integrating over the one-particle emission phase space.

This can be matched to a parton shower along two well-
established algorithms. The Mc@Nlo method [3600] makes
use of the fact that the parton shower correctly describes the
soft and collinear divergent regions of phase space and the
emission kernels K can thus be matched to the infrared sub-
traction terms S required in fixed-order calculations. Events
that, at fixed-order, correspond to N -particle final states with
Born-level kinematics, are denoted as “soft” events and the
parton shower is attached to them in a way exactly like it
would be attached to the Born-level leading-order events.
Similarly, the (N + 1)-particle events are dubbed “hard”
events, and, again the parton shower starts like it would from
any similar tree-level configuration. Simple expansion in αS

reveals that the Mc@Nlo scheme recovers the fixed-order
results, and augments them with the resummation of higher-
order terms from the parton shower. Despite its simplicity,
the Mc@Nlo prescription has a practical downside, with the
second term in Eq. (11.29) possibly leading to events with a
negative weight, a typical feature of practically any higher-
order calculation at fixed order.

This is alleviated in the Powheg method [3601,3602],
which defines an NLO-accurate N -particle cross section,
and dresses it, for its first emission, with a Sudakov form
factor where the parton-shower splitting kernel is replaced
with a ratio of real and Born contribution. However, the N -
particle phase-space dependent K -factor implicit in the first
square bracket is applied to the full N +1-particle spectrum,
which may overestimate the hard region of emission phase
space. To correct for this, in practical applications of the
Powheg method, the real-emission phase space is divided,
with a suitable profile function, into a soft and a hard regime,
RN = R(s)

N +R(h)
N . Schematically, then

dσ (NLO) = dΦN

[

BN (ΦN )+ ṼN (ΦN )

+
∫

dΦ1

(

R(s)
N (ΦN ⊗Φ1)−DN (ΦN ⊗Φ1)

)]

× exp

[

−
∫

dΦ1
R(s)

N (ΦN ⊗Φ1)

BN (ΦN )

]

+dΦN+1 R(h)
N (ΦN+1). (11.30)

The regular parton shower is then applied to the (N+1)-
particle configurations. Simple expansion shows, again, the
overall cross section and the fixed-order emission spectrum
at O(αS) are correctly reproduced.

NNLO calculations matched to parton shower so far have
been solely available for the production of color singlets,
S. The first realization was presented in Ref. [3603], based
on the Powheg method above. The underlying idea is to
provide a Powheg matching for S + p final states, with
the additional parton p filling the phase space down to the
infrared cut-off of the parton shower and thereby provid-
ing NLO accuracy for the overall emission of the hardest
particle. This sample is then reweighted to reproduce the
inclusive NNLO cross section for the production of the sin-
glet S – in the case of a single particle usually achieved
by reproducing its rapidity spectrum at NNLO accuracy.
Based on multijet merging introduced in the next section,
the UNnloPsmethod [3604] matches complementary phase
spaces of color-singlet production for the emission 0, 1, and
2 additional particles, described by adequately subtracted
matrix elements at the two-loop, one-loop, and tree-level
respectively. There overall NNLO accuracy is obtained by
defining a zero-emission bin and adjusting its cross sec-
tion accordingly. An alternative approach has been pre-
sented in the Geneva algorithm [1982] which matches the
NNLO cross section for S production with NNLL resum-
mation of 0-jettiness. Using this observable to define dif-
ferent regions of phase space allows to combine the result-
ing parton level configurations with a suitably vetoed parton
shower.
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11.3.4 Multijet merging

Multijet merging provides another way to include exact fixed-
order calculations into the parton shower, which is espe-
cially useful for the description of samples with large jet
multiplicities. The underlying idea is to combine (merge)
calculations with 0, 1, 2, etc. additional final state jets into
one inclusive sample, by decomposing the parton emission
phase space into two regimes, one of hard jet production
and one of soft jet evolution. The algorithm achieving this
at leading order [3605–3607] proceeds in three steps. Once
a parton-level event at fixed order has been produced, the
jets are clustered back until a core process corresponding to
the 0-additional jet configuration has been found. The differ-
ential cross section for this event is reweighted with ratios
αS(μ

(PS))/αS(μ
(FO)) at each emission, withμ(PS) the scale

the parton shower would use andμ(FO)) the fixed-order scale
used in the calculation. The cross section is corrected with
Sudakov form factors for the internal and external lines, either
with analytic expressions or by running the parton shower
from the core process and vetoing those events with a emis-
sions leading to additional jets. These steps transform the
individual inclusive fixed-order calculations into exclusive
calculations for exactly 0, 1, 2 etc. additional jets, and com-
bine them with the resummation in the parton shower. The
algorithm outlined above has been extended to a merging of
towers of NLO calculations, effectively a merging of multi-
ple Mc@Nlo simulations with increasing jet multiplicities
in [3608,3609].

11.3.5 Current developments

Driven by the ever increasing requirements for improved the-
oretical accuracy, parton showers have come under increased
scrutiny in the past few years, for example in Ref. [3610].
Recent studies revealed that currently used parton showers do
not correctly fill the phase space in logarithmically enhanced
regions of multiple emissions [3611], limiting their logarith-
mic accuracy. Criteria to systematically asses the logarith-
mic accuracy of parton showers and a solution to the prob-
lem above was presented in Ref. [202] and led to renewed
activity in creating better, parton showers that are accurate
at next-to leading logarithmic accuracy for critical observ-
ables. Including higher-order terms, i.e. O(α2

S) corrections,
to the parton showers represents an important step to further
increase the accuracy. The treatment of O(α2

S) splitting ker-
nels has been discussed in Refs. [3612,3613], and in Ref.
[3614] the inclusion of differential two-loop soft corrections
has been presented. But higher-order corrections in the strong
coupling are not the only ordering parameter – the parton
shower implicitly also resides on a leading-color approxima-
tion, and the impact of incorporating sub-leading color terms
was studied for example in Refs. [3615,3616]. This led to the

development of a new paradigm, to describe parton splitting
and ultimately to construct a parton shower at the level of
amplitudes [3617].

While it is not certain where these activities will lead us in
the future, they are testament to the importance and impact
of the probabilistic description of the QCD radiation pattern
in parton showers, which is nearly as old as QCD itself.

11.4 Monte Carlo event generators

Torbjörn Sjöstrand
A pp collision at the LHC may lead to the production
of hundreds of particles, via a multitude of processes that
can range from the TeV scale down to below the confine-
ment scale. While perturbative calculations can be used at
high-momentum scales, currently there is no way to address
lower ones directly from the QCD Lagrangian. Instead QCD-
inspired models have been developed.

These models typically attempt to break down the full col-
lision process into a combination of relevant mechanisms,
that require separate descriptions. Each in its turn often can
be formulated as an iterative procedure, where a set of rules
are applied repeatedly. These rules are expected to represent
quantum mechanical calculations that each gives a range of
possible outcomes. The resulting complexity is such that ana-
lytical methods are of limited use. Instead the rules are coded
up and combined within a bookkeeping framework, where
the evolution from a primary perturbative collision to a final
multiparticle state is traced. Such computer codes are called
Monte Carlo Event Generators (MCEGs), where the “Monte
Carlo” part refers to the frequent use of random numbers to
pick outcomes according to the assumed quantum mechani-
cal probabilities.

Such generators can be used in phenomenological studies,
but the main application is within the experimental commu-
nity, at all stages of the experiment. When an experiment is
designed, it is important to check that the proposed detector
has the capability to find key signals. When an experiment
is run, triggers have to be optimized to catch the interesting
event types. When data is analyzed, the impact of detec-
tor imperfections and background processes must be fully
understood. In order to address these issues, the output of an
MCEG is normally fed into a detector simulation program,
that traces the fate of outgoing particles.

11.4.1 Event overview

Events come in many shapes, depending on the collider and
the random nature of the collision process. As a starting point,
consider a typical LHC pp event, and what processes are
involved for it. Below these are enumerated, starting from the
shortest time/distance scales and progressing towards longer
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Fig. 276 Schematic illustration of the structure of a pp → t t event.
Reproduced from [3583]

ones. This gives rise to a schematic picture with an onion-
like structure in some approximate measure of invariant time,
Fig. 276.

– At the center of a collision there is sometimes a hard inter-
action, i.e.one at a high-momentum scale, like in this case
the production of a t t pair. Its cross section is obtained by
a convolution of a matrix-element (ME) expression and
parton distribution functions (PDFs). More common are
events without any discernible hard interaction.

– The hard interaction may involve the decay of resonances
like t → bW,W → qq ′ as shown in Fig. 276.

– The core hard interaction may be dressed up by higher-
order corrections of matrix-elements. This partly over-
laps with the subsequent showers, so a consistent transi-
tion (matching and merging) is required.

– Perturbative radiation from the scale of the (dressed) hard
interaction down to a lower cutoff is usually subdivided
into initial-state radiation (ISR) and final-state radiation
(FSR). While partonic QCD branchings dominate, QED

or even weak branchings may occur. Also some hadron
production may be modelled as part of the perturbative
stage, e.g. of charmonium and bottomonium.

– Since hadrons are composite objects, several of the
incoming partons may undergo (more or less) separate
perturbative subcollisions, so-called multiparton interac-
tions (MPIs).

– Parts of the incoming hadrons pass unaffected through the
hard-interaction region, and emerge as beam remnants.

– Typically colors are traced through the perturbative stage
in the Nc → ∞ limit. Apart from imperfections caused
by this approximation, there may also be dynamical pro-
cesses that lead to color reconnections relative to the naive
assignments.

– The color assignments are used to combine partons into
separate color singlet subsystems – strings or clusters –
that each fragment into a set of primary hadrons.

– To first approximation each subsystem fragments inde-
pendently, but there may be interactions between them.

– The primary hadrons may be unstable and decay further
into secondary particles, in decay chains that span a wide
range of time scales.

– Right after the fragmentation the hadrons may also be
close-packed and rescatter against each other.

In most of the following subsections these aspects will be
described in somewhat more detail. Examples of longer gen-
erator overviews are [3618,3619].

11.4.2 A brief history

The first event generator of the QCD era probably is the
1974 one by Artru and Mennessier [3620]. It is based on the
concept of linear confinement, originally introduced in pre-
QCD string-theory models of hadrons, but later supported by
the linear confinement found in quenched lattice QCD, see
Sect. 4.3. It was not developed beyond a toy-model stage,
however, and was largely forgotten. Instead it was the 1978
article by Field and Feynman [3621] that stimulated an inter-
est in using Monte Carlo methods to simulate jet physics.
Their iterative approach for the fragmentation of a single jet
was extended to e+e− → qqg three-jet events in the Hoyer
et al. [3622] and Ali et al. [3623] codes, which played a key
role in the discovery of gluon jets, see Sect. 2.2. The Lund
string fragmentation model introduced the concept of a color
flow in qqg events [3624], which was given experimental
support by PETRA data [3625]. It helped establish the Jet-

set implementation as a main generator for subsequent e+e−
machines.

The first QCD-based generator for pp/pp physics was
Isajet [3626], originally intended for the ISABELLE col-
lider, but much used at the SppS and Tevatron colliders, and
for SSC and LHC preparations. A few other generators were
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developed in the early eighties, but left little impact, except
for Pythia, which was built on top of Jetset, with the same
initial objective of modelling the color flow and its conse-
quences. Later on the two programs were merged under the
Pythia heading.

The earliest generators used leading-order matrix ele-
ments to describe the perturbative stage. This was insuf-
ficient to describe multijet topologies. The DGLAP equa-
tions and their extension to jet calculus [3627] suggested
that parton showers could be used to generate multipar-
ton topologies. Several early showers were constructed, but
it was only with the Marchesini–Webber angularly-ordered
shower [3589] that coherence phenomena were consistently
handled. This was the starting point for the Herwig gener-
ator. An alternative was offered by transverse-momentum-
ordered dipole showers, proposed by Gustafson [3594] and
first implemented in Ariadne. Today various dipole formu-
lations are the most common shower type.

The combination of hard interactions and parton showers
gradually became more sophisticated as various matching
and merging techniques were developed. The Sherpa pro-
gram grew out of such efforts. It was also the first major
generator written in C++ from scratch, whereas Herwig and
Pythia had to be rewritten from Fortran to C++ to match
LHC requirements.

Today Herwig [3582], Pythia [3583], and Sherpa

[3579] are the three general-purpose generators used at LHC,
or more generally for studies at e+e−/ep/pp/pp colliders.
There also are important dedicated programs, e.g. for matrix
element generation, such asMadGraph_aMC@NLO [3385]
and the Powheg Box [3628].

Adjacent physics areas, such as heavy-ion collisions, cos-
mic ray cascades in the atmosphere, or neutrino interac-
tions, started their generator development somewhat later,
and partly under the influence of the general-purpose ones
above, e.g. for the high-energy hadronization descriptions.
Typically the hard-physics aspects become less relevant,
and soft-physics ones more so. These issues will be briefly
addressed towards the end.

11.4.3 The perturbative interface

A key task is to generate events of a predetermined type or
types. This could be e.g. W + jets, both as a signal and as a
background to t t production. Typically there is a core hard
interaction, that then is complemented by further perturba-
tive QCD activity at varying scales. In such cases the core
interaction provides the natural starting point for the descrip-
tion of the rest of the event. As already suggested above, one
may discern three main stages:

1. the generation of partonic events purely based on matrix
elements and parton distribution functions,

2. the matching and merging stage, where Sudakov form
factors generated by parton showers are used to reject
some of the events above, so as to avoid double counting,
and

3. the subsequent pure parton shower evolution down to a
lower cutoff somewhat above the Λ scale.

The first of these is covered in Sect. 11.1, and in Sect. 10.2
for PDFs, while the second two are described in Sect. 11.3.

Of special interest for the continued story are the core
2 → 2 pure QCD interactions, qq ′ → qq ′, qq → q ′q ′,
qq → gg, qg→ qg, gg→ gg and gg→ qq . These are by
far the dominant perturbative processes at hadron colliders.
The main contribution is t-channel gluon exchange, which
gives rise to a dp2

T /p
4
T divergence in the pT → 0 limit.

11.4.4 Total cross sections and diffraction

Another key task, at the other extreme, is to generate the
inclusive sample of all events at hadron colliders. In prac-
tice rare processes are generated separately, so the emphasis
comes to lie on common QCD processes.

The total QCD cross section σtot is finite, related to a finite
size of hadrons and a finite range of QCD interactions, owing
to confinement. Currently there is no QCD-Lagrangian-
based description ofσtot, but instead phenomenological mod-
els have been proposed based on Regge theory, with free
parameters that have to be tuned to data. At a minimum one
Pomeron and one Reggeon term is required to describe the
energy dependence [1100], where the former can be associ-
ated with a trajectory of exchanged glueball states and the
latter with one of mesonic states, see Sect. 8.1. More terms
are needed in more realistic models. Notably, recent stud-
ies points towards the existence of an Odderon term, see
Sect. 12.6.

The total cross section between two hadrons A and B
can be subdivided into several partial ones, associated with
different event topologies:

σ AB
tot (s) = σ AB

el (s)+ σ AB
inel (s)

= σ AB
el (s)+ σ AB

sd(XB)(s)+ σ AB
sd(AX)(s)

+ σ AB
dd (s)+ σ AB

cd (s)+ σ AB
nd (s), (11.31)

where s is the squared collision energy in the rest frame.
These topologies are illustrated schematically in Fig. 277.
In nondiffractive (nd) events the full rapidity range can be
populated by particle production, whereas in single, double
or central diffraction (sd, dd, or cd, respectively) only parts
of this range are populated, and in elastic (el) events none
of it is. The relative composition changes with energy, e.g.
such that the elastic fraction is increasing. Roughly speaking,
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Fig. 277 Main subclasses of the total cross section in AB hadron col-
lisions. The red bars represent the regions in rapidity between A and B
where hadrons are produced. Reproduced from [3583]

elastic is 25%, diffractive 20% and nondiffractive 55% at
LHC energies.

Many approaches have been proposed to model these
partial cross sections, both integrated and differential ones,
notably again based on Regge theory. Common is that the
mass mX of a diffractive system obeys an approximate
dm2

X/m
2
X = dyX behaviour, where yX is the rapidity range

of the X system. An elastically scattered beam particle is also
associated with a squared momentum transfer t that obeys an
approximate exp(Bt) shape at low t . The slope B depends
on the colliding hadron types, the event topology and the
collision energy, but the order of magnitude is 10 GeV−2,
i.e.〈pT 〉 ∼ 0.3 GeV.

At low energies also other collision types occur, such as
resonant production and baryon annihilation.

The Ingelman–Schlein [3629] ansatz is commonly used
for the description of diffractive systems. In it, a Pomeron is
viewed as a hadronic state, with its own PDFs. Therefore the
Pomeron–hadron subsystem can be described in the same
way as we will introduce for nondiffractive events in the
following, at least for reasonably large mX , while a simpler
description is called for at small mX .

11.4.5 Multiparton interactions

All generators assume that a nondiffractive event can contain
multiple parton–parton interactions, which can be viewed as
the QCD reinterpretation of the cut Pomeron picture of olden
days [3630]. MPIs are necessary to explain many aspects of
hadronic collisions, such as the wide multiplicity distribu-
tions, where most of the multiplicity is related to low-pT
processes. The case of two hard interactions, Double Parton
Scattering, is well studied theoretically and experimentally
[3631]. Different models have been developed starting from
the same basic ideas. This section will begin with the Pythia

approach, which is also used by Sherpa, and later the dif-
ferences in Herwig will be outlined.

It has already been noted that the perturbative QCD 2 → 2
cross section is divergent for pT → 0, on the one hand, and
that the total pp cross section is finite, on the other hand. The
perturbative picture is based on the assumption of asymp-
totically free colored partons, however, while the reality is
that of partons confined inside color singlet hadrons. There-
fore a plausible regularization of the pT → 0 divergence
is provided by color screening, i.e.that partons of opposite
color gives destructive interference of scattering amplitudes.
A parameter pT 0 is introduced in Pythia as the inverse of
the spatial screening distance. This is used to dampen the
conventional 2 → 2 QCD cross section by a factor

(
αs(p2

T 0 + p2
T )

αs(p2
T )

p2
T

p2
T 0 + p2

T

)2

, (11.32)

which gives

dσ

dp2
T

∼ α2
s (p

2
T )

p4
T

→ α2
s (p

2
T 0 + p2

T )

(p2
T 0 + p2

T )
2
. (11.33)

A tune to data gives a pT 0 of the order of 2 GeV, but slowly
increasing with energy, consistent with an increasing screen-
ing, as lower-x partons become accessible at higher energies.

The average number of MPIs in nondiffractive events is
given by 〈nMPI〉 = σpert(pT 0)/σnd, neglecting a small cor-
rection from the part of σpert that should be associated with
diffraction. Here σpert(pT 0) is the integrated damped 2 → 2
QCD cross section. At first glance, the nMPI should be dis-
tributed according to a Poissonian, with nMPI = 0 removed,
since zero MPIs corresponds to the two hadrons passing
through without any interactions.

This assumes that all collisions are equivalent, however.
More plausibly, the impact parameter b of the collision plays
a role, where central collisions generate more activity than
peripheral ones. To model this, an ansatz for the matter dis-
tribution inside a hadron is required. The simplest choice is
a three-dimensional Gaussian, since then the convolution of
two hadrons is easily integrated over the collision process to
give a two-dimensional Gaussian O(b). Fits to data prefer
a somewhat more uneven matter distribution, e.g. with “hot
spots” of enhanced activity around the three valence quarks.

The actual generation of MPIs can conveniently be
arranged in a falling sequence of transverse momenta with√
s/2 > pT 1 > pT 2 > · · · > pTn > 0. Neglecting the

impact-parameter dependence for a moment, the probability
for the i th MPI becomes

dP
dpT i

= 1

σnd

dσpert

dpT i
exp

(

−
∫ pT (i−1)

pT i

1

σnd

dσpert

dp′T
dp′T

)

,

(11.34)
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with a fictitious pT 0 = √
s/2. The exponential expresses

the probability to have no MPIs between pT (i−1) and pT i ,
as comes out of Poissonian statistics and in exact anal-
ogy with the Sudakov form factor of parton showers. With
impact parameter included, the b is selected proportional
to O(b) d2b, and the pT selection procedure acquires an
enhancement/depletion factor ofO(b)/〈O〉. Sequences with-
out any MPIs require a restart with a new b.

So far inclusive nondiffractive events have been consid-
ered. Alternatively one specific hard interaction is studied,
and an underlying event should be added to it. Then again a b
is selected according toO(b), and an enhancement/depletion
factor is defined as before. The upper pT limit for MPIs now
depends on context. If the hard interaction is QCD 2 → 2
above some pTmin then its pT should be equated with a pT 1

of the MPI sequence, and subsequent ones be below that,
or else high pT scales would be double counted. If the hard
interaction is something else, then there is no such double
counting, and MPIs can start from the highest possible scale.

The description of n MPIs requires n-parton PDFs,
f (x1, Q2

1; x2, Q2
2; . . . ; xn, Q2

n), which are not known from
first principles or from data. An approximate approach is
to make use of the pT -ordering of MPIs, such that the first
interaction uses conventional PDFs, while subsequent MPIs
use more and more modified ones. Thereby standard phe-
nomenology is preserved in the hard region. Subsequently
momentum conservation requires a gradually reduced xi
range, within which PDFs are squeezed. Also flavor conser-
vation must be respected. If a valence u quark is taken out of a
proton, say, then only one u quark remains, and the valence u
distribution must be normalized to 1 rather than 2. If instead
a sea u quark is extracted, then the u sea must contain one
parton more than the u sea, which can be implemented by
having one valence-like u in addition to the normal u and u
sea distributions. Finally, when the valence-like distributions
have been properly normalized, the gluon and sea distribu-
tions are uniformly rescaled so as to obey the momentum
sum rule.

With the evolution of ISR and FSR parton showers usually
formulated in terms of a decreasing sequence each of pT
values, the MPIs now add a third sequence. In Pythia they
are fully interleaved into one common sequence. Thus the
key evolution equation is

dP
dpT

=
(

dPMPI

dpT
+ dPISR

dpT
+ dPFSR

dpT

)

× S (11.35)

where S represents the Sudakov factor, obtained by exponen-
tiation of the real-emission rate, integrated from the previous
pT scale to the current one, cf. Eq. (11.34). In this way the
harder part of the event sets the stage for what can occur at
softer scales. Notably MPIs and ISR compete for the dwin-
dling amount of momentum in the beams, as represented by
the modified PDFs. The pT evolution should not be viewed

as one in physical time; actually all MPIs occur at (almost)
the same collision time t = 0, while lower pT scales means
earlier times t < 0 for ISR and later times t > 0 for FSR.

The Herwig description of MPIs [3632] splits them into a
hard and a soft component, separated at a scale pmin

T (s). The
perturbative cross section dσQCD/dpT is recovered above
pmin
T (s), while a simple tuneable shape dσsoft/dpT is used

for 0 < pT < pmin
T (s), with the constraints that it must

vanish at pT = 0 and match dσQCD/dpT at pmin
T (s). The

electromagnetic form factor is used to represent the impact-
parameter profile of protons. This gives an overlap function

A(b, μ) = μ2

96π
(μb)3 K3(μb), (11.36)

where
∫

d2b A(b) = 1, and μ are used as free parameters,
separately set for the hard and soft components, for more
flexibility. Combining, an eikonal is defined as

χtot(b, s) = 1

2
Ahard(b, μhard) σQCD(s, p

min
T ) (11.37)

+ 1

2
Asoft(b, μsoft)σsoft(s, p

min
T ), (11.38)

where σQCD and σsoft are the respective pT -integrated cross
sections. The number of MPIs at a given b is given by a
Poissonian, as in Pythia, with 〈n(b, s)〉 = 2χ(b, s). The
eikonal formalism also predicts other quantities, such as total
and elastic cross sections, and the elastic slope, that can be
used to constrain the free parameters of the model.

When a hard interaction has been selected in Herwig,
and been associated with an impact parameter b, the number
of hard and soft additional MPIs can be selected according
to Poissonians. The hard interactions are generated first, and
thereafter the soft ones. UnlikePythia they are not ordered in
pT within the hard and soft groups, and there is no rescaling
of PDFs. Also the ISR and FSR associated with an interac-
tion are reconstructed before the next is considered. For the
hardest interaction the ISR is forced to reconstruct back to a
valence quark, while for subsequent ones the ISR evolution is
forced back to a gluon. This gluon can then be color-attached
to the hardest interaction itself. The MPIs together may take
more momentum out of the protons than is available, given
the lack of PDF rescaling. When that happens, the latest MPI
is regenerated, but if repeated attempts fail the MPI gen-
eration may be interrupted with a lower MPI number than
intended.

11.4.6 Beam remnants and color reconnection

Since the MPI+ISR machinery in Herwig reconstructs back
the perturbative activity to one single valence quark, having
been taken out of an incoming proton, the other two valence
quarks together form a diquark remnant, with opposite color
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Fig. 278 Average transverse momentum as a function of the charged
multiplicity, as measured by ATLAS [3633]. Qgsjet exemplifies a
model without color reconnection, with a similar flat shape as Pythia
has with its CR switched off. The two Pythia curves are different tunes.
EPOS is based on a two-component model, explained later in the section

to the one quark taken out. Four-momentum conservation
fixes the remnant momentum.

The situation is more complicated in Pythia, since the
MPI+ISR can extract a variable number of “initiator” partons
out of the incoming proton, leaving behind multiple quarks
and antiquarks. Then ad hoc probability distributions are used
to share the remnant longitudinal momentum between them.
The initiator partons also carry a transverse momentum, a
so-called primordial kT , that is to be compensated by the
remnant. When the remnant consists of the several partons,
these may also have a relative kT component. The size of
all these transverse kicks should be at or below the hadronic
mass scale, though empirically they appear to be at the higher
rather than at the lower end of the expected range.

The color lines of the initiator partons naively stretch from
the remnants in through the hard interaction at the core of
each MPI, i.e.usually fill the whole rapidity range. If so,
the average charged multiplicity nch of an event increases
linearly with the number of MPIs, up to corrections from
momentum conservation and the details of the remnant han-
dling. Since all MPIs will be equivalent, a constant aver-
age transverse momentum per hadron should result, i.e.a flat
〈pT 〉(nch) curve. Instead an increasing 〈pT 〉(nch) is observed
at hadron colliders, Fig. 278.

Fig. 279 Schematic illustration of color reconnection. a Simple flip.
The arrows indicate flow from color to anticolor. b Junction reconnec-
tion. Note changed direction of the long line, according to 3 ⊗ 3 =
3 (⊕6)

The natural explanation for this phenomenon is color
reconnection (CR). Specifically, it is assumed that the color
lines stretched between all final-state partons can be rear-
ranged so as to reduce the overall length. The number of
possible rearrangements increases with the number of MPIs,
such that the 〈nch〉 increase is smaller for each further MPI.
The perturbative pT kick of each MPI remains, however, so
when this pT is shared between fewer particle the result is
an increasing 〈pT 〉.

Many CR models have been implemented over the years,
in all three main generators, and it would carry too far to
discuss each in detail. A frequent starting point is that stan-
dard parton showers operate in the Nc →∞ limit, and thus
miss corrections of order 1/N 2

c at each shower branching.
One possible approach is to do the evolution in color space
more carefully, and thereby be able to formulate CR as a con-
sequence of such subleading corrections. More common is
to formulate CR on the nonperturbative level, but then color
algebra should be used to restrict the rate at which it can
occur.

Also common for many nonperturbative approaches is that
a key role is assigned to the string lengthλ between two color-
connected partons i and j

λi j ≈ ln

(

1+ m2
i j

m2
0

)

= ln

(

1+ (pi + p j )
2

m2
0

)

. (11.39)

Herem0 ≈ mρ is a typical hadron mass, and 1 has been added
to ensure that λ ≥ 0. With this definition λ is a reasonable
measure of how many hadrons typically will be produced by
the string. A flip of two color-connected pairs (i, j) and (k, l)
into (i, l) and (k, j), Fig. 279a, corresponds to a net change
Δλ = λil + λk j − λi j − λkl . The assumption is that Δλ < 0
reconnections are favoured.

Further CR variants include ones that change the number
of string pieces, say by taking a central gluon connected to
both remnants and putting it on an already existing central
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Fig. 280 String versus cluster fragmentation. At the end of the pertur-
bative evolution, the vertical dashed line, strings are directly attached,
red regions. Alternatively, a nonperturbative g → qq stage is inserted
before clusters are formed, magenta regions

string piece. Of recent special interest is junction reconnec-
tion [3634]. A junction is the center of a Y shape where three
string pieces come together, and topologically is the carrier
of the baryon number. Two strings can collapse to one in
a central region with the production of a junction and anti-
junction near either end, Fig. 279b. This gives an enhanced
baryon production. In the cluster model a similar effect can
be obtained by letting three aligned qq clusters rearrange into
one qqq and one qqq cluster.

CR ought to be possible only when the strings con-
cerned overlap in space–time. For normal pp collisions this
is almost automatic, since most strings run more-or-less
parallel with the collision axis within a small transverse
region. Space–time should be taken more seriously e.g. in
e+e− → W+W− → q1q2q3q4, where the W± decay angles
will influence the amount of overlap. Models have been
developed to this end, and predictions agree well with the
combined LEP data [3635]. The best description is obtained
with an∼ 50% CR rate, but unfortunately statistics is limited
and a no-CR scenario is only disfavoured at the 2.2σ level.

11.4.7 Hadronization

There are two main fragmentation models in common use:
strings and clusters. Both start out from the color flow topolo-
gies set up according to the previous sections, in the Nc →∞
limit. Specifically, each q → qg and g→ gg leads to a new
uniquely defined color line between the two daughter par-
tons. The string model retains all the gluons produced in the
perturbative stage. A string can therefore be stretched e.g.
like q−g1−g2−g3−q , where each color line between two
adjacent partons is unique. In the cluster model the perturba-
tive shower is followed by a semi-perturbative step where all
gluons branch by g→ qq . The system therefore subdivides
into smaller qq clusters.This key difference is illustrated in
Fig. 280. The string is central in Pythia, while Herwig and

Sherpa implements clusters. In the latter program there is
an interface to Pythia strings to allow comparisons. In the
following key features will be presented in some more detail.

The string approach is based on the assumption of a lin-
ear confinement potential, as supported by quenched lattice
QCD phenomenology. In a simple qq system studied in the
rest frame, e.g. from a Z0 decay, the potential can then be
written as V (r) = κr , where r is the separation and κ is
the string tension. Empirically κ ≈ 1 GeV/fm, determined
mainly from hadron spectroscopy. The mathematical one-
dimensional string stretched straight between the q and the
q can be viewed as defining the center of a physical chromo-
electric flux tube, with transverse dimensions comparable to
hadron sizes, i.e.with a radius of around 0.7 fm. It is not set-
tled whether this tube should be viewed in analogy with a
vortex line in a type II superconductor, or with an elongated
bag in a type I one, or with an intermediate behaviour, but
for the basic considerations this is also not important.

If the string does not break, it will undergo a yo-yo-like
oscillatory motion, where initially the quarks carry the full
energy of the system, but gradually lose it to the string being
stretched out between them. Massless quarks will reach a
maximal separation where all the energy is stored in the
string, and then the string tension will pull them back, so
that they again cross, carrying the full energy. The key rela-
tion is that the massless endpoint quarks, moving out along
the ±z axis, obey
∣
∣
∣
∣
dE

dt

∣
∣
∣
∣ =

∣
∣
∣
∣
dE

dz

∣
∣
∣
∣ =

∣
∣
∣
∣
dpz
dt

∣
∣
∣
∣ =

∣
∣
∣
∣
dpz
dz

∣
∣
∣
∣ = κ (11.40)

(with c = 1). If such a system is boosted along the z axis
the q and q start out with different energies, which means
that their turning points occur at different times, which gives
the expected net motion of the system as a whole. The string
tension remains unchanged by the boost, and a string piece
in the new frame still carries no three-momentum. This may
seem counterintuitive, but note that the boost will take an
equal-times string piece to one where the endpoints are at
different times, and if viewed this way the boosted string
piece will pick up the expected momentum.

Now introduce the possibility for a string to break by the
production of a new qiqi pair somewhere along the string. In
lattice QCD this corresponds to going from the quenched to
the unquenched situation. Each break splits the original color
singlet system into two separate smaller ones. A sequence
of breaks thus gives an ordered singlet chain qq1 − q1q2 −
q2q3− . . .−qn−1q , and these singlets can be associated with
the primary (i.e.before any decays) hadrons. Such a sequence
of breaks is illustrated in Fig. 281. Notice that, in this picture,
each produced hadron undergoes a yo-yo motion of its own.

If the qi have m = pT = 0 then a qiqi pair can be pro-
duced on-shell in a single vertex, and afterwards be pulled
apart. The partons are virtual initially when this is not the
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Fig. 281 String fragmentation of a qq system, where yellow regions
represents snapshots in time of the string pieces being stretched out.
Reproduced from [3636]

case, and each has to tunnel a distance mT /κ until it has
absorbed enough energy from the string to come on-shell.
This leads to a suppression factor

exp

(

−π m2
T

κ

)

= exp

(

−π m2

κ

)

exp

(

−π p2
T

κ

)

. (11.41)

The transverse momentum kick can be compensated locally
between the qi and qi , which defines a vector sum for each
qiqi+1 hadron. Empirically the observed 〈pT 〉 is somewhat
higher than predicted this way, which could be related to
the cutoff of soft gluons in the parton shower, so for tuning
purposes the pT width of primary hadrons is considered a
free parameter.

The tunneling also implies that nonperturbative produc-
tion of heavier quarks is suppressed, for charm and bottom
to a negligible level. For the strangeness suppression it is not
clear what quark masses to use – the observed s/u ≈ 0.25
production ratio is in between results for current algebra and
constituent masses – so again it is considered a free param-
eter.

Neglecting orbitally and radially excited states, a produced
meson belongs either to the pseudoscalar or to the vector mul-
tiplet. Naive spin counting would imply a 1 : 3 production
rate, but vectors are suppressed by the heavier mass, to an
extent that is not easily calculated from first principles, so
further parameters are introduced. The many flavor-related
parameters is the biggest weakness of the string model.

For baryon production antidiquark–diquark string breaks
are introduced, in analogy with quark–antiquark ones, with
the diquark in a color antitriplet. Again tunneling, spin and
mass factors are combined in production-rate parameters.
The overall diquark break fraction needed to describe the
observed baryon production rate is around 10%. A modified
scenario is the popcorn one. In it, a qq pair can be produced
with a color that does not screen the endpoint ones, such that
it does not break the string. Inside that pair one or two further

Fig. 282 String motion in a qqg system. Yellow regions represent
snapshots in time of the string pieces. The fragmentation of the strings
is suppressed for clarity. Reproduced from [3636]

breaks may occur, where the latter would allow a meson to
be produced between the baryon and the antibaryon.

String breaks on the average ought to be produced along
a hyperbola of fixed invariant time, which translates into a
flat rapidity plateau of produced hadrons. Then particle pro-
duction would start in the middle of the event and spread
outwards, Fig. 281. But actually all string breaks have a
spacelike separation to each other, so there is no Lorentz-
frame-independent definition of what comes first. It is then
more convenient to begin at an endpoint quark and work
inwards. The final result should be independent of the order
used, which is satisfied for an almost unique fragmentation
function shape

f (z) = 1

z
(1− z)a exp

(

−b m2
T

z

)

. (11.42)

Here a and b are two free parameters and mT the transverse
mass of the hadron considered. The z variable parametrizes
the fraction of remaining lightcone momentum that the
hadron takes. That is, if the quark is moving in the+z direc-
tion, then z is the fraction of E + pz taken, with 1 − z the
fraction remaining to be used in subsequent steps. Note that
heavier hadrons on the average take a larger fraction z than
lighter ones. The f (z) shape may be generalized slightly to
take into account the effect of different quark masses, notably
for massive (c or b) endpoint quarks.

The extension to more complicated string topologies
involves no new principles or parameters. In a qqg event,
Fig. 282, the Nc → ∞ color algebra implies that one color
is shared between q and g, and another between g and q , with
no direct connection between q and q . The strings pulled out
now have a transverse motion and thus a higher energy per
unit length, but less length is pulled out per unit time, and
these two effect exactly compensate to give |dE/dt | = κ

for the quarks and twice that for the gluon. This is to be
compared with the QCD color-charge ratio Nc/CF = 9/4.
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Again the two string pieces will fragment along their length,
with one hadron formed around the gluon kink, obtaining
four-momentum contributions from both pieces. The gener-
alization to multigluon systems is obvious, and also closed
gluon loops can be addressed in this way.

The string motion becomes more complicated when a
gluon is soft or collinear, with new string regions arising.
The punch line, however, is that the total string motion is only
mildly affected by such gluon emissions, although technical
complications arise.

The occasional low-mass string also needs some special
care, and in the extreme case it may become necessary to
force the endpoint flavor content to form a single hadron, with
four-momentum conservation being ensured by exchange
with another parton or hadron.

LHC pp data has revealed several unexpected features,
notably that fragmentation properties change when the mul-
tiplicity is increased, towards more strangeness and baryon
production, and with signs of collective flow, both in the
direction of the heavy-ion behaviour. Possibly a quark–gluon
plasma is being formed, but in a string context it is also worth-
while to consider how the environment, i.e.the close-packing
of strings at high multiplicities, could perturb the standard
fragmentation picture. One such potential effect is color rope
formation, i.e.that several parallel strings combine into an
object in a higher color representation [3637]. Then baryon
and strangeness production is enhanced. Baryons can in addi-
tion be enhanced by the aforementioned junction CR mech-
anism. There can also be a repulsive force between strings,
so-called shove, that can give rise to collective flow [3638]. It
remains to be seen whether these ideas can be combined into
a new coherent framework in agreement with LHC observa-
tions.

The cluster model is based on the concept of preconfine-
ment [3639] during the parton-shower evolution. That is,
each color line (for Nc →∞) tends to correspond to a low-
mass system, with only a small tail towards larger masses.
The model becomes even more suggestive if it is assumed
that all gluons branch into quarks, g → qq , at the end of
the cascade, such that each color line is associated with a
separate color singlet cluster. This would occur naturally if
constituent masses obey mg ≥ 2mu = 2md , as is supported
by lattice QCD. Several cluster studies have been presented
over the years. Here the generic features are outlined.

A gluon decays into any kinematically allowed qq pair
according to its phase-space weight, which implies a depen-
dence on the choice of gluon and quark constituent masses,
notably whether ss can occur at this stage. Thereafter each
q1q2 cluster decays isotropically into a two-body state,
hadrons q1q3 and q3q2, where q3 may also represent a
diquark, resulting in baryon production. The hadrons are
picked at random among all possibilities consistent with the
flavors, according to relative weights. These weights are the

product of the spin factor 2s+1 for each final hadron and the
phase-space factor 2p∗/m, where p∗ is the common magni-
tude of the three-momentum of the hadrons in the rest frame
of the cluster with massm. In some cases, such asπ0−η−η′,
also the mixing of identical-flavor states needs to be included
in the weight. It is also possible to allow an overall extra factor
for a multiplet, notably to enhance baryon production.

A number of improvements have been introduced to this
basic picture, as follows.

When the four-momenta of the cluster constituent q1 and
q2 are combined into the four-momentum of the cluster, the
tail to large cluster masses is suppressed, but it is not com-
pletely absent. It is therefore assumed that such clusters can
fission into two smaller ones, preferentially aligned along
the q1q2 axis. Flavor-dependent parameters are introduced
to provide the mass above which a cluster must break, and
others to describe the mass spectrum of the daughter clus-
ters. The fission procedure can be repeated on the daughters,
if necessary. In e+e− events∼15% of the clusters need to be
split, but these account for ∼50% of the final hadrons.

If baryons only are produced as baryon–antibaryon pairs
inside isotropically decaying clusters then that does not agree
with observed anisotropies in e+e− events. One solution is
to allow g → qq + qq branches in the final stages of the
shower. This has been implemented both for Herwig and
Sherpa, but has now been replaced by the next approach in
Herwig. (The possibility to rearrange three mesonic clusters
into two baryonic ones has already been mentioned, but is
not relevant for e+e−.)

Isotropic cluster decays also give too soft charm and bot-
tom hadron spectra in e+e−. Therefore such cluster decays
are treated anisotropically, such that the heavy hadron is
preferentially near the heavy-quark direction, when viewed
in the cluster rest frame. Some further improvements can
be obtained if also other cluster decays preferentially favor
hadrons closer to the cluster end with the matching flavor.

There may be a small fraction where the cluster mass is not
large enough to produce two hadrons with the required flavor
content. In such cases the cluster can be allowed to collapse
into a single hadron, with excess four-momentum shuffled to
another nearby cluster. For heavy quarks one may also allow
some such collapses above the two-body threshold, to further
harden the heavy-hadron spectrum.

Further procedures exist both in Herwig and Sherpa to
handle other special cases.

11.4.8 Decays, rescattering and Bose–Einstein

Many of the primary produced hadrons are unstable and
decay further. Often the decay channels and their branch-
ing ratios are well-known, but for charm and especially bot-
tom hadrons the picture is incomplete. Higher resonances
are poorly known also in the light-quark sector. Furthermore,
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inclusive measurements of a given final state may need to be
translated into a potential sequence of intermediate states,
e.g. Kππ may receive contributions from ρ and K ∗ reso-
nances. Once the decay sequence has been settled, angular
correlations in the decays should be considered, where fea-
sible. Especially for bottom the Evtgen package provides a
large selection of relevant matrix elements, as does Tauola
for τ lepton decay. The standard event generators also handle
such nonisotropic decays to a varying degree.

The main pp generators assume that particles are free-
streaming once formed. This is not the case in heavy-ion col-
lisions, where the particle density remains high a while after
the hadronization stage, and hadrons therefore can rescatter
against each other. Studies show that also pp collisions are
affected by rescattering, but not to a dramatic degree.

Another issue is Bose–Einstein (or Fermi–Dirac) corre-
lations, present in the production of identical bosons (or
fermions). Empirically this results in an enhancement (or
depletion) of nearby pairs. Typical deduced emission source
sizes range from somewhat below 1 fm in e+e− to some-
what above that for pp. Such scales obviously overlap with
the hadronization ones, but also with the decays of short-
lived resonances such as ρ, and with hadronic rescattering.
The modelling therefore is far from trivial, and no traditional
generator includes Bose–Einstein effects by default.

11.4.9 Other collision types

While the emphasis of the description above has been on the
three main pp generators at LHC, a few words on adjacent
fields and other generators are in place [3619]. Many of these
other programs do not address hard physics, but are intended
to describe inclusive events dominated by low-pT QCD pro-
cesses. Via an MPI machinery they may or may not contain
a tail of harder QCD events.

Fields that can be covered by the e+e−/pp generators
include Deeply Inelastic Scattering and photoproduction in
ep or μp. The latter is largely based on the concept of Vector
Meson Dominance (VMD), i.e.that a real photon can fluctu-
ate into a vector meson state. The transition between the two
regions of photon virtualities remains less easily modelled.
The VMD picture can also be used e.g. for ultraperipheral γ γ
collisions in heavy-ion beams. Work remains to extend the
ep collision framework to eA, as required for the simulation
EIC physics.

Generators for heavy-ion physics span a broad range. In
one extreme models introduce nuclear geometry and mul-
tiple pp/pn/nn collisions, but with each collision similar
to a regular pp one, up to energy–momentum conservation
effects and the like. The earliest such example is Fritiof, the
Angantyr descendant of which is now included in Pythia.
Others are Sibyll, Qgsjet and Dpmjet. Such models can
be run reasonably fast, and the latter three therefore are com-

monly used for the hadronic part of cosmic-ray cascades in
the atmosphere.

In the other extreme the formation and evolution of a
quark–gluon plasma (QGP) is the key feature. This requires
the combination of models for several stages of the evolu-
tion, notably the hydrodynamical evolution of the plasma,
which can be quite time-consuming. Jetscape offers a com-
mon framework where models for the different stages can be
combined at will.

A successful intermediate program is the core–corona
EPOS one [3640]. In it, peripheral pp/pn/nn collisions
(corona) occur more-or-less separated from each other, while
the central higher-density core region may form a QGP,
which then decays to hadrons according to a statistical model.
The core QGP component gains in relative importance when
going from pp to pA to AA, and from peripheral to cen-
tral collisions. This gives a behaviour largely consistent with
data.

Finally, generators for neutrino physics, like Genie, are
largely separate from the ones above, in that an emphasis lies
on interactions with nuclei at low energies. The separation
into a primary physics process followed by a simulation of
detector effects thereby is blurred.

11.4.10 Standardization

The main generators discussed here largely are separate
codes. This allows for cross-checks where results should
agree, and a spread of predictions where the physics is not
well-specified. Comparisons are greatly simplified by com-
mon standards.

The oldest standard is the PDG particle numbering
scheme, whereby observed and postulated particles are
assigned unique integer numbers.

The transfer of information from matrix-element gener-
ators to general-purpose generators is defined in the Les
Houches Accord (LHA), and the associated Les Houches
Event File (LHEF) [3641]. It specifies in particular a listing
of all incoming and outgoing partons of a hard interaction,
with their four-momenta. Extensions include multiple event
weights to represent scale and PDF variations.

The transfer of the much bigger complete events from gen-
erators to detector simulation, or straight to users, is handled
by the HepMC standard [3642]. Again PDG particle codes
and four-momenta provide the basic information. Also the
step-by-step event history is documented, but cannot be made
completely generator-independent since different physics is
involved, e.g. strings versus clusters.

Parton distributions are widely used in generators, for hard
interactions, MPIs and ISR. Today each new PDF set typi-
cally consists in the order of a hundred members, to provide a
representation of the correlated uncertainties. Each member
is stored as a file with the PDF value of all relevant partons
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in a grid in (x, Q) space. LHAPDF [3643] specifies the file
format, such that common interpolation routines can be used
for the PDF evaluation for arbitrary x and Q values.

A major issue in the interpretation of data, not least for
generator development and tuning, is the difficulty to repro-
duce all the methods and cuts used in the analysis, even after
the data has been corrected for detector inefficiencies and
smearing. Here the Rivet framework [3644] allows a stan-
dardized way for experiments to submit a code that takes
generated (HepMC) events and analyzes them in such a way
that the output can be directly compared with published data.

11.4.11 The future

Before the start of the LHC, we believed to have a fair under-
standing of the physics at high-energy e+e−/pp/pp collid-
ers. The hadronization description developed in the light of
PETRA worked surprisingly well also at LEP. By jet univer-
sality – the assumption that the same hadronization mecha-
nisms are at play in different collision types – the same should
hold also for hadron colliders, when extended by aspects such
as multiparton interactions and color reconnection.

The shock of LHC then was that high-multiplicity pp
events were shown to behave surprisingly like heavy-ion col-
lisions, with strangeness and baryon enhancement, both in
the light-quark and in the charm/bottom sectors, and signs of
collective flow such as ridge effects. From what we have been
able to learn so far, it seems that high-pT physics remains
unaffected, such that there perturbation theory still can be
reliably combined with LEP-tuned hadronization models.
This makes sense, in that partons in that region mainly evolve
in a vacuum. But, at low pT , we already knew that the mul-
tiparton interactions lead to a close-packing of fragmenting
systems, whether strings or clusters. We just had not fully
appreciated its consequences, in part lulled by the common
belief in the heavy-ion community that time scales in pp
collisions are too short for a quark–gluon plasma to form.
Now we are in the process of rethinking hadronization. One
approach is the core–corona one, where a core part of the
pp event indeed behaves like a plasma, while the corona part
does not. The alternative is to avoid the plasma and intro-
duce other possible mechanisms, such as junctions, ropes
and shove. While some progress has been made, still no such
coherent alternative exists. Anyway, the bottom line is that
LHC has reinvigorated the study of the soft-physics aspects
of event generators, in addition to obviously driving the hard-
physics evolution, see Sect. 11.3.

While there is still much more to be learned from the
LHC, attention is also turning to other future colliders. The
one that may require most new generator development is the
EIC, since it involves new physics scenarios not addressed
before.

11.5 Jet reconstruction

Bogdan Malaescu, Dag Gillberg, Steven Schramm, and
Chris Young
A QCD interaction at a very high energy, such as the hard pro-
cess of an LHC collision, produces quarks and gluons that are
asymptotically free at very short distances, but often result
in a final state of hundreds of particles at the distance scales
of detectors (> 1 mm). It is highly desirable to reduce the
complexity of the hadronic final state and map it onto a rep-
resentation that mimics the kinematics of the short-distance
hard process. This is the goal of jet algorithms. Jet algorithms
are a set of rules used to group directionally nearby particles
to form jets. A jet can hence be thought of as a collimated
group of particles that might correspond to a high energy par-
ton of the hard process. The particles used as input to form
jets can be of several types: a set of partons, a consistent set
of hadrons, or a set of detector objects such as reconstructed
charged-particle tracks or localized calorimeter energy mea-
surements.

11.5.1 Jet algorithms

There are a number of desirable features for a jet algorithm. It
should be computationally robust and well specified, ideally
with few parameters. It should be theoretically well behaved,
and exhibit both infrared and collinear safety. The former
refers to adding one or several particles with infinitesimal
energy, and the latter to split any input particle into two.
For both these kinds of alterations of the input particles, the
resulting jet four-momenta will be identical if the jet algo-
rithm is safe against said effects. The jet algorithm should
further behave equivalently at different orders of the QCD
evolution: at the parton, hadron and detector levels. Further-
more, it should not be tailored to a specific detector, but be
useful and used both by theorists and by experimental col-
laborations.

One of the early jet algorithms was the Snowmass Cone
Algorithm of 1990 [3645]. This algorithm, which used ET

and operated in (η, φ)-space,107 wrestled with several of the
issues mentioned above. Complication arose due to choice
of seeds and overlapping cones, which were dealt with by a
merging and splitting stage of the jet algorithm, and which
tried to find ‘stable cones’. Similar cone algorithms with var-
ious improvements were employed by the CDF and DØ col-
laborations at Fermilab [3646,3647]. The kt algorithm [191]
was developed in 1993, inspired by QCD splittings scales
(see Sect. 11.2). The advantages of the kt algorithm are that
it has no split/merge stage, and jets are uniquely defined; dis-

107 ET ≡ E sin(θ) and the pseudorapidity η = − ln(tan(θ/2)), where
θ is the angle to the beam pipe.
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Fig. 283 The same simulated pp → W+H → ud̄ bb̄ event, recon-
structed with four different jet algorithms: kt (top left), anti-kt (top
right) and Cambridge–Aachen (bottom left), all with radius parameter
R = 0.4, and anti-kt with R = 1.0 (bottom right). The hard pro-
cess particles are shown as black markers, while the final set of stable
particles are displayed as crosses. Particles from pileup interactions,

generated using a mean of μ = 60 inelastic pp collisions, are shown as
grey open markers. Particles with pT < 1 GeV are not displayed. The
solid colored areas show the extension (catchment area) of each jet with
pT > 25 GeV, and their colors indicate the jet pT . The code needed
to produce this plot is available as the example program main95 in
recent Pythia distributions

advantages include the irregular jet shapes, and the difficulty
to experimentally reconstruct and calibrate the jets.

Today, the most common method to build jets is the anti-kt
algorithm [193], defined very similarly to the kt algorithm.
Both algorithms start from a set of particles, each with asso-
ciated four-momenta, and the following distance measures
are calculated

di j = min(p2p
T,i , p

2p
T, j )

ΔR2
i j

R2 , di B = p2p
T,i , (11.43)

where R is a radius parameter,ΔR2
i j = Δy2

i j+Δφ2
i j is the dis-

tance squared in (y, φ)-space between particles i and j , and
the parameter p is 1 for the kt algorithm, 0 for the Cambridge–
Aachen [189] algorithm and −1 for the anti-kt algorithm.
The distance di j is calculated for all combinations of pairs of
particles, and di B once per particle. The smallest distance is
found; if this is a di B value, then particle i will define a jet. If
it is a di j value, then particles i and j are merged, normally

by four-momentum addition (pk = pi + p j ). In both cases,
the list of particles and the associated distances are updated,
and the algorithm proceeds with one less particle per itera-
tion until all particles have been used. When finished, each
input particle is uniquely part of a jet. An illustration of the
produced jets for these three kt -style jet algorithms is pre-
sented in Fig. 283, where the jets are built for stable particles
produced by a simulated pp → W+H → ud̄ bb̄ event at
the LHC with a pileup contribution corresponding to a mean
number of inelastic pp interactions of μ = 60.

As is clear from Fig. 283, jets do not provide a unique
interpretation of any given event, rather they are a tool that
can be optimized to best address the needs of a given task.
Even if jet algorithms are intended to represent the under-
lying hard process of a given collision, the variety of possi-
ble hard processes necessitates the consideration of different
jet algorithm configurations. In other words, a jet algorithm
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Fig. 284 The fraction of the total jet energy carried by different types of
particles of particle-level jets produced in simulated LHC dijet events.
Particle-level jets are built from particles (c τ > 10 mm). The ratio
of charged-to-neutral pions is 2:1 due to isospin symmetry, while for
baryons it is 1:1; the overall charged-to-neutral fraction of particles in
a jet roughly averages between these two expectations [3648]

defines an event organization concept and it can be adapted
for different physics processes.

The most common usage of jets in the collider context is
to represent the collimated group of final state particles orig-
inating from individual quarks or gluons of the hard scatter.
For this task, the preferred jet radius parameter has slightly
changed during the last decades. Values of R = 0.6 or 0.7
have often been used for studies of events with well separated
jets (e.g. dijet production), while smaller radii (0.4 or 0.5) are
more appropriate to resolve more complex final states, such
as t t̄ or the example shown in Fig. 283. As is further discussed
in Sect. 11.5.2, smaller radii makes jets less susceptible to
pileup, which has become an important consideration at the
LHC. Since the start of LHC Run 2, the anti-kt algorithm with
a radius parameter of R = 0.4 has been the standard choice
largely due to these reasons. The resulting jets are then inter-
preted as a set of quark- and gluon-initiated showers. Such
jets are primarily composed of charged and neutral pions,
but baryons and other types of mesons contribute a moderate
fraction of the total jet energy, as shown in Fig. 284. Small
energy fractions of electrons and muons can also be seen that
originate from semi-leptonic heavy hadron decays.

A natural second-level question relating to such jets is
to determine their underlying production mechanism. Is a
given jet produced by a light-flavor quark (u/d/s), a gluon, a
heavy-flavor quark (c or b), or by some other process? Heavy-
flavor jets are typically easier to define at all levels: they can
be identified by whether or not the list of constituents the jet
is composed of contains b or c quarks at parton-level; B or D
hadrons (or their decay products) at particle-level; or, have

associated charge-particle tracks originating from collision-
point-displaced vertices at the experimental level. The differ-
ence between light-flavor-quark- and gluon-initiated show-
ers is more subtle, and is not rigorously defined for particle-
or experiment-level jets. Instead, the expected properties of
quarks and gluons can be used to differentiate between such
jets on average, noting that quarks have a single color charge
and are thus expected to radiate less, resulting in more nar-
row showers containing fewer constituents than showers pro-
duced by gluons.

Another important concept, and which is of great rel-
evance at the LHC, is to use jets to represent complex
energy flow processes rather than individual showers. The
high energy collisions at the LHC can result in the produc-
tion of massive particles, such as W , Z and H bosons and
top quarks, with high transverse momentum. Therefore they
have a sizable Lorentz boost in the rest frame of the detec-
tor, and their decay products will be collimated. In the case
of hadronic decay products, each daughter particle further
produces showers of hadrons, which can overlap. Rather
than reconstructing this complex structure of overlapping
hadronic showers as separate jets, the entire decay of the
massive particle can be treated as a single jet, and proper-
ties of that jet can be used to infer the nature of the orig-
inating particle [3649]. In such a scenario, it is useful to
increase the distance parameter used to build jets to contain
the entire hadronic decay, as shown for the anti-kt algorithm
with R = 1.0 in the bottom right plot in Fig. 283 where
the W boson decay is within a single jet, while the H boson
decay is split between two jets. The collimation of the decay
particles is related to the mass and momentum of the parent
particle; for a two-body decay, this becomes:

ΔR � 2mparent

pparent
T

, (11.44)

where ΔR is the angular separation between the decay prod-
ucts in (y, φ)-space. From this equation, it is clear that
increased collision energies producing higher-momentum
massive particles will result in increasingly collimated
decays, and thus the importance of using a larger value of
R to represent a complex energy flow is related to the energy
scale of the process under study. Jets built with this context
in mind are typically referred to as large-radius or large-R
jets, where typical modern values are R = 0.8 for CMS or
R = 1.0 for ATLAS; this is in contrast to the previously dis-
cussed R = 0.4 jets, which are referred to as small-radius or
small-R jets.

Using a larger distance parameter comes with several
complications, both experimental and theoretical. From the
purely algorithmic perspective, one challenge is that the
catchment area [3650] of an individual jet grows dramati-
cally, as clearly visible when comparing the top right and
bottom right plots in Fig. 283. Among other effects, this
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increases the amount of energy from the underlying event
included in the jet, which can hide the features of inter-
est: for example, the mass of the jet should peak at the
mass of the parent particle, but this is not the case due to
the presence of the underlying event. This can be mitigated
through the use of a variety of different grooming algo-
rithms [1915,1916,3649,3651,3652]. These algorithms are
typically applied after building the initial jets. The objects
clustered into the jet are then subject to a further selection,
and those which appear to be inconsistent with originating
from a hard-scattering process are removed, thus suppressing
the underlying event and other undesired contributions while
retaining the physics features of interest.

11.5.2 Jet reconstruction

Inputs to jet reconstruction:
Particle-level jets, often referred to as truth jets, are used as a
theoretical reference for experimental measurements. These
are jets built from stable particles, defined as those with life-
time τ such that c τ > 10 mm (τ > 33 ps), which can be
thought of as “what a perfect detector would see”. It should be
noted that neutral pions are not considered stable and hence
their decay products (photons) will be used as input to truth
jets (see Fig. 284). Only particles produced in the proton–
proton interaction of interest are considered. These jets also
form the reference for the calibration of reconstructed jets.

Experimental reconstruction of jets requires the defini-
tion of a given set of inputs, which will ideally represent the
true particles of the jet or the energy flow. As jets consist of
both charged and neutral hadrons, the simplest reconstruc-
tion makes use of the energy flow captured in a calorimeter,
which measures the energy of both charged and neutral inci-
dent particles. However, as we will see in this section, the
accuracy of jet reconstruction can be improved through the
use of additional information from tracks reconstructed from
charged particles.

At a hadron collider such as the LHC, a wide range of ener-
gies of jets need to be accurately reconstructed: from 20 GeV
to above 4 TeV in pT . This represents a significant challenge
for the design of the detectors. Both ATLAS and CMS sur-
round the interaction point with a tracking detector immersed
in a magnetic field, such that the momentum of charged par-
ticles can be measured. Around this are the calorimeters.
The innermost calorimeters are designed to reconstruct elec-
tromagnetically showering particles, such as electrons and
photons, and will also capture some energy from charged
and neutral hadrons. Radially outward of these detectors are
hadronic calorimeters that measure the energy of showers
from remaining charged and neutral hadrons.

An additional complication at the LHC is pileup. Each
time two bunches of protons cross, multiple pairs of pro-
tons can collide. This is referred to as in-time pileup. The

beam-spot, the region of interactions, is typically 30–50 mm
in length along the beam direction. This means that such col-
lisions are typically separated in this dimension and tracks
originating from different collisions can be identified. A sec-
ond effect is out-of-time pileup. The bunches of protons
cross every 25 ns in the LHC, therefore there are still resid-
ual effects in many of the detectors from the previous (and
subsequent for some systems with large integration times)
bunch crossings. These residual signals are referred to as
out-of-time pileup.

Throughout Run 1 of the LHC (2010–2012), ATLAS used
solely calorimeter inputs to build their jets. The ATLAS
calorimeters consist of over 100,000 cells. This fine cell gran-
ularity is used to suppress noise by constructing clusters of
cells, which represent the energy flow. Cells with energy sig-
nificantly greater than the expected background noise are
used to seed such clusters, and adjacent cells are added itera-
tively, forming topologically connected clusters representing
a shower [3653]. This process means that most cells in the
calorimeter are not included in the event reconstruction, and
hence their noise does not contribute to the jet resolution.
As the calorimeters are non-compensating, showers caused
by electromagnetically and hadronically interacting particles
of identical initial energies have different energy responses.
The jet resolution can therefore be improved by identifying
which type of shower each cluster contains and calibrating
it appropriately. In ATLAS the energy density of the cluster
and its position in the calorimeter are used for classification
and subsequent calibration [3653]. These calibrated clusters
were the input signals to jet reconstruction for ATLAS in
Run 1.

CMS has employed a particle-flow approach both in Run 1
and Run 2 [3655], and ATLAS also developed such an
approach for Run 2 [3654]. The principle of particle flow is to
supplement the information from the calorimeter with track-
ing information. Both collaborations match tracks recon-
structed in the inner detector to calorimeter energy deposits
from the same particle. The ability to do this depends on the
granularity of the detector, the small transverse size of the
showers in the calorimeter, and the separation of the parti-
cles. Figure 285 shows how this can be achieved by extrap-
olating tracks through the magnetic field to the calorime-
ter and matching them to calorimeter energy deposits. The
CMS algorithm combines the measurements of tracks and
matched calorimeter-energy deposits to create combined
reconstructed charged hadrons with improved resolution.
Calorimeter deposits without tracks are then identified as
neutral hadrons. Situations where the showers of a charged
hadron and a neutral hadron are overlapping are identified
by the excess of energy in the calorimeter above what would
be expected from the charged hadron. In ATLAS a choice is
made between the calorimeter and track reconstruction. For
low pT tracks, where the track resolution is significantly bet-
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Fig. 285 The simulated signals from a pT = 30 GeV jet in the (η, φ)

plane of the second layer of the ATLAS electromagnetic calorimeter.
The shaded cells are those included in calorimeter topoclusters. Green
deposits are from neutral hadrons within the jet, red deposits are from
charged hadrons within the jet, and blue deposits are from pileup parti-
cles. The purple ∗ represents the tracks of charged hadrons within the jet
after being extrapolated to the calorimeter, and the yellow ∗ represents
tracks from pileup [3654]

ter than that of the calorimeter, the momentum measurement
is taken from the reconstructed track and the corresponding
shower created by that particle is removed from the calorime-
ter. The remaining calorimeter energy deposits then represent
the energy flow from particles without tracks and those where
the track is not selected.

Both collaborations see significant improvements in the
pT and angular resolutions of jets reconstructed using par-
ticle flow. Figure 286 shows the dramatic improvement in
the energy resolution in CMS. In ATLAS the improvement
is smaller, and primarily at lower pT , due to the superior
calorimeter resolution. However, the gains from the use of
particle flow increase at higher pileup motivating its use in
Run 2 and beyond.

Jet algorithms in the experimental context:
Having reconstructed either clusters or a set of particle flow
objects, the jet algorithms featured in Sect. 11.5.1 can be
used to build jets. A key advantage of using particle flow
objects is that prior to building the jets, charged particles that
are from in-time pileup interactions can be excluded. This
is known as Charged Hadron Subtraction, and is performed
by both experiments’ particle flow algorithms [3654,3655].
This removes the majority of the effects of charged pileup
particles but the effects due to neutral pileup particles and out-
of-time pileup remain. This explains why ATLAS observes

Fig. 286 The jet resolution in the central region of the CMS detector
when jets are reconstructed using calorimeter signals (Calo) or particle
flow objects (PF). The simulated QCD events have

√
s = 13 TeV and

there are no pileup effects present [3655]

increasing benefits of the particle flow approach at higher
pileup. Additionally CMS employs PUPPI [3656] which uses
the local information to try to identify neutral pileup energy
deposits and weight these to lower significance prior to jet
finding [3656,3657].

Some small-R jets reconstructed from either calorimeter
or particle flow inputs will consist of only signals from pileup
particles. These are referred to as pileup jets and can be the
result of QCD jets from other in-time collisions, multiple
particles from different in-time collisions, out-of-time pileup
signals, or a combination of several of these effects. These
jets will not have tracks pointing at them from the interaction
vertex of interest, while they will in some cases have tracks
from other vertices. These features are used by both ATLAS
and CMS to reject such jets such that they are not used in
analyses [3657,3658].

Large-radius jets are much more susceptible to pileup, due
to their larger catchment area. Most large-radius jets at the
LHC will therefore contain a mixture of energy originating
from multiple collisions (either in-time or out-of-time), and
thus it is impractical to reject entire jets. Moreover, large-
radius jet are typically used in situations where the internal
structure of the large radius jet is of interest, and thus any
constituents originating from other processes than the hard-
scatter interaction must be suppressed to observe the jet’s
internal structure. Charged hadron subtraction, from particle
flow algorithms, can help to remove charged contributions
for separate collisions, but alternative strategies are needed
to remove overlapping neutral contributions. Grooming algo-
rithms, previously motivated in the context of suppressing
underlying event contributions, are also useful in this con-
text: the same criteria of suppressing soft and wide-angle
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Fig. 287 Distributions of pjet
T /pref

T in Z+jet events, where pref
T is

defined by the reconstructed Z boson pT and is required to be in the
range (60, 80)GeV. The dashed line shows the fitted distribution, from
which the means are taken as the response measurements. The solid
line indicates the fitting ranges. The markers are the data counts with
error bars corresponding to the statistical uncertainties. Figure from Ref.
[3662]

radiation is also useful for mitigating pileup contributions.
These grooming algorithms are applied after the jet is built,
but the inputs to jet algorithms can also be corrected; vari-
ous criteria can be used to suppress neutral jet inputs from
vertices other than the one of interest, such as Constituent
Subtraction (CS) [3659], Soft Killer (SK) [3660], PUPPI,
or combinations thereof such as CS+SK. Currently, ATLAS
makes use of CS+SK to modify the inputs to large-radius
jet reconstruction [3661], while CMS makes use of PUPPI
[3657].

11.5.3 Jet calibration

Energy scale and resolution:
Once jets are reconstructed, they need to be calibrated such
that on average the reconstructed jet four-momenta match
those at the particle level within the assigned uncertainties.
At hadron colliders, the jet energy-scale (JES) calibration-
correction is typically applied in a sequence of steps. Those
account for (the mitigation of) contributions from additional
proton–proton collisions, energy losses in the dead material
of the detector, calorimeter non-compensation (where appli-
cable), angular biases, etc. Several of these calibration steps
rely on a detailed Monte Carlo simulation (MC) of detector
effects. Modern techniques use jet and event properties (e.g.
jet area, jet width, fraction of energy in the various layers
of the calorimeters, average pT density) to improve resolu-
tion and to mitigate the dependence of the JES response on
the jet flavor. The latter are sizable mainly at low jet trans-
verse momentum (pT ) and yield one of the main modeling
uncertainties impacting the JES calibration.

Fig. 288 Fractional jet energy scale systematic uncertainty as a func-
tion of pT for jets reconstructed from particle-flow objects. The total
uncertainty, determined as the quadrature sum of all components, is
shown as a filled region topped by a solid black line. flavor-dependent
uncertainty components shown here assume a dijet flavor composition.
Figure from Ref. [3663]

The calibration chain is completed by in situ corrections
that are most commonly derived by exploiting momentum
balance between jets and well-measured reference objects.
Selection criteria are applied to suppress extra radiation and
obtain a sample of events where a probe jet is back-to-back
with the reference object. A correction is then derived by
comparing the measured balance in data relative to the expec-
tations of MC simulation, and correcting for the residual dif-
ference:

(
pjet
T /pref

T

)data / (
pjet
T /pref

T

)MC
. (11.45)

This principle was developed for the calibration of small-
radius (R ∈ [0.4, 0.7]) jets [3648,3662,3663] and has now
also been used for large-radius jets [3664].

These in situ methods employ, as reference objects, pho-
tons, Z bosons decaying to charged leptons, and one or
several pre-calibrated jets. Fig. 287 presents an example of
pjet
T /pref

T distribution in data, the mean of which is used to
derive the jet calibration. They also provide the main uncer-
tainties impacting the JES calibration(see Fig. 288), reaching
nowadays sub-percent precision across a broad phase-space,
while being larger for relatively low- and large-pT jets, as
well as in the forward region of the detectors. While for
large-pT jets these approaches are limited by the available
statistics, for low-pT and forward jets they are limited by
modeling effects, related to e.g. the emission of extra radia-
tion impacting the pT balance. The use of in situ techniques
have allowed for significant improvements in precision com-
pared to jet calibrations based on test-beam studies. The latter
are still used in phase-space regions with little/no statistics
coverage for the in situ approaches.
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Statistical combinations, with a full propagation of uncer-
tainties and correlations, are generally employed and yield
the necessary inputs for physics analyses. In these studies,
uncertainties on the uncertainties and on the correlations have
also been evaluated (see e.g. Ref. [3665]). This is an exam-
ple where QCD studies trigger developments that set new
standards on a topic of interest in other scientific areas too.

The width of the pjet
T /pref

T distributions, such as the one
exemplified in Fig. 287, provides information about the jet
energy resolution (JER). Indeed, the JER is determined in
various pjet

T ranges and detector regions, after subtracting sta-
tistically the smearing effect induced by the presence of extra
radiation in the events. Afterwards, a statistical combination
of several in situ methods through a fit allows for the extrac-
tion of a parameterization of the JER in data, together with its
uncertainties, readily usable in physics analyses accounting
for detector smearing effects.

Mass scale and resolution:
To first order, calibrations derived to correct the energy of a jet
are also important to use when correcting the mass of a jet, as
these two quantities are related. However, the mass calcula-
tion includes both energy and angular components, and thus
the jet mass must be further corrected after the energy has
been addressed. Similarly to the energy, calibrating the mass
of a jet begins with corrections based on simulated samples,
to correct the average simulated jet mass to the particle-level
scale. In the context of large-radius jets, it is very impor-
tant to apply the same grooming algorithms to the truth jets
and the reconstructed jets, as the grooming algorithm has
a substantial impact on the mass of the jet built from parti-
cles, primarily due to the suppression of the underlying event
contributions.

Following these simulation-based corrections, the result-
ing mass must be compared between data and simulation,
but the strategies to evaluate differences between data and
simulation necessarily differ. The jet energy corrections
exploited the conservation of momentum in the transverse
frame through the balance between probe and reference
objects to obtain a precise calibration. There is no equiva-
lent conservation law for jet mass, so a different approach
is needed. Instead, the mass has a well-defined expectation
value in specific cases, notably if a pure sample of W , Z
or H bosons or top quarks can be obtained. W bosons and
top quarks are the easiest particles to identify in this context:
semi-leptonic t t̄ events provide an ideal means of identifying
a high-purity selection of hadronically decaying top quarks,
and the distinction between a full top decay and a W boson
decay can be made by requiring the b-quark from the top
decay to be either inside or outside of the large-radius jet
of interest. The resulting high-purity selection of W bosons
or top quarks can be compared between data and simulated
events, where differences in the mass peak’s central value

Fig. 289 The mass of large-radius jets in a final state targeting semi-
leptonic decays of t t̄ events, where a b-tagged jet overlaps with the
large-radius jet. This selection primarily identifies large-radius jets con-
taining the decays of boosted top quarks, as is clear from the dominant
peak structure consistent with the t t̄ simulation expectation. Differences
between data and simulation in both the jet mass scale and resolution
can be extracted from such a plot. [3664]

(mass scale) and width (mass resolution) can be evaluated
and corrected for; an example of the top quark selection is
shown in Fig. 289, where it is clear that the selected events
are very pure in the signal of interest.

This approach works well, but is limited to only a few
possible jet mass values where we have a well-defined Stan-
dard Model expectation. Correcting the scale and resolution
for other mass values is a much more complex task, and a
robust, high-precision method to provide a general mass cor-
rection remains an open challenge.

11.5.4 Classifying hadronic decays of massive particles

The use of large-radius jets is overwhelmingly linked to the
desire to represent the entire hadronic decay of a massive
particle, such as (but not limited to) a W /Z /H boson or a top
quark. If the jet does contain all of the daughter particles and
their corresponding showers, then the mass of the jet now has
a well-defined prior, namely the mass of the parent particle.
This prior holds so long as the large-radius jet represents
only the process of interest: underlying event and pile-up
contributions falling within the jet’s catchment area can both
obscure the internal structure of the jet, and must thus be
mitigated, as previously discussed. The mass then becomes
an excellent means of classifying jets based on the parent
particle that they originate from.
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Fig. 290 The N-subjettiness ratio τ32, with the winner takes all (wta)
axis definition [3666], showing the separation of jets containing three-
body decays (top jets) against jets containing either two-body decays
(W jets) or individual quarks/gluons (multijets). This is after a selec-
tion criterion is applied on the jet mass, and thus the separation shown
between the three jet types provides additional classification power.
[3667]

While the jet mass provides a robust means of differentiat-
ing between different possible sources of large-radius jets, in
many cases it is not sufficient, as light quarks and gluons from
QCD multijet processes are produced in extreme abundance
compared to the massive particle decays of interest. The mass
distribution of light quarks and gluons is peaked at low val-
ues, well below the W /Z /H boson or top quark masses, but
the tail of the mass distribution extends to high masses, and
these tails are still more probable than the production of the
target massive particles.

Additional jet properties can be used to further classify the
origin of a given large-radius jet. These properties are referred
to as jet substructure variables and are designed to quantify
the internal angular energy structure of a jet. Substructure
variables are almost always correlated with the jet mass, and
thus it is important to identify variables that are sufficiently
distinct to provide further separation power. One commonly
used example is the N-subjettiness ratios, τxy = τx/τy , where
τn is a projection of the constituents of a jet along n axes,
thereby evaluating the consistency of the jet containing n
or fewer decay particles. As an example, τ32 is commonly
used to identify jets containing top quarks, as it differentiates
3-body decays from 2-or-fewer-body decays, as shown in
Fig. 290. This is only one example out of the many different
types of jet substructure variables that have been used to
complement the jet mass in classifying the origin of large-
radius jets.

Fig. 291 A comparison of many different algorithms designed to iden-
tify jets originating from hadronic decays of top quarks. A simple tag-
ger based on the jet mass combined with the N-subjettiness ratio τ32
(mSD + τ32) is shown alongside many alternative classifiers providing
significantly better performance. This can be seen as they have much
lower quark/gluon (background) misidentification rates for a fixed top
quark (signal) efficiency. The large majority of the alternative classifiers
make use of machine learning techniques [3668]

While the jet mass and substructure variables provide a
solid baseline, modern large-radius jet classifiers make use
of machine learning techniques to maximally discriminate
between different possible jet origin interpretations. There is
a wide variety of machine-learning-based classifiers in use
by both the ATLAS and CMS Collaborations, and they con-
tinue to become more powerful; a comparison of several such
algorithms as used by CMS is provided in Fig. 291.

Similar to the jet energy and mass calibrations, the dif-
ference between data and simulation must also be quantified
when classifying the origins of large-radius jets. The algo-
rithms used are usually optimized using simulated events, and
there is no guarantee that the simulation properly describes
the data, especially for the complex angular energy struc-
ture within a jet, which is what such classifiers rely upon to
differentiate between different jet categories. Similar to the
jet mass scale calibration, semi-leptonic t t̄ events provide a
useful signal-enriched region to evaluate the performance of
both W boson and top quark classifiers in simulation and
data; other signal categories remain more challenging, as
we do not yet have sufficiently signal-pure regions to per-
form similar comparisons. In contrast, comparing the dif-
ferences between data and simulation for the misidentified
background events is straightforward, as the QCD multijet
and γ+jet processes have such large cross sections that they
are highly background enriched by default. Any differences
between data and simulation in the fraction of background
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events passing a given large-radius jet classifier can thus be
evaluated using these two processes.

11.5.5 Summary

Jets are crucial tools for numerous physics analyses per-
formed at hadron colliders. During the last four decades, there
has been significant development in this field and jet defini-
tions that are robust for both experimental measurements and
theoretical predictions have been identified. In addition, the
improved particle detectors, with highly granular calorime-
ters and high resolution reconstruction of charged tracks are
enabling reconstruction of the full jet four momentum, inves-
tigation of the jet internal structure and classification of jets
via tagging. These developments are allowing us to expand
the knowledge about QCD and to look for signatures of BSM
physics, yielding greatly improved searches and measure-
ments.

12 Measurements at colliders

Conveners:
Karl Jakobs and Eberhard Klempt

The development of QCD and of colliders are intimately
linked. The formation of jets, of streams of collimated
hadrons, was first observed at SPEAR; soon after, gluons
were investigated in three-jet events at TASSO (see Sect. 3.2).
The Large-Electron–Positron (LEP) collider, operating from
1989 to 2000, allowed the collaborations to determine the
energy-dependence of the strong-interaction coupling con-
stant αs , to confirm the gauge structure of QCD and to test
QCD systematically (see Sect. 12.1). The identification of
jets with quarks and gluons is of prime importance to under-
stand the dynamics of the first hard reactions (see Sect. 11).

The study of the structure of protons in deep inelas-
tic electron–proton scattering at SLAC and neutrino-proton
scattering with Gargamelle at CERN led to experimental evi-
dence for quarks with electric charge assignments as pre-
dicted by the quark model. Later, these studies were contin-
ued at HERA, the only electron–proton collider, and at other
places. These studies are presented in Sect. 10. Three quarks
(c, b, t) were discovered in collider experiments (the b-quark
at least co-discovered). The physics of the Brookhaven Rel-
ativistic Heavy Ion Collider (RHIC) is discussed in Sect. 7.

Since the 1980s the high-energy frontier of particle
physics was defined by the Sp p̄S collider at CERN and the
Tevatron at Fermilab. As outlined by Daniel Britzger, Klaus
Rabbertz and Markus Wobisch, the production of jets devel-
oped to a QCD testing ground to searches for new phenom-
ena up to the largest accelerator-based energies at the Large
Hadron Collider (LHC). Jets initiated by gluons, quarks –
including the heavy quarks c and b – can be produced jointly

with the vector bosons W± and Z0. The measured cross sec-
tions of all these processes are precisely reproduced by QCD
calculations (Monica Dunford). The discovery of the Higgs
boson in 2012 was a milestone for particle physics. Chiara
Mariotti describes with which surprising precision the prop-
erties of the Higgs boson follow the predictions of the SM.
The top quark, discovered in 1995 at the Tevatron and dis-
cussed here by Marcel Vos, is identified in a large variety
of production processes, from top–anti-top production to t t̄
production associated with a vector boson or the production
of two t t̄ pairs. The cross sections for these processes span a
wide range from nearly 103 pb down to a few 10−2 pb.

12.1 The legacy of LEP

Stefan Kluth

The large electron positron collider LEP was conceived
and designed at CERN in the 1980s to study the then just
discovered massive vector bosons of the Standard Model
(SM), the neutral Z and the charged W± bosons [3669]. The
four LEP experiments ALEPH, DELPHI, L3 and OPAL col-
lected more than four million Z decays and about 10,000
Wpairs each. The LEP 2 runs at centre-of-mass (cms) ener-
gies above the Z resonance up to 209 GeV provided samples
of about 1000 hadronic final states from off-shell (Z/γ )∗
decays at each cms energy. These data, together with the
extremely accurate LEP beam energy determination, estab-
lished “electro-weak precision observables” (EWPO) and the
confirmation of the SM at very high precision [3670]. Pre-
vious studies of QCD in e+e− annihilation at the PEP and
PETRA colliders and in other experiments are summarized
e.g. in [3671–3674].

It was thus clear that hadronic final states at LEP are a great
laboratory to study a large spectrum of QCD predictions. The
missing initial- and final-state interference and the compara-
tively high energy lead to clearly interpretable hadronic final
states and usually small corrections from non-perturbative
effects. All LEP experiments have among their first few pub-
lications papers on properties of hadronic Z decays.

The detectors of the LEP experiments were significant
improvements on their predecessors and offered an almost
complete coverage of the solid angle with efficient and pre-
cise tracking and finely grained calorimeters with layers for
electromagnetic and hadronic showers. All LEP experiments
had silicon micro-vertex detectors and full coverage with
muon detection systems outside of the calorimeters.

The e+e− initial state with well known beam energies pro-
vides a strong constraint to improve energy measurements.
For example the scaled jet energies in Z decays to 3-jets
can be determined from jet angles only [3675]. Even with-
out using the beam energy directly in a constraint the use
of quantities scaled to the cms energy reduces dependence
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on the absolute energy scale of the detector. As explained
below, jet definitions, event shape observables and particle
spectra are normalized to the cms energy Q = √s. Note that
in the measurements the normalization to Q is replaced by
the measured total visible energy Evis which also partially
removes the influence of statistical fluctuations.

Compared to previous experiments, the LEP data have
much larger event samples on the Z peak, low experimental
systematic uncertainties and higher cms energies leading to
smaller and well controlled hadronization corrections.

The data taken on the Z peak (LEP 1) have favorable
experimental conditions. The trigger efficiency for hadronic
final states is essentially 100% and can be measured using
redundant triggers. Backgrounds from hadronic decays of τ -
lepton pairs are suppressed by demanding more than four
charged particles. Requirements on balance of observed
momentum along the beam direction and total visible energy
remove backgrounds from e+e− → 2γ → hadrons interac-
tions. There are corrections for initial state photon radiation
effects, but on the Z peak these are small.

The data taken at
√
s > mZ but below the threshold for

W+W− pair production (LEP 1.5) at
√
s = 130 and 136 GeV

already contain a substantial fraction of so-called “radiative
return” interactions e+e− → γISR + Z → hadrons.108 Sim-
ply speaking, instead of a high-energy interaction near the
nominal

√
s, a Z decay to hadrons recoiling against the ISR

photon γI SR is produced. The LEP collaborations developed
algorithms to reconstruct the effective cms energy

√
s′ of

the observed hadronic system by assuming a 2-body decay
together with one or more high-energy ISR photons.

The data taken at
√
s ≥ 2mW (LEP 2) include an increas-

ing fraction of so-called “4-fermion” final states includ-
ing quarks. These 4-fermion final states are dominated by
W+W− pair production in the all-hadronic or lepton+jets
channel depending on the decays of the W -bosons. After a
hadronic preselection the di-lepton channel is a rather small
background. The LEP collaborations developed sophisti-
cated selections for theW+W− pairs for the precise measure-
ments of W -boson properties designed to reject “2-fermion”
final states with quarks e+e− → (Zγ )∗ → qq̄ → hadrons
[3676]. These results are then the basis for selections of
hadronic final states produced via a (Z/γ )∗ at high energy.
The remaining 4-fermion background in the data increases
with

√
s to about 10% at the highest LEP 2 energies but

contributes mostly in regions dominated by multi-jet topolo-
gies, see e.g. [3677]. Figure 292 shows the distribution of√
s′rec observed for hadronic final states at

√
s = 200 GeV

by DELPHI [3677]. The peak at mZ � 91.2 GeV is due to
hadronic Z decays recoiling against photon ISR. The analy-
sis imposes a cut on

√
s′rec to select the peak near the nominal√

s = 200 GeV. The yellow shaded area shows the simulated

108 ISR stands for initial state radiation.

Fig. 292 The figure shows the distribution of reconstructed effective
cms energies

√
s′rec in hadronic final states in e+e− collisions at

√
s =

200 GeV. The data are compared with simulations of hadronic final
states mediated by a single (Z/γ )∗ (qq̄ Sim.) and W+W− or ZZ pair
production (WW+ZZ Sim.) [3677]

background contribution of W+W− and ZZ final states with
hadrons.

12.1.1 Gluon and quark properties

The gluon was established as one of the elementary particles
of the SM by the PETRA experiments, see Sect. 2.2. QCD
requires for its gauge bosons that they have spin-1, and that
they carry color charge themselves manifesting in three- and
four-gluon vertices of the QCD Lagrangian.

The phenomenological analysis of the jet axes inΥ decays
to three gluons provided evidence for the spin-1 assignment
[3678]. The QCD predictions for spin-0 and spin-1 gluons
were the basis of an analysis by OPAL [3678] using the
energy distribution of the 2nd jet after energy ordering in
hadronic Z decays to three jets [3675]. The 2nd-jet-energy
distribution after correction for experimental and hadroniza-
tion effects was in good agreement with a NLO QCD pre-
diction while a MC based LO calculation with scalar gluons
showed an estimated χ2/dof = 44/14. This is clearly well
above the requirements for a discovery. A similar study is
discussed in [3679].

The search strategy for observable effects of the three-
gluon vertex was discussed in [3680], but convincing results
could only be obtained after NLO calculations became avail-
able for the angular correlations between four jets in hadronic
Z decays [3681]. The QCD predictions at NLO decompose
into contributions proportional to (products of) the color fac-
tors CF , CFCA, CFCF and CF NFTF , and two of them can
be determined together with the strong coupling αS(M2

Z ).
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Fig. 293 The figure shows results for the color factors CA and CF
from various analyses as indicated [3685]

The analyses by OPAL and ALEPH [3682,3683] determine
CA andCF corresponding to the contributions of three-gluon
or quark–gluon vertices to the NLO predictions. The contri-
bution of the three-gluon vertex proportional to CA is clearly
observed. Since the result for the second color factor product
can be recast asCF , the color charge of quarks at the strength
required by QCD is observed as well.

The analysis of the event shape observables Thrust and the
C-parameter (see below for details) at several cms energies
from re-analysed JADE (at PETRA) data and from OPAL
data is based on the same decomposition of the NLO QCD
prediction and also results in a clear observation of the three-
gluon vertex contribution [3684]. A combination of these
and other results for determinations of the color factors is
discussed in [3685]. Figure 293 shows a summary of the
results for CA and CF from 4-jet angular correlations, event
shapes, and other analyses [3685].

The properties of quarks in the SM such as their spin-
1/2 assignment and their electric charges have been studied
at LEP and earlier collider experiments [122,3686,3687].
Another quark property is their mass, which will be discussed
below in Sect. 12.1.4.

12.1.2 Jets and event shapes

Jet and event shape observables have been designed to study
properties of hadronic final states at colliders. The aim gen-
erally is to classify hadronic final states according to their
topology by introducing an additional energy scale. E.g. for
clustering hadronic final states in e+e− annihilation with the
JADE algorithm [3688] m2

i j = 2Ei E j (1 − cos θi j ) is the
distance between two objects i and j with energies Ei and
E j . At each iteration the pair i j with the smallest distance

mi j is merged by adding the pair’s 4-vectors.109 One can
introduce the scaled quantity ycut = m2

cut/s and count how
many events have three jets when the clustering is stopped at
ycut . Alternatively, the value of y23 = m2

23/s can be used to
classify events where in each event the clustering goes from
three to two jets [3689]. In the first case, jet rates are stud-
ied and in the second an event shape observable is used. The
Thrust observable T = max�n

∑
i | �pi · �n|/

∑
i | �pi | quantifies

the coherence or “jettiness” of an event. Here, i runs over
all particles in the hadronic final state, �pi are the particle 3-
momenta, and the thrust axis �n is a unit vector that maximizes
T . The nominator

∑
i | �pi | defines an energy scale.

The value of an event shape observable is the classi-
fier which can distinguish between e.g. collimated 2-jet like
events and broader 3-jet (or multi-jet) like events. Their distri-
butions reflect the proportion of 2-jet like vs. 3-jet or multi-jet
like events in the data in a similar way as the fraction of 3-jet
events at a fixed value of ycut .

As discussed by Dokshitzer in Sect. 2.3, it is the property
of infrared-collinear safety which allows for stable prediction
by perturbative QCD (pQCD) and thus for a meaningful com-
parison between experimental observations and pQCD pre-
dictions. However, before a successful quantitative compari-
son of experiment and theory can be made, the transition from
the partons of pQCD calculations to the observed hadrons
(hadronization) must be accounted for. If there was a major
redistribution of 4-momenta between partons and hadrons
in a given final state due to hadronization, a comparison of
pQCD predictions with data would be highly problematic.
Turning this argument around we must have a hadroniza-
tion process which is local in phase space. This is discussed
as “local parton hadron duality” (LPHD) by Dokshitzer in
Sect. 2.3. Experimental evidence for the LPHD collected by
the LEP experiments and previous studies is discussed below.

Figure 294 (left) shows as an example the measurements
by OPAL of the event shape observable yD23 at cms energies√
s = 91.2, 133, 177 and 197 GeV. The cms energies are

weighted averages of combined LEP runs with similar cms
energies. The observable yD23 is the value of the jet distance
in the Durham algorithm [187] y = 2 min(Ei , EJ )

2(1 −
cos θi j )/s where the number of jets changes from three to
two. Figure 294 (right) shows measurements by ALEPH
[3690] of n jets, n = 1, . . . , 6, or more production frac-
tions using the Durham algorithm. These data show that at
LEP hadronic final states with complex jet topologies can be
measured well.

The reasonably successful comparisons of the data with
simulations by the Monte Carlo event generators PYTHIA,
HERWIG and ARIADNE validate the experimental correc-
tions derived using these simulations after passing them
through the simulations of the detectors. Furthermore, they

109 This is the E-scheme, other merging schemes exist.
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Fig. 294 (left) The figure shows measurements of the event shape
observable yD23 by OPAL at average cms energies as indicated. The
measurements are corrected for experimental effects and are compared
with simulations as indicated [3691]. (right) The figure displays mea-

surements of n-jet production fractions as a function of ycut using the
Durham algorithm by ALEPH at

√
s = 206 GeV. The measurements

are compared with simulations [3690]

pave the way for using these simulations to derive the
hadronization corrections needed to compare pQCD pre-
dictions with the data. The final LEP measurements and
their comparison to the then relevant NLO+NLLA QCD
predictions and determinations of αs(mZ ) are discussed in
[3685]. Improved determinations of αs(mZ ) using NNLO
QCD predictions combined with resummed NLLA calcu-
lation appeared soon after the NNLO predictions became
available [3692–3695]

The QCD analyses of some jet rates and event shape distri-
butions (starting at 3-jet final states) from LEP and previous
e+e− experiments today has reached percent level precision
using pQCD predictions at NNLO combined with resumma-
tion up to N3LL. For example in [302] distributions of Thrust
at
√
s = 35 to 200 GeV are analysed in a global fit based on

NNLO+N3LL QCD predictions.110 The hadronization cor-
rections are applied using an analytic model integrated into
the prediction. The final result is αs(mZ ) = 0.1135±0.0011
and has a relative uncertainty of 1%. A similar measure-
ment using the C-parameter is [303], the energy-energy cor-
relation EEC was analysed in NNLO+NNLL accuracy and
the 2-jet rate with the Durham algorithm was studied with
N3LO+NNLL predictions [3696].

110 The exact power counting is explained in [302].

Limitations for the ultimate accuracy of these studies
are currently the uncertainties connected with hadroniza-
tion corrections, see e.g. [3697] for a recent study. An early
study [3690] based on event shapes at all LEP energies and
NLO+NLL pQCD found differences in αs(mZ ) of about
10% between results using MC simulations or an analytic
model to derive hadronization corrections. These differences
became smaller with more complete QCD predictions such
as NNLO+NNLL or NNLO+ N3LL. They also tend to reduce
when MC simulations with NLO calculations matched to the
parton shower are used. In both cases a larger fraction of the
prediction is contributed by pQCD and thus only a smaller
difference w.r.t. the data is left to be covered by hadronization
corrections. New studies show that the hadronization cor-
rections in an improved analytic model depend on the event
shape value [3698], in contrast with the analytic models used
so far.

The analyses of final states with four or more jets are based
on the accurate measurements of multi-jet rates and corre-
sponding event shape distributions at LEP. Similar to NLO
QCD predictions for angular correlations in 4-jet final states
also NLO predictions for 4-jet rates became possible [3699].
It is important to realize that for 4-jet final states the NLO
QCD prediction is O(α2

s )+O(α3
s )which implies a sensitivity

to αs larger by about a factor of 2 compared with a prediction
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for 3-jet final states. The higher sensitivity can compensate
for the larger experimental uncertainties of the 4-jet measure-
ments w.r.t. 3-jet measurements. The corresponding analyses
with LEP data are [3677,3700] while [3701] is a study based
on re-analysed data from JADE at PETRA.

Automated NLO QCD calculations allowed predictions
for 5-jet observables [3702] and the corresponding determi-
nation of αs(mZ ). By the same argument as above the sen-
sitivity to αs(mZ ) is enhanced w.r.t. 3-jet observables which
compensates for larger measurement uncertainties.

The review of measurements of αs(Q) in Sect. 3 shows
clearly that the strong coupling strength decreases with
increasing energy scale of the process, i.e. asymptotic free-
dom. Here we discuss direct experimental evidence with-
out performing measurements of αs . Figure 294 (left) shows
distributions of yD23 measured at cms energies from 91 to
197 GeV and a change in the distribution is clearly visible. A
more direct way to observe a change of the strong coupling
strength with the energy scale of the process Q = √s is to
use inclusive observables such as jet production rates at a
fixed value of ycut or moments of event shape observables.

In QCD in LO the prediction for the mean value of e.g.
the Thrust 1− T distribution is 〈1− T 〉(Q) = αs(Q2)A1−T
while the running coupling follows αs(Q2) =αs(μ2)/(1 +
αs(μ

2)β0 ln(x2
μ)), β0 = (11CA − 4TF NF )/ (12π), xμ =

Q/μ, μ is the renormalization scale. This implies 1/〈1 −
T 〉 ∼ ln Q at LO with O(α2

s ) corrections. Figure 295 displays
data from DELPHI and lower energy experiments for 1/〈1−
T 〉 as a function of Q on a logarithmic scale confirming the
QCD prediction for the running coupling as measured by
〈1− T 〉. Hadronization corrections to 〈1− T 〉 are predicted
using simulations to only change the logarithmic slope, see
e.g. [3703]. Earlier studies using JADE (at PETRA) data for
3-jet rates using the JADE algorithm as a function of cms
energy had already proven the running strong coupling at the
4-σ level [3704].

12.1.3 Fragmentation

Here, we use the term fragmentation to refer to measuring
and predicting properties of the hadrons produced in hadronic
final states. In studies of fragmentation of hadrons the ener-
gies or momentum components w.r.t. an event orientation or
jet axis, or their multiplicity, are studied.

The scaled momentum fraction of a hadron with momen-
tum p is defined as x = 2p/Q. One expects in the quark–
parton model, i.e. in the absence of strong interactions of
the partons, that the x-spectra of hadrons are independent of√
s. This is analogous to the prediction of scaling for xBj

in lepton–hadron DIS, i.e. that distributions of xBj are inde-
pendent of the 4-momentum transfer Q2 of the DIS process.
Scaling violations are then due to scale-dependent strong
interactions of the partons. Figure 296 shows as an example

Fig. 295 The figure shows measurements of 1/〈1 − T 〉 as a function
of
√
s = Q on a logarithmic scale by DELPHI and lower energy exper-

iments. The lines show a NLO QCD prediction and fit by DELPHI
[3703]

Fig. 296 The figure shows the ratio of the scaled momentum spec-
tra 1/σhdσh/dx of charged particles measured by ALEPH at

√
s �

91.2 GeV to data from TASSO measured at
√
s = 22 GeV [3705]

the ratio of measurements of x-spectra measured by ALEPH
on the Z peak to corresponding measurements by TASSO
(at PETRA) measured at

√
s = 22 GeV [3705]. The scaling

violations are clearly visible.
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The QCD analysis of scaling violations of scaled momen-
tum distributions measured at different cms energies is
the e+e− analog of the analysis of structure functions
F2(Q2, xBj ) in lepton–hadron DIS. The scaled momentum
distribution is described by

1

σh

dσh
dx

=
∫ 1

0

∑

f

C f (z, αs(μ), xμ)D f

(
x

z
, μ

)
dz

z
(12.1)

with the flavor index f = u, d, s, c, b, g. The C f are coeffi-
cient functions known in NNLO QCD, and the D f are non-
perturbative fragmentation functions. The D f correspond to
the probability to obtain a hadron with momentum fraction
x from a parton f analogous to the parton density functions
(PDF) of DIS. The rate of change with changing momentum
scale μ of the D f is described by the DGLAP equations,
see 2.3. A first NNLO framework for the analysis of scaled
momentum distributions in e+e− annihilation to hadrons is
[3706].

It is interesting to focus on low momentum hadrons. To
this end the variable ξ = ln(1/x) is introduced. The majority
of hadrons is produced at low values of x , and by transform-
ing to ξ their properties can be studied in more detail. As
an example Fig. 297 shows measurements of ξ for charged
hadrons at LEP by OPAL and also from previous experi-
ments at lower energies [3707]. The distributions show a
maximum and drop quickly towards small ξ corresponding
to large hadron momenta. At large ξ , i.e. for small momenta,
the distributions fall off faster than expected from the kine-
matic limits from hadron masses.

This can be explained by destructive interference of mul-
tiple soft gluon radiation in the parton shower, often named
soft gluon coherence. Under the assumption of LPHD the
production of soft hadrons is driven by the production of
soft gluons from the parton shower. The “QCD Chudakov
effect” means that soft gluons cannot resolve the individual
parton color charges and instead the smaller color charge
before branchings is relevant. Based on these ideas detailed
pQCD predictions for multiple soft gluon radiation are calcu-
lated. For Fig. 297 such predictions [3708] are shown by the
solid and dashed lines, where the solid lines are fitted to the
data and the dashed lines are extrapolations. The extrapolated
QCD predictions at small ξ (large x) are not expected to be
a good approximation while at large ξ (small x) the data are
well described. The evolution of the peak position with cms
energy extracted from the fits also follows the pQCD pre-
diction, see e.g. [3707]. These measurements provide con-
vincing experimental confirmation of the LPHD and the cor-
responding pQCD calculations. A recent analysis of the ξ

spectra measured in e+e− annihilation and other processes
including higher order corrections is presented in [3709].

The interpretation of [3710], based on simulations with
and without soft gluon interference (coherence) effects, that

Fig. 297 The figure shows the spectra of ξ = ln(1/x) measured by
OPAL, TOPAZ and TASSO [3707]. The data are compared with fitted
QCD predictions, see text for details

the data of scaled momentum spectra do not provide evi-
dence for coherence has been discussed in [3711]. There it
was pointed out that the hadronization models of the simu-
lation programs will compensate for the lack of coherence
effects to still give a reasonable description of the data. The
confirmation of the LPHD lies in the successful comparison
of the corresponding QCD calculations with the data involv-
ing only two free normalization and scale parameters.

The QCD parton shower picture, i.e. the idea of high-
momentum partons radiating many times a gluon, and also
gluons producing a qq̄ pair, is the basis of the simula-
tion programs, because it allows implementations as iter-
ative probabilistic branchings. The implementations of the
parton shower picture are approximations correctly sum-
ming leading logarithmic terms (LLA). In the LLA the soft
gluon interference effects correspond to the angular ordering
phenomenon: a subsequent parton branching must occur at
branching angles smaller than the previous one. There are
limitations to the angular ordering approximation for less
inclusive observables [3712], in particular some which are
used for tuning (optimization of agreement with data) of the
simulation programs.

The legacy of LEP in this area is the wealth of precise
data on event shape observables, jet production, spectra of
inclusive and identified hadrons, and multiplicities which can
in many cases be interpreted with little ambiguities. These
data are to a large part the basis for parameter settings of
the popular simulation programs used in our field and in
particular at the LHC [3618,3636,3713].

The topic of color reconnection (CR) concerns possi-
ble changes to hadronization effects if several color sin-
glet sources are produced in a collision. The question is: do
the final partons in parton showers of different color singlet
sources merge to form hadrons together or not. At LEP 2

123



Eur. Phys. J. C          (2023) 83:1125 Page 407 of 636  1125 

the production of e+e− → W+W− → hadrons final states
was an important contribution to the LEP 2 measurements
of the mass and other properties of the W -boson [3676]. The
modeling uncertainties of CR effects gave rise to significant
systematic errors on the W boson mass and width. Later,
measurements of particle flow between the four jets of the
two hadronic W decays were used to constrain different CR
models. New models for CR were discussed in [3634] and
compared with the LEP 2 measurements. CR also affects
measurements of the top quark mass due to the intermediate
color singlet W -boson in the top quark decay [3714] and due
to interactions of proton remnants (multi parton interactions
MPI) in pp collisions. Recent measurements from LHC take
this into account [513,3715]. The CR model with the biggest
impact on the results of [3715] is also the only one in tension
with LEP 2 data in [3634]. This shows that the LEP data can
still help to constrain CR models.

12.1.4 Heavy quarks

In QCD with massless quarks the coupling constant is the
only free parameter. Asymptotic freedom of the running
strong coupling is one of the defining features of QCD and
is well confirmed by experiments [3716] since LEP results
contributed. Quark masses are also free parameters of the the-
ory and subject to similar phenomena as asymptotic freedom
for the strong coupling. The quark masses are predicted to
depend on the energy scale of the process through so-called
mass anomalous dimensions, the quark mass analogous of
the beta-function.

The two main phenomenological predictions are first, that
effective quark mass values decrease with the energy scale
of the interaction implying asymptotic freedom for quark
masses, see e.g. [3717] for a review. The second prediction
is the suppression of gluon radiation from massive quarks
with angle Θ < Θ0 = m/E , where m is the heavy quark
mass and E the heavy quark energy. This is referred to as the
“dead-cone” effect of QCD [3718].

The first prediction of running quark masses was studied
at LEP using large samples of O(105) hadronic Z decays
with b-tags. Mass effects can be enhanced for observables
like the 3-jet rate R3(ycut ) due to their additional energy
scale ycut [3719]. In order to reduce common experimental
uncertainties a double ratio B3 = Rb

3/R
l
3 is defined, with

Rb(l)
3 the 3-jet rate in Z decays to b (light) quarks. Figure 298

shows data for B3 from ALEPH compared with NLO QCD
predictions for values of the running b-quark mass in the
MS scheme mb(MZ ) = 3 or 5 GeV [3720]. The data are
consistent with the lower value of mb(MZ ).

The analyses by ALEPH, DELPHI, OPAL and SLD
are summarized in [3685,3721] with mb(MZ ) = 2.82 ±
0.28 GeV [3721]. With mb(mb) = 4.18+0.03

−0.02 [513], the s-

Fig. 298 The diagram shows data for B3(ycut ) by ALEPH corrected
for experimental and hadronization effects using the Durham algorithm.
The lines show NLO QCD predictions for mb(MZ ) values as indicated,
as well as predictions from simulations [3720]

dependence of the b-quark mass is observed with a signif-
icance of more than four standard deviations. The analysis
[3721] adds a determination ofmb(MH ) from measurements
of the branching ratio of the Higgs boson to b quarks by the
LHC experiments ATLAS and CMS assuming the Yukawa
coupling of b quarks at its SM value. Figure 299 presents
results for mb(mb), mb(MZ ) and for mb(MH ) together with
the QCD prediction for the running mb(Q) [3721]. There
is good agreement between the measurements and the QCD
prediction.

The dead-cone effect is not straightforward to study at
LEP or other colliders. For example for b-jets from on-
peak Z decays at LEP the dead-cone angle is expected to
be Θ0 � 2mb/mZ � 0.1 which is well inside typical jet
energy profiles in hadronic Z decays [3722]. A recent anal-
ysis by ALICE has found evidence for reduced particle pro-
duction inside angular regions consistent with the dead cone
for charm-tagged jets produced in pp collisions at the LHC
[195]. The key to this observation was reversing a sequential
jet clustering history using an angular distance definition111

which enforces angular ordering by construction.
Predictions for phenomenology of the dead cone effect

at LEP concentrate on multiple soft gluon production and
thus on particle spectra or multiplicities [3718,3723]. The

111 The Cambridge/Aachen (C/A) algorithm.
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Fig. 299 The figure shows determinations of mb(mb), mb(MZ ) and
mb(MH ) together with the QCD prediction for the running mb(Q)

[3721]

so-called “leading particle effect” refers to large and mass
dependent average scaled momenta of heavy hadrons (c or b).
The leading particle effect is derived from pQCD as a direct
consequence of the dead cone and shown to be consistent
with data from LEP and previous e+e− colliders [172].

The particle multiplicity in Z decays to b or light (u, d, s)
quarks is sensitive to the dead cone effect due to its impact on
soft gluon radiation, which is directly related to particle pro-
duction via the LPHD. The pQCD prediction in the MLLA
for the charged particle multiplicity difference in hadronic Z
decays to b or light quarks is δbl = 4.4± 0.4 [3724]. A dif-
ferent model for δbl without dead cone contributions predicts
a fast decrease with cms energy

√
s. The predictions for δbl

and measurements by LEP experiments and previous experi-
ments at different

√
s are shown in Fig. 300 [3724]. The blue

band corresponding to the QCD dead cone prediction is in
agreement with the data within theoretical and experimental
uncertainties. The alternative model is excluded by the high
energy LEP 2 measurements at

√
s ≥ 183 GeV with an esti-

mated χ2/dof � 100/11. The hypothesis that δbl → 0 for
large

√
s leads to an estimated χ2/dof � 43/11 and is thus

also clearly excluded.
Another example of precision measurements in the heavy

flavor sector is the b quark to hadron fragmentation function.
The measurement by DELPHI is shown in Fig. 301 [3725].
The quantity xweak

p refers to the scaled momentum of the
B hadron reconstructed from its weak decay. In this way
possible preceding strong decays of excited B hadrons are
accounted for. In the figure the data are compared with several
models for the fragmentation functions folded with a fixed

Fig. 300 The figure presents measurements of δbl compared with QCD
predictions and an alternative model as indicated [3724]

Fig. 301 The figure shows the b quark to B hadron fragmentation
function for weak b decays. The lines display predictions by simula-
tions with a fixed perturbative component and different models for the
fragmentation functions [3725]

perturbative component. The data can clearly separate the
different models. Recent parameter optimizations of e.g. the
PYTHIA simulation take these results into account [3713].

12.1.5 Zedometry and hadronic τ decays

The EWPOs measured by the LEP experiments and by SLD
at Stanford are the main legacy of the e+e− collider pro-
gram. The EWPOs are also a valuable legacy for the under-
standing and experimental verification of QCD. All EWPOs
connected with quarks will have SM predictions with QCD
corrections reflecting gluon radiation. Corrections to pure
electroweak processes involving quarks scale typically like
1+Cαs(mZ )/π , where C is a process specific constant, and
are thus expected to modify electroweak EWPO predictions
by a few %.
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Fig. 302 The figure displays measurements of the hadronic cross sec-
tion in e+e− annihilation at cms energies Ecm around mZ measured
by the LEP experiments. The lines show the model-independent fit to
extract EWPOs before and after QED corrections [3670]

Figure 302 shows measurements of cross sections for
the process e+e− → hadrons at cms energies around
Ecm = mZ by the LEP experiments [3670]. The measure-
ments map out the Z boson resonance in e+e− annihilation in
the hadronic channel. The lines show the result of a model-
independent fit before and after QED corrections to these
and other measurements to extract the Z boson resonance
parameters such as the mass mZ , the total width ΓZ , the R-
ratio R0

l = ΓZ ,had/ΓZ ,ll and the hadronic pole cross section
σ 0
had .

The extracted parameters are part of the set of EWPOs
which can be compared with predictions by the SM includ-
ing the QCD corrections. The QCD corrections for the
EWPOs connected with the Z lineshape are known to
N3LO, the corrections due to mixed and non-factorising
electroweak and strong interaction diagrams are known
up to ααs terms, and the QCD corrections for massive
quarks are known up to (mq/Q)4αs(Q)3, see [3726] for
details.

Figure 303 shows the χ2 profile of a recent SM global fit
as a function of the strong coupling αs(mZ ) using the LEP
data and other data for the masses of the top quark, the W -
boson and the Higgs boson [3726]. The blue band shows
the χ2 of the global fit around the best value of αs(mZ ).
The grey lines show the contributions to this result of the
most sensitive EWPOs. The width of the band reflects the
theoretical uncertainties of the global SM fit. A comparison
of the grey bands shows the consistency between the QCD
corrections to the different EWPOs. The red data point is
a direct measurement of αs(mZ ) from the hadronic branch-
ing ratio of τ lepton decays measured mostly using LEP
data.

Fig. 303 The figure shows with the blue band the χ2 profile of a global
SM fit as a function of the value of the strong coupling αs(mZ ). The
grey lines are similar profiles for individual EWPOs as indicated. The
red data point shows the value of αs(mZ ) determined from hadronic τ

lepton decays [3726]

In the SM description, weak decays of τ -leptons to
hadrons proceed via a virtual W -boson decaying to quarks.
Similar to hadronic Z -boson decays, QCD corrections to the
final state modify the predictions. At the scale of the τ lepton
mass mτ � 1.78 GeV the strong coupling αs(mτ ) � 0.3
such that large corrections are expected. The QCD correc-
tions are also known to N3LO due to the similarity of the
calculations. In addition, non-perturbative effects are sig-
nificant, while they are strongly suppressed for hadronic Z
decays.

A recent analysis of the important theoretical issues for
the extraction of αs from hadronic τ lepton decays is [3727].
The data point shows the average of αs(mZ ) determinations
by the PDG from 2016 which has since been updated with
only small changes [513]. The good consistency between
these related determinations of αs(mZ ) is a strong test of
the consistent application of QCD corrections in the SM, as
well as of the understanding of the evolution equations for
the running of the strong coupling including the treatment of
quark mass thresholds.

The large collection of measurements from the LEP
experiments, SLD, and also the previous and partially re-
analysed experiments at e+e− colliders are a cornerstone of
the experimental validation of the theory of strong interac-
tions, QCD. Possible future e+e− colliders are designed to
deliver at least 1000 times the integrated luminosity w.r.t.
LEP and with more advanced detectors. In addition large
samples of Higgs and W+W− bosons, and possibly of top–
antitop quark pairs will open the door to many more tests
of the SM including its QCD sector, and its proposed exten-
sions.
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12.2 High-pT jets

Daniel Britzger, Klaus Rabbertz, and Markus Wobisch

12.2.1 Introduction

One of the most fundamental testing grounds for the predic-
tions of perturbative QCD (pQCD) are studies of the produc-
tion rates of collimated sprays of hadrons, so-called hadronic
jets. Even though such jets are neither fundamental entities
of the theory nor single particles measured in experiment,
the notion of jets proved to be an extremely useful con-
cept, because it allows to make the connection between the
objects of pQCD, the quarks and gluons or, generically, par-
tons, and the tracks and energy depositions in a detector. In
a measured collision event, high-energetic jets can roughly
be identified by eye for example when looking at an event
display in the radial or the transverse plane. However, for an
unambiguous attribution of each track and energy deposit to
a jet, a mathematical prescription is required: a jet algorithm.
Equally, to relate experimental measurements of such jets to
production rates predictable in perturbative QCD, a precise
definition of partonic jets is needed. To close the gap, for
good jet algorithms it must also be demonstrated that cor-
rections are under control that on the one hand unfold for
detector effects to the level of stable hadrons as in Monte
Carlo event generators, and on the other hand account for the
non-perturbative transition from partons to the same stable-
hadron level. History has shown that jet algorithms can be
found that are suitable simultaneously for all three levels,
measured tracks and energy clusters, the partons of pertur-
bative calculations, and the hadrons of Monte Carlo event
generators used in detector simulations. Alas, it took time
approximately halfway through “the first 50 years of QCD”
to evolve from first ideas to mature jet definitions used in
today’s precision phenomenology. In the following sections,
the authors describe the essential steps of this evolution from
their perspective of working at the LEP, HERA, Tevatron,
and LHC colliders.

12.2.2 A hint of color: quark- and gluon-initiated jets

Establishing QCD as the theory of the strong interaction
requires us not only to investigate the pattern of colorless
hadronic particles and their properties, but to go beyond con-
finement and search for signs of the underlying dynamics of
this asymptotically free quantum field theory. In other words,
we need to find hints of color even though the confining prop-
erty of QCD does not allow us to directly measure colored
quarks – let alone gluons. Indirect evidence came in 1968
from the observation of Bjorken scaling in Deep-Inelastic
Scattering (DIS) at SLAC [110,167], where inelastic scat-
tering of electrons on nucleons at large momentum-transfer

squared, Q2, is well described by the assumption of a vir-
tual photon interacting with point-like constituents inside a
nucleon. These constituents, named partons by Feynman,
were later identified with the (valence) quarks of Gell-Mann
and Zweig [18,3171].

It is conjectured that the struck parton should manifest
itself in the form of a collimated stream of hadrons moving
along the direction of the primary parton with only a few
hundred MeV of transverse momentum, like defined as jet
in the introduction. This brings us to the second question
implicit in this section’s title “high-pT jets”: How high is
“high”? The center-of-mass energies of a few GeV available
at the time were insufficient to clearly observe well separated
jets simply because the opening angles of the hadron streams
were far too large and the “jets” interleaved with each other
even though the back-to-back orientation of the primary qq̄
pair should guarantee their maximal separation. A way out
was found by focusing on the main interest to differentiate
between a two-jet like structure favored by QCD and the
expectations from other models. Instead of reconstructing
jets or jet quantities explicitly, the strategy rather consists
in searching for a principal event axis along which most of
the momentum of each produced hadron is aligned. In 1975,
the SLAC-LBL Mark I experiment at the e+e− storage ring
SPEAR used sphericity [3728,3729], which defines such an
event axis by minimizing the sum of squares of all momenta
with respect to this axis. The event shape sphericity, S, is
then defined as

S = 3
∑

i

(
p2

T,i

)
/ 2

∑

i

| �pi |2 , (12.2)

where the sum is over all particles i in the event with 3-
momenta �pi and transverse momenta pT,i with respect to the
sphericity axis. Each event is characterized by one number S
ranging from zero, when all particles are fully aligned along
the axis, up to unity for isotropic events. By means of defin-
ing such an event axis for their measurements at 3.0, 3.8, 4.8,
6.2, and 7.4 GeV center-of-mass energy, the Mark I experi-
ment found first evidence for quark-initiated jet production
emerging when going to the higher center-of-mass energies
[122]. Moreover, profiting from transversely polarized beams
at 7.4 GeV center-of-mass energy, by comparing the angular
distribution of the sphericity axis of qq̄ production to the one
of e+e− → μ+μ− they concluded that the potential partons
must have spin 1/2 rather than spin 0.

How about gluons then, the exchange quanta of QCD?
Do they exist and, if yes, how do they manifest them-
selves? In 1976 Ellis, Gaillard, and Ross [121] argued gluon
bremsstrahlung e+e− → qq̄g to be the leading correction
to qq̄ dijet production. As a consequence, with increasing
center-of-mass energy one of the two quark-initiated jets
should exhibit signs of widening up with higher multiplic-
ity until finally a third gluon-initiated jet emerges leading to
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planar 3-jet events. The center-of-mass energies available
at SPEAR and also DORIS at DESY, however, were not
sufficient to provide evidence for 3-jet production, although
valuable results could be achieved by investigating the con-
jectured dominant decay of the upsilon resonance into three
gluons, Υ → ggg, confirming predictions by QCD includ-
ing the vector character of the gluons [3730]. Only the
much higher center-of-mass energy of 27 GeV reached by
the PETRA collider at DESY in spring 1979 could provide
sufficiently high-energetic e+e− collisions such that clearly
identifiable 3-jet events could be produced. The first event
display of the TASSO Collaboration was presented by Wiik at
the “Neutrino 79” conference in Bergen [108] and, of course,
is also reproduced in this commemorative work, see the sec-
tion by S.L. Wu for a more personal recollection of events.
Subsequently, all four experiments at PETRA published clear
evidence for planar 3-jet events affirming the discovery of the
gluon and gluon-induced jets [109,126–128].

The increasing e+e− center-of-mass energies at PETRA,
TRISTAN, SLC, and LEP up to

√
s = 209 GeV allowed

a plethora of (multi-)jet measurements to be performed, all
confirming the conjectures of QCD as theory of the strong
interaction. Notably, the rate of events with three jets as com-
pared to dijet production is to first order proportional to the
strong coupling, which then can be extracted at each energy
point to demonstrate its energy dependence or running as
predicted by QCD.

Finally, angular correlations in 4-jet events are sensitive
already at leading order (LO) to the color factors CA = 3
and CF = 4/3 of the non-Abelian special unitary group
SU(3) of QCD and thus are probing its non-Abelian nature
as described in the previous section. A compilation of con-
straints on these color factors is presented in Ref. [3685],
where world average values are quoted that are in perfect
agreement with the expectations from QCD.

12.2.3 Jets at hadron–hadron colliders

Despite great new insights obtained thanks to high-precision
measurements at e+e− colliders, the term of discovery
machines generally is reserved for hadron–hadron colliders.
Because of the much larger mass of protons as compared to
electrons, the huge loss of energy per turn in circular storage
rings due to synchrotron radiation can be avoided enabling
much higher collision energies of e.g. p p̄ accelerators than
possible with circular e+e− beams. The benchmark observ-
able of jet physics at hadron–hadron colliders is the inclu-
sive jet production cross section and in the early days the
phase space was divided up into intervals of the jet transverse
energy ET and the jet pseudorapidity η defined in terms of
the polar angle θ as η = − ln tan(θ/2). Measured jet yields
are transformed into a double-differential cross section via

d2σ

dET dη
= 1

ε · Lint
· Njets

ΔETΔη
, (12.3)

where Njets is the number of jets counted within a bin, cor-
rected for detector distortions, ε is the experimental effi-
ciency, and ΔET and Δη are the respective bin widths.

The first such measurement of inclusive jet production
was published in 1982 by the UA2 Collaboration with data
recorded in the so-called jet run at the Spp̄S collider operat-
ing at 540 GeV center-of-mass energy [3731]. The observed
steep decrease of the jet ET spectrum proportional to E−nT
with n ≈ 9 was correctly predicted by QCD at LO [3732].
Firm conclusions on the absolute normalization, however,
were not possible because of large experimental and theoret-
ical uncertainties, and lack of a well-defined jet algorithm.
The UA2 Collaboration employed a cell-based clustering of
energy deposits in the calorimeters, where neighboring cells
could be merged into one cluster. A “final” cluster could be
split up again, if it contained multiple, well separated max-
ima. Instead of referring directly to cell geometry, the UA1
experiment used an algorithm based on cones of radius R
equal to unity in (η, φ) space in order to decide whether cells
are merged or not [3733]. Here, φ is the azimuthal angle. To
initiate a jet, cells exceeding a minimal transverse energy are
taken in decreasing order of ET as “seeds”, around which
cells within the defined cone are combined with this seed to
form the jet. This algorithm corresponds already to a cone jet
algorithm; alas, it suffers from a number of shortcomings like
unclustered energy or sensitivity to collinear splittings fur-
ther described in the next section. Nevertheless, at the level
of the limited experimental precision and with only order-of-
magnitude predictions at LO, jet measurements conducted at
the Spp̄S and at the Intersecting Storage Rings ISR [3734]
were in agreement with expectations from QCD.

12.2.4 The evolution of jet algorithms

Until the end of the 1980s, a vast amount of jet data from
hadron colliders were collected, reaching a level of precision
of 10 %. Predictions at LO in pQCD, however, were very lim-
ited in precision by the uncompensated dependence on the
renormalization scale, μr , through the running strong cou-
pling. The calculation of next-to-leading-order (NLO) cor-
rections to jet production advanced the accuracy of perturba-
tive predictions to a comparable level. This progress required
a careful re-evaluation of the concept of jets and resulted
into new classes of jet algorithms, since several shortcom-
ings of previous jet definitions were identified, which lim-
ited their usability in higher-order pQCD predictions or in
hadron-induced processes. Let us have a closer look into the
evolution of jet algorithms over time.

The first jet algorithm was described in 1977 by Sterman
and Weinberg for e+e− collisions [185]. In their algorithm,
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particles with momenta pointing towards the same direction
within some opening angle were clustered together. Most
importantly, their jet definition made the result insensitive to
the emission of either soft or collinear particles. This is called
infrared and collinear safety, which is crucial to produce
finite results at all orders in perturbation theory. Otherwise the
cancellation of soft and collinear singularities associated with
such partonic emissions in calculations of pQCD is spoiled
leading to infinite results. To be useful in comparisons to
pQCD, the outcome of a jet algorithm therefore must neither
depend on the addition of arbitrarily soft clustering objects
to the set of inputs, nor on the merging of two collinear input
objects or the splitting of an input object into two collinear
ones.

The following decade saw the proposal by Sterman and
Weinberg to be generalized in order to analyze hadron–
hadron collisions in terms of a number of cone-shaped jets
of a chosen jet radius, R, pointing into the directions of the
highest energy or momentum densities in an event. In the
same period the JADE Collaboration at the PETRA collider
introduced another type of jet algorithm based on iterative
pairwise clusterings for the analysis of e+e− events [3688].
Hence, two classes of jet algorithms emerged:

1. cone algorithms that assign objects to the leading energy-
flow objects in an event based on geometrical criteria;

2. sequential-recombination algorithms that iteratively com-
bine the closest pairs of objects.

A summary of jet algorithms discussed at the time is pre-
sented in the proceedings of the Snowmass “Summer Study
on High Energy Physics” [3735].

Although introduced only in 2008 in its general form, one
can determine the so-called catchment area of a jet, often
just named jet area, for both classes provided the algorithm
is infrared- and collinear-safe [3650]. For cone algorithms
defined in (η, φ) space as used already by the UA1 Collabo-
ration, this jet area formerly was identified with the circular
area with jet radius R, which simplified considerably the task
of jet energy calibration at hadron–hadron colliders.

In e+e− collisions all final-state particles emerge from the
hard subprocess. Therefore, in e+e−measurements exclusive
jet algorithms were applied, which assign each final-state
particle to one of the high-pT jets. Hence, a collision event is
classified as an exclusive jet final state, e.g. e+e− → n jets
and nothing else.

Although being more costly in terms of computing time,
it was affordable to use successive recombination algorithms
because of the low multiplicity in e+e− annihilations. Ini-
tially, the JADE algorithm was favored, where pairs of par-
ticles are clustered in the order of increasing invariant di-
particle masses, assuming this would result in jets with small
invariant masses. In the phenomenology of e+e− physics, it

Fig. 304 A 3-jet final state in e+e− collisions as defined by the JADE
(upper) and kt (lower) jet algorithms. The particle assignments to the
three jets according to the algorithms are indicated by blue full, black
dash-dotted, and red dashed lines. Figure redrawn from Ref. [3737]

was, however, discovered that the JADE algorithm frequently
clusters soft particles at large angles, cf. also Fig. 304, which
is very disadvantageous for precision calculations [3736].
This problem was addressed in the kt or “Durham algo-
rithm” [187], 112 in which the distance measure was changed
from the invariant di-particle mass to the relative transverse
momentum, kt, of the particle pair. This version, also called
the (exclusive) kt algorithm, was confirmed to have superior
properties than the JADE algorithm in e+e− annihilation.

When HERA, the first and only electron–proton (ep)
collider, started in 1992, “standard” jet algorithms had
been defined already for e+e− annihilation as discussed. In
hadron–hadron collisions cone-type algorithms were favored
over sequential-recombination algorithms to avoid time-
consuming repeated iterations over many final-state particles.
Nothing yet had been developed for physics at an ep collider
such that many physicists coming from LEP experiments
tried to adopt methods as they were used in e+e− physics.
So in the early HERA jet analyses, a modified version of the
JADE algorithm was used (the “mJADE algorithm” [3738]),
in which the proton beam remnant is treated by introducing a
pseudo-particle (carrying the missing longitudinal momen-

112 Originally, k⊥ was used as label instead of kt. For simplicity we use
kt throughout.
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tum in the event), to which particles can be clustered. At the
end, all particles are either assigned to the high-pT jets, or
to the jet including the pseudo-particle. The former are con-
sidered as the n high-pT jets, while the latter is considered
to be the (one) beam remnant. The final states are therefore
classified as exclusive (n + 1)-jet final states.

In reactions with initial state hadrons, i.e.ep and hadron–
hadron collisions, collinear singularities in the matrix ele-
ments of the hard subprocess are factorized into process-
independent parton distribution functions (PDFs), which
depend on the factorization scale, μ f , that defines the limit
between attribution to the perturbative hard process or the
non-perturbative hadron structure in form of the PDFs. This
factorization, however, only works, if it is not spoiled by the
definition of the measured quantity that must not depend on
the beam-remnant(s). For the mJADE algorithm, it was the
inclusion of the kinematics of the beam-remnant that made
the algorithm non-factorizable. This issue was fixed in the
exclusive kt algorithm for ep and hadron–hadron collisions by
treating the beam remnant(s) as particles of infinite momen-
tum and thus independent of their actual kinematics. This
exclusive kt algorithm was in use for some time within the
HERA experiments and later was replaced by its inclusive
counterpart.

Hadron–hadron and ep collisions share the common fea-
ture of having activity in their final states related to the rem-
nant(s) of the beam hadrons. Therefore, the jet definitions
used in hadron–hadron physics were based on the cone-type
proposal by Sterman and Weinberg to define a jet by the
transverse energies through a cone, which is moved so as
to maximize the transverse energy flow through it. In this
approach, only selected final-state particles are included in
jets. Those, which are not assigned to jets are effectively inter-
preted to stem from the so-called Underlying Event that is
related to soft processes involving interactions with the beam
remnants. The jet final-states are thus classified as inclusive
with respect to additional unclustered particles, e.g. pp→ n
jets plus additional activity, which could consist of additional
jets and/or unclustered particles.

Another difference between e+e− and hadron–hadron
physics consists in the choice of variables. In hadron–hadron
collisions, the center-of-mass frame of the hard subprocess
is boosted longitudinally, i.e.along the beam direction with
respect to the detector rest frame. Hence, instead of energies
and angles as used in e+e− collisions, transverse momenta
and/or transverse energies are used, together with azimuthal
angles and either the pseudorapidity η as defined before, or
the rapidity y = 1/2 · ln [

(E + pz)/(E − pz)
]
, which coin-

cides with η for massless objects. As a consequence, cone-
jet algorithms in hadron–hadron collisions are used with
cone radii R defined in the plane of azimuthal angle and
(pseudo)rapidity.

Cone algorithms are, however, not as easy to implement
as one would naïvely think. The basic idea of a cone-jet
algorithm sounds rather simple: Decide on a cone radius, R,
place it in the plane of azimuthal angle and (pseudo)rapidity,
compute the transverse energy/momentum flow through the
cone, and move the cone over the plane so as to maximize
this flow. Before the end of the 1990s, experimental jet mea-
surements used a large number of different implementations.
These early cone algorithms suffered from a number of prob-
lems. Many were not infrared or collinear safe, while others
had undesired features. Some of the problems arise from the
fact that a true, continuous maximization procedure of the
energy flow through the cone required too much computing
resources, and short-cuts were applied. Some versions sim-
ply defined the final jets by building cones around the parti-
cles/detector clusters of highest energy. Other versions used
these clusters as starting points, or “seeds” for an iterative
procedure. All of these algorithms were either not infrared-
or not collinear-safe, or even both. Other undesired features
emerged through the treatment of overlapping cones. Some-
times, it happens that two resulting jet cones share a number
of particles. To have a unique assignment of particles to jets,
an overlap treatment is added to the algorithm, which assigns
the particles in the overlap regions uniquely to one of the two
jets. This overlap treatment depends on additional parameters
(adding to the complexity of the algorithm) and in most cases
it also introduced additional violations of infrared or collinear
safety. These problems were ultimately addressed and solved
with the Seedless Infrared-Safe Cone (SISCone) jet algo-
rithm [3739]. By eliminating seeds, and using a refined over-
lap treatment, SISCone became the first and so far only cone
jet algorithm that is infrared- and collinear safe.

The SISCone algorithm was, however, never widely used
since the rather late time it was introduced. Jet measurements
had moved on to different jet algorithms. Soon after the intro-
duction of the exclusive kt algorithm for e+e− physics and
the above-mentioned modifications for processes with initial-
state hadrons, a similar inclusive algorithm was introduced:
the “Cambridge algorithm” [189]. This algorithm transferred
the basic concepts of the exclusive kt algorithm consistently
to hadron–hadron collider physics. In the same way that the
Cambridge algorithm was a modification of the exclusive kt

algorithm, a corresponding modification of the inclusive kt

algorithm was introduced, called the “Aachen algorithm” or,
later, the “Cambridge–Aachen algorithm” [190]. This algo-
rithm recombines pairs of particles simply in the order of
increasing distances in (y, φ) space. Both algorithms can be
specified in a unified way by defining the pairwise distance
di j between any two objects i and j , and the beam distance
di B of each object i as:
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di j = min
(
p2p

T,i , p
2p
T, j

) ΔR2
i j

R2 , (12.4)

di B = p2p
T,i . (12.5)

Here, the power p is the algorithm-defining parameter, and
ΔRi j is the purely “angular” distance in (y, φ) space between
i and j :
(
ΔRi j

)2 = (
yi − y j

)2 + (
φi − φ j

)2
. (12.6)

Then, each time the minimal distance of all pairwise and
beam distances is a di B , object i is declared a final jet and
removed from the list of clustering objects. If the minimal
distance is a di j instead, the two objects are merged using
four-vector addition into a new object that is added to the
clustering list. This is repeated until no more input objects
are left.

Setting p equal to unity gives the kt algorithm, while p = 0
corresponds to the Cambridge–Aachen one that only consid-
ers ΔRi j in the clustering and is frequently used for studies
of jet substructure. Interestingly, as discovered in Ref. [193],
the choice of p = −1 is also a valid option, where in contrast
to the kt algorithm the clustering starts with the highest-pT

objects and hence this third “family member” was dubbed
the “anti-kt algorithm”, which leads at least for the leading
pT jets to round-shaped jet areas as if from a cone jet algo-
rithm! In comparison to the more fractal-like jet areas of the
kt algorithm the cone-like anti-kt jets were much easier to
calibrate reusing recipes for previous cone jet algorithms. In
particular the subtraction of additional energy within a jet
cone from further proton–proton collisions in the same or
neighboring bunch crossings (pile-up) was much facilitated.
As a consequence the anti-kt algorithm was quickly adopted
as the main jet algorithm for jet physics at the LHC.

12.2.5 New physics with jets: excesses in jet cross sections

The next stage of establishing QCD as the theory of the strong
interaction was triggered by two developments: the arrival of
predictions at NLO in pQCD also for hadron–hadron col-
lisions, and the start of the Tevatron collider at Fermilab
with a p p̄ center-of-mass energy ranging from 540 GeV up
to 1.96 TeV. The by far dominating theoretical uncertainty
caused by the large μr scale dependence of LO predic-
tions was reduced from factors of roughly two to 10–30%
[3740,3741]. Additional uncertainties from non-perturbative
effects and from the proton structure were estimated to lie
between 5 and 20%, respectively. The latter uncertainty was
derived from calculations using different extractions of the
proton PDFs from data of deep-inelastic scattering of lep-
tons on fixed targets [3742–3745]. First comparisons of these
NLO predictions to p p̄ collider data from UA2 and from the
new CDF experiment at Tevatron exhibited a very nice agree-
ment.

This picture changed suddenly in 1996 when the CDF
Collaboration reported an excess in inclusive jet data at high
ET beyond 200 GeV as shown in Fig. 305 [3746]. A possible
explanation could be new phenomena at an energy scaleΛ far
beyond reach to allow e.g. resonant production of new parti-
cles. Similarly to Fermi’s low-energy four-fermion coupling
to approximate weak interactions at scales well below the W
boson mass, such an excess can be described in terms of con-
tact interactions (CI) [3742,3747]. Speculations about such
contact interactions as a possible explanation were, however,
quickly dismissed and the results were scrutinized for effects
not properly covered by uncertainties. With respect to the
proton structure there was no other means than taking the
spread in predictions using different proton PDFs, also shown
in Fig. 305, as a proxy for the uncertainty, which now had
become very relevant. As all the PDFs known at the time were
potentially prone to the same biases, the association of the
spread in the corresponding predictions with a PDF uncer-
tainty could only be considered an educated guess or, in the
words of Soper [3748]: “This is similar to estimating the size
of a French mountain valley by taking the r.m.s. dispersion
in the locations of individuals in a flock of sheep grazing in
the valley.”

The way forward was described in the seminal paper Ref.
[3749], where a systematic approach was presented to derive
parton distributions with reliable uncertainty estimations.
Using the preliminary PDFs including experimental uncer-
tainties derived in Ref. [3750] from DIS data, the authors
demonstrated that the excess reported by the CDF Collabo-
ration can be absorbed in updated parameter values for the
strong coupling constant and the gluon distribution. While
the quark parton distributions are directly determined in DIS,
in particular with data from the new HERA collider as used in
Ref. [3750], the DIS data are insufficient to also fix αS(MZ )

and the gluon content in the proton. For both, jet cross sec-
tions measured at the Tevatron and at HERA are valuable
input to the PDF fits.

12.2.6 The running coupling and the gluon content of the
proton

HERA, which was approved in 1984, became operational
in 1992, coinciding with the 20th anniversary celebration
of QCD in Aachen [3751].113 At that time, QCD was in a
“transition from the stage of early exploratory studies to high
precision analyses in QCD” as noted by Zerwas and Kas-
trup in the introduction to this workshop [78]. A milestone
for testing QCD was achieved by demonstrating experimen-
tally the running of the strong coupling from the τ mass
of around 2 GeV up to the Z boson mass at 91 GeV using

113 This was the very first conference participation of KR triggering his
profound interest in jets and QCD.
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Fig. 305 Percentual difference between the CDF inclusive jet cross
section (points) and a prediction at NLO QCD using MRSD0’ PDFs.
Additional lines show predictions for a selection of alternative PDFs
available at the time. The error bars represent uncorrelated uncertain-
ties, while the quadratic sum of the correlated systematic uncertainties
are shown in the bottom panel. The inset compares the absolute cross
sections. Figure taken from Ref. [3746]

various observables and data from different experiments as
reported in Ref. [3752]. A first summary of determinations
of αS(MZ ) was presented by Altarelli [3753] who concluded
on αS(MZ ) = 0.118± 0.007.

HERA was constructed as the paramount extension to
the series of previous, very successful fixed-target lepton–
nucleon scattering experiments, which have led the way to
conceiving QCD as the theory of strong interactions. The
increase by a factor of ten in the lepton–proton center-of-
mass energy promised rich new data for testing many aspects
of QCD. In particular, with

√
s = 300 GeV, HERA allowed

to elucidate the structure of the proton and the running of
αS(μr ) by means of unique and detailed measurements of
the hadronic final state in addition to the scattered lepton.

The HERA collider at DESY consisted of two indepen-
dent accelerators designed to collide 30 GeV electron and
820 GeV proton beams. Two multi-purpose detectors, H1 and
ZEUS, were conceived to precisely measure the hadronic
final state with almost hermetic coverage. The main dif-
ference between the two experiments with respect to jets
is given by their calorimeters. The H1 collaboration opted
for a liquid argon calorimeter with electromagnetic and
hadronic sections, both inside the solenoïd providing the
magnetic field [3754,3755]. The ZEUS collaboration opti-
mized their calorimetric system for hadronic measurements
and employed a compensating uranium plastic-scintillator
sampling calorimeter [3756]. The overconstrained kinemat-

ics of neutral-current DIS events enabled precise in situ cal-
ibrations for the electromagnetic and hadronic energy scales
such that both collaborations could report a jet energy scale
uncertainty of only 1 % for jets with transverse momenta
exceeding 10 GeV in the laboratory rest frame [3757,3758].

Already the first HERA data brought striking QCD results,
like the confirmation of the logarithmic violation of Bjorken
scaling shown by the F2 structure function in dependence
of the parton fractional momentum x as predicted by QCD
[3759,3760], or support for the presence of a hadronic struc-
ture of quasi-real photons as a result of dijet events observed
in photoproduction [3761,3762]. Hence, jets were an integral
part of the HERA physics program from the very beginning.
The term jet physics quickly extended well beyond the simple
picture of one “DIS jet”, which is initiated by the struck quark
in the Quark–Parton-Model (QPM) picture, or of dijet topolo-
gies in photoproduction. Studies of further properties like
jet charge, substructure, fragmentation, or the heavy flavor
content of jets led to many more interesting results, which,
however, cannot be covered here. In the following we will
limit ourselves to high-pT jets in neutral-current DIS and will
refer the interested reader to other sections in this book or to
review articles [3763–3767].

At HERA, for the first time, it became possible to study
large numbers of dijet events in neutral-current DIS, so-called
(2+1) jet events. In pQCD the cross section for hard processes
in DIS is given up to order n in the perturbative expansion in
αS through the factorization theorem

σ =
order∑

n

q,q̄,g∑

i

(
αS(μr )

2π

)k+n ∫
dx fa/ i (x, μ f )dσ̂

[n]
i (x, μr ),

(12.7)

where i denotes the parton flavors in the proton PDF fa , and k
corresponds to the power inαS at leading order. The universal
proton PDFs are convoluted in x with the hard coefficients at
a selected factorization scale μ f . At LO, pQCD predicts the
(2+1) jet events to be produced proportional to αS (k = 1).
At HERA, this process is mainly initiated by a gluon inside
the proton and thus dijet data provide direct access to the
gluon content of the proton down to x ∼ 10−3. A second
LO contribution arises from gluon radiation off one of the
quark-lines in the QPM diagram and becomes dominant at
large x .

The first measurement of (2+1) jet rates by the H1 Col-
laboration [3768] employed the JADE jet algorithm [3688],
while the ZEUS Collaboration [3769] opted for a cone jet
algorithm following the Snowmass convention [3645]. The
hadronization corrections were found to be reasonably small
and the measured jet profiles could be directly related to the
underlying hard process and the gluonic content of the pro-
ton. These early data strongly supported the QCD picture
of jet-production in DIS and the data were found to be well
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Fig. 306 Dependence on the energy scale Q of the strong coupling,
αS(μr = Q), from early HERA data in comparison to other processes,
see text for details. The predictions of QCD for three values of the αS-
equivalent ΛMS parameter are superimposed as lines. Figure taken from
Ref. [3770]

described by first order QCD calculations supplemented with
leading-logarithmic parton showers as an approximation of
higher-order QCD corrections. Already at this stage a run-
ning coupling was significantly favored over a constant value
of αS .

The inclusion of NLO QCD corrections in dijet calcula-
tions [3771] and an improved understanding of hadronization
corrections of jet data together with refined and enlarged data
sets, allowed for the first time the study of the running of the
strong coupling constant in a single process using (2+1) jet
rates based on the JADE algorithm [3772,3773]. A summary
of these results from H1 and ZEUS in comparison to mea-
surements in e+e− collisions is displayed in Fig. 306. The
additional points are determined from Υ decays (ΓΥ ), the
ratio R of hadronic over total cross section (σhad/σtot), event
shapes, and the ratio of hadronic over leptonic decay width of
the Z boson (Γhadron/Γlepton) as described in Ref. [3774]. An
insight gained from these data and from subsequent studies
with improved NLO calculations [3775] was that cone or kt

jet algorithms seem to be preferred over the JADE algorithm
for precision QCD analyses due to their improved perturba-
tive stability in hadron-induced processes [191,3776,3777],
as already outlined in the previous section. In addition, it
became apparent that the choice of suitable renormalization
and factorization scales is crucial to achieve reliable results
for multi-scale processes such as jet production in DIS.

Despite these first successes it became rapidly clear that
for jet measurements in the laboratory rest frame theoretical
shortcomings prevent optimal comparisons to theory. Firstly,
it is highly desirable for the jet observables to respect fac-
torization, and secondly it is highly non-trivial to separate

the hadronic final state from the beam remnant. A way for-
ward is found by boosting every event to the Breit frame
of reference [3777] using the reconstructed DIS kinemat-
ics. In the Breit frame the incoming parton collides head-
on with the exchanged electroweak boson along the z axis
of this reference frame. Any significant transverse momen-
tum is generated from QCD effects. High-pT jets primarily
occur in dijet topologies, for which the LO QCD diagram
is of O(α1

S), whereas LO DIS or the beam remnant do not
contribute. First measurements of jet cross sections in the
Breit frame using variants of the longitudinal invariant kt jet
algorithm have been conducted by the H1 and ZEUS collab-
orations with a distance parameter of R = 1.0 [3778–3780].
This choice promises high accuracy of pQCD predictions and
small non-perturbative corrections for hadronization effects.
From data at high Q2 � 150 GeV2, where scale choice ambi-
guities are reduced, since jet transverse momenta are of a
similar size as the virtuality of the exchanged boson

√
Q2,

both collaborations determined αS(MZ ) with NLO pQCD
predictions at a precision of around 4 %. The uncertainty in
αS(MZ ) was comparable to the level of the LEP experiments
[3781] and considerably outperformed the ongoing experi-
ments CDF and D0 at the Tevatron. Moreover, the running of
αS could be successfully tested in the scale range from about
7 to 50 GeV. Together with inclusive neutral- and charged-
current DIS data, even the first combined determination of
the proton PDFs together with αS(MZ ) was performed from
data of a single experiment [3782].

In 1998, the beam energy of the HERA protons was raised
to 920 GeV, corresponding to

√
s � 320 GeV. The large

amount of data recorded from 1998 to 2000, and during the
HERA-II running period from 2003 to 2007, led to a multi-
tude of measurements i.a. investigating the dependence of jet
cross sections on the type of jet algorithm and the jet size R,
or the benefits of normalizing to the DIS cross section. With
respect to the strong coupling constant the development cul-
minated in a determination of αS(MZ ) with only 0.4 % of
experimental uncertainty [3783]. Yet, in all these QCD anal-
yses, the NLO scale uncertainties of roughly 5 % in the jet
predictions remained the dominant uncertainty and, hence,
the limiting factor preventing a higher precision for αS(MZ ).
The next decisive progress, then, should come from theory.
After more than 15 years, the next-to-next-to-leading order
(NNLO) corrections to jet production in DIS were finally cal-
culated in Refs. [3784,3785], which allowed for a reduction
in the scale dependence of the predictions for the interpre-
tation of the HERA jet data. The latest improved HERA-II
measurements were then the first to be confronted with the
new NNLO cross section predictions, which proved the cor-
rections to be sizeable reaching up to 40 % at low scales. Yet,
the NNLO predictions provided a very good description of
the data over the entire accessible kinematic range [3783] and
a significant improvement as compared to the long-standing
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Fig. 307 Tests of the running of the strong coupling from HERA and
CMS inclusive jet cross section data using NNLO or NLO pQCD pre-
dictions, respectively. The data are compared to the expectation from
QCD and measurements of jet-rates in e+e−. The lower panel displays
the respective value of αS(MZ ) for the representative value μr of the
data

NLO predictions. This NNLO revolution for single-jet inclu-
sive predictions was the ultimate step to reduce the theoret-
ical uncertainties to a level comparable to the experimental
uncertainties. A full analysis of all inclusive jet data from H1
[3786], and an analysis of data from H1 and ZEUS [3787]
demonstrated an excellent agreement between the data and
the NNLO pQCD predictions. A comparison of selected
inclusive jet cross section data with NNLO predictions is
displayed in Fig. 308.

From inclusive jet data the value of αS(MZ ) was finally
determined at NNLO to be

αS(MZ ) = 0.1178± 0.0015 (exp)± 0.0021 (theo) (12.8)

with percent level experimental and theoretical uncertainties
of similar size. Surprisingly, although jet data were believed
to have a significant sensitivity to the gluon PDF, a complete
analysis of jet data together with HERA inclusive DIS data at
NLO [3059] or NNLO [3100,3786,3788] showed only little
impact on the gluon density.

Finally, the inclusive jet data from HERA were able to
unfold their full potential to test the running of the strong
coupling from a single process using NNLO pQCD predic-
tions [3786,3787]. The results are found to be in excellent
agreement with expectations from pQCD and are shown in
Fig. 307, where the extracted values of αS(μr ) from these
data are compared additionally with the αS(μr ) determina-
tions from inclusive jet data of the CMS experiment [3789]
and with analyses using jet-rate measurements in e+e− col-
lisions [3692,3790,3791].

Thus, the HERA inclusive jet data improve significantly
over measurements from the JADE experiment in a similar
region of μr , and bridge the gap between low-scale determi-
nations of αS from τ -decays and the precision measurements
at the Z -pole in e+e− collisions.

12.2.7 Highest-pT jets at the LHC

From early exploratory up to the latest results, jet measure-
ments have accumulated numerous successes: the gluon dis-
covery at PETRA, the confirmation of the gauge structure of
QCD at LEP, or the running of the strong coupling constant
at HERA. So what is in store with the next-to-next hadron–
hadron collider, the LHC? After 25 years from first concepts
discussed in 1984, cf. Ref. [3792], up to first collisions at
the LHC in 2009, and a similar timespan between the avail-
ability of NLO calculations for jet production in hadron–
hadron collisions in 1989/1990 [3741,3793] and the arrival
of NNLO predictions in 2017 [3419] we are now in a much
better position for precision comparisons. The dependence
of the NNLO predictions on the choice of the renormaliza-
tion scale is significantly reduced as compared to NLO. The
required proton PDFs have much smaller uncertainties and
were determined from a lot more and more accurate data in a
more systematic way that considers and provides systematic
uncertainties. The modern experiments at the LHC deliver
more precise data than at any other hadron–hadron collider
before and include correlations as well as the full decom-
position of systematic uncertainties. Figure 308 provides an
overview of data-theory comparisons for the inclusive jet
cross section versus jet pT as measured at the LHC and pre-
vious hadron colliders. Overall, the description of the data
at various center-of-mass energies and covering many mag-
nitudes in inclusive jet cross section and jet pT is excellent.
Figure 309 summarises such measurements at the LHC in the
form of a total inclusive jet cross section within a suitably
defined fiducial phase space as a function of

√
s.

Despite the great success of pQCD for the description
of jet data, a few concerns in particular on the theory side
still persist. The scale dependence is just a proxy to esti-
mate the effect of missing higher orders (MHO) and can
be misleading if not combined with other insights into the
process of interest like the relative sizes of the higher-order
corrections or the absence of new process types at a given
perturbative order. A newer approach [3817] makes use of
Bayesian models assuming a specific behaviour of the coeffi-
cients of the perturbative series to estimate MHO uncertain-
ties with the advantage that a proper description in statisti-
cal terms like credibility intervals becomes possible. Newer
work in this direction can be found in Refs. [3818–3820],
while Ref. [3821] follows a different technique to approx-
imately complete the perturbative series. With respect to
PDFs this uncertainty of purely theoretical nature only starts
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Fig. 308 Ratios of cross-section measurements to predictions in per-
turbative QCD for inclusive jet production at central (pseudo-)rapidity
as a function of the jet pT or ET. The data were taken in pp, p p̄,
or ep collisions by the ATLAS, CDF, CMS, D0, H1, STAR, and
ZEUS experiments, at the RHIC, HERA, Tevatron, and LHC collid-
ers [3758,3778,3780,3783,3789,3794–3809]. From data available for
multiple jet algorithms and/or distance parameters one particular choice
has been made as indicated. The vertical error bars indicate the total
experimental uncertainty of the data. The pQCD predictions are derived
using the PDF4LHC21 PDF set [3810] for a value of αS(MZ ) =
0.118 at NNLO in QCD [3419,3520,3784,3785,3787,3811–3813]
unless indicated otherwise. The renormalization and factorization scales
μr and μ f are identified with pT at hadron–hadron colliders, and√
Q2 + p2

T in DIS. The predictions for p p̄ are only in NLO QCD
supplemented with 2-loop threshold corrections (aNNLO) [3371,3814–
3816], since most of the jet algorithms are IRC-unsafe. For STAR, the
predictions are at NLO QCD only. The pQCD predictions are comple-
mented with correction factors for non-perturbative and electroweak
effects where applicable

being considered in fits and the corresponding uncertainties
[3101,3822,3823]. Another point of concern, which limits
the precision of phenomenological analyses, is related to the
uncertainties of non-perturbative effects, which are important
specifically for small transverse momenta. Currently, they
are “guesstimated” in a similar manner as PDF uncertainties
25 years ago, i.e. essentially the predictions by a number of
MC event generators and their model parameter tunes are
compared without systematic account of potential biases or
correlations.

With the data from the LHC, it became possible for the
first time to probe QCD and the running of the strong cou-
pling from 100 GeV up to the TeV scale as shown in Fig. 307
using CMS inclusive jet data at

√
s = 8 TeV from Ref.

[3789]. Notably, beyond 1 TeV of jet pT, electroweak effects
become significant and must be considered. Also, in a search

Fig. 309 The total jet cross section as a function of the pp center-of-
mass energy for anti-kt jets with R = 0.4 and 0.7. The predictions are
compared to data from ATLAS (R = 0.4) and CMS (R = 0.7). The
size of the shaded area indicates the scale uncertainty. Figure taken from
Ref. [3520]

for new phenomena with the so-called dijet angular distribu-
tion χ = exp(|y1 − y2|) it was found that small deviations
at low χ for dijet masses beyond 2 TeV could be accom-
modated by electroweak corrections [3824]. Otherwise such
deviations from a mostly flat behaviour that is expected from
Rutherford-like parton–parton scattering could again be an
indication for contact interactions as an expression of new
phenomena at a scale Λ. Similarly, excesses at large jet pT

like the one by CDF discussed in Sect. 12.2.5 have to be
considered carefully to avoid premature conclusions on new
phenomena, or, much worse, fitting away first signs of new
physics by absorbing them into PDFs! Again Ref. [3749]
provides advice: “Note that once data is used in the PDF fit,
it cannot be used for other purposes: specifically, setting lim-
its on possible physics beyond the standard model. In that
case, one should fit the PDFs and the new physics simultane-
ously.” In the latest publication on inclusive jet production at√
s = 13 TeV [3809] the CMS Collaboration performed such

a fit in the framework of the effective field theory-improved
standard model (SMEFT), where a perturbative coefficient c1

representing potential contact interactions was used as a free
fit parameter. It was found that the data are well described by
the standard model alone and the c1 coefficient was compati-
ble with zero. A modification of the gluon PDF as before was
not required as shown in Fig. 310. Once, it has been assured
that new LHC jet data are consistent with the standard model,
they can be used in combination with HERA data to simul-
taneously extract PDFs and the strong coupling constant at
NNLO to

αS(MZ ) = 0.1166± 0.0014 (exp)± 0.0009 (theo). (12.9)
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Fig. 310 The gluon distribution as a function of the proton fractional
momentum x resulting from fits with and without contact interaction
terms to HERA DIS data combined with data from t t̄ and inclusive
jet production as measured by CMS. The SMEFT fit here is performed
with the left-handed CI model with Λ = 10 TeV. The gluon distribution
is shown at a factorization scale μ f chosen to be the top quark mass
(μ2

f = mt
2). Figure taken from Ref. [3809]

Also data from multiple reactions can be combined in PDF
determinations as recently demonstrated by the ATLAS
experiment [3825]. Yet, the best results of the LHC run 2
are still to come, since the data recorded from 2015–2018
are still in preparation by the collaborations for final calibra-
tion and publication.

12.2.8 Final words

The presented article tries to recount the story of jet mea-
surements and their relevance for QCD. Specifically, we
addressed what has been learned in the course of time from
the interplay between theory and measurement at the highest
jet pT available at each moment in time. We have selected
a few key measurements for this purpose from a plethora of
results achieved at the various colliders. For a more complete
overview other sources may be consulted [3826,3827,3827].

For the future, of course, we expect to see more precise
jet measurements at even higher jet pT with corresponding
studies of their impact on searches for new phenomena, the
running of the strong coupling, or the proton structure. Before
concluding, we would like to point out explicitly three devel-
opments that might change how future analyses will be per-
formed.

First, not only gluons can be radiated in large numbers
by a (color) charge, but also photons by electric charges. So
whenever comparing electrons in the final state to predictions

including radiative corrections, one has to account for the
effect that calorimeter cells add up the energies of e.g. an
electron and all surrounding photons hitting the same cell.
To avoid a potential mismatch between what experimentally
is considered an electron and what is calculated in theory, one
can define a cone around the electron and include all photon-
like objects into the definition of the electron. This is then
called a dressed electron or, more generally, a dressed lepton,
since the same concept can be applied to muons, although the
latter radiate less and are measured predominantly in tracking
detectors. Essentially, this is again a kind of jet algorithm,
but applied to leptons as primary particles [3828], raising the
question “What is not a jet?”.

Secondly, enormous technical progress not only allows us
to produce jets at unprecedented transverse momenta of sev-
eral TeV instead of GeV, we can also measure with much
better precision such high-pT jets of order hundred or more
tracks and clusters. This is especially important, since high-
pT jets may not only be categorized into quark- or gluon-
initiated jets, but also into boosted jets meaning that such
jets may additionally contain the whole decay chain of mas-
sive boosted objects from either standard model W and Z
bosons, and top quarks up to new hypothetical particles. A
whole new field of QCD-focused analyses has been opened
up here looking in detail into the substructure of jets asking
the question “What is in a jet?”.

Finally, progress in computing technology enabled large-
scale application of neural network techniques and machine
learning methods to jet physics and jet substructure. For order
hundred and more jet components with kinematic properties
and other characteristics, deep learning techniques allow us
to study all available information in its high dimensionality.
This development has considerably increased the discrimina-
tion power among different jet types, and has the potential to
genuinely improve our understanding of perturbative QCD,
cf. for example the review in Ref. [1829].

In summary, even after 50 years of QCD, we still have
exciting new developments in front of us.

12.3 Vector boson + jet production

Monica Dunford
Measurements of single vector boson production in asso-
ciation with jets (V+jets production) play a central role in
particle physics as they are sensitive probes to several differ-
ent aspects of the Standard Model. With these measurements
the predictions of perturbative QCD can be tested in new
regions of phase space and with small statistical and system-
atic uncertainties. In many places, the experimental accuracy
is better or comparable to that of the theoretical predictions.
The studies of W and Z boson production with additional jets
are sensitive tests of the dynamics of higher-order diagrams
in the QCD predictions, of models of heavy-flavor produc-
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tion and of parton density functions (PDFs). These measure-
ments are used to test the accuracy of the wide range of the-
oretical models available. This is especially important since
W and Z boson productions are dominant backgrounds to
measurements and to search for New Physics. Accurate sim-
ulations are necessary for everything from the calibration
of the detector to modeling of the signal process of inter-
est. Measurements of jets in V+jets production is one of the
main processes used for simulation, defining event param-
eters (tuning), and the validation of the theoretical model.
Excellent knowledge of QCD-related variables is also crit-
ical for precision measurements at hadron collider, such as
measurements of the W boson mass, which rely upon accu-
rate modeling of the W boson pT spectra.

12.3.1 Results from Sp̄ pS and the Tevatron

The W and Z vector bosons were both discovered in 1983
by the UA1 and UA2 experiments at the Super Proton Syn-
chrotron (S p̄ pS) at CERN. By today’s standards, the num-
ber of vector boson events collected was miniscule; the UA1
detector for example collected 240 W → eν events and 57
W → μν events at a center-of-mass energy of 0.630 TeV
[3829]. The data from these detectors permitted first tests
of QCD in vector boson production. One of the immediate
conclusions drawn from the data was that higher-order QCD
corrections such as gluon radiation from an initial-state quark
or anti-quark are needed to explain events where the vector
boson has large a momentum in the transverse plane (pT ).

Since the dominant production of V+jets at the S p̄ pS col-
lider is due to gluon radiation from an initial-state quark
or anti-quark, these events are an ideal sample of gluon-
initiated jets. Using W+1-jet events, measurements of the
angular distribution of the jet are consistent with the expected
bremsstrahlung-like radiation [3829]. In addition, the spin of
the gluon was measured via the polarization of the W boson.
When a scalar gluon is radiated by an incoming quark or anti-
quark, the helicity of the quark will be changed since the axial
coupling is not conserved. In contrast, in the case of a vec-
tor gluon which conserves helicity, the quark’s helicity will
be preserved. The two cases lead to different polarizations
of the W boson. Although the gluon spin was determined
at PETRA [3830] and using two-jet events at UA1 [3831],
this test was an important confirmation that the gluon has a
spin of one. Finally, the value of the strong coupling (αs) was
determined by measuring the ratio of the number of W+1-jet
events to W+0-jet events [3832]. Although the precision of
these measurements could not compete with contemporary
results from electron–positron colliders [3833], they verified
that the value of αs for events where a gluon is radiated in
the initial state is consistent with other measurements.

The Tevatron collider, which ran at center-of-mass ener-
gies of 1.8 TeV and 1.96 TeV ushered in the era of large data

Fig. 311 CDF [3835]: The top panel shows the ratio of data to the pre-
dictions for the cross section ofW+jets production for different inclusive
jet multiplicities. The bottom panel shows the ratio of the cross section
for n jets to (n − 1) jets. The NLO predictions (MCFM) are shown by
the open triangles and the LO predictions (MLM, SMPR) are shown
by the blue circles and red squares. The uncertainties on the data are
indicted by the error bars, where the inner bars are the statistical uncer-
tainty and the outer bars are the total uncertainties. The uncertainties on
the predictions in the top panel are indicated by the hashed lines

samples of W and Z boson events and of increasing sophis-
tication of the theoretical predictions used to describe that
data. Since V+jets production is a dominant background to
t t̄ measurements and searches for the Higgs boson, the focus
of the measurements shifted away from tests of the properties
of QCD, such asαs measurements, to tests of the dynamics of
V+jets events. The large data samples collected by the CDF
and D0 experiments allowed for measurements of W and
Z boson production with up to four associated jets [3834].
Studies from the CDF and D0 experiments were expanded to
include, for example, measurements of the differential cross
sections as a function of the transverse momenta and rapidi-
ties of the jets, the angular separation of the two highest
energy jets and the transverse momentum of the Z boson.

To describe these data, increasing sophisticated theoreti-
cal predictions were developed. The experimental and the-
oretical status at the time is nicely summarized in Fig. 311,
which compares a next-to-leading-order (NLO) calculation
and two leading-order (LO) calculations to the data. The LO
calculations, which included multiple partons in the matrix-
element calculations, are able to describe the shape of many
kinematic distributions up to an overall normalization factor
for high numbers of associated jets but are plagued by large
uncertainties. In contrast, the theoretical uncertainties for the
NLO calculation are much improved but the predictions do
not extend over the full kinematic range of the data. For many
years this figure represented the state-of-the-art in theoretical
predictions for V+jets production.

The large W and Z boson data samples produced at the
Tevatron also allow detailed studies of vector boson produc-
tion in association with heavy-flavor jets, where heavy-flavor
jets refers to c- or b-quark initiated jets. These measurements
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are extremely important as these events provided the largest
background contribution to measurements of t t̄ production
and searches of the Higgs boson via WH(H → bb) produc-
tion. From the CDF and D0 collaborations, measurements of
W production in association with a charm quark and W and
Z production in association with b quarks were performed
[3834]. One most notable result is the first measurement of
W + b-jets production, which was done by the CDF collab-
oration, the measured cross section is 2.5–3.5 times larger
than the various predictions with significance of 2.8 standard
deviations. While the theoretical predictions used in this com-
parison did not fully account for b quarks in the initial state,
this is not expected to explain the difference. The data sam-
ple itself was too small to allow measurements of kinematic
distributions to resolve the source of the discrepancy.

In summary, the experiments at the S p̄ pS and the Tevatron
colliders provided important tests of QCD theory in V+jets
production. However, the scope of these measurements, with
the exception of Ref. [3836] focused largely on measure-
ments of the cross section for different jet multiplicities and
a handful of differential cross section measurements. These
measurements are important in validating QCD theory for
topologies with multiple low energy jets, where the highest
jet energies are not much greater than the mass of the vec-
tor boson itself. Rare processes such as W+b-jets production
were measured for the first time but the statistical precision
of the data samples is not sufficient to probe the kinematic
distributions of these events.

12.3.2 V+jets at the LHC

In V+jets production at the LHC, measurements of jets with
a transverse momentum greater than 1 TeV, which is much
beyond the mass of the vector boson, are now accessible. At
these high energies, the calculations from perturbative QCD
suffer from large logarithmic corrections and are themselves
potentially unreliable [3837]. With the large data samples
available from the LHC, we have entered an era of high pre-
cision differential measurements with which we can explore
QCD at higher-orders and in extreme corners of the phase
space. For the first time, we also have sufficient data samples
to measure in detail heavy-flavor production in multiple dif-
ferential distributions. These measurements also provide for
better understanding of the PDFs.

In pace with the increase in data samples, a plethora of
new, more precise theoretical predictions, all with slightly
different focuses, exist today for V+jets production. A more
detailed summary of the available predictions can be found
in Refs. [3412,3413]. In addition to LO matrix-element
calculations, NLO calculations matched to parton shower
models are now available; most notable for V+jets produc-
tion are Sherpa, MadGraph5- aMC@NLO, MC@NLO

and MEPS@NLO. NNLO calculations with next-to-next-to-

leading logarithmic resummation and with parton showering
are available using GENEVA. For fixed-order calculations,
NLO predictions to five jets or more are available, such as
Blackhat- Sherpa calculations, approximate NNLO pre-
dictions for jets with up to one jet, such as LoopSim cal-
culations and NNLO predictions, such as N jetti . Another
calculation, HEJ, focuses on large rapidity separation and
uses a resummation method to give an approximation to the
hard-scattering matrix element for jet multiplicities of two
or greater; in the limit of large rapidity separation between
partons, this approximation becomes exact.

12.3.3 Tests of higher-orders

For our theoretical understanding of particle physics to keep
pace with the improved accuracy of the measurements, the-
oretical predictions which include higher-order corrections
are indispensable. Most of the measurements and searches
performed today involve very high momenta jets, leptons or
large amounts of missing transverse energy. In these regions,
the high-order corrections play large and vital roles.

One important variable to test contributions from higher-
order corrections is the observable of HT , which is defined
as the scalar sum of transverse momenta of the leptons, the
missing transverse energy (for W+jets events) and the trans-
verse momenta of all jets passing the selection criteria. At
large values of HT the average number of associated jets in
the event increases. LO matrix-element calculations which
do not provide higher-order terms drastically underestimate
the average jet multiplicity. Here NLO predictions are needed
to fully model these distributions. These distributions, among
others, have been measured for both W+jets and Z+jets pro-
duction [3838–3841]. Compared to the previous colliders the
increase in kinematic reach at the LHC is dramatic; Tevatron
results reach up to HT values of 500 GeV, while the LHC
results extend to 2 TeV.

The necessity of high-order corrections can readily be seen
in measurements of the balance between the Z boson and the
jet transverse momenta. The so-called jet-Z balance (JZB)
is defined as the difference between the sum of the jet pT s
(with pT > 30 GeV and rapidity within 2.4) and the Z
boson pT . When all hadronic activity is contained within
the selected jets, the JZB variable is zero. Figure 312 shows
the measured data for events with pT (Z) < 50 GeV com-
pared to a LO and NLO MadGraph predictions and the
GENEVA predictions [3842]. As seen in the figure, the dis-
tribution is not symmetric, with hadronic activity more dom-
inantly pointing in the direction of the Z boson (i.e. positive
values in this definition). The low pT (Z) region is interest-
ing: While larger Z boson momenta can be described by
fixed-order calculations, small values require resummation
of multiple soft-gluon emissions to all orders in perturba-
tion theory [1280,3843] (see Sects. 11.1 and 11.2). Different
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Fig. 312 CMS [3842]: Measured Z+jets cross section as a function of
the JZB variable for PT (Z) < 50 GeV. The data are compared to LO,
NLO and NNLO predictions. The lower panels show the ratio of the
three predictions to the data. The error bars on the measurement repre-
sent the statistical uncertainty and the grey hatched bands represent the
total uncertainty. The uncertainties included on the theory predictions
are listed in the labels

pT (Z) regions therefore test different theoretical treatments.
The NLO predictions best describe the data and indicate that
the NLO corrections are important to describe all hadronic
activity in the event.

12.3.4 Modeling in extreme phase spaces

Extreme phase space regions, including events with high-pT
jets or high boson momenta or events with small angular sep-
aration between objects in the final state, tend to be governed
by a complex mixture of the number of jets contributing to
the final state and contributions from QCD as well as EW
processes. This makes measurements of this nature an ideal
test bed for studying multiple theory approaches.

The study of V+jet production with small angles between
the boson and jets is one such critical test [3844–3846]. At

LO, V+1-jet production is simply described by a V boson
recoiling, in a back-to-back configuration with a jet. How-
ever, at NLO both real and virtual contributions to V+1-jet
production appear via QCD and EW corrections. For real
emissions of a V boson, either from an initial- or final-state
quark, these contributions lead to an enhancement in pro-
duction that is proportional to αsln2(pT, j/mV ), where αs
is the strong coupling, pT, j is the transverse momentum
of the jet, and mV is the mass of the V boson. This effect
becomes largest with high transverse-momentum jets and
can be isolated by selecting events with small angular sepa-
ration between a jet and the V boson. In this region, the can-
cellation between real and virtual correction is incomplete,
making the region ideal to probe. However, other processes
such as V+2-jet production also play a role in this region and
must be considered.

To study these effects, the ratio (so-called rZ , j ) of the Z
boson pT to the closet-jet pT is defined. For collinear radi-
ation of a Z boson, where the Z boson is expected to have
a lower transverse momentum, this ratio results in smaller
values. Figure 313 shows the rZ , j distribution for events
where the angular separation, ΔR, between the jet and the
Z boson is less than 1.4, corresponding to the region where
the Z boson has a small angular separation from the jet (the
collinear region) [3844]. While regions with back-to-back
topologies (not shown here) are better modeled by predic-
tions, the figure shows that higher order predictions model
the collinear region best.

There are many other examples of tests in extreme regions
including specific tests to isolate matrix element and parton
shower effects [3847], measurements of probability of pro-
ducing an additional jet in a rapidity gap of two jets [3848–
3853], measurements in the forward region [3854,3855] and
tests of QCD with sensitivity to physics beyond the Standard
Model [3856,3857]. All of these measurements are critical
for understanding QCD in these difficult-to-model regions.

12.3.5 Tests of QCD emissions

As demonstrated by the results from the UA1 and UA2 exper-
iments, radiation of additional quarks and gluons is neces-
sary in order to describe the events where the vector boson
has a large transverse momentum. These higher-order QCD
corrections consist of two classes; terms with a virtual loop
which do not directly affect the boson pT and terms with a
real emission which do so but result in a jet which could be
recorded by the detector. Measurements of the V+jet cross
section for each jet multiplicity is therefore a direct test of
QCD radiation. Measurements of the jet multiplicity ratios at
the Tevatron and then at the LHC showed a striking feature:
the ratio of the n-jet cross section to the (n+1)-jet cross sec-
tion is a constant. This implies that the V+jet cross section
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Fig. 313 ATLAS [3844]: Z+jets cross section in the collinear region
as a function of the rZ , j variable. The data are compared to LO and
NLO predictions. The lower panels show the ratio of the predictions
to the data. The uncertainties shown on the data include the statistical
uncertainty, as indicated by the error bar and the total uncertainty, as
indicated by the hatched region. The uncertainties on the predictions
are indicated by the colored bands

follows the form

σ LO
V+n− jet ∼ σ0e

−an (12.10)

with a is an experimentally-determined constant values and
depends on the exact definition of the jets and σ0 is repre-
senting the zero-jet exclusive cross section.

Although the constant scaling is a well established exper-
imental observation, this behavior is not a priori expected
[3858]. Assume, for example, that the probability of radi-
ating a gluon from a quark follows the theory of Quantum
Electrodynamics (QED), such that the gluon cannot radiate
another gluon. In this case, the probability of radiating a gluon
is dictated by a Poisson distribution, which implies that the
cross section for an n-jet exclusive final state is

σ LO
V+n− jet ∼

n̄e−n̄

n! σtot , (12.11)

where σtot is the total cross section and n̄ is the expectation
value of the Poisson distribution, which also depends on the
exact definition and selection of the jets. However, the gluon
follows the non-abelian QCD theory and can radiate an addi-
tional gluon from itself. Therefore, at higher jet multiplicities
the scaling would become constant.

The observation of a constant scaling for all jet multi-
plicities is instead a subtle cancellation of two different and
opposite-sign effects. At low jet multiplicities, the Poisson
scaling is present but cancelled by effects from the PDFs. To

Fig. 314 ATLAS [3859]: Measurement of the ratio of the exclusive
n-jet and (n + 1)-jet cross sections for events where the highest pT
jet must have an energy above 150 GeV. The data are compared to the
predictions fromBlackhat- Sherpa,Alpgen and Sherpa. The lower
panels show the ratio of the three predictions to the data. The error bars
indicate the statistical uncertainty on the data, and the hatched bands
the statistical and systematic uncertainties on data. Uncertainties on the
theory predictions are statistical only except for those of Blackhat- -
Sherpa

understand this effect, consider the case of high jet multiplic-
ities with a cross section ratio of n-jet events to (n + 1)-jet
events, where n is a large number of jets. Here, the parton
momentum fraction, x , for the involved partons is similar
between the two jet multiplicities and therefore any effects
on the cross section due to the PDFs essentially cancel in the
ratio. In contrast, at low jet multiplicities, the relative differ-
ence in x for the involved partons between 2-jet events and
1-jet events is larger. Due to the steeply falling x-distribution
of the gluon PDF, this implies that the production of 2-jet
events compared to 1-jet events is suppressed by the PDFs.
Depending on the exact selection criteria, this suppression
cancels the increase in the production cross sections, which
arises from the Poisson scaling.

Based on the work of Ref. [3858], the Poisson nature can
be seen directly by selecting events with one very energetic
jet. In these events, the effect on the cross sections from the
PDFs is reduced; as seen in Fig. 314, the jet multiplicity cross
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section follows the expected Poisson distribution. This mea-
surement is a nice validation of the nature of QCD emissions
from first principles.

12.3.6 Differential heavy flavor results

The associated production of vector bosons with heavy flavor
jets is an important precision test of perturbative QCD in
the presence of two mass scales – the vector boson mass
and the c- or b-quark masses. Measurements of this nature
also provide critical input to charm and strange distributions
inside the proton, as discussed more in the next section. At
LO, heavy-flavor production stems from either a gluon in
the final state splitting into a heavy-flavor quark–antiquark
pair or a heavy-flavor quark produced in the initial state.
At the Tevatron, corrections to the cross section from the
latter contributions are small, but at the LHC, these processes
can lead to corrections of up to 50% [3860–3863]. Theory
predictions for heavy-flavor production consist of 5-flavor-
scheme models, where the b-quark is included in the PDF
itself or 4-flavor-scheme models, where it is not. The two
schemes, however, are equivalent if the calculations included
all orders of αs .

With the large data samples available from the LHC, these
processes can be studied for a variety of differential observ-
ables [3834,3864–3869] and also in the forward region and in
phase spaces with very energetic, boosted jets [3870–3873].
In general, 5-flavor-scheme predictions are better at describ-
ing the data compared to 4-flavor ones. However, there are
sizable differences even between predictions of a similar
nature. Figure 315 shows the separation between the two b-
quarks, which is a sensitive variable to gluon splitting [3864].
The NLO Sherpa simulation estimates this observable well
but fails to get the overall cross section correct (not seen in
this figure). In contrast, the LO and NLO MadGraph pre-
dictions are less able to model the shapes of the kinematic
observables but estimate well the overall cross section. In
regimes where the vector boson has a large pT , the predic-
tions generally perform worse; for example they underesti-
mate events with high m(bb) by about half [3866]. Work is
on-going to combine massless NNLO with a massive NLO
computation, with promising comparisons to data [3874].

12.3.7 Probes of parton density functions

A major source of uncertainty in all hadron collider measure-
ments stems from knowledge of the PDFs. As our knowledge
of QCD deepens, better knowledge of the PDFs are needed to
continue to be sensitive to deviations from Standard Model
predictions [3057,3058]. Deep inelastic scattering data from
the HERA experiments provided some of the best data for
PDF determination over a wide range of Q2 and x . In addi-
tion to these data, data from various experiments, such as

Fig. 315 CMS [3864]: Normalized differential cross section as func-
tion of the angular separation between two b jets, ΔRbb for Z+ ≥ 2
b-jets events. The uncertainties in the predictions are shown as colored
bands in the bottom panel. The statistical, theoretical, and total uncer-
tainties in data are indicated by the vertical bars and the hatched bands

those from neutrino and hadron collider experiments. The
LHC offers a unique opportunity in that it provides a diverse
set of processes, such as jet, photon, vector boson or top pro-
duction, which can be used to constrain different regions with
the PDFs. Today, PDFs can be determined at up to NNLO
precision in perturbative QCD. The input data span the range
of 10−5 � x � 1 and 1 � Q2 � 106 GeV2.

Measurements ofV+jet production are particularly impor-
tant since these processes can probe u and d quarks and also
contributions from s, c and b quarks. By considering vec-
tor boson processes with additional jets, the measurements
are sensitive to higher values of x , accessing x ≈ 0.1−0.3
[3875], compared to inclusive W and Z measurements. Mea-
surements of this nature constrain the light-quark sea at
higher x as well as the strangeness contributions and help
to better understand the gluon distribution at high x [3825].
The LHCb experiment, with its precision tracking coverage
in the forward region, offers new possibilities here in that
its V+jets measurements are sensitive to PDFs at different
x ranges compared to the ATLAS and CMS experiments
[3854]. These measurements probe PDFs at x as low as 10−4

and at high x > 0.5 [3876].
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Fig. 316 LHCb [3871]: Measured cross section ratio of Z + c/Z+jet
production for three intervals of forward Z rapidity, compared to NLO
predictions with and without IC, and with IC as predicted by BHPS
with a mean momentum fraction of 1%

The contributions to the proton from strange quarks can
be probed through measurements of W boson production in
association with c-quark, as was done at the Tevatron and
the LHC [3132,3834,3865,3872]. In past years, whether or
not strangeness contributions are suppressed in the proton
is a topic of debate, with mainly the ATLAS data preferring
less suppression as compared to neutrino scattering and CMS
data. However, with more data, in particular measurements
of W+jets and W + c production have provided powerful
input on the strangeness contribution. Today, there is general
agreement by modern PDFs that strangeness is not strongly
suppressed at low x but has substantial suppression at high x .

It has been a decade long debate if the proton may con-
tain an ‘intrinsic’ charm component in addition to that from
gluon splitting, which decreases sharply at large values of x
[3877]. Such models, like the BHPS model, predict that pro-
tons would have a valence-like charm content. Global PDF
analyses are generally inconclusive and therefore more direct
probes are needed [3141,3878]. Since intrinsic charm contri-
butions are enhanced in Z+jet production where the Z boson
has large rapidity, the LHCb experiment is perfectly suited
for these measurements [3871]. As seen in Fig. 316, the data
at forward Z rapidities from a recent Z+c measurement, are
consistent with an intrinsic charm contribution as predicted
by BHPS models. Future analysis of the effect of these data
within PDF fits themselves, however, is still needed.

Since their discovery in the early 1980s, the W and Z
bosons are important probes to understanding QCD. The
early measurements at the S p̄ pS and the Tevatron were crit-
ical in establishing the dynamics of these processes, while at
the LHC, V + jets production is now explored at the high-
est available energies. To step up with experimental preci-
sion, a suite of versatile and precise theory predictions have
been developed to compare to the data. Future measurements
of V+jets production are needed to better understand QCD
theory in very energetic regions of phase space, to measure

electroweak corrections, to improve PDFs and for a better
understanding of heavy flavor production.

12.4 Higgs production

Chiara Mariotti
In July 2012, the ATLAS and CMS Collaborations at the
CERN Large Hadron Collider (LHC) announced the discov-
ery of the last missing piece of the Standard Model (SM) of
elementary particles: the Higgs boson [139,140,3880]. The
discovery arrived about 50 years after theorists had postu-
lated its existence to explain the mechanism by which the
elementary particles acquire mass.

The Higgs boson is the excitation of a field, called
Brout–Englert–Higgs (BEH) field. The field name comes
from the theoreticians who first introduced the mechanism
[43,44,3881]. The BEH field filled the entire universe less
than a picoseconds after the Big-Bang. The elementary par-
ticles interacting with it acquire mass. Without this field the
world would not be the same, as an example the electron
would be massless and atoms could not be formed.

The Higgs boson has unique quantum numbers: J PC =
0++, since the field must be the same everywhere in the space
and should not depend on the reference frame.

Since the time of the discovery, the ATLAS and CMS
experiments have accumulated data during the Run 1 (2009–
2012) at 7 and 8 TeV proton–proton center-of-mass energy
and Run 2 (2015–2018) at 13 TeV. The two collaborations
observed the Higgs boson in numerous bosonic (Z Z , WW ,
γ γ ), and fermionic decay channels (τ+τ−, bb̄ quark), mea-
sured its mass and width, determined its spin-parity quantum
numbers, and measured its production cross sections in vari-
ous modes (gluon–gluon fusion, vector boson fusion, associ-
ated production with a W or a Z, associated production with
2 top quarks). Within the uncertainties, all these observations
are compatible with the predictions of the SM.

Finding the Higgs boson has been very demanding. Its
production cross section is 12 orders of magnitude smaller
than the proton–proton inelastic cross section at LHC ener-
gies. Few hundreds of particles are produced at each colli-
sion, and there can be several simultaneous proton–proton
collisions at each proton bunch crossing (pileup). It is thus
fundamental to have a very good understanding of the reso-
nant and non-resonant hadronic background: production of
background processes via QCD interactions has to be well
understood and modeled.

Because of its large mass, the Higgs boson could not
be discovered at LEP [3882] at CERN, and because of its
very low production cross section it was very challenging to
observe it at the Tevatron [3883] at Fermilab. Only at LHC,
thanks to the energy available in the center-of-mass, and to
the exceptionally high luminosity, it was possible to produce
it with a rate sufficient to discover it.
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Fig. 317 (Left) Cross section for a Higgs boson of 125 GeV of mass as a function of the center-of-mass energy at the LHC [3879]. (Right)
Branching ratios as a function of the Higgs boson mass [3879]

Precise theoretical calculations for the Higgs boson pro-
duction modes and decay channels have been performed; the
results are shown in Fig. 317. The dominant production mode
at the proton–proton LHC collider is the gluon–gluon fusion
(ggF, or pp→ H ) as shown in Fig. 317(left), followed by the
vector boson fusion (VBF, or pp→ qqH ), the associated H
production with vector bosons (pp → ZH,WH ), and the
associated production with two b quarks or two top quarks
or just one top quark. Many groups contributed to the com-
putation of these production cross sections over many years
[3879,3884–3886]. The perturbative order of the calculations
in QCD and EW is indicated in the figure. The thickness of
the line represents the uncertainty of the calculation.

The cross section of the ggF process is known at N3LO
with very good precision (5% in total, of which 3% are due to
missing higher order effects). The calculation of the higher
perturbative orders in QCD, as well as the resummation (see
Sects. 11.1 and 11.2), contribute substantially to the preci-
sion as shown in Fig. 318 [3879]. The parton distribution
functions (PDFs) have been determined with very good accu-
racy by several groups at NNLO in QCD and reached a pre-
cision of ∼ 2% for the gluon–gluon luminosity over a wide
range of energy [3879].

The strength of the Standard Model Higgs boson coupling
is proportional to the mass of the fermions, and to the mass
squared of the vector bosons. Thus it will decay predomi-
nantly to the available elementary particle with larger mass:
for a Higgs boson of mH = 125 GeV, the largest branching
ratio (BR) is to bb̄, followed by W ∗W . The various BRs have
been computed at least at NLO precision for both QCD and
EW corrections, and are shown in Fig. 317(right) [3879].

Calculation of the background processes for the various
Higgs boson decay channels have been and are being com-

Fig. 318 Calculated theoretical ggF cross-section values (blue circles)
at various perturbation orders [3879]. The latest ATLAS (green square)
[3887] and CMS (red triangle) [3888] results from Run2 are also shown

puted with increasing precision at higher order in perturba-
tion theory. In parallel, experiments have developed methods
to estimate the various sources of background in a data-driven
way, not to depend on the availability of Monte Carlo (MC)
simulations, or on precise theoretical calculations and mod-
eling.

12.4.1 Higgs boson properties

The ATLAS and CMS experiments, with the data collected
during the Run 1 and Run 2, measured with very good pre-
cision the properties of the Higgs boson: the mass is mea-
sured with a precision better than 0.2% in the H → γ γ and
H → Z Z → 4! final states:
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ATLAS (H → Z Z → 4! final state only) [3889]:

mH = 124.94± 0.17 GeV

CMS [3890]:

mH = 125.38± 0.14 GeV.

As an example, Fig. 319 shows the diphoton invariant mass
distribution targeting the study of the decay channel H →
γ γ in ATLAS [3891], and the invariant mass distribution of
four charged leptons targeting the study of the decay channel
H → Z Z∗ → 4! in CMS [3890].

The spin and parity have been measured and found to be
compatible with the SM prediction, J P = 0+, at > 99.9%
confidence level (CL) [3892,3893]. The width of the Higgs
boson has been measured to be ΓH = 3.2+2.4

−1.7 MeV by using
off-mass-shell and on-mass-shell Higgs boson production, in
final states with four charged leptons or 2!2ν [3894], with
the assumption that on-shell and off-shell effective couplings
are the same.

All the production modes (except t H and bbH ) have been
observed with a significance larger than 5σ , as well as sev-
eral decay channels: WW , Z Z , γ γ , ττ , bb̄. A 3σ evidence
for the μμ final state was found by the CMS experiment
[3888]. ATLAS and CMS have recently presented results on
the search for the !!̄γ final state, reaching about 3σ signifi-
cance [3895,3896].

The experiments test the compatibility of their measure-
ments with the SM, and the results are generally presented in
two ways: by means of signal-strength modifiers μ (defined
as μ = σ × BR/(σ × BR)SM , or coupling-strength modi-
fiers κ (defined as κ2 = σ/σSM , or κ2 = Γ/ΓSM ) [3886].
Fitting the data from all production modes and decay chan-
nels with a common signal strength μ, the experiment found
the following results:
ATLAS [3887]:

μ = 1.05± 0.04(th)± 0.03(exp)± 0.03(stat),

CMS [3888]:

μ = 1.002± 0.036(th)± 0.033(exp)± 0.029(stat),

showing a very good agreement with the SM, within the
uncertainty. The theoretical (th) uncertainty has decreased
by about a factor of 2 with respect to Run1, thanks to the
huge effort of the theoretical community; the huge increase
in statistics (i.e. 30 times more Higgs boson events), a better
understanding of the detector, and more sophisticated meth-
ods (like Boosted Decision Trees, Deep Neural Network and
Advanced Machine Learning) have helped to decrease the
experimental (exp) and statistical (stat) uncertainty by a fac-
tor of more than two.

For a given production and decay, i → H → f , two
parameters μi and μ f are defined as μi = σi/(σi )SM and
μ f = BR f /(BR f )SM . Many initial states i and final states

Fig. 319 (Upper) The diphoton invariant mass distribution in ATLAS
[3891]. The data events (dots) are weighted by ln(1+ |S|/|B|), where
S and B are the expected signal and background. (Lower) The invariant
mass distribution of four charged leptons targeting the study of the decay
channel H → Z Z∗ → 4! in CMS [3890]

f share the same coupling, e.g. VBF H production and H →
VV decay both involve the HVV coupling (V = W, Z ).
Another example is the H → γ γ , that proceeds via a loop
of W bosons or top quarks, thus involving the HWW and
Htt couplings. Each i i H and H f f coupling is multiplied
by a scaling factor κ , thus defined as κ2

j = σ j/σ
j
SM , or

κ2
j = Γ j/Γ J

SM . The experiments have presented results on
the κ j with the full Run2 statistic [3887,3888].

In the presence of new physics, new particles could con-
tribute to the loops, affecting the various couplings and mod-
ifying the SM relations. Thus an alternative fit could be
performed assuming non resolved loop for the coupling of
the Higgs boson with photons or gluons, and thus assum-
ing effective couplings κγ and κg . The results are shown in
Fig. 320 [3887,3888]. Moreover, in the fit the possibility of
the Higgs boson decaying to invisible particles (i.e. neutrinos
or dark matter candidates), Binv , or to undetected particles,
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Fig. 320 (Left) Coupling-strength modifiers and their uncertainties
per particle type with effective photon, Zγ and gluon couplings in the
ATLAS experiment [3887]. The horizontal bars on each point denote
the 68% confidence interval. The scenario where Binv. = Bu. = 0 is
assumed is shown as solid lines with circle markers. The p-value for
compatibility with the SM prediction is 61% in this case. The scenario
where Binv. and Bu. are allowed to contribute to the total Higgs boson
decay width while assuming that κV ≤ 1 and Bu. ≥ 0 is shown as
dashed lines with square markers. The lower panel shows the 95% CL

upper limits on Binv. and Bu.. (Right) Results of a fit to the coupling-
strength modifiers κ allowing both invisible and the undetected decay
modes, with the SM value used as an upper bound on both κW and κZ
in the CMS experiment [3888]. The thick (thin) black lines indicate the
1 (2) standard deviation confidence intervals, with the systematic and
statistical components of the 1 standard deviation interval indicated by
the red and blue bands, respectively. The p-value with respect to the SM
prediction is 33%

Bu or BUndet. (i.e. particles that may or may not leave a trace
in the detector, and the experiments do not have dedicated
searches looking for these) is allowed. The presence of invis-
ible or undetected decays can be inferred indirectly from a
reduction in the branching fraction for SM decays or by an
increase in the total Higgs boson width. In this interpretation,
the total width becomes ΓH =∑

Γ f (κ)/(1− Binv. − Bu).
Figure 321(left) shows that indeed the Higgs boson cou-

ples with the fermion and boson masses as predicted by
the SM. The very good agreement spans over many orders
of magnitude. The results are shown for CMS [3888],
and ATLAS has presented similar results [3887]. Fig-
ure 321(right) shows the observed and projected values
resulting from the fit in the κ-framework in different data
sets: at the time of the Higgs boson discovery, using the full
data from LHC Run 1, in the Run2 data set (“This paper”),
and the expected 1 standard deviation uncertainty at the high-
luminosity run (HL-LHC) for an integrated luminosity of
3000 fb−1 [3888].

12.4.2 Cross section measurements

With the data collected during Run 1 and Run 2, the ATLAS
and CMS experiments measured the Higgs boson ggF pro-
duction cross section with about 6% precision. The total cross
section measurement from ATLAS [3887] at

√
s = 13 TeV

is 50.2 ± 3.0 pb, and CMS measures 48.3 ± 2.7 pb [3888],
both in agreement with the SM prediction of 48.5+1.5

−1.9 pb, as
shown in Fig. 318.

Figure 322 shows the cross sections for different produc-
tion processes and the branching fractions for different decay
modes, as measured by the ATLAS experiment [3887].

12.4.3 The simplified template cross section

The simplified template cross section (STXS) method has
been developed at the Les Houches 2015 workshop, and
within the LHC Higgs Cross Section Working Group [3879]
with the aims to separate more cleanly measurement and
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Fig. 321 (Left) Measured Higgs boson couplings to fermions and
gauge bosons as a function of the fermion or gauge boson mass, where
υ is the vacuum expectation value of the BEH field, and κi are the cou-
pling modifiers as described in the text [3888]. (Right) Observed and
projected values resulting from the fit in the κ-framework in different

data sets: at the time of the Higgs boson discovery, using the full data
from LHC Run 1, in the Run 2 data set (this paper), and the expected 1
standard deviation uncertainty at the HL-LHC for an integrated lumi-
nosity of 3000 fb−1 [3888]. These results assume that no contributions
from BSM is present in loops

Fig. 322 (Left) Observed and predicted cross section for different
Higgs boson production modes, measured assuming SM values for the
decay branching fractions in ATLAS [3887]. (Right) Observed and pre-

dicted branching fractions for different Higgs boson decay channels.
The lower panels show the ratio of the measured values to their SM
predictions [3887]
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Fig. 323 Observed and predicted Higgs boson production cross sec-
tions in different kinematic regions [3887]. The vertical bar on each
point denotes the 68% confidence interval. The p-value for compatibility
of the combined measurement and the SM prediction is 94%. Kinematic
regions are defined separately for each production process, based on the
jet multiplicity, the transverse momentum of the Higgs boson pT (H)

and vector bosons pT (W ) and pT (Z) and the two-jet invariant mass
(m j j ). The V H -enriched and VBF-enriched regions with the respec-
tive requirements of 60 < m j j < 120 GeV and m j j < 60, m j j > 120
GeV are enhanced in signal events from V H and VBF productions,
respectively

interpretation steps in order to reduce the theory dependen-
cies that are folded into the measurements (including the
dependence on theoretical uncertainties and on the underly-
ing physics model). Its primary goals are to maximize the
sensitivity of the measurements and to minimize their the-
ory dependence. The method is designed to measure cross
sections separated into production modes (instead of signal
strengths), in mutually exclusive regions of phase space, and
to be inclusive over Higgs boson decays, allowing to perform
a global combination of all decay channels and to ease inter-
pretation and search for BSM phenomena. Figure 323 shows
the results of ATLAS for the LHC Run2 data [3887].

12.4.4 Differential distributions

The large data set accumulated during the LHC Run 2
allowed the experiments to do the first studies of differen-
tial distributions. A convenient set of kinematic variables to
describe the Higgs boson production in hadronic collisions,
and to test QCD consists of the transverse momentum pT ,
the rapidity y, and the azimuthal angle φ. The first two vari-
ables allow to understand many important QCD effects. The
pT distribution is sensitive to perturbative QCD, and at low
value it is strictly connected with the resummation of the
leading logarithms, while at large values new physics could
manifest. The y distribution is sensitive to the parton distri-
bution functions. At LHC the processes should not depend
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on φ. Two important additional variables, that probe the the-
oretical modeling of high-pT QCD radiations in Higgs boson
production, are the number of jets in the event, N jet , and the

transverse momentum of the leading jet, plead. jetT .
Differential distributions are usually measured unfolding

the detector resolution and efficiency effects and calculat-
ing “fiducial” cross sections. Cross sections are measured
in a fiducial phase space, which is defined to closely match
the experimental acceptance in terms of the physics object
kinematics and topological event selection. This approach is
chosen in order to reduce the systematic uncertainty associ-
ated with the underlying model and with the extrapolation
to non-measured regions. As an example, the fiducial phase
space for H → 4! constitutes approximately 50% of the total
phase space. The fiducial differential cross sections are then
compared with the various MC simulations and analytical
calculations.

Figure 324 shows the differential cross section for the pro-
cesses pp→ H → 4!, pp→ H → γ γ , and their combina-
tion as a function of the Higgs boson transverse momentum,
its rapidity, the number of jets in the event, and the leading jet
pT as measured by the ATLAS experiment [3897]. The data
are compared with various theoretical predictions, all nor-
malized to the total cross section, where the dominant ggF
contribution is calculated at fixed order N3LO.

Figure 325 shows the double differential fiducial cross
section measured in bins of pγ γT and n jets for H → γ γ

events in the CMS experiment [3898]. The data are compared
to the predictions from different setups of the event generator
MadGraph5_aMC@NLO (version 2.6.5) [3385].

12.4.5 The Higgs boson and heavy quarks

The dominant decay of the SM Higgs boson is into pairs of
b quarks, with an expected branching fraction of approxi-
mately 58% for a mass of 125 GeV, but the large background
from multi-jet (QCD) production makes the search in ggF
very challenging. The decay of the Higgs boson to bb̄ was
observed during Run 2 by ATLAS and CMS, in events where
the H is produced in association with a vector boson, i.e. in
the WH and ZH production modes [3899,3901]. In these
events, the leptonic decay of the vector boson allows for
efficient triggering and a significant reduction of the multi-
jet background. In addition, two identified jets coming from
the hadronization of b quarks from the Higgs boson decay
are required. The dominant background processes after the
event selection are V+jets, t t̄ , single-top, diboson process
and multi-jets.

Benefiting from multivariate techniques (MVA) and new
machine learning algorithms, the experiments are now devel-
oping analyses to search for H → bb̄ inclusively in the pro-
duction mode. Highly Lorentz-boosted Higgs bosons decay-

ing to bb̄, recoiling against a hadronic system, are recon-
structed as single large-radius jets, which are identified using
jet substructure algorithms and a dedicated b tagging tech-
nique based on a deep neural network (see Sect. 11.5). The
jet mass is required to be consistent with that of the observed
Higgs boson, and the jet transverse momentum is required
to be pT > 400−450 GeV. The analyses are validated using
Z → bb̄ events. The measured cross section is compatible
with the SM one, but for the moment the uncertainty is still
very large, i.e. around 10% [3902,3903]. Figure 326(left)
shows the reconstructed bb̄ invariant mass for the selected
V H events in the ATLAS experiment [3899].

The decay branching fraction of the SM Higgs boson into
a pair of c quarks is slightly less than 3%. The difficulties
to measure this channel are even larger than for the b quark
final state, because the main background to c jet identifica-
tion is indeed from b jets. Higgs boson candidates, produced
in association with a W or a Z boson, are constructed from
the two jets with the highest pT , with at least one jet identi-
fied as originating from a c quark. [3900,3904]. In CMS the
search is extended to events in which the H boson decays to
a single large-radius jet. Additionally, a b−jet identification
algorithm is used to veto b jets. Novel charm jet identifica-
tion and analysis methods using machine learning techniques
are employed. In Fig. 326(center) the cc̄ tagging efficiency
is shown versus the efficiency of misidentifying quarks and
gluons from V+jet and H → bb̄ in CMS. The analysis is val-
idated by searching for Z → cc̄ decays in the V Z process,
leading to the first observation of this process at a hadron
collider with a significance of 5.7 standard deviations, as
shown in Fig. 326(right) [3900]. The observed upper limit
on σ(V H)BR(H → cc̄) is ranging from 14 to 26 times the
SM prediction, for an expected limit that ranges from 7 to 31
for CMS and ATLAS, respectively.

The t t̄ H and t H production channels probe the coupling
of the Higgs boson to the top quarks. The large mass of
the top quark may indicate that it plays a special role in
the mechanism of electroweak symmetry breaking. Devia-
tions from the SM prediction would indicate the presence
of physics beyond the SM. The measurement of the Higgs
boson production rate in association with a top quark pair
(t t̄ H ) provides a model-independent determination of the
magnitude of the top quark Yukawa coupling yt . The sign of
yt is determined from the associated production of a Higgs
boson with a single top quark (t H ). The t t̄ H and t H produc-
tion channels are studied in the case where the Higgs boson
and the top quarks subsequently decay into final states with
several leptons (including taus, also when they decay hadron-
ically), complementing dedicated studies of the H → γ γ ,
H → Z Z → 4!, and H → bb̄ decay modes. Several
MVA techniques are employed to better separate the t t̄ H
and t H production modes. The t t H production modes has
been observed in Run 2 [3905,3906]. The precision on the
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Fig. 324 Differential pp → H + X cross-sections, in the full phase
space, as a function of variables characterising the Higgs boson kine-
matics in ATLAS [3897]: a Higgs boson transverse momentum pHT , b
Higgs boson rapidity yH , c number of jets and d pT of the leading jet,
compared with the Standard Model prediction. The H → Z Z∗ → 4!
(blue triangles), H → γ γ (magenta inverted triangles), and combined
(black squares) measurements are shown. The error bars on the data
points show the total uncertainties, while the systematic uncertainties
are indicated by the boxes. The measurements are compared with two
predictions, obtained by summing the ggF predictions of NNLOPS or

MG5 FxFx, normalized to the fixed order N3LO total cross-section,
and MC predictions for the other production processes XH . The shaded
bands indicate the relative impact of the PDF and scale systematic uncer-
tainties in the prediction. These include the uncertainties related to the
XH production modes. The dotted red histogram corresponds to the
central value of the prediction that uses NNLOPS for the modelling of
the ggF component. The bottom panels show the ratios between the pre-
dictions and the combined measurement. The grey area represents the
total uncertainty of the measurement. For better visibility, all bins are
shown as having the same size, independent of their numerical width

top Yukawa coupling and on t t̄ H cross section measurement
is presented in Figs. 320 and 322.

12.4.6 Precision Higgs boson physics

The Higgs boson was discovered by the ATLAS and CMS
experiments in 2012 at the LHC. With the data taken dur-
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Fig. 325 Double differential fiducial cross section measured in bins of
pγ γT and n jets [3898]. The observed differential fiducial cross section
values are shown as black points with the vertical error bars showing
the full uncertainty, the horizontal error bars show the width of the
respective bin. The grey shaded areas visualize the systematic com-
ponent of the uncertainty. The colored lines denote the predictions
from different setups of the event generator. All of them have the
HX = V BF+V H + t t H component from MadGraph5_aMC@NLO
in common. The green lines show the sum of HX and the ggF compo-
nent from MadGraph5_aMC@NLO reweighted to match the nnlops
prediction. For the orange lines no nnlops reweighting is done and
the purple lines take the prediction for the ggF production mode from
POWHEG. The hatched areas show the uncertainties on theoretical pre-
dictions. Only effects coming from varying the set of PDF replicas, the
αS value and the QCD renormalization and factorization scales that
impact the shape are taken into account here, the total cross section is
kept constant

ing the Run1 and Run2 the two experiments successfully
tested the SM Higgs boson. The precision on the couplings
is ranging from 3% for the coupling to the Z , to 10% for
the coupling to bb̄ and t t̄ , to 20–30% for the couplings to
muons and Zγ . Run3 and the high-luminosity LHC (HL-
LHC) will deliver approximately 3000 fb−1 of luminosity to
each experiment. By the end of HL-LHC, rare decays chan-
nels such as H → μμ and H → Zγ will be observed and
studied, the SM Higgs boson pair production is estimated to
be observed with a significance of 4 to 5 standard deviations,
when combining the results of the two experiments, as well
as the Higgs boson coupling to charm quarks. As of today,
the experiments have analysed only 3% of the Higgs boson
events that they will have at the end of LHC. By then, most
of the couplings measurements will reach the 2 to 3% preci-
sion, sufficient to start exploring contributions from physics
beyond the SM in the Higgs boson area. A detailed discussion
on the physics reach at HL-LHC is given in Sect. 14.9.

12.5 Top quark physics

Marcel Vos

12.5.1 A brief history of the top quark

The late 1960s and early 1970s established the quark model,
as described in Sect. 1. After the discovery of the charm
quark [91,92] in 1974, and the bottom quark [3907] in 1977,
the hunt for the sixth quark was open. An intensive search
at PETRA for a t t̄-resonance or a jump in cross section was
carried out with the result that the top quark, if it exists,
must be bigger than 23 GeV. Higher order predictions of
electroweak quantities in the Standard Model, being a gauge
theory, depend on all model parameters, in particular on the
masses of the yet unknown top quark and the Higgs boson
[3908]. At the end of the 1980s sufficiently precise measure-
ments existed to predict the top quark mass. It came as a big
surprise that the predictions indicated a value in the range
between 100 and 200 GeV [3909,3910]. The new measure-
ments of the Z-shape parameters at LEP and SLC resulted
in precise predictions of the top quark mass : 125± 40 GeV
[3911], 164+16+18

−17−21 GeV [3912] and 177+11+18
−11−19 GeV [3913].

One year later, 1995, the two collaborations at the Teva-
tron, CDF and D0, discovered the top quark at the predicted
value. Their measured values are CDF : 177+11+18

−11−19 GeV [85]

and D0 199+19
−21 ± 22 GeV [3914]. The present best value is

172.69± 0.30 GeV [616].
The top quark pair production process – leading-order dia-

grams are shown in the top row of Fig. 327 – is the domi-
nant process at hadron collider. The two Tevatron experi-
ments could also demonstrate the existence of the electro-
weak single-top-quark production processes in the t-channel
[3915,3916] and s-channel [3917]. Feynman diagrams are
shown in the bottom row of Fig. 327. Precise measurements
confirmed key SM predictions, such as the forward-backward
asymmetry in t t̄ production [3918] and the W -boson helicity
fractions in top quark decay [3919]. Last but not least, the
Tevatron legacy includes a top quark mass combination with
a sub-GeV precision [3920].

The Large Hadron Collider [3921] at CERN entered oper-
ation in 2010 with pp runs at 7 TeV and 8 TeV. Data tak-
ing resumed at 13 TeV in 2015, and the ATLAS and CMS
experiments had harvested 140 fb−1 by 2018. At the time of
writing, in summer 2022, run 3 has just started with pp colli-
sions at 13.6 TeV. The large center-of-mass energy strongly
enhances the top quark production cross section. Top quark
pair production is primarily from the gluon-initiated dia-
grams of Fig. 327 in pp collisions at LHC energies, while in
the p p̄ collisions at the Tevatron, quark–anti-quark produc-
tion dominated. In combination with the large instantaneous
luminosity, the LHC is a genuine “top factory”. More than
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Fig. 326 (left) The distribution of mbb in data after subtraction of all
backgrounds except for the WZ and Z Z diboson processes. All the
contributions are summed and weighted by their respective S/B ratios,
with S being the total fitted signal and B the total fitted background. The
expected contribution of the associated WH and ZH production of a
SM Higgs boson withmH = 125 GeV is shown scaled by the measured
signal strength (μ = 1.17). The size of the combined statistical and sys-
tematic uncertainty for the fitted background is indicated by the hatched
band [3899]. (center) Performance of CMS algorithm ParticleNet for
identifying a cc̄ pair for large-radius jets with pT > 300 GeV. The solid

(dashed) line shows the efficiency to correctly identify H → cc̄ vs the
efficiency of misidentifying quarks or gluons from the V+jets process
(H → bb̄). The red crosses represent the three working points used
in the large-radius jet analysis [3900]. (right) Invariant mass distribu-
tion of the selected cc̄ events [3900]. The lower panel shows the data
(points) and the fitted V H(H → cc̄) (red) and V Z(Z → cc̄) (grey)
distributions after subtracting all other processes. Error bars represent
pre-subtraction statistical uncertainties in data, while the gray hatching
indicates the total uncertainty in the signal and all background processes

Fig. 327 Leading-order Feynman diagrams for top quark pair production and (top row) and electro-weak single top production (bottom row)

100 million t t̄ pairs have been produced in run 1 and 2 and
more than 1 billion are expected in future runs. The LHC
therefore marks a new era in experimental top-quark physics
and dominates the summary in this chapter.

Its properties make the top quark an ideal laboratory for
studies of the electro-weak and strong interactions. As the top
quark mass of approximately 172 GeV exceeds that of the
W -boson, the decay t → Wb is kinematically allowed and
makes up nearly 100% of the branching ratio (with sub-%
fractions of top quarks decaying to Wd and Ws in the Stan-
dard Model). The subsequent W+ → l+νl and W− → l−ν̄l
decays of the W -boson yield an isolated charged lepton

l± = e±, μ±, τ±. These are a key signature to trigger and
select events with top quarks at hadron colliders. The charge
of the lepton furthermore reveals whether the decay corre-
sponds to that of a top-quark or anti-quark, providing an
efficient “tag” for asymmetry measurements [3922]. Finally,
the charged lepton is an efficient polarimeter that enables
studies of top quark polarization [3923], spin correlations
[3924,3925] and quantum entanglement [3926]. All these
features lead to a rich and varied experimental top quark
physics programme.
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12.5.2 Precise predictions for top quark physics

The calculability of top quark production is one of the keys
to the top quark physics programme at hadron colliders.
The large top quark mass regulates perturbative calculations,
enabling precise predictions of QCD processes with colored
objects in the final state.

The fully differential top quark pair production cross sec-
tion at hadron colliders is known to NNLO accuracy in
the strong coupling [3396,3453,3927]. Electro-weak correc-
tions are available at NLO [3928] and NNLL resummations
are available. Predictions of the inclusive pp → t t̄ produc-
tion rate reach an uncertainty of 4–5%. The uncertainty is
dominated by the scale uncertainties, that estimate the impact
of higher-order QCD corrections, followed closely by the
PDF uncertainties.

While the NNLO calculation of top quark pair production
is a major milestone, it remains a considerable challenge to
meet the experimental precision that can be achieved at the
LHC. The most precise measurements reach an uncertainty
a bit over 2%, half that of the predictions. The NNLO QCD
corrections have a sizable impact on the shape of differential
measurements, in particular on the top PT and related distri-
butions [3453,3927–3929]. Fully differential NNLO fixed-
order calculations and Monte Carlo generators are required
to provide an adequate description of the data collected by
ATLAS [3930–3932] and CMS [3933–3936].

Associated top quark production processes with electro-
weak bosons become accessible at the LHC and provide a
direct probe of the top quark interactions with the Higgs
boson and the neutral electro-weak gauge bosons (see for
instance Ref. [3937] and references therein). The t t̄ X pro-
cesses at the LHC are known to NLO accuracy, and uncer-
tainties on the inclusive production rates are well below 10%.
The experimental results for these rare processes are improv-
ing rapidly and already challenge the precision of the best SM
predictions. Resummation to NNLL and NLO electroweak
corrections are available [1993,3938] and elements of the
NNLO calculations for t t̄ H production are known [3939]. A
complete NNLO description is required for all t t̄ X processes
to take full advantage of the HL-LHC programme [3940].

NLO calculations are available for 2 → N processes that
include top quark decays and off-shell effects [3941]. These
provide sizable corrections for the top quark pair production
process and associated production processes.

Predictions at the particle- and detector-level play an
important role in measurements of top quark cross sections
and properties and in searches for rare processes. State-of-
the-art Monte Carlo generators match NLO matrix elements
to the parton shower and hadronization models implemented
in Pythia8 [3942] or Herwig [3943]. The work horse imple-
mentations for the LHC programme during run 1 and run 2
are provided by the Powheg-box [3601,3602,3628], where

resonance-aware matching is an important recent addition for
top physics [3944], and the MG5_aMCNLO [3385] package,
that can include also NLO electroweak corrections [3387].
SHERPA [3579] offers multi-leg generation for top quark
pair production and other high-jet-multiplicity processes
involving top quarks. The MINNLOps package [3945,3946]
provides a Monte Carlo event generator at NNLO accuracy
for top quark pair production that can be interfaced to Parton
Shower and hadronization programmes.

12.5.3 Precision measurements at hadron colliders

The measurements of top quark production cross sections
in the ATLAS experiment are summarized in Fig. 328. The
measurements cover four different center-of-mass energies
(5, 7, 8 and 13 TeV) and span over five decades in production
rate: from O(1 nb) for top quark pair production to O(10 fb)
for t t̄ t t̄ production. The experimental results indicated by the
colored markers are compared to the best available Standard
Model predictions in grey.

The measurements of the production cross section for the
classical top quark production processes have become pre-
cision measurements, with the measurement of the inclusive
cross section reaching 2.4% precision [3931]. The result is
limited by the knowledge of the integrated luminosity deliv-
ered by the LHC. Progress in the understanding of the lumi-
nosity calibration is expected to reduce this uncertainty to
about 1%, but this is likely to remain the limiting factor for
the most precise inclusive measurements.

Also electro-weak single top production is characterized
precisely in the t-channel and tW associated production
channel. With a precision of less than 7% for the t-channel
[3947], the Cabibbo–Kobayashi–Maskawa matrix element
Vtb is determined as: | fLV Vtb| = 1.02 ± 0.04, where the
uncertainty includes contributions from experiment and pre-
dictions and fLV is a form factor, identical to 1 in the SM,
that parameterizes the possible presence of anomalous left-
handed vector couplings. This result is in good agreement
with the determinations from b-physics [300].

The LHC programme has eclipsed the Tevatron measure-
ments in nearly all processes and measurements. However,
the Tevatron legacy remains very relevant, as the different ini-
tial states (p p̄ instead of pp) and center-of-mass energy lead
to important complementarities and Tevatron data continue
to provide important inputs for global analyses. Several high-
lights of the Tevatron programme remain unrivalled to this
day, as the dominance of qq̄-initiated production provides
an ideal laboratory for certain measurements. Good exam-
ples are the study of s−channel single top quark production
[3917] and the measurement of the forward-backward asym-
metry in t t̄ production, that reached a high significance for
the SM effect at the Tevatron [3918].
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Fig. 328 Measurements of
production cross sections for
processes with top quarks in the
final state by the ATLAS and
CMS experiments. The
experimental results indicated
by the colored markers are
compared to the best available
Standard Model predictions in
grey. Figure courtesy of the
ATLAS experiment

12.5.4 Boosting sensitivity

The enormous sample of top quark pairs collected at the
LHC enables precise differential cross section measure-
ments. Many measurements extend well into the boosted
regime, where the top quark transverse momentum sig-
nificantly exceeds the top quark mass and the collimated
hadronic top quark decays are reconstructed as a single large-
radius jet.

From the first observation of boosted top quark candi-
dates at the start of the LHC, the study of their production
has come a long way. An avalanche of new techniques has
been developed [3948], from pile-up mitigation to top tag-
ging algorithms, and the experiments have carefully char-
acterized jet substructure [3949,3950] and the experimen-
tal response [3664]. With the large samples of boosted top
quarks, these developments have enabled precise measure-
ments of top quark interactions in the most energetic colli-
sions at the LHC. The most recent measurements of top quark
pair production in the boosted regime [3951,3952] yield pre-
cise bounds on the Wilson coefficients of the qq̄t t̄ opera-
tors in the Standard Model Effective Field Theory (see Refs.
[3953,3954] and references therein), as the energy-growth
of their impact boosts the sensitivity of these measurements.

12.5.5 New rare top quark production processes

The right half of Fig. 328 is devoted to the new, rare associ-
ated top quark production processes that were observed by
the LHC experiments in run 2. Many of these measurements

scrutinize aspects of the Standard Model description of the
top quark interactions that were not, or not directly, tested
at previous facilities. The associated production processes
of a top quark pair with a photon [3955,3956] or Z -boson
[3957,3958] offer a new, direct probe to the neutral-current
interactions of the top quark [3937]. These processes are
well-established and differential measurements are available.
More recently, the single top production process in associa-
tion with a Z -boson [3959,3960] and a photon [3961] were
observed as well. The observation of the pp → t t̄ H pro-
duction process [3905,3962] confirms unambiguously that
the heaviest SM particle indeed couples to the Higgs boson.
The combination of rate measurements in different produc-
tion and decay channels yields a robust estimate of the top-
quark Yukawa coupling [3887,3888]. In LHC run 2 the first
evidence was found for four-top-quark-production. Refined
analyses of the run 2 data by ATLAS [3963] and CMS [3964]
could establish the existence of this very rare and spectacu-
lar process with a significance well over 5 σ per experiment
by the time of the Moriond conference in 2023. With more
data from run 3 of the LHC and improved experimental tech-
niques precise measurements of the production cross section
will provide a probe for the four-heavy-quark vertex and an
alternative determination of the top quark Yukawa coupling.

Rare top quark production processes provide qualitatively
new information on previously unprobed interactions and
form a valuable input to fits of the Standard-Model-Effective-
Field-Theory parameters to collider data [3937,3953,3954].
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12.5.6 New physics searches with top quarks

Beyond Standard Model (BSM) searches in final states with
top quarks have pioneered the development of tools for
boosted object tagging. Thus prepared, the experiments have
been able to take advantage of the LHC centre-of-mass
energy to push bounds on new massive states beyond 1 TeV
and in many cases into the multi-TeV range. The t t̄ resonance
searches by ATLAS and CMS indicate that new narrow mas-
sive states that decay to top quark pairs or a top and bottom
quark cannot have a production cross section times branch-
ing ratio greater than 0.1 pb in the mass region from 1.5 to
4–5 TeV. Concrete scenarios such as the bulk RS KK gluon
[3965] and W ′ bosons are excluded for resonance masses
up to 4 TeV[3966]. Searches for vector-like quarks decaying
to a top quark and Higgs or gauge boson yield lower limits
greater than 1 TeV for the mass of the vector-like quarks.

The integrated luminosity is a key for the search for
flavor-changing-neutral-current (FCNC) interactions of the
top quark. The branching fractions t → qX decays (with
X = γ, Z , g, H ) are suppressed well beyond the experimen-
tal sensitivity in the SM, but can be enhanced to O(10−5) in
several extensions [3967]. An even larger branching ratio
BR(t → cH) ∼ 10−3 can be present in certain two-
Higgs-doublet models [3968,3969]. The observation of these
FCNC interactions would be an unambiguous sign of physics
beyond the Standard Model.

Searches have advanced rapidly in sensitivity in run
2 and the exclusion bounds in Fig. 329 are reaching
O(10−4−10−5), scratching the surface of the branching
ratios predicted in viable models. The inclusion of single
top production in association with a Higgs or gauge boson
have been important to improve the bounds, in particular for
the FCNC vertex with an up-quark.

12.5.7 The top quark mass

The top quark mass is a fundamental parameter of the SM
Lagrangian that must be determined experimentally. As any
other quark mass, its definition generally depends on the
renormalization scheme and the value of the renormaliza-
tion scale at which it is evaluated. The pole mass scheme is
used in Monte Carlo generators and many fixed-order cal-
culations. The MS mass is extracted from the top quark pair
production cross section [3970].

Three main classes of measurements of the top quark mass
at hadron colliders are discussed below. A selection of results
obtained with each approach is presented in Fig. 330.

The first class of measurements extracts the top quark mass
from the comparison of top quark pair cross section measure-
ments (corrected to the parton level) to SM predictions at
NNLO+NNLL accuracy. The uncertainty of the mass deter-
mined from the total cross section a 13 TeV is around 2 GeV.

Fig. 329 Leftmost panel: summary of the searches for FCNC inter-
actions of the top quark with the Higgs boson, photon, gluon and Z -
boson. 95% confidence limits are derived on the equivalent branching
ratio t → Xu and t → Xc, and in some cases for left-handed and
right-handed couplings (left-handed couplings are assumed for the lim-
its collected in the summary plot in those cases). Figure courtesy of
the LHC top Working Group. Rightmost panel: selection of top quark
mass measurements at the Tevatron and LHC, by category. ATLAS mea-
surements are indicated with blue markers, CMS measurements in red
and the Tevatron or combined Tevatron-LHC results in black. The 2014
world average is given by the pink bar, and the indirect determination of
the top quark mass from the electroweak fit with the cyan band. Figure
prepared by the author based on data collected by the LHC top Working
Group

This includes a theoretical uncertainty, estimated by varying
the renormalization and factorization scales and propagat-
ing uncertainties from the parton distribution functions of
the proton. Importantly, recent cross section measurements
have a much reduced dependence on the mass assumption
in the correction of detector acceptance and efficiency, such
that in practice the dependence on the MC mass parameter
can be ignored to good precision. There is a broad consensus
that this method yields a solid measurement with a rigorous
interpretation. Future progress is expected from improving
fixed-order calculations and PDFs, and from a reduction of
the luminosity uncertainty on the experimental side.

A more precise determination is possible based on
measurements of differential cross sections [3971]. These
enhance the mass sensitivity in e.g. the threshold region. In
the shape analysis of the differential cross section impor-
tant uncertainties in the absolute cross section and integrated
luminosity cancel, leading to a precision of about 1 GeV for
the most precise measurements [3972]. The theory uncer-
tainty is accounted for in the same way as in the inclusive
measurements and the method retains some flexibility in the
choice of the mass scheme. More work is required, however,
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Fig. 330 Selection of top quark mass measurements at the Tevatron
and LHC, by category. ATLAS measurements are indicated with blue
markers, CMS measurements in red and the Tevatron or combined
Tevatron-LHC results in black. The 2014 world average is given by
the pink bar, and the indirect determination of the top quark mass from
the electroweak fit with the cyan band. Figure prepared by the author
based on data collected by the LHC top Working Group

to account for bound-state effects in the threshold region
[3973].

The third, and experimentally most precise, approach
determines the mass parameter of the Monte Carlo gener-
ator that yields the best fit to the observed distribution of top
quark decay products. The 2014 combination of Tevatron and
LHC run 1 results yieldsmt = 173.3± 0.8 [3974] and is used
as a reference in Fig. 330, indicated by the magenta area. The
most precise single measurements by CDF, D0, ATLAS and
CMS have since reached an uncertainty of approximately
400–600 MeV.

The results of direct mass measurements are interpreted as
the top quark pole mass. An additional uncertainty is assigned
to cover the ambiguity in this interpretation. Analytical inves-
tigations into the relation between top mass parameter of the
Herwig Monte Carlo and the mass in field-theoretical mass
scheme observe that the parton shower cut-off in the Monte
Carlo generator (typically set to 1 GeV) alters the mass defi-
nition in a non-negligible way [3975]. A quantitative relation
of the top mass parameter with the pole mass is obtained by
comparing particle-level observables in the Monte Carlo gen-
erator with first-principle calculations[3976,3977]. Based on
these studies, Ref. [3978] proposes a 500 MeV uncertainty
in the interpretation of direct mass measurements. Important
theory work is ongoing to improve the Monte Carlo tem-

plates [3979,3980], including top quark decay at NLO and
full off-shell effects.

The analysis of run 2 results is in full swing. The last two
points in the rightmost panel of Fig. 330 correspond to two
innovative analyses on partial run 2 data. ATLAS published
an analysis based on a purely leptonic observable, the invari-
ant mass of the system formed by the prompt lepton from
W-decay and the soft muon found in the b-jet, shifting the
systematic uncertainties from jet response to fragmentation
and B-decay modelling. A recent preliminary result by CMS
[3981] based on a profile-likelihood fit reaches an uncer-
tainty below 400 MeV. This result demonstrates the power
of the profile-likelihood-fit approach in top quark mass mea-
surements, but also emphasizes the importance of a robust
uncertainty model for MC-related uncertainties. A combina-
tion of all measurements collected can reach an experimental
precision of 300 MeV.

Projections of future improvements are notoriously hard
in this area, where a detailed understanding of the limitations
of Monte Carlo generators is key. Direct measurements can
potentially be improved to an experimental precision below
200 MeV in the remainder of the LHC programme [3940],
while cross-section-based mass extractions can reach a total
uncertainty below 500 MeV [3982].

12.5.8 Top quark data in global analyses

The top quark and the results in the top quark sector presented
in previous sections are inevitably part of the “global” inter-
pretations of collider data. In this section, three examples are
briefly discussed.

Most recent analyses of the parton density functions
[3810] consider also data on top quark production,114 that
provide an important constraint on the high-x gluon content
of the proton. The ATLAS PDF fit [3825] includes differen-
tial measurements of t t̄ production, using NNLO predictions
with a fixed top quark mass. The CMS experiment has per-
formed a global analysis [3983] with partial run 2 data, where
the top quark pole mass is floated, as well as the PDFs and
the strong coupling. The analysis is based on NLO predic-
tions for the top quark pair production process and threshold
corrections remain to be included.

Radiative effects connect electroweak precision observ-
ables at the Z -pole to precise measurements of αs and the W -
boson, Higgs boson and top quark masses. The electroweak
fit tests the relations among these parameters predicted by
the SM and forms a stringent check of the internal consis-
tency of the theory. In global electro-weak fits [3726,3984]

114 To avoid absorbing potential BSM contributions to top quark pro-
duction in the PDFs, care is taken to select differential measurements
that are less likely affected. PDF results without top data are available
in at least one PDF set and allow for important cross-checks.
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before 2022 there is a very mild tension between direct top
quark mass measurements and the mass inferred from pre-
cision electroweak data (e.g. the magenta and cyan bands in
Fig. 330). Inclusion of the 2022 CDF W -mass measurement
[3985] leads to considerable tension in the fit [3986,3987].
The main avenue towards a tighter test should focus on an
understanding and improvement of the W -boson mass mea-
surements, but eventually also the precision of measurements
of other parameters, among which the top quark mass, must
be improved.

The legacy data from collider experiments are collected in
the framework of the Standard Model Effective Field Theory.
Global fits of the top quark sector have been performed by
several groups [3988,3989]. State-of-the-art fits include a
combined analysis of Higgs, electroweak and top data [3953,
3954], showing an interesting interplay between the top and
Higgs sectors through the effect of operators involving top
quarks in loops, for instance in gg → H and H → γ γ ,
through the box diagram contribution to di-Higgs production
and through the associated production of top quarks and a
Higgs boson.

12.5.9 Outlook

A vibrant top quark physics programme was started at the
Tevatron and has culminated in a broad and rich programme
at the LHC. Direct searches in final states with top quarks
explore the multi-TeV regime looking for signs of new res-
onances and exotic phenomena. Precise measurements of
the classical top quark production processes and many new
rare processes involving top quarks and the Higgs and gauge
bosons form a powerful set of constraints on top quark cou-
plings. The top quark mass is known to a precision of less
than 0.5%.

The upcoming runs of the LHC and its high-luminosity
upgrade are expected to improve considerably on current run
2 results [3940], increasing the precision, pushing differen-
tial measurements further into the high-energy regime, and
probing ever more rare processes. Projections are particu-
larly encouraging for rare associated production processes,
where statistical limitations remain important and theory pre-
dictions are currently only available at NLO accuracy.

Top quark physics is an important consideration also
for a new facility in high energy physics beyond the HL-
LHC. A new electron–positron collider is identified as the
highest-priority installation in the European, American and
Asian road maps for particle physics. All projects for such a
Higgs/EW/top factory envisage operation at and above the t t̄
production threshold. This enables scrutiny of the top quark
in e+e− collisions and provides precision measurements of
the top quark mass, with O(50 MeV) precision [3990], and
electroweak couplings, that improve by an order of magni-
tude compared to the HL-LHC projections [3991].

A new pp collider at the energy frontier can potentially
push the discovery reach for massive particles by a further
order of magnitude. It can also unlock ultra-rare SM pro-
cesses, such as six-top-production and t t̄ H H . Quantitative
projections remain to be made, as well as more detailed
studies of top quark reconstruction in this challenging envi-
ronment. Also the top quark physics of a multi-TeV lepton
collider, be it the CLIC high-energy stage, a muon collider
or a novel installation based on plasma-wakefield acceler-
ation, remains to be explored in detail. High-energy lepton
collisions, well above 1 TeV, offer the possibility to con-
strain four-fermion operators with two light particles and two
top quark to unprecedented precision [3992], and provide an
exquisite precision probe for new physics [3993].

12.6 Soft QCD and elastic scattering

Per Grafstrom

12.6.1 Introduction

Soft QCD has become a term covering many different topics.
Elastic scattering and diffraction are central topics associated
with soft QCD but in addition there is a long list of different
areas associated with the term Soft QCD e.g. particle cor-
relations, multiple parton interactions, particle densities, the
underlying event. The list is not inclusive and could be made
longer. It covers an enormous amount of different processes
and concepts and just the elastic and diffractive part repre-
sents by itself more than 30–40% of the total cross section
(σtot ) at high energy hadron colliders. What basically uni-
fies all those different processes is a large distance scale or
equivalently a relative small momentum transferred in the
reaction.

Another way of expressing the same criteria is to say that
“Soft QCD” deals with processes for which the perturba-
tive approach of QCD is not applicable due to the size of
the strong coupling at small momentum transfer. This is a
direct consequence of the running of the strong coupling αs .
In this low momentum transfer regime more phenomenolog-
ical approaches have to be applied. However, while using
phenomenological methods, the aim is always to try to pro-
vide a smooth transition to harder and thus perturbative QCD
processes.

Soft QCD processes have an interest in their own right
representing a particular challenging part of QCD. However,
there are a number of other reasons that motivate trying to
achieve a better understanding of Soft QCD processes. The
Soft QCD processes represent often the most significant cor-
rection in searches for new physics. The so called underlying
event stands for everything which is produced in a pp colli-
sion except for the hard scatterer. The better one understands
the underlying event the easier it is to extract signals for new
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physics. There is also the phenomena of pile-up at modern
colliders. In order to push the instantaneous luminosity to
such high values that very rare processes can be detected, the
colliders have to be operated with such high bunch popula-
tion that about fifty separate interactions occur during one
and the same bunch crossing. Most of those interactions are
soft and produce what is called “pile-up” background in the
different detectors and this background has to be separated
from the signal.

Understanding of Soft QCD processes are also important
in the context of cosmic rays. Monte-Carlo event generators
used for simulation of the forward cascades in air showers
have to be tuned in order to extract the essential physics
parameters in cosmic ray studies.

Here we will start with a discussion of elastic scattering
and the total cross section in proton–proton collisions, and
in a second part some other typical Soft QCD topics will
be addressed. It will be impossible to cover all the topics
nowadays associated with Soft QCD in this short review and
we have to make a biased selection. A very good and more
extensive summary of Soft QCD is given in the article “High
Energy Soft QCD and Diffraction” written by V.A. Khoze,
M. Ryskin and M. Taševský published in PDG [616].

12.6.2 Elastic proton–proton scattering and the total cross
section

First principles
Elastic scattering is the simplest process possible at a hadron–
hadron collider. Two incoming protons scattering at the Inter-
action Point (IP) giving two outgoing protons and noth-
ing more. It is the most simple process possible involving
strongly interacting particles but still it can not be described
directly by QCD. However there are first principles or funda-
mental concepts which are relevant for elastic scattering and
the total cross section. Those principles have to be fulfilled by
any theory of strong interactions and must obviously also be
fulfilled by QCD. Principles like unitarity, crossing symme-
try and analyticity of the elastic scattering amplitude are of
importance. Those principles connect elastic scattering with
the total cross section in different manners.

The most straight forward is the optical theorem that
connects the total cross section with the imaginary part of
the scattering amplitude in the forward direction. The high
energy form of the optical theorem can be written:

σtot = ImFel(t = 0)

s
, (12.12)

where t is the four momentum squared which at high energies
can be written as −t = (pθ)2 with p being the momentum
and θ the scattering angle. The Mandelstam variable s repre-
sents the centre of mass energy squared. The optical theorem

is based upon probability conservation in the scattering pro-
cess and is easily derived using Quantum Mechanics.

The optical theorem has been used to experimentally
determine the total cross section via measurement of the dif-
ferential elastic cross section from ISR times to LHC today.
From the optical theorem one derives the formula

σ 2
tot =

16π

1+ ρ2

dσel
dt

(t = 0), (12.13)

where dσel
dt (t = 0) is the elastic differential cross section

extrapolated to t = 0 and ρ is the ratio of the real to imag-
inary part of the elastic scattering amplitude in the forward
direction i.e.

ρ = ReFel(t = 0)

ImFel(t = 0)
. (12.14)

However the optical theorem is not the only connection
between σtot and elastic scattering. Using the concepts of
analyticity and crossing symmetry, dispersion relations for
elastic scattering can be derived. Dispersion relations connect
the ρ-parameter at a certain energy to the energy evolution of
σtot both below and above this energy and are a very powerful
tool which play a crucial role in the understanding of elastic
scattering. Dispersion relations thus imply that the ρ-value
at a certain energy is sensitive to the energy evolution of σtot
beyond the energy at which ρ is measured. The ρ-value is
accessible experimentally and can be measured by measuring
elastic scattering as such small angles where the Coulomb
amplitude starts to be significant. The Coulomb amplitude
is proportional to 1/t and dominates in the very forward
direction. The interference between the Coulomb amplitude
and the strong amplitude permits a measurement of ρ. Using
the measurement of ρ and dispersion relations one can make
predictions of σtot to an energy of the order 10 times higher
than the energy at which ρ has been measured. This has been
done several times in the past [3994,3995].

The Froissart–Martin bound [3996,3997] is another exam-
ple of an important consequence derived from first principles.
Based upon axiomatic quantum field theory it was shown that
σtot can not grew faster than

σtot <
π

m2
π

ln2s. (12.15)

As will be discussed in the paragraph “The total cross sec-
tion” below, this bound is not very constraining given the
energy scales available today.
The Regge approach and QCD
The principles discussed above generate bounds and rela-
tions between important entities but do not lead to a con-
crete proposal for the scattering amplitude. For this, one
still has to rely upon phenomenological approaches. The
phenomenology of Regge theory dominated the description
of high energy scattering process in pre-QCD times (see
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for instance [3998,3999] and references therein). With the
advent of QCD as the theory for strong interaction in the 70th,
Regge theory started to loose its role. The obvious wish was
of course to try to derive Regge theory from QCD. Due to
the non-perturbative character of low pT reactions this turned
out to be extremely difficult and still today Regge concepts
are the basis of the phenomenology used to describe soft pro-
cesses. However, whenever possible one tries to connect to
QCD in a smooth way.

The key concept in Regge theory is singularities of the
amplitude in the complex angular moment plane, the so
called j-plane. The most straightforward singularity is a sim-
ple pole. Using this concept for a given scattering process
has as consequence that the scattering amplitude in the t-
channel can be be calculated using an exchange of so called
Regge-trajectories which replaces a single particle exchange.
A Regge trajectory composes of many particles with the same
quantum numbers except for the spin. The particles are orga-
nized in increasing spin with increasing mass on the trajec-
tories. A trajectory is represented by the function α(t) where
α(t) is the pole position in the j-plane and is usually param-
eterized as a linear function of t :

α(t) = α(0)+ α
′
t. (12.16)

The exchange of a Regge trajectory or a Reggeon leads to a
power-like growth of the amplitude with s and an exponent
α(t) i.e.

A(s, t) ∝ sα(t). (12.17)

Using the optical theorem one then gets for the corresponding
cross section

σ ∝ sα(0)−1. (12.18)

The contribution of a given Regge trajectory factorizes in
general, i.e. the amplitude is a product of two factors depend-
ing only on the coupling of the exchanged object to the scat-
tered particles at each vertex.

At energies around 20–50 GeV, corresponding to the ISR
and at energies below, several different leading Regge trajec-
tories contribute to the amplitude. Experimentally it turns out
that the leading trajectories in pp scattering have an intercept
α(0) ≈ 0.5 (see section 51 in [4000]). Thus the correspond-
ing contributions all vanish with increasing energy in an
inverse power law according to Eq. 12.18. At higher energies
only the so called Pomeron trajectory survives. The Pomeron
carries the quantum numbers of vacuum with CP = ++
and was proposed in the 1960s to explain the asymptotic
behaviour of the total cross section as will be discussed in the
following paragraph. The Pomeron is a good example how
Regge theory connects to QCD. The Pomeron has now been
identified as a two gluon state in QCD (see e.g. references in
[4001]) and some of the properties of the Pomeron has been
derived in QCD.This will be discussed in Sect. 12.6.4. QCD

Fig. 331 The total cross section for pp and p̄ p as a function of the
center-of-mass energy. In the figure is also shown the energy dependence
of the elastic and inelastic cross sections. Figure is taken from Ref.
[4003]. More details about the figure can be found in [4003]

also predicts the possible existence of a three gluon state with
CP = −−. Such a state corresponds to a trajectory proposed
in Regge theory in the 1970s [4002], the so called Odderon.
The Pomeron and the Odderon will be discussed more in
detail later.

The total cross section
In Fig. 331 all data are shown of the total pp and p̄ p-cross
section from the ISR to LHC. Low energy proton data from
fixed target experiments are also shown in the figure. The
total cross section starts to rise at ISR. The rise of σtot was
not at all expected. Still today this rise can not be derived from
first principles and is not satisfactory solved within QCD.

At the time of the discovery of the surprising rise of the
total cross section with increasing center-of-mass energy,
Regge theory was the relevant theory for strong interac-
tion. The Pomeron was thought to dominate the high energy
behaviour of σtot and the s-dependence was thus given by (
see Eq. 12.18)

σtot ∝ sαP (0)−1 , (12.19)

where αP (0) is the intercept of the Pomeron trajectory. The
intercept was believed to be exactly 1 thus giving a constant
total cross section asymptotically. Later when it was discov-
ered thatσtot was starting to rise an interceptαP (0) just above
1 was introduced. Taking into account the data from the SPS
collider and the Tevatron, σtot was parameterized in terms
of an “effective” Pomeron trajectory α(t) = 1+Δ+ α

′
t ≈

1+0.08+0.25t where t is given in GeV2 [1100]. However it
was always clear that at some very high energy such a power
growth in s will violate unitarity and the Froissart bound
(see Eq. 12.15). This problem is addressed by also consider-
ing cuts in the j-plane in addition to the simple poles. The
cuts describe multi-pomeron exchanges and it turns out that
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those multi-pomeron exchanges tame the growth of the total
cross section and thus restore unitarity.

Actually the possibility of a rising total cross section had
been outlined already by Heisenberg in 1952 [4004]. He used
a very simple argument based upon the range of the strong
interaction and the pion mass to indicate a possibility of a
ln2(s) rise of σtot . This argument had fallen into oblivion in
the mid’s of the seventies. Now it has turned out at each new
collider energy that σtot essentially rises as ln2(s). The full
line drawn in Fig. 331 represents one of many ln2(s) fit to the
data. In this case it is one of the COMPETE parametrisations
[4005]. In Regge theory such a ln2(s)behaviour can only
appear if the the singularity in the j-plane is a pole of order
3 i.e. a triple pole.

Does the ln2(s) rise mean that the Froissart–Martin bound
mentioned in the previous paragraph is saturated? Actually
we are far away from a saturation today. The coefficient in
front of ln2(s) term in the Froissart–Martin bound is 60 mb
and typically ln2(s) fits to the data give coefficients O(0.1
mb). Thus the bound is far away from being saturated at
LHC energy.

The rise of σtot as ln2(s) cannot be derived from QCD
today. However it is interesting to note that there have been
some attempts in lattice QCD with indications of possible
asymptotic ln2(s) behaviour [4006]. There has also been
attempts to generate a ln2(s) behaviour using gluon satura-
tion in color Glass Saturation models [4007]. This is a good
example of how perturbative and non-perturbative physics
meet giving an interesting result.

Elastic scattering
Figure 332 shows a couple of examples of the differential
elastic cross section and its t-dependence at different ener-
gies at the LHC. The measurements have been done by the
TOTEM collaboration [4008]. As mentioned in the previ-
ous paragraph the Pomeron trajectory dominates at energies
of the LHC. In terms of QCD this means a dominance of
two gluon exchange. The gross features of the t-dependence
of differential elastic cross section at high energies can be
described in terms of the Pomeron or a two gluon exchange.
The cross section falls close to exponential in the forward
direction. This means that the Pomeron–proton coupling has
an exponential fall off. There are small deviations from the
exponential that are not completely understood but might at
least partly be due to multi-pomeron exchanges.

The exponential fall-off parameter, often called the t-slope
B, also has an energy dependence. The energy dependence
of B is plotted in Fig. 333. The straight line corresponds to
a linear dependence in ln(s)

B = B0 + 2α
′
P ln(s). (12.20)

This linear dependence in ln(s) is a direct consequence
of the exchange of a Pomeron in the t-channel. The α

′
P

Fig. 332 The differential elastic cross section as a function of the four
momentum transfer t for different energies at the LHC as measured by
the TOTEM collaboration. Figure is taken from Ref. [4009]

Fig. 333 Measurements of the slope-parameter B as a function of the
center-of-mass energy

√
s for pp and p̄ p scattering . The straight line

represents a linear fit in ln(s) of of the data below
√
s = 3 TeV. Figure

taken from Ref. [4010]

parameter represents the slope of the Pomeron trajectory
αP (t) = αP (0)+ α

′
P t .

As can be seen in the figure this linear relation works well
for energies below LHC. However at the LHC the increase
with s starts to accelerate. Also this can be explained in terms
of multi-pomeron exchanges mentioned above [4011].

In Fig. 332 one can also see that after the exponential
decrease, the differential cross section exhibits a dip that
moves towards smaller t-values when the energy increases.
In the Pomeron language this is interpreted as an interfer-
ence between one pomeron exchange amplitude and multi-
pomeron exchange amplitudes making essentially the imag-
inary part of the total amplitude disappear at the dip. This
mechanism generates a dip which correctly moves towards
smaller t-values with energy.

At high values of t , beyond the dip, the cross section
decreases further in a smooth way. Here one moves away
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from the non-perturbative regime and instead one might see
signs of perturbative QCD. The triple gluon exchange pro-
posed in Ref. [4012] could be a manifestation of this.

The Odderon
As seen in the previous paragraphs the Pomeron plays an
essential role in the description of elastic scattering and the
total cross section. The situation is very different concerning
the Odderon. The Odderon is the CP = −− counter-partner
of the Pomeron and contributes with a different sign to the
amplitude for pp-scattering relative to p̄ p-scattering. The
Odderon is both controversial and non-controversial. It is
non-controversial in the sense that no one really doubts its
existence. It is a firm prediction of QCD and represents a
three gluon state in contrast to the two gluon state of the
Pomeron. What is somewhat controversial is the size of its
coupling and its importance in the elastic amplitude. To what
extent the Odderon really has manifested itself in the avail-
able experimental data is debatable (see e.g. Ref. [4013])
though the authors of Ref. [4014] claim a discovery.

Experimentally there are two different signals that have
been evoked as a sign of an Odderon. The most convincing
is probably the difference between p̄ p-scattering and pp-
scattering observed in the dip region of elastic scattering.
The p̄ p data from the D0 experiment at the Tevatron at 1.96
TeV have been compared to the pp data at 2.76 TeV from the
TOTEM experiment at the LHC [4014]. The dip is supposed
to be filled partly by the real part of the Odderon amplitude
having a different sign for pp and p̄ p-scattering. The two
distributions are shown in Fig. 334. Ideally the comparison
pp and p̄ p should be done at the same energy. However,
the authors have taken great care to compare the D0 mea-
surement with TOTEM data extrapolated to the 1.96 TeV of
the Tevatron. They find a 3.4σ difference between the two
distributions in Fig. 334.

The second possible experimental manifestation of the
Odderon is a measurement of the TOTEM experiment which
has measured theρ parameter at 13 TeV to beρ = 0.09±0.01
[4003]. This result is in contradiction to dispersion relation
calculations assuming that the standard ln2(s) behaviour of
σtot continues beyond LHC and assuming that the elastic
amplitude only contains the Pomeron contribution. Those
calculations give ρ = 0.13−0.14 (see Fig. 335 and Ref.
[4005]) thus significantly higher than the TOTEM result.

The TOTEM result could therefore be an indication that
σtot starts to grow somewhat slower beyond the LHC ener-
gies. However an alternative explanation might well be that
the low ρ value is produced by an Odderon effect. An Odd-
eron contribution to the amplitude can modify the dispersion
relation calculation in a way to give a better agreement with
the data. The effect depends on the size of the Odderon con-
tribution at a certain energy. The so called maximal Odderon

Fig. 334 Comparison between the D0 p̄ p measurement at
√
s =

1.96 TeV and the extrapolated TOTEM pp cross section rescaled to
match the optical point of the D0 measurement. The dashed lines show
the 1σ uncertainty band. Figure is taken from Ref. [4014] where more
details are given

Fig. 335 Dependence of the ρ-parameter on center-of-mass energy.
The pp(blue) and p̄ p(green) curves are taken from Ref. [4005]. Figure
is taken from Ref. [4003]

[4015] is one example that actually produces an effect agree-
ing with the TOTEM data.

To summarise: the measurement of ρ at 13 TeV may be
an indication of the Odderon but the fact that an alternative
explanation exists means that this signal can not be taken as
a hard proof of the Odderon.

12.6.3 Diffraction

In this article we have separated the discussion of elastic
scattering and diffraction but actually elastic scattering is the
dominant diffractive process. There is no unique definition
of diffraction, neither theoretically nor experimentally. A key
concept when talking about diffraction is rapidity gaps. For
elastic scattering the size of the rapidity gap (a rapidity115

region void of particles) between the two outgoing protons is

115 When dealing with a particle whose mass is negligible compared
with its energy, the pseudorapidity = − ln (tan(θ /2)) is a good approxi-
mation to the rapidity. Here θ is the polar angle of the particle. In this

123



 1125 Page 444 of 636 Eur. Phys. J. C          (2023) 83:1125 

Fig. 336 Feynman diagrams for different diffractive topologies. IP
stands for Pomeron and p for proton while X represents the diffractive
systems. Below each diagram is also shown the corresponding rapidity
distribution of the outgoing particles. Figure taken from Ref. [4016]

at its kinematical limit. In general a diffractive event is char-
acterized by a rapidity gap which is significant larger than
possible fluctuations in the hadronization process.Typical
this means rapidity gaps bigger than 4–5 units of rapidity
at LHC energies. Depending on the topology of the rapidity
gaps one talks about different types of diffractive events. This
is illustrated in Fig. 336 where the topologies, elastic, single
dissociation and double dissociation are shown. Below the
Feynman diagrams are also illustrated schematically the cor-
responding rapidity distributions of the outgoing particles.

All these topologies are characterized by the exchange of
the Pomeron in the t-channel or in other words an exchange
of a a color singlet state of two gluons.

It is not always possible to map the experimental data
directly to the different topologies seen in Fig. 336. In general
it is difficult to measure diffraction at high energy colliders,
especially diffractive system with a low mass. For low mass
systems a large fraction of the diffractively produced particles
are emitted in the very forward direction and lost in the beam
pipe.

Experimentally there are two ways to select diffractive
events. Either to look for rapidity gaps or use so called pro-
ton tagging. Proton tagging implies that one or both of the
two intact protons actually are detected and measured. This
requires small and sophisticated detectors situated as close
as possible to the beam line. In practice, the detectors have to
be placed at distances of a mm or smaller from the beam and
thus the vessels containing the detectors have to be integrated
in the beampipe. This technique, using so called Roman Pots,
was introduced by the CERN–Rome group at the ISR half a
century ago and is still used as the main technique to approach
the beam [3994].

Here we will limit ourselves to discuss the simplest topol-
ogy in Fig. 336, i.e. single diffraction. As an example we
show in Fig. 337 the distribution of the experimental gap
size Δη f measured by ATLAS at 7 TeV for particles with
pT > 200 MeV[4017]. The true gap size is Δη = Δη f +4 in

article we do not make the distinction between rapidity and pseudora-
pidity.

Fig. 337 Inelastic cross section differential in the experimental gap
size Δη f measured by ATLAS at 7 TeV for particles with pT > 200
MeV. Figure taken from Ref. [4017]. See text in Ref. [4017] for further
details

this example. The size of the rapidity gap is directly related
to the mass Mx of the diffracted system.

Δη � −ln(ξx ) (12.21)

with

ξx = M2
x

s
(12.22)

The larger the rapidity gap is the smaller is the produced
mass.

In Fig. 337 one can clearly see the difference between
non diffractive and diffractive events. At small gap sizes
Δη f < 2, non diffractive events dominate and the expected
exponential decrease of the cross section with increasing
gap size which characterize the fluctuations of the hadro-
nisation is the dominant feature. On the other hand for gap
sizes Δη f > 3 there is a rather flat plateau, which corre-
sponds mainly to single diffractive processes. The largest
rapidity gap size bin at the end of the plateau in Fig. 337
corresponds to diffractive masses larger than about 15 GeV
and thus the plateau corresponds to masses above and equal
15 GeV. The cross section on the plateau is roughly 1 mb
per unit of rapidity gap size. In the Regge theory, such type
of high mass diffraction is characterized by a triple Pomeron
coupling which actually predicts such a plateau. In pertur-
bative QCD a triple Pomeron coupling of the same order of
magnitude is found [4018].

Measurements at masses much lower than this are very
difficult at high center of mass energies. There exist measure-
ments down to masses of 3–4 GeV but they are scarce and
often contradictory. Moreover also theoretically the estimates
of low mass diffraction are notorious difficult and uncertain.
Actually the uncertainties related to low mass diffraction con-
stitute the largest uncertainty of the total cross section mea-
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surements by the TOTEM experiment using the so called
luminosity independent method which requires an estimate
of the total inelastic cross section including low mass diffrac-
tion (see e.g. Ref. [4010]).

12.6.4 “Soft” and “hard” diffraction

This article deals with “soft” diffraction but this is of course a
somewhat arbitrary classification and in this section the con-
cept of “hard” diffraction will also briefly be touched upon.
A part of diffractive events has a hard scale present.The hard
scale is often given by a diffractively produced heavy sys-
tem such as for example dijets, W or Z bosons, or heavy
quarks. With such a hard scale present, perturbative QCD
is applicable. There is actually no sharp distinction between
what is called “soft” diffraction and “hard” diffraction but
rather a smooth transition between the two. Often the pertur-
bative approach is extended into the soft domain in a gradual
manner using a unified framework. This has led to the con-
cept of a “soft” Pomeron and a separate and different “hard”
QCD Pomeron. This distinction between different Pomerons
is very likely an oversimplification of a more complex situ-
ation.
The data seem to indicate a “hard” Pomeron with the inter-
cept α(0) � 1.3−1.5 with a small slope α′ in contrast to the
“effective” Pomeron which is relevant for elastic scattering
and the total cross section with an intercept of α(0) = 1.08
and a slope α′ = 0.25 as mentioned in Sect. 12.6.2. This
means that when a hard scale is involved the energy depen-
dence is steeper relative to soft diffraction (see Eq. 12.18).
Taking diffractive vector meson production at HERA as an
example: the energy dependence of the γ ∗p cross section for
J/ψ production corresponds to an intercept α(0) � 1.4 (see
Refs. [4019,4020]). Such an intercept of the hard Pomeron,
represented by a two gluon state, agrees with what has
been calculated in perturbative QCD by re-summation of
the leading logarithms. The small slope α′ of the “hard”
Pomeron is also reproduced in perturbative QCD calcula-
tions [4021].
Hard diffraction has extensively been studied at HERA in
γ ∗ p processes and the results have been interpreted in terms
of diffractive Parton Distribution Functions of the Pomeron
and a Pomeron flux factor based upon Regge theory [3629].
It was shown within QCD that factorization is valid for
diffractive hard scattering in γ ∗ p processes [4022]. How-
ever, using the same formalism and using the DPDF’s deter-
mined at HERA from γ ∗ p processes applied to p̄ p pro-
cesses at the Tevatron gives about an order of magnitude
too high cross section for QCD jet production (see e.g.
[4023]). At the Tevatron the process is completely hadronic,
and the reduction of the cross section is thought to be due
to the fact that in 90% of the cases the rapidity gap is
filled or partially filled by hadron remnants which are not

Fig. 338 Schematic drawing illustrating a typical Underlying Event.
Figure taken from ATLAS slides ATL-PHYS-SLIDE-2013-330

present in γ ∗ p processes. In this case, the factorisation using
diffractive DPDF’s suggested by the HERA data breaks
down.

12.6.5 The underlying event

The underlying event is not to be confused with Minimum
Bias Events. As the name indicates, minimum bias events are
events collected with as little bias as possible. The concept
of Underlying Event (UE) is different. Here one refers to
events that contain a hard parton–parton interaction and the
term underlying event refers to all the activity that accompa-
nies the hard scatter but is not a part of it. The Underlying
Event has several different components. There are contribu-
tions from initial and final-state radiation but also particles
from the proton break-up so called beam–beam remnants
contribute. An important part of the Underlying Events con-
sists of Multiple Parton Interactions (MPI) i.e. one or more
soft interactions together with a hard interaction within the
same pp interaction. In Fig. 338 a typical UE is shown in
schematized way.

A good description of the UE is needed to extract the
relevant signals from the hard scatter and rely upon MC
generators which are based upon different phenomenolog-
ical approaches. Many input parameters in the MC genera-
tors parameters have to be tuned with data. To get informa-
tion relevant for the UE the event is often divided into dif-
ferent regions of the phase space as indicated in Fig. 339.
Normally a “transverse” region is defined relative to the
azimuthal angle of the leading pT particle. This region is
then taken as the reference region for the underlying event. In
Fig. 340 is shown an example of the mean charged-particle
multiplicity as a function of the leading pT for the differ-
ent regions around the leading particle [4024]. All regions
exhibit a fast rise at low pT up to a pT of about 5 GeV.
Here there are no real “hard” processes present. However at
higher pT , hard processes start to dominate and the trans-
verse region which is decoupled from the hard scatter reach
a plateau.
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Fig. 339 Definition of regions in the azimuthal angle with respect to
the leading (highest-pT ) charged particle, with arrows representing par-
ticles associated with the hard scattering process and the leading charged
particle highlighted in red. Conceptually, the presence of a hard-scatter
particle on the right-hand side of the transverse region, increasing its
ΣpT , typically leads to that side being identified as the “trans-max” and
hence the left-hand side as the “trans-min”, with maximum sensitivity
to the UE. Figure taken from Ref. [4024]

Fig. 340 Mean η − φ densities of charged-particle multiplicities as
a function of the transverse momentum of the leading charged parti-
cle in the transverse, towards, and away azimuthal regions. The error
bars, which are mostly hidden by the data markers, represent combined
statistical and systematic uncertainty. Figure taken from Ref. [4024]

12.6.6 Charged particle density

The charged particle density as a function of rapidity is an
important observable in pp collisions. The measurement cov-
ering the largest rapidity interval has been done by a com-

Fig. 341 Charged particle pseudorapidity distributions obtained in pp
collisions at

√
s = 8 TeV for inelastic events as measured by the CMS

and TOTEM experiments. The colored bands show the combined sys-
tematic and statistical uncertainties and the error bars represent the η

uncorrelated uncertainties. The colored lines represents different model
predictions. Figure taken from Ref. [4025]

bination of CMS and TOTEM at the LHC [4025,4026]. The
result of their measurement is shown in Fig. 341.

To describe the entire rapidity interval models must be
able to combine and connect perturbative QCD with non-
perturbative approaches. The experimental points are com-
pared to a number of different models which are available.
The approaches are different but there are also several com-
mon elements in the models. As can be seen the gross fea-
tures of the distribution are reasonably well described by the
models.

The density at η = 0 as a function of the centre of mass
energy has been plotted in Fig. 342 using data from the Sp p̄S
collider and the Tevatron in addition to the LHC data [4026].
The data points have been fitted with a power law. It is inter-
esting to note that the increase of the density at η = 0 is
faster than the increase of the total cross section with energy.
This can be understood in terms of Pomeron interaction. To
calculate an inclusive cross section like the density at η = 0
it is enough to use a one-pomeron exchange diagram. For
the total cross section on the other hand one has to take into
account multi-pomeron exchanges which tames the rise of
the total cross section.

12.6.7 Conclusion

As mentioned in the introduction “soft” processes cover a
large part of the total cross section. Collider experiments,
at HERA and the Tevatron and now also at LHC, have pro-
duced a large amount of measurements related to low pT
reactions. The large rapidity coverage of the LHC detec-
tors, and dedicated small angle experiments such as TOTEM,
have offered new possibilities and there is still more to
come. Moreover, the high center-of-mass energy of the LHC
means that kinematically a larger rapidity range is avail-
able which opens up a window of studies where a separa-
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