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Abstract Quantum Chromodynamics, the theory of quarks
and gluons, whose interactions can be described by a local
SU(3) gauge symmetry with charges called “color quantum
numbers”, is reviewed; the goal of this review is to provide
advanced Ph.D. students a comprehensive handbook, help-
ful for their research. When QCD was “discovered” 50 years
ago, the idea that quarks could exist, but not be observed,
left most physicists unconvinced. Then, with the discovery
of charmonium in 1974 and the explanation of its excited
states using the Cornell potential, consisting of the sum of
a Coulomb-like attraction and a long range linear confin-
ing potential, the theory was suddenly widely accepted. This
paradigm shift is now referred to as the November revolu-
tion. It had been anticipated by the observation of scaling in
deep inelastic scattering, and was followed by the discov-
ery of gluons in three-jet events. The parameters of QCD
include the running coupling constant, αs(Q2), that varies
with the energy scale Q2 characterising the interaction, and
six quark masses. QCD cannot be solved analytically, at
least not yet, and the large value of αs at low momentum
transfers limits perturbative calculations to the high-energy
region where Q2 � Λ2

QCD � (250 MeV)2. Lattice QCD
(LQCD), numerical calculations on a discretized space-time
lattice, is discussed in detail, the dynamics of the QCD vac-
uum is visualized, and the expected spectra of mesons and
baryons are displayed. Progress in lattice calculations of
the structure of nucleons and of quantities related to the
phase diagram of dense and hot (or cold) hadronic matter
are reviewed. Methods and examples of how to calculate
hadronic corrections to weak matrix elements on a lattice
are outlined. The wide variety of analytical approximations
currently in use, and the accuracy of these approximations,
are reviewed. These methods range from the Bethe–Salpeter,
Dyson–Schwinger coupled relativistic equations, which are
formulated in both Minkowski or Euclidean spaces, to expan-
sions of multi-quark states in a set of basis functions using
light-front coordinates, to the AdS/QCD method that imbeds
4-dimensional QCD in a 5-dimensional deSitter space, allow-
ing confinement and spontaneous chiral symmetry breaking
to be described in a novel way. Models that assume the num-
ber of colors is very large, i.e. make use of the large Nc-
limit, give unique insights. Many other techniques that are
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tailored to specific problems, such as perturbative expansions
for high energy scattering or approximate calculations using
the operator product expansion are discussed. The very pow-
erful effective field theory techniques that are successful for
low energy nuclear systems (chiral effective theory), or for
non-relativistic systems involving heavy quarks, or the treat-
ment of gluon exchanges between energetic, collinear par-
tons encountered in jets, are discussed. The spectroscopy of
mesons and baryons has played an important historical role
in the development of QCD. The famous X,Y,Z states – and
the discovery of pentaquarks – have revolutionized hadron
spectroscopy; their status and interpretation are reviewed as
well as recent progress in the identification of glueballs and
hybrids in light-meson spectroscopy. These exotic states add
to the spectrum of expected qq̄ mesons and qqq baryons.
The progress in understanding excitations of light and heavy
baryons is discussed. The nucleon as the lightest baryon is
discussed extensively, its form factors, its partonic structure
and the status of the attempt to determine a three-dimensional
picture of the parton distribution. An experimental program
to study the phase diagram of QCD at high temperature and
density started with fixed target experiments in various lab-
oratories in the second half of the 1980s, and then, in this
century, with colliders. QCD thermodynamics at high tem-
perature became accessible to LQCD, and numerical results
on chiral and deconfinement transitions and properties of
the deconfined and chirally restored form of strongly inter-
acting matter, called the Quark–Gluon Plasma (QGP), have
become very precise by now. These results can now be con-
fronted with experimental data that are sensitive to the nature
of the phase transition. There is clear evidence that the QGP
phase is created. This phase of QCD matter can already be
characterized by some properties that indicate, within a tem-
perature range of a few times the pseudocritical temperature,
the medium behaves like a near ideal liquid. Experimental
observables are presented that demonstrate deconfinement.
High and ultrahigh density QCD matter at moderate and low
temperatures shows interesting features and new phases that
are of astrophysical relevance. They are reviewed here and
some of the astrophysical implications are discussed. Pertur-
bative QCD and methods to describe the different aspects
of scattering processes are discussed. The primary parton–
parton scattering in a collision is calculated in perturba-
tive QCD with increasing complexity. The radiation of soft
gluons can spoil the perturbative convergence, this can be
cured by resummation techniques, which are also described
here. Realistic descriptions of QCD scattering events need to
model the cascade of quark and gluon splittings until hadron
formation sets in, which is done by parton showers. The full
event simulation can be performed with Monte Carlo event
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generators, which simulate the full chain from the hard inter-
action to the hadronic final states, including the modelling of
non-perturbative components. The contribution of the LEP
experiments (and of earlier collider experiments) to the study
of jets is reviewed. Correlations between jets and the shape
of jets had allowed the collaborations to determine the “color
factors” – invariants of the SU(3) color group governing the
strength of quark–gluon and gluon–gluon interactions. The
calculated jet production rates (using perturbative QCD) are
shown to agree precisely with data, for jet energies span-
ning more than five orders of magnitude. The production of
jets recoiling against a vector boson, W± or Z , is shown to
be well understood. The discovery of the Higgs boson was
certainly an important milestone in the development of high-
energy physics. The couplings of the Higgs boson to massive
vector bosons and fermions that have been measured so far
support its interpretation as mass-generating boson as pre-
dicted by the Standard Model. The study of the Higgs boson
recoiling against hadronic jets (without or with heavy flavors)
or against vector bosons is also highlighted. Apart from the
description of hard interactions taking place at high energies,
the understanding of “soft QCD” is also very important. In
this respect, Pomeron – and Odderon – exchange, soft and
hard diffraction are discussed. Weak decays of quarks and
leptons, the quark mixing matrix and the anomalous mag-
netic moment of the muon are processes which are governed
by weak interactions. However, corrections by strong inter-
actions are important, and these are reviewed. As the mea-
sured values are incompatible with (most of) the predictions,
the question arises: are these discrepancies first hints for New
Physics beyond the Standard Model? This volume concludes
with a description of future facilities or important upgrades of
existing facilities which improve their luminosity by orders
of magnitude. The best is yet to come!
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Preface

Quantum Chromodynamics or QCD was developed and
defined over a brief period from 1972–1973. One of us (EK)
wrote an article early in 2021 on the scalar glueball and
searched the literature to find where glueballs were first
mentioned. This was at the 16th International Conference on
High-Energy Physics (ICHEP 72). In the winter of 2021/2022
he thought it was time to prepare a volume dedicated to
50 Years of QCD. He got approval from the EJPC, and asked
FG to join the effort. Here is the result.

It’s been quite an adventure to guide and prepare this vol-
ume. From the start it was to be published as a single article,
organized and edited by the two coeditors, with integrated
contributions from invited scientists familiar with all aspects
of the subject. Our initial outline included only eight sections,
but as we got advice from our conveners and early contribu-
tors, the number of sections grew to the 14 you see here, and
in some cases the number of subsections in each section also
grew. The subject is both beautiful and vast, and keeping this
volume “limited” in length was a real challenge.

Our goal was to prepare a volume for young Ph.Ds and
postdocs that could serve as a readable resource and intro-
duction to specialties outside of their own field of research –
a shortcut to acquiring the broad familiarity that usually takes

time to acquire. We also invited our contributors to reflect on
how they developed their ideas/insights, usually discouraged
in scientific articles. We believe that what has resulted is truly
unique.

The volume begins with the personal reflections of two
scientists who were contributors to the foundations of QCD
(Sect. 1), and follows with three early developments that
quickly showed that QCD as on the right track (Sect. 2).
Prominent among these was the “November revolution,”
where the discovery and explanation of the states of char-
monium lead quickly to the Cornell potential and an early
description of why quarks could not be seen, convincing
many doubters that quarks were real.

After establishing that the QCD fine structure constant,
αs , is too large at hadronic scales for perturbation theory
to work (Sect. 3), we describe in some detail Lattice QCD
(Sect. 4), believed now to be the only method that can give
exact predictions for QCD (with numerical errors, of course,
which are decreasing rapidly as the computations and com-
puters improve). Unfortunately, Lattice QCD does not give
much of an intuitive picture of how the physics works, so
approximate analytic methods are needed (and will probably
always be needed) and these are summarized in Sects. 5 and 6,
including effective field theories, a powerful tool with many
applications. Perhaps some day we will have exact analytic
solutions, but not today.

From there our account turns to experimental manifes-
tations of QCD (with theoretical support), starting with the
exploration of the QCD phase diagram in heavy ion colli-
sions and in dense matter (Sect. 7), followed by the study
of mesons (Sect. 8) and baryons (Sect. 9) that reveal the
existence of “exotic” states like glueballs, hybrids, hadronic
molecules, and tetra- and pentaquarks. A special focus is
given to the nucleon and its structure (Sect. 10). Then, colli-
sions at high energies are discussed, from the hard scattering
of two partons followed by their hadronization (Sect. 11); the
production and identification of jets of particles culminated
in the discovery of the Higgs boson and measurements of its
properties (Sect. 12); weak decays, precision analyses of the
quark mixing matrix, and the anomalous magnetic moment
of muons that show the first hints of New Physics beyond
the Standard Model (Sect. 13). The volume concludes with
a brief account of experimental projects under construction
or already funded (Sect. 14). We do not discuss the many
exciting theoretical or experimental ideas that are currently
in the drawing board, or as theorists sometimes say, on the
“second sheet” (when they are joking about wonderful ideas
still in an imaginative state). These we save for the next vol-
ume!

It has been a great experience for us to work on this
volume; we hope you will find some pleasure in skimming
through it.
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1 Theoretical Foundations

Conveners:
Franz Gross and Eberhard Klempt
It was a long path before the principles of Quantum Chromo-
dynamics could be formulated. With the discovery of elec-
trons by Thompson in 1897, protons by Rutherford in 1917,
neutrons by Chadwick in 1932, and the prediction of neu-
trinos by Pauli in 1930, the basis was completed of what
we now call “the first generation of elementary particles”.
With pions as mediators of the strong interaction – pro-
posed by Yukawa in 1935 and confirmed by Powell and his
collaborators in 1947, a consistent picture of particles and
their interactions, gravitational, electromagnetic, weak and
strong, seemed to have emerged. Only the muon, discovered
in 1936, was superfluous. It could not be an excited state of
the electron, there was no μ → eγ decay. Hence Isidor I.
Rabi asked: “Who ordered that”? Nowadays, the muon has
a well defined place as member of the second lepton family
in analogy to the electron in the first lepton family.

But then, the number of particles grew rapidly: the charged
Kaon was discovered, the Λ and the Σ . Some particles like
the Δ(1232) baryon were found to be extremely short-lived.
More and more resonances were found, their number started
to explode. Attempts to break up protons or neutrons into
“truly elementary” constituents by bombardment of protons
with energetic particles failed.

A theory to understand the zoo of particles was missing.
“Nuclear democracy” was declared: all particles were sup-
posed to be “elementary” and be formed by forces arising
from the exchange of these particles. Reactions were studied
within S-matrix theory, Regge pole analysis, dispersion rela-
tion and other theorems derived in function theory. A field
theory of strong interactions was thought to be impossible.

The early development or “discovery” of QCD proceeded
in three steps: the first step was the quark model by Gell-
Mann and Zweig which allowed the zoo of particles to be
organized into multiplets under the SU(3) symmetry when
baryons were thought of as composed of three quarks and
mesons of a quark and an antiquark. The Pauli principle then
required a quark property for which Gell-Mann coined the
name color. The second step was the idea that color could
be the charge of strong interaction, and that colored quarks
would interact by the exchange of gluons carrying color
themselves.

One problem remained: in spite of excessive searches, no
quarks were observed even when nucleons were bombarded
with projectiles of the highest energy available at that time.
This problem was solved in the breakthrough papers of Gross,
Wilczek and Politzer demonstrating that the observation of
quasi-free quarks (asymptotic freedom) in deep inelastic scat-
tering is compatible with strong confining forces (infrared
slavery).

This first section contains two personal accounts of the
early development or “discovery” of QCD. Leutwyler’s con-
tribution starts with a broad picture of the chaotic state of
“theories” of the strong interactions in the 1960s and carries
us through to the present day. He describes how many thought
field theory could not work for the description of “nuclear
forces.” They thought the use of dispersion relations and uni-
tarity would provide a better approach, but now we know that
these are only useful tools. His discussion of how the exact
and approximate symmetries of QCD lead to an understand-
ing of the mass scales of the quarks shows how much the
development of QCD and the standard model have brought
order out of chaos, and have led to a deep understanding of
the physics.

The second contribution by Fritzsch gives a more focused
and personal account of how some issues that had to be sur-
mounted before QCD became the accepted theory of the
strong forces. He describes several arguments that led them
to the necessity for three colors of quarks (and the SU(3)
color symmetry). He reminds us that QCD and the existence
of quarks did not become widely accepted until the discov-
ery of the J/ψ , among the topics discussed in the following
Sect. 2.

Both of these accounts of the history and the physics are
exciting to read, and a broad introduction to this volume. We
hope you will enjoy them as much as we have.

1.1 The strong interaction1

Heinrich Leutwyler

1.1.1 Beginnings

The discovery of the neutron in 1932 [2] may be viewed as the
birth of the strong interaction: it indicated that the nuclei con-
sist of protons and neutrons and hence the presence of a force
that holds them together, strong enough to counteract the
electromagnetic repulsion. Immediately thereafter, Heisen-
berg introduced the notion of isospin as a symmetry of the
strong interaction, in order to explain why proton and neutron
nearly have the same mass [3]. In 1935, Yukawa pointed out
that the nuclear force could be generated by the exchange of a
hypothetical spinless particle, provided its mass is intermedi-
ate between the masses of proton and electron – a meson [4].
Today, we know that such a particle indeed exists: Yukawa
predicted the pion. Stueckelberg pursued similar ideas, but
was mainly thinking about particles of spin 1, in analogy with
the particle that mediates the electromagnetic interaction [5].

In the thirties and fourties of the last century, the under-
standing of the force between two nucleons made consider-

1 The present section is an extended version of my lecture notes On the
history of the strong interaction [1].
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able progress, in the framework of nonrelativistic potential
models. These are much more flexible than quantum field the-
ories. Suitable potentials that are attractive at large distances
but repulsive at short distances do yield a decent understand-
ing of nuclear structure: Paris potential, Bonn potential, shell
model of the nucleus. In this framework, nuclear reactions,
in particular the processes responsible for the luminosity of
the sun, stellar structure, α-decay and related matters were
well understood more than 60 years ago.

These phenomena concern interactions among nucleons
with small relative velocities. Experimentally, it had become
possible to explore relativistic collisions, but a description in
terms of nonrelativistic potentials cannot cover these. In the
period between 1935 and 1965, many attempts at formulating
a theory of the strong interaction based on elementary fields
for baryons and mesons were made. In particular, uncount-
able PhD theses were written, based on local interactions of
the Yukawa type, using perturbation theory to analyze them.
The coupling constants invariably turned out to be numer-
ically large, indicating that the neglect of the higher order
contributions was not justified. Absolutely nothing worked
even half way.

Although there was considerable progress in understand-
ing the general principles of quantum field theory (Lorentz
invariance, unitarity, crossing symmetry, causality, analytic-
ity, dispersion relations, CPT theorem, spin and statistics)
as well as in renormalization theory, faith in quantum field
theory was in decline, even concerning QED (Landau pole).
To many, the renormalization procedure – needed to arrive
at physically meaningful results – looked suspicious, and
it appeared doubtful that the strong interaction could at all
be described by means of a local quantum field theory. Some
suggested that this framework should be replaced by S-matrix
theory – heated debates concerning this suggestion took place
at the time [6]. Regge poles were considered as a promising
alternative to the quantum fields (the Veneziano model is born
in 1968 [7]). Sixty years ago, when I completed my studies,
the quantum field theory of the strong interaction consisted
of a collection of beliefs, prejudices and assumptions. Quite
a few of these turned out to be wrong.

1.1.2 Flavor symmetries

Symmetries that extend isospin to a larger Lie group pro-
vided the first hints towards an understanding of the structure
underneath the strong interaction phenomena. The introduc-
tion of the strangeness quantum number and the Gell-Mann–
Nishijima formula [8,9] was a significant step in this direc-
tion. Goldberger and Treiman [10] then showed that the axial
vector current plays an important role, not only in the weak
interaction (the pion-to-vacuum matrix element of this cur-
rent – the pion decay constant Fπ – determines the rate of
the weak decay π → μν) but also in the context of the

strong interaction: the nucleon matrix element of the axial
vector current, gA, determines the strength of the interaction
between pions and nucleons:

gπN = gAMN/Fπ .

At low energies, the main characteristic of the strong inter-
action is that the energy gap is small: the lightest state occur-
ring in the eigenvalue spectrum of the Hamiltonian is the
pion, with2 Mπ � 135 MeV, small compared to the mass
of the proton, Mp � 938 MeV. In 1960, Nambu found out
why that is so: it has to do with a hidden, approximate, con-
tinuous symmetry [11]. Since some of its generators carry
negative parity, it is referred to as a chiral symmetry. For
this symmetry to be consistent with observation, it is essen-
tial that an analog of spontaneous magnetization occurs in
particle physics: for dynamical reasons, the state of lowest
energy – the vacuum – is not symmetric under chiral transfor-
mations. Consequently, the symmetry cannot be seen in the
spectrum of the theory: it is hidden or spontaneously broken.
Nambu realized that the spontaneous breakdown of a con-
tinuous symmetry entails massless particles analogous to the
spin waves of a magnet and concluded that the pions must
play this role. If the strong interaction was strictly invariant
under chiral symmetry, there would be no energy gap at all
– the pions would be massless.3 Conversely, since the pions
are not massless, chiral symmetry cannot be exact – unlike
isospin, which at that time was taken to be an exact sym-
metry of the strong interaction. The spectrum does have an
energy gap because chiral symmetry is not exact: the pions
are not massless, only light. In fact, they represent the lightest
strongly interacting particles that can be exchanged between
two nucleons. This is why, at large distances, the potential
between two nucleons is correctly described by the Yukawa
formula.

The discovery of the Eightfold Way by Gell-Mann and
Ne’eman paved the way to an understanding of the mass pat-
tern of the baryons and mesons [13,14]. Like chiral sym-
metry, the group SU(3) that underlies the Eightfold Way
represents an approximate symmetry: the spectrum of the
mesons and baryons does not consist of degenerate multi-
plets of this group. The splitting between the energy levels,
however, does exhibit a pattern that can be understood in
terms of the assumption that the part of the Hamiltonian that
breaks the symmetry transforms in a simple way. This led to
the Gell-Mann–Okubo formula [14,15] and to a prediction
for the mass of the Ω−, a member of the baryon decuplet
which was still missing, but was soon confirmed experimen-
tally, at the predicted place [16].

2 I am using natural units where h̄ = c = 1.
3 A precise formulation of this statement, known as the Goldstone the-
orem, was given later [12].
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1.1.3 Quark model

In 1964, Gell-Mann [17] and Zweig [18] pointed out that the
observed pattern of baryons can qualitatively be understood
on the basis of the assumption that these particles are bound
states built with three constituents, while the spectrum of
the mesons indicates that they contain only two of these.
Zweig called the constituents “aces”. Gell-Mann coined the
term “quarks”, which is now commonly accepted. The Quark
Model gradually evolved into a very simple and successful
semi-quantitative framework, but gave rise to a fundamental
puzzle: why do the constituents not show up in experiment?
For this reason, the existence of the quarks was considered
doubtful: “Such particles [quarks] presumably are not real
but we may use them in our field theory anyway …” [19].
Quarks were treated like the veal used to prepare a pheasant
in the royal french cuisine: the pheasant was baked between
two slices of veal, which were then discarded (or left for the
less royal members of the court). Conceptually, this was a
shaky cuisine.

If the flavor symmetries are important, why are they not
exact? Gell-Mann found a beautiful explanation: current
algebra [14,19]. The charges form an exact algebra even
if they do not commute with the Hamiltonian and the frame-
work can be extended to the corresponding currents, irrespec-
tive of whether or not they are conserved. Adler and Weis-
berger showed that current algebra can be tested with the
sum rule that follows from the nucleon matrix element of the
commutator of two axial vector charges [20,21]. Weinberg
then demonstrated that even the strength of the interaction
among the pions can be understood on the basis of current
algebra: the ππ scattering lengths can be predicted in terms
of the pion decay constant [22].

1.1.4 Behavior at short distances

Bjorken had pointed out that if the nucleons contain point-
like constituents, then the ep cross section should obey scal-
ing laws in the deep inelastic region [23]. Indeed, the scat-
tering experiments carried out by the MIT-SLAC collabo-
ration in 1968/69 did show experimental evidence for such
constituents. Feynman called these partons, leaving it open
whether they were the quarks or something else. For an
account of the experimental developments, see the Nobel
lectures of Taylor, Kendall and Friedman [24–26]. The com-
parison of the data on νp and ν̄ p scattering from Gargamelle
[27,28] with the MIT-SLAC results confirmed that the par-
tons indeed have fractional charges compatible with the pre-
dicted charges of quarks,+ 2

3e and− 1
3e. The evaluation of a

sum rule for the momenta of the charged partons showed that
(in the infinite momentum frame) half of the proton momen-
tum is carried by neutral partons; now we know that these
are gluons. Later, the CDHS collaboration also demonstrated

that the quarks do have spin s = 1/2 while the gluons have
spin s = 1 [29].

The operator product expansion turned out to be a very
useful tool for the short distance analysis of the theory –
the title of the paper where it was introduced [30], “Non-
lagrangian models of current algebra,” reflects the general
skepticism towards Lagrangian quantum field theory that I
mentioned in Sect. 1.1.1.

1.1.5 Color

The Quark Model was difficult to reconcile with the spin-
statistics theorem which implies that particles of spin 1

2 must
obey Fermi statistics. Greenberg proposed that the quarks
obey neither Fermi-statistics nor Bose-statistics, but “para-
statistics of order three” [31]. The proposal amounts to the
introduction of a new internal quantum number. Indeed,
Bogolyubov, Struminsky and Tavkhelidze [32], Han and
Nambu [33] and Miyamoto [34] independently pointed out
that some of the problems encountered in the quark model
disappear if the u, d and s quarks occur in 3 states. Gell-Mann
coined the term “color” for the new quantum number.

One of the possibilities considered for the interaction that
binds the quarks together was an abelian gauge field analo-
gous to the e.m. field, but this gave rise to problems, because
the field would then interfere with the other degrees of free-
dom. Fritzsch and Gell-Mann pointed out that if the gluons
carry color, then the empirical observation that quarks appear
to be confined might also apply to them: the spectrum of the
theory might exclusively contain color neutral states [35].

In his lectures at the Schladming Winter School in 1972
[36], Gell-Mann thoroughly discussed the role of the quarks
and gluons: theorists had to navigate between Scylla and
Charybdis, trying to abstract neither too much nor too little
from models built with these objects. The basic tool at that
time was current algebra on the light cone. He invited me
to visit Caltech. I did that during three months in the spring
break of 1973 and spent an extremely interesting period there.
The personal recollections of Harald Fritzsch (see Sect. 1.2)
describe the developments that finally led to Quantum Chro-
modynamics.

As it was known already that the electromagnetic and
weak interactions are mediated by gauge fields, the idea that
color might be a local symmetry as well does not appear as
far fetched. The main problem at the time was that for a gauge
field theory to describe the hadrons and their interaction, it
had to be fundamentally different from the quantum field
theories encountered in nature so far: all of these, includ-
ing the electroweak theory, have the spectrum indicated by
the degrees of freedom occurring in the Lagrangian: photons,
leptons, intermediate bosons, … The proposal can only make
sense if this need not be so, that is if the spectrum of physical
states in a quantum field theory can differ from the spectrum
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of the fields needed to formulate it: gluons and quarks in the
Lagrangian, hadrons in the spectrum. This looked like wish-
ful thinking. How come that color is confined while electric
charge is free?

1.1.6 Electromagnetic interaction

The final form of the laws obeyed by the electromagnetic
field was found by Maxwell, around 1860 – these laws sur-
vived relativity and quantum theory, unharmed. Fock pointed
out that the Schrödinger equation for electrons in an electro-
magnetic field,

1

i

∂ψ

∂t
− 1

2m2
e
( �∇ + i e �A)2ψ − e ϕ ψ = 0, (1.1)

is invariant under a group of local transformations:

�A ′(x) = �A(x)+ �∇α(x), ϕ ′(x) = ϕ(x)− ∂α(x)

∂t
ψ(x)′ = e−ieα(x) ψ(x), (1.2)

in the sense that the fields �A′, ϕ′, ψ ′ describe the same physi-
cal situation as �A, ϕ, ψ [37]. Weyl termed these gauge trans-
formations (with gauge group U(1) in this case). In fact, the
electromagnetic interaction is fully characterized by symme-
try with respect to this group: gauge invariance is the crucial
property of this interaction.

I illustrate the statement with the core of Quantum Elec-
trodynamics: photons and electrons. Gauge invariance allows
only two free parameters in the Lagrangian of this sys-
tem: e,me. Moreover, only one of these is dimension-
less: e2/4π = 1/137.035 999 084 (21). U(1) symmetry
and renormalizability fully determine the properties of the
e.m. interaction, except for this number, which so far still
remains unexplained.

1.1.7 Nonabelian gauge fields

Kaluza [38] and Klein [39] had shown that a 5-dimensional
Riemann space with a metric that is independent of the
fifth coordinate is equivalent to a 4-dimensional world with
gravity, a gauge field and a scalar field. In this framework,
gauge transformations amount to a shift in the fifth direc-
tion: x5′ = x5 + α(�x, t). In geometric terms, a metric space
of this type is characterized by a group of isometries: the
geometry remains the same along certain directions, indi-
cated by Killing vectors. In the case of the 5-dimensional
spaces considered by Kaluza and Klein, the isometry group
is the abelian group U(1). The fifth dimension can be com-
pactified to a circle – U(1) then generates motions on this
circle. A particularly attractive feature of this theory is that
it can explain the quantization of the electric charge: fields
living on such a manifold necessarily carry integer multiples
of a basic charge unit.

Pauli noticed that the Kaluza-Klein scenario admits a nat-
ural generalization to higher dimensions, where larger isom-
etry groups find place. Riemann spaces of dimension > 5
admit nonabelian isometry groups that reduce the system to a
4-dimensional one with gravity, nonabelian gauge fields and
several scalar fields. Pauli was motivated by the isospin sym-
metry of the meson-nucleon interaction and focused atten-
tion on a Riemann space of dimension 6, with isometry group
SU(2).

Pauli did not publish the idea that the strong interaction
might arise in this way, because he was convinced that the
quanta of a gauge field are massless: gauge invariance does
not allow one to put a mass term into the Lagrangian. He
concluded that the forces mediated by gauge fields are neces-
sarily of long range and can therefore not mediate the strong
interaction, which is known to be of short range. More details
concerning Pauli’s thoughts can be found in [40]. The paper
of Yang and Mills appeared in 1954 [41]. Ronald Shaw, a stu-
dent of Salam, independently formulated nonabelian gauge
field theory in his PhD thesis [42]. Ten years later, Higgs [43],
Brout and Englert [44] and Guralnik, Hagen and Kibble [45]
showed that Pauli’s objection is not valid in general: in the
presence of scalar fields, gauge fields can pick up mass, so
that forces mediated by gauge fields can be of short range.
The work of Glashow [46], Weinberg [47] and Salam [48]
then demonstrated that nonabelian gauge fields are relevant
for physics: the framework discovered by Higgs et al. does
accommodate a realistic description of the e.m. and weak
interactions.

1.1.8 Asymptotic freedom

Already in 1965, Vanyashin and Terentyev [49] found that
the renormalization of the electric charge of a vector field is
of opposite sign to the one of the electron. In the language
of SU(2) gauge field theory, their result implies that the β-
function is negative at one loop.

The first correct calculation of the β-function of a non-
abelian gauge field theory was carried out by Khriplovich,
for the case of SU(2), relevant for the electroweak interac-
tion [50]. He found that β is negative and concluded that
the interaction becomes weak at short distance. In his PhD
thesis, ’t Hooft performed the calculation of the β-function
for an arbitrary gauge group, including the interaction with
fermions and Higgs scalars [51,52]. He demonstrated that
the theory is renormalizable and confirmed that, unless there
are too many fermions or scalars, the β-function is negative
at small coupling.

In 1973, Gross and Wilczek [53] and Politzer [54] dis-
cussed the consequences of a negative β-function and sug-
gested that this might explain Bjorken scaling, which had
been observed at SLAC in 1969. They pointed out that QCD
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predicts specific modifications of the scaling laws. In the
meantime, there is strong experimental evidence for these.

1.1.9 Arguments in favor of QCD

The reasons for proposing QCD as a theory of the strong
interaction are discussed in [55]. The idea that the observed
spectrum of particles can fully be understood on the basis of
a theory built with quarks and gluons still looked rather ques-
tionable and was accordingly formulated in cautious terms.
In the abstract, for instance, we pointed out that “…there are
several advantages in abstracting properties of hadrons and
their currents from a Yang–Mills gauge model based on col-
ored quarks and color octet gluons.” Before the paper was
completed, the papers by Gross, Wilczek and Politzer quoted
above circulated as preprints – they are quoted and asymp-
totic freedom is given as argument #4 in favor of QCD. Also,
important open questions were pointed out, in particular, the
U(1) problem.

Many considered QCD a wild speculation. On the other
hand, several papers concerning gauge field theories that
include the strong interaction appeared around the same time,
for instance [56,57].

1.1.10 November revolution

The discovery of the J/ψ was announced simultaneously at
Brookhaven and SLAC, on November 11, 1974. Three days
later, the observation was confirmed at ADONE, Frascati and
ten days later, theψ ′was found at SLAC, where subsequently
many further related states were discovered. We now know
that these are bound states formed with the c-quark and its
antiparticle which is comparatively heavy and that there are
two further, even heavier quarks: b and t .

At sufficiently high energies, quarks and gluons do mani-
fest themselves as jets. Like the neutrini, they have left their
theoretical place of birth and can now be seen flying around
like ordinary, observable particles. Gradually, particle physi-
cists abandoned their outposts in no man’s and no woman’s
land, returned to the quantum fields and resumed discussion
in the good old Gasthaus zu Lagrange, a term coined by Jost.
The theoretical framework that describes the strong, elec-
tromagnetic and weak interactions in terms of gauge fields,
leptons, quarks and scalar fields is now referred to as the
Standard Model – this framework clarified the picture enor-
mously.4

4 Indeed, the success of this theory is amazing: Gauge fields are renor-
malizable in four dimensions, but it looks unlikely that the Standard
Model is valid much beyond the explored energy range. Presumably
it represents an effective theory. There is no reason, however, for an
effective theory to be renormalizable. One of the most puzzling aspects
of the Standard Model is that it is able to account for such a broad range

1.1.11 Quantum chromodynamics

If the electroweak gauge fields as well as the leptons and the
scalars are dropped, the Lagrangian of the Standard Model
reduces to QCD:

LQCD = −1

4
F A
μνF

Aμν + i q̄γ μ(∂μ + igs
1

2
λAAA

μ)q

−q̄RMqL − q̄LM†qR − θ ω. (1.3)

The gluons are described by the gauge field AA
μ , which

belongs to the color group SUc(3) and gs is the corresponding
coupling constant. The field strength tensor F A

μν is defined
by

F A
μν = ∂μAA

ν − ∂νAA
μ − gs fABCAB

μAC
ν , (1.4)

where the symbol f ABC denotes the structure constants of
SU(3). The quarks transform according to the fundamental
representation of SUc(3). The compact notation used in (1.3)
suppresses the labels for flavor, color and spin: the various
quark flavors are represented by Dirac fields, q = {u, d, s, c,
b, t} and qR = 1

2 (1+ γ5)q, qL = 1
2 (1− γ5)q are their right-

and left-handed components. The field u(x), for instance,
contains 3×4 components. While the 3×3 Gell-Mann matri-
ces λA act on the color label and satisfy the commutation
relation

[λA, λB] = 2i f ABCλ
C , (1.5)

the Dirac matrices γ μ operate on the spin index. The mass
matrix M, on the other hand, acts in flavor space. Its form
depends on the choice of the quark field basis. If the right-
and left-handed fields are subject to independent rotations,
qR → VR qR, qL → VL qL, where VR, VL ∈ U(N f ) represent
N f ×N f matrices acting on the quark flavor, the quark mass
matrix is replaced by M → V †

R MVL. This freedom can
be used to not only diagonalize M, but to ensure that the
eigenvalues are real, nonnegative and ordered according to
0 ≤ mu ≤ md ≤ · · · ≤ mt .

As it is the case with electrodynamics, gauge invariance
fully determines the form of the chromodynamic interaction.
The main difference between QED and QCD arises from the
fact that the corresponding gauge groups, U(1) and SU(3),
are different. While the structure constants of U(1) vanish
because this is an abelian group, those of SUc(3) are differ-
ent from zero. For this reason, gauge invariance implies that
the Lagrangian contains terms involving three or four gluon
fields: in contrast to the photons, which interact among them-
selves only via the exchange of charged particles, the gluons
would interact even if quarks did not exist.

Footnote 4 Continued
of phenomena that are characterized by very different scales within one
and the same renormalizable theory.
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The Lagrangian in Eq. (1.3) includes a parity-violating
term proportional to the winding number density,

ω = g2
s

32π2 F
A
μν F̃

Aμν, (1.6)

where F̃ Aμν ≡ 1
2ε

μνρσ F A
ρσ is the dual of the field strength.

The constant θ is referred to as the vacuum angle. Since
ω can be represented as a derivative, ω = ∂μ f μ, the θ -
term looks irrelevant: only the integral over the Lagrangian
counts, so that the contribution from this term is determined
by the behaviour of the gauge field at the boundary of space-
time. In the case of QED, where renormalizability allows
the presence of an analogous term, quantities of physical
interest are indeed unaffected by such a contribution, but
for QCD, this is not the case. Even at the classical level,
nonabelian gauge fields can form instantons, which minimize
the Euclidean action for a given nonzero winding number
ν = ∫

d4x ω.
The θ -term did not play a significant role in the develop-

ments that led to QCD. Indeed, neither the QCD Lagrangian
specified in Ref. [55], nor the discussion of the origins of
QCD in Sect. 1.2 of the present review involve such a term.
Also, there is no experimental evidence indicating that the
strong interaction might violate parity. In the present under-
standing of QCD, however, the θ -term plays a central role,
because it is intimately related to an important property of
QCD: the Ward identity obeyed by the singlet axial current
contains an anomaly proportional to ω. An immediate con-
sequence of this identity is that the change of the quark field
basis considered above entails a change not only of the quark
mass matrix, but also of the vacuum angle. Quite apart from
that, the anomaly very strongly affects the physics of the
strong interaction, in particular the spectrum of the theory –
some of the implications are briefly discussed below.

1.1.12 Theoretical paradise

In order to briefly discuss some of the basic properties of
QCD, let me turn off the electroweak interaction, treat the
three light quarks as massless and the remaining ones as
infinitely heavy:

mu = md = ms = 0, mc = mb = mt = ∞. (1.7)

The Lagrangian then contains a single parameter: the cou-
pling constant gs , which may be viewed as the net color of
a quark. Unlike an electron, a quark cannot be isolated from
the rest of the world – its color gs depends on the radius of
the region considered. According to perturbation theory, the
color contained in a sphere of radius r grows logarithmically

with the radius5:

αs ≡ g2
s

4π
= 2π

9 | ln(r Λ)| . (1.8)

Although the classical Lagrangian of massless QCD does
not contain any dimensionful parameter, the corresponding
quantum field theory does: the strength of the interaction
cannot be characterized by a number, but by a dimensionful
quantity, the intrinsic scale Λ.

The phenomenon is referred to as dimensional transmu-
tation. In perturbation theory, it manifests itself through the
occurrence of divergences – contrary to what many quantum
field theorists thought for many years, the divergences do
not represent a disease, but are intimately connected with the
structure of the theory. They are a consequence of the fact
that a quantum field theory does not inherit all of the prop-
erties of the corresponding classical field theory. In the case
of massless Chromodynamics, the classical Lagrangian does
not contain any dimensionful constants and hence remains
invariant under a change of scale. This property, which is
referred to as conformal invariance, does not survive quan-
tization, however. Indeed, it is crucial for Quantum Chro-
modynamics to be consistent with what is known about the
strong interaction that this theory does have an intrinsic scale.

Massless QCD is how theories should be: the Lagrangian
does not contain a single dimensionless parameter. In prin-
ciple, the values of all quantities of physical interest are pre-
dicted without the need to tune parameters (the numerical
value of the mass of the proton in kilogram units cannot be
calculated, of course, because that number depends on what
is meant by a kilogram, but the mass spectrum, the width of
the resonances, the cross sections, the form factors, … can
be calculated in a parameter free manner from the mass of
the proton, at least in principle).

1.1.13 Symmetries of massless QCD

The couplings of the u-, d- and s-quarks to the gauge field
are identical. In the chiral limit, where the masses are set
equal to zero, there is no difference at all – the Lagrangian
is symmetric under SU(3) rotations in flavor space. Indeed,
there is more symmetry: for massless fermions, the right- and
left-handed components can be subject to independent flavor
rotations. The Lagrangian of QCD with three massless flavors
is invariant under SU(3)R×SU(3)L . QCD thus explains the
presence of the mysterious chiral symmetry discovered by
Nambu: an exact symmetry of this type is present if some of
the quarks are massless.

Nambu had conjectured that chiral symmetry breaks down
spontaneously. Can it be demonstrated that the symmetry
group SU(3)R ×SU(3)L of the Lagrangian of massless QCD

5 The formula only holds if the radius is small, r Λ� 1.
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spontaneously break down to the subgroup SU(3)R+L? To
my knowledge an analytic proof is not available, but the work
done on the lattice demonstrates beyond any doubt that this
does happen. In particular, for mu = md = ms , the states
do form degenerate multiplets of SU(3)R+L and, in the limit
mu,md ,ms → 0, the pseudoscalar octet does become mass-
less, as required by the Goldstone theorem.

1.1.14 Quark masses

The 8 lightest mesons, π+, π0, π−, K+, K 0, K̄ 0, K−, η, do
have the quantum numbers of the Nambu–Goldstone bosons,
but massless they are not. The reason is that we are not living
in the paradise described above: the light quark masses are
different from zero. Accordingly, the Lagrangian of QCD is
only approximately invariant under chiral rotations, to the
extent that the symmetry breaking parameters mu, md , ms

are small. Since they differ, the multiplets split. In particular,
the Nambu–Goldstone bosons pick up mass.

Even before the discovery of QCD, attempts at estimating
the masses of the quarks were made. In particular, nonrel-
ativistic bound state models for mesons and baryons where
constructed. In these models, the proton mass is dominated
by the sum of the masses of its constituents:mu+mu+md �
mp, mu � md � 300 MeV.

With the discovery of QCD, the mass of the quarks became
an unambiguous concept: the quark masses occur in the
Lagrangian of the theory. Treating the mass term as a per-
turbation, one finds that the expansion of m2

π+ in powers of
mu , md , ms starts with m2

π+ = (mu + md)B0 + · · · The
constant B0 also determines the first term in the expansion of
the square of the kaon masses: m2

K+ = (mu +ms)B0 + · · · ,
m2

K 0 = (md +ms)B0+· · · Since the kaons are significantly
heavier than the pions, these relations imply that ms must be
large compared to mu , md .

The first crude estimate of the quark masses within QCD
relied on a model for the wave functions of π , K , ρ, which
was based on SU(6) (spin-flavor-symmetry) and led to B0 �
3
2mρFρ/Fπ . Numerically, this yields B0 � 1.8 GeV. For the
mean mass of the two lightest quarks, mud ≡ 1

2 (mu + md),
this estimate implies mud � 5 MeV, while the mass of the
strange quark becomes ms � 135 MeV [58]. Similar mass
patterns were found earlier, within the Nambu–Jona–Lasinio
model [59] or on the basis of sum rules [60].

1.1.15 Breaking of isospin symmetry

From the time Heisenberg had introduced isospin symmetry,
it was taken for granted that the strong interaction strictly
conserves isospin. QCD does have this symmetry if and only
if mu = md . If that condition were met, the mass difference
between proton and neutron would be due exclusively to the

e.m. interaction. This immediately gives rise to a qualitative
problem: why is the charged particle, the proton, lighter than
its neutral partner, the neutron?

The Cottingham formula [61] states that the leading con-
tribution of the e.m. interaction to the mass of a particle is
determined by the cross section for electron scattering on this
particle. We evaluated the formula on the basis of Bjorken
scaling and of the experimental data for electron scattering on
protons and neutrons available at the time. Since we found
that the electromagnetic self energy of the proton is larger
than the one of the neutron, we concluded that the strong
interaction does not conserve isospin: even if the e.m. inter-
action is turned off, mu must be different from md . In fact,
the first crude estimate for the masses of the light quarks [62],

mu � 4 MeV, md � 7 MeV, ms � 135 MeV, (1.9)

indicated that md must be almost twice as large as mu .
It took quite a while before this bizarre pattern was gen-

erally accepted. The Dashen theorem [63] states that, in a
world where the quarks are massless, the e.m. self energies
of the kaons and pions obey the relation m2 em

K+ − m2 em
K 0 =

m2 em
π+ −m2 em

π0 . If the mass differences were dominated by the
e.m. interaction, the charged kaon would be heavier than the
neutral one. Hence the mass difference between the kaons
cannot be due to the electromagnetic interaction, either. The
estimates for the quark mass ratios obtained with the Dashen
theorem confirm the above pattern [64].

1.1.16 Approximate symmetries are natural in QCD

At first sight, the fact that mu strongly differs from md is
puzzling: if this is so, why is isospin such a good quantum
number? The key observation here is the one discussed in
Sect. 1.1.12: QCD has an intrinsic scale, Λ. For isospin to
represent an approximate symmetry, it is not necessary that
md − mu is small compared to mu + md . It suffices that
the symmetry breaking parameter is small compared to the
intrinsic scale, md − mu � Λ.

In the case of the eightfold way, the symmetry breaking
parameters are the differences between the masses of the
three light quarks. If they are small compared to the intrinsic
scale of QCD, then the Green functions, masses, form factors,
cross sections … are approximately invariant under the group
SU(3)R+L . Isospin is an even better symmetry, because the
relevant symmetry breaking parameter is smaller,md−mu �
ms−mu . The fact thatm2

π+ is small compared tom2
K+ implies

mu + md � mu + ms . Hence all three light quark masses
must be small compared to the scale of QCD.

In the framework of QCD, the presence of an approximate
chiral symmetry group of the form SU(3)R×SU(3)L thus has a
very simple explanation: it so happens that the masses of u, d
and s are small. We do not know why, but there is no doubt that
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this is so. The quark masses represent a perturbation, which in
first approximation can be neglected – in first approximation,
the world is the paradise described above.

1.1.17 Ratios of quark masses

The confinement of color implies that the masses of the
quarks cannot be identified by means of the four-momentum
of a one-particle state – the spectrum of the theory does
not contain such states. As parameters occurring in the
Lagrangian, they need to be renormalized and the renormal-
ized mass depends on the regularization used to set up the
theory. In the MS scheme [65–67], they depend on the run-
ning scale – only their ratios represent physical quantities.
Among the three lightest quarks, there are two independent
mass ratios, which it is convenient to identify with

S = ms

mud
, R = ms − mud

md − mu
, (1.10)

where mud ≡ 1
2 (mu + md).

Since the isospin breaking effects due to the e.m. interac-
tion are not negligible, the physical masses of the Goldstone
boson octet must be distinguished from their masses in QCD,
i.e. in the absence of the electroweak interactions. I denote
the latter by m̂ P and use the symbol m̂K for the mean square
kaon mass in QCD, m̂2

K ≡ 1
2 (m̂

2
K+ + m̂2

K 0). The fact that the
expansion of the square of the Goldstone boson masses in
powers of mu , md , ms starts with a linear term implies that,
in the chiral limit, their ratios are determined by R and S. In
particular, the expansion of the ratios of m̂2

π+ , m̂2
K+ and m̂2

K 0

starts with

2m̂2
K

m̂2
π+
= (S + 1){1+ΔS}, (1.11)

m̂2
K − m̂2

π+

m̂2
K 0 − m̂2

K+
= R{1+ΔR}, (1.12)

where ΔS as well as ΔR vanish in the chiral limit – they
represent corrections of O(M). The left hand sides only
involve the masses of π+, K+ and K 0. Invariance of QCD
under charge conjugation implies that the masses of π−, K−
and K̄ 0 coincide with these. There are low energy theorems
analogous to (1.11), (1.12), involving the remaining mem-
bers of the octet, π0 and η, but these are more complicated
because the states |π0〉 and |η〉 undergo mixing {at leading
order, chiral symmetry implies that the mixing angle is given
by tan(2θ) = √

3/2R}. In the isospin limit, {mu = md ,
e = 0}, the masses of π0 and π+ coincide and m̂η obeys
the Gell-Mann–Okubo formula, (m̂2

η − m̂2
K )/(m̂2

K − m̂2
π ) =

1
3 {1+ O(M)}.

While the accuracy to which S can be determined on the
lattice is amazing, the uncertainty in R is larger by almost an

order of magnitude [68]:

S = 27.42(12), R = 38.1(1.5). (1.13)

The reason is that R concerns isospin breaking effects. The
contributions arising from QED are not negligible at this
precision and since the e.m. interaction is of long range, it is
more difficult to simulate on a lattice.

The difference shows up even more clearly in the cor-
rections. The available lattice results [68] lead to ΔS =
−0.055(6), indicating that the low energy theorem (1.11)
picks up remarkably small corrections from higher orders
of the quark mass expansion. Those occurring in the Gell-
Mann–Okubo formula are also known to be very small. The
number ΔR = −0.016(57) obtained from the available lat-
tice results is also small, but the uncertainty is so large that
even the sign of the correction remains open.

The quantities ΔS , ΔR exclusively concern QCD and
could be determined to high precision with available meth-
ods, in the framework of N f = 1 + 1 + 1: three flavors
of different mass. For isospin breaking quantities, the avail-
able results come with a large error because they do not
concern QCD alone but are obtained from a calculation of
the physical masses, so that the e.m. interaction cannot be
ignored. A precise calculation of m̂π+ , m̂K+ , m̂K 0 within
lattice QCD would be of considerable interest as it would
allow to subject a venerable low energy theorem for the quark
mass ratio Q2 ≡ (m2

s −m2
ud)/(m

2
d −m2

u) [69] to a stringent
test. The theorem implies that the leading contributions to
ΔR and ΔS are equal in magnitude, but opposite in sign:
ΔR = −ΔS+O(M2) [70]. The available numbers are con-
sistent with this relation but far from accurate enough to allow
a significant test. There is no doubt that the leading terms
dominate if the quark masses are taken small enough, but
since the estimates for ΔR and ΔS obtained at the physical
values of the quark masses turn out to be unusually small, it
is conceivable that the corrections of O(M2) are of compa-
rable magnitude. For mu = md , the masses of the Goldstone
bosons have been worked out to NNLO of Chiral Perturba-
tion Theory [71]. An extension of these results to m̂π+ , m̂K+ ,
m̂K 0 for mu �= md should be within reach and would allow
a much more precise lattice determination of ΔR .

1.1.18 U(1) anomaly, CP-problem

Even before the discovery of QCD, it was known that, in
the presence of vector fields, the Ward identities for axial
currents contain anomalies [72–74]. In particular, an external
e.m. field generates an anomaly in the conservation law for
the axial current ūγ μγ5u − d̄γ μγ5d. The anomaly implies
a low energy theorem for the decay π0 → γ + γ , which
states that, to leading order in the expansion in powers of the
momenta and for mu = md = 0, the transition amplitude is
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determined by Fπ , i.e. by the same quantity that determines
the rate of the decay π+ → μ+ νμ.

In QCD, the conservation law for the singlet axial current
contains an anomaly,

∂μ(q̄γ
μγ5q) = 2i q̄Mγ5q + 2N f ω, (1.14)

where N f is the number of flavors and ω is specified in (1.6).
The phenomenon plays a crucial role because it implies that
even if the quark mass matrix M is set equal to zero, the sin-
glet axial charge is not conserved. Hence the symmetry group
of QCD with 3 massless flavors is SU(3)R×SU(3)L×U(1)R+L,

not U(3)R×U(3)L. QCD is not invariant under the chiral trans-
formations generated by the remaining factor, U(1)R-L. This
is why the paradise described above contains 8 rather than 9
massless Goldstone bosons.

The factor U(1)R-L changes the phase of the right-handed
components of all quark fields by the same angle, q ′R = eiβqR,
while the left-handed components are subject to the oppo-
site transformation: q ′L = e−iβqL. This change of basis can
be compensated by modifying the quark mass matrix with
M′ = e2iβM, but in view of the anomaly, the operation
does not represent a symmetry of the system. The relation
(1.14) shows, however, that current conservation is not lost
entirely – it only gets modified. In fact, if the above change
of the quark mass matrix is accompanied by a simultane-
ous change of the vacuum angle, θ ′ = θ − 2β, the physics
does remain the same. Note that, starting from an arbitrary
mass matrix, a change of basis involving the factor U(1)R-L

is needed to arrive at the convention where M is diagonal
with real eigenvalues. In that convention, the vacuum angle
does have physical significance – otherwise only the product
eiθM counts.

The Lagrangian of QCD is invariant under charge conju-
gation, but the term −θ ω has negative parity. Accordingly,
unless θ is very small, there is no explanation for the fact that
CP-violating quantities such as the electric dipole moment
of the neutron are too small to have shown up in experiment.
This is referred to as the strong CP-problem.

There is a theoretical solution of this puzzle: if the light-
est quark were massless, mu = 0, QCD would conserve
CP. The Dirac field of the u-quark can then be subject to
the chiral transformation u′R = eiβuR, u′L = e−iβuL with-
out changing the quark mass matrix. As discussed above,
the physics remains the same, provided the vacuum angle is
modified accordingly. This shows that if one of the quarks
were massless, the vacuum angle would become irrelevant. It
would then be legitimate to set θ = 0, so that the Lagrangian
becomes manifestly CP-invariant.

This ‘solution’, however, is fake. Ifmu were equal to zero,
the ratio R would be related to S by R = 1

2 (S− 1). The very
accurate value for S in Eq. (1.13) would imply R = 13.21(6),
more than 16 standard deviations away from the result quoted
for R.

1.1.19 QCD as part of the standard model

In the Standard Model, the vacuum contains a condensate
of Higgs bosons. At low energies, the manner in which the
various other degrees of freedom interact with these plays
the key role. Since they do not have color and are electri-
cally neutral, their condensate is transparent for gluons and
photons. The gauge bosons W±, Z that mediate the weak
interaction, as well as the leptons and quarks do interact
with the condensate: photons and gluons remain massless,
all other particles occurring in the Standard Model are hin-
dered in moving through the condensate and hence pick up
mass. In cold matter only the lightest degrees of freedom sur-
vive: photons, gluons, electrons, u- and d-quarks – all other
particles are unstable, decay and manifest their presence only
indirectly, through quantum fluctuations.

At low energies, the Standard Model boils down to a
remarkably simple theory: QCD + QED. The Lagrangian
only contains the coupling constants gs , e, θ and the masses
of the quarks and leptons as free parameters, but describes
the laws of nature relevant at low energies to breathtaking
precision. The gluons and the photons represent the gauge
fields that belong to color and electric charge, respectively.
Color is confined, but electric charge is not: while electrons
can move around freely, quarks and gluons form color neutral
bound states – mesons, baryons, nuclei.

The structure of the atoms is governed by QED because
the e.m. interaction is of long range. In particular, their size is
of the order of the Bohr radius, aB = 4π/e2me, which only
involves the mass of the electron and the coupling constant
e. The mass of the atoms, on the other hand, is dominated
by the energy of the gluons and quarks that are bound in the
nucleus. It is of the order of the scale ΛQCD, which charac-
terizes the value of gs in a renormalization group invariant
manner. Evidently, the sum of the charges of the quarks con-
tained in the nucleus also matters, as it determines the number
of electrons that can be bound to it. The mass of the quarks,
on the other hand, plays an important role only in so far as it
makes the proton the lightest baryon – the world would look
rather different if the neutron was lighter …

The properties of the interaction among the quarks and
gluons does not significantly affect the structure of the atoms,
but from the theoretical point of view, the gauge field theory
that describes it, QCD, is the most remarkable part of the
Standard Model. In fact, it represents the first non-trivial
quantum field theory that is internally consistent in four-
space-time dimensions. In contrast to QED or to the Higgs
sector, QCD is asymptotically free. The behavior of the quark
and gluon fields at very short distances is under control. A
cutoff is needed to set the theory up, but it can unambigu-
ously be removed. In principle, all of the physical quanti-
ties of interest are determined by the renormalization group
invariant quark mass matrix, by the vacuum angle θ and a
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scale. In the basis where the quark mass matrix is diagonal
and real, the vacuum angle is tiny. We do not know why this
is so, nor do we understand the bizarre pattern of eigenvalues.

1.2 The origins of QCD

Harald Fritzsch
Murray Gell-Mann and I started to collaborate in October
1970. We considered the results of the experiments on deep
inelastic scattering at the Stanford Linear Accelerator Center.
James Bjorken had predicted, using current algebra, that the
cross sections showed at large values of the virtual photon
mass and the energy transfer to the nucleon a scaling behav-
ior, i.e. the cross section is a function of the ratio x , where
x is the ratio of the square of the virtual photon mass to the
energy transfer to the nucleon, multiplied with the nucleon
mass. This ratio x varies from zero to one.

Since in the scaling region the cross sections were deter-
mined by the commutator of two electromagnetic currents
at nearly lightlike distances, Gell-Mann and I assumed, that
this commutator near the light cone is given by the free quark
model. Thus the Bjorken scaling followed from this assump-
tion.

The interaction between the quarks was assumed not to
be present near the light cone. The cross section in the deep
inelastic region determined the distribution functions of the
three quarks and antiquarks, which are given by the proton
matrix element of the commutator of the electromagnetic
current.

In the free quark model the commutator near the light
cone is given by a singular function, multiplied by a bilocal
function of quark fields [75]. The matrix elements of these
bilocal operators determined the quark distribution functions
of the nucleon. The integral of the quark distribution func-
tions gives the contribution of all the quark momenta to the
nucleon momentum.

Gell-Mann and I expected that the momentum sumrule of
the proton constituents should be +1. However, it turned out
that the integral
∫ 1

0
x

[
u(x)+ u(x)+ d(x)+ d(x)+ s(x)+ s(x)

]
dx

(0.52± 0.03). (1.15)

was found to be only≈ 0.5 [28], thus indicating that besides
the charged partons there must exist also neutral partons in
the proton (see also “Behavior at short distances” 1.1.4 in the
preceding contribution). This observation was the first indi-
cation that the strong interactions are described by a gauge
theory. In such a theory there would be besides the quarks
and antiquarks also neutral gluons.

Afterwards Gell-Mann and I considered several problems
of the quark theory. The Ω− particle was a bound state of

three strange quarks. The three spin vectors of the quarks
were symmetricals arranged, and the space wave function
was symmetric, since the Ω− is the ground state of three
strange quarks. Thus an interchange of two strange quarks
was symmetric, but according to the Pauli principle it should
be antisymmetric.

Another problem was related to the electromagnetic decay
of the neutral pion. The decay rate, calculated in the quark
model, is much smaller than the observed decay rate, only
about 1/9 of the observed rate.

We also studied the cross section for the reaction electron–
positron annihilation into hadrons. The ratio R of the cross
section for hadron production and the cross section for the
production of a muon pair can be calculated in the quark
model. It is given by the sum of the squares of the electric
charges of the three quarks, i.e. 2/3. But according to the
experiments at the CEA accelerator at Harvard university
this ratio was about three times larger: R � 2.

To solve theses problems, Murray Gell-Mann, William
Bardeen and I introduced for the quarks a new quantum num-
ber, which we called “color”. Each quark is described by a
red, a green and a blue quark. The three colors can be trans-
formed by the color group SU(3)C, which is assumed to be an
exact symmetry. Measurable quantities, e.g. cross sections or
the wave functions of hadrons, are color singlets.

The quark wave function ψΩ of the Ω− is also a color
singlet:

ψΩ � (rgb − grb + brg − rbg + gbr − bgr). (1.16)

This wave function is antisymmetric under the exchange of
two quarks – there is no problem with the Pauli principle.
The quark wave functions of mesons are also color singlets:

ψmeson � (r̄r + ḡg + b̄b). (1.17)

The decay amplitude for the neutral pion decay is three times
larger, if the quarks are colored. Thus the decay rate is nine
times larger and agrees with the observed decay rate [76]. The
ratio R for electron–positron annihilation, given by the sum
of the squares of the quark charges, is now also three times
larger: R � 2. Thus the introduction of the color quantum
number solved the three problems mentioned above.

The color quantum number also explains why mesons are
quark–antiquark bound states and baryons are three quark
bound states, since they must be color singlets. Thus the
mesons and baryons could be considered to be “white” states,
since a particular color cannot be seen from the outside – the
color quantum number is only relevant inside the mesons and
baryons.

In the spring of 1972 Gell-Mann and I tried to understand
why a colored quark cannot be observed – it is confined
inside a baryon or meson or inside an atomic nucleus. We
considered to use the color symmetry group as a gauge group.
The gauge bosons of such a gauge theory would be color
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octets. I proposed to call these gauge bosons “chromons”,
but Gell-Mann insisted to call them “gluons”, mixing the
English language and the Greek language.

We called this new gauge theory “Quantum Chromody-
namics” (QCD). The Lagrangian of QCD is [35,55]:

L = q

[

iγ μ

(

∂μ + igs
λA

2
AA

μ

)

− m

]

q − 1

4
F A
μνF

Aμν,

(1.18)

where the λA are the Gell-Mann matrices, and

F A
μν = ∂μAA

ν − ∂νAA
μ − gs fABCAB

μAC
ν . (1.19)

f ABC are called SU(3) structure constants. This Lagrangian
is very similar to the Lagrangian of Quantum Electrodynam-
ics. The electromagnetic field is replaced by the eight gluon
fieldsAA, the electron mass by the quark mass, and the charge
e is replaced by the strong coupling gs . The strong interaction
constant is defined by αs = g2

s /4π .
However, the big difference between Quantum Electrody-

namics and Quantum Chromodynamics is the presence of the
A2 term in F A

μν , not present in Quantum Electrodynamics.
This term shows that a gluon interacts not only with a quark,
but also with another gluon, and gives rise to 3- and 4-gluon
couplings.

The quark masses, which appear in the Lagrangian of
QCD, are not the masses of free quarks, but the masses, rele-
vant inside the hadrons. The masses of the quarks depend on
the energy scale. They are large at small energies and small at
high energies. Here are the typical masses for the up-quark,
the down-quark and the strange quark at the energy given by
the mass of the Z -boson, MZ � 91.2 GeV:

mu � 1.2 MeV, md � 2.2 MeV, ms � 53 MeV. (1.20)

These masses describe the symmetry breaking of the SU (3)F

flavor group. Interesting is the violation of the isospin sym-
metry. The down quark is heavier than the up quark. For this
reason the neutron is heavier than the proton, and the proton
is stable. If there would be no isospin violation, i.e.mu = md ,
the proton would be heavier than the neutron due to the elec-
tromagnetic self-energy and it would decay into the neutron
– life would not be possible.

Gell-Mann and I assumed that the interaction in QCD is
zero at light-like distances. The light cone current algebra,
which we had discussed in Ref. [75], would not be changed.
The confinement of colored states, i.e. the quarks and the
gluons, would be due to the interaction at long distances.

Soon we realized that our assumption, that there is no
interaction near the light-cone, was not correct. David Gross,
Frank Wilczek and, independently, David Politzer calcu-
lated this interaction, which is the interaction, given by the
Lagrangian, but near the light-cone the relevant coupling con-
stant is not zero, but only very small.

The QCD Lagrangian describes a theory, which is asymp-
totically free. At small distances the interaction is very small,
at large distances the interaction is strong. Thus the coupling
constant is not constant, but a function of the energy. The
sliding of the coupling constant gs as a function of the renor-
malization mass μ is given by the beta-function β(gs):

μ
d

dμ
gs(μ) = β(gs). (1.21)

This beta function is positive for many theories, for example
quantum electrodynamics. The fine structure constant α is at
the energy of 100 GeV about 10% larger than at low energies.

The beta function can be calculated in perturbation theory.
One finds for QCD:

μ
d

dμ
gs(μ) � − 1

16π2

(

11− 2

3
n f

)

g3
s (μ). (1.22)

Here the coefficient “11” describes the contribution of the
gluons to the beta function. The asymptotic freedom of QCD
is due to this coefficient – it is related to the self-interactions
of the gluons. The number n f is the number of the different
quark flavors. For the three quarks up, down and strange one
has n f = 3.

In QCD one can describe the energy dependence of the
coupling constant by introducing a scale parameter Λ:

αs(μ
2) � 4π

(

11− 2

3
n f

)

ln

(
μ2

Λ2

) . (1.23)

This scale parameter has been measured by many experi-
ments (see Sect. 3.2):

Λ = (332± 17)MeV. (1.24)

In experiments one has measured the scale dependence of
the coupling constant. It agrees very well with the theoret-
ical prediction. We also mention the value of the coupling
constant at the mass of the Z -boson, where it was possible to
measure the coupling constant rather precisely (see Sect. 3.2):

αs = 0.1181± 0.0011. (1.25)

In QCD, Bjorken scaling in deep inelastic scattering is not
an exact property of the strong interactions. The quark distri-
bution functions change slowly at high energies. This change
can be calculated in perturbation theory (see Sect. 2.3). The
results agree rather well with the experimental results. Also
the gluon distribution function g(x) has been measured.
Since the gluons and the quarks contribute to the momen-
tum of a high energy proton, the following sum rule must be
obeyed:
∫ 1

0
x

[
g(x)+ u(x)+ u(x)+ d(x)+ d(x)

+s(x)+ s(x)] dx = 1. (1.26)
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Using the scale parameter Λ, one can in principle calculate
many properties of the strong interactions, for example the
masses of the hadrons like the proton mass: mp = const×Λ.
The proton mass depends also on the quark masses, however
the up and down quark masses are very small and can be
neglected. The calculations of the hadron masses are com-
plicated and are often carried out by discretizing space and
time (see Sect. 4 on Lattice QCD).

In QCD one can also change the three quark masses. For
example we can assume that the three quark masses are zero.
In this case the flavor group SU (3)F × SU (3)F would be
unbroken. The three pions, the four K -mesons and the η

– meson would be massless and the eight vector mesons
would have the same mass. There is not a ninth massless
pseudoscalar meson, since the singlet axial current has an
anomaly:

∂μ
(
ūγ μγ5u + d̄γ μγ5d + s̄γ μγ5s

)

= const × g2
s ε

μνρσ F A
μνF

A
ρσ . (1.27)

where εμνρσ is the totally antisymmetric tensor. In Ref. [35]
Gell-Mann and I also studied what happens if the quarks are
removed from the QCD Lagrangian. In this case only the
eight gluons are present. At low energies there would be a
discrete spectrum of particles, which consist of gluons – the
glue mesons, gluonium particles or glueball (see Sect. 8.4).
If the three quarks are introduced, the glue mesons would
mix with the quark–antiquark mesons. The experimentalists
have thus far not clearly identified a glue meson. Presumably
in nature there are only mixtures of glue mesons and quark–
antiquark mesons. But there might be mesons, which are
essentially glue mesons, since the mixing is very small for
these mesons.

It is useful to consider the theory of QCD with just
one heavy quark Q. The ground-state meson in this hypo-
thetical case would be a quark–antiquark bound state (see
Sects. 8.1, 8.6). The effective potential between the quark
and its antiquark at small distances would be a Coulomb
potential proportional to 1/r , where r is the distance between
the quark and the antiquark. However, at large distances the
self-interaction of the gluons becomes important. The glu-
onic field lines at large distances do not spread out as in
electrodynamics. Instead, they attract each other. Thus the
quark and the antiquark are connected by a string of gluonic
field lines. The force between the quark and the antiquark is
constant, i.e. it does not decrease as in electrodynamics. The
heavy quarks are confined.

In the annihilation of electrons and positrons at very high
energies it has been possible to test the theory of quan-
tum chromodynamics rather precisely. If an electron and a
positron collide, a quark and an antiquark are produced. The
two quarks move away from each other almost with the speed

of light. Since the two quarks do not exist as free particles,
they fragment into two jets of hadrons, mostly pions. These
particles form two narrow jets. These jets have been observed
since 1979 at the collider at DESY, later at the LEP-collider
at CERN. Sometimes a quark emits a high energy gluon,
which also fragments into hadrons. Thus three jets are pro-
duced, two quark jets and one gluon jet. Such three jet events
have been observed since 1979 at DESY, later at CERN (see
Sect. 2.2).

Now we consider high energy collisions of atomic nuclei,
for example collisions of lead nuclei. Such collisions are
studied at the Relativistic Heavy Ion Collider (RHIC) in
Brookhaven, at Fermilab and at the LHC in CERN. In such
collisions a new state of matter is produced for a short time,
a quark–gluon-plasma. Astrophysicists assume that such a
plasma exists also for a long time near the center of a large
neutron star (see Sect. 7.1).

Right after the Big Bang the matter was a quark–gluon-
plasma. During the expansion of the universe the plasma
changed later into a gas of protons and neutrons (see
Sect. 7.2).

In the fall of 1973 I was convinced, that Gell-Mann and I
had discovered the correct theory of the strong interactions:
Quantum Chromodynamics. Almost every day I discussed
this theory with Richard Feynman, and he also thought that
it was correct. In 1974 Feynman gave lectures on QCD. But
Gell-Mann still thought that the true theory of the strong
interactions should be a theory based on strings.

In the years after 1973 it became clear that QCD is the
correct theory of the strong interactions. I was proud that I
had contributed to the birth of this theory, which is now a
major part of the Standard Theory of particle physics.

2 Experimental foundations

Conveners:
Eberhard Klempt and Franz Gross

Quantum Chromodynamics or QCD: What a gorgeous the-
ory! You start with free colored quarks. You request invari-
ance with respect to the exchange of colors at any time and
any space point, and the quarks interact. That is all that QCD
requires (see Sect. 1). QCD is based on a simple Lagrangian
but embodies an extremely rich phenomenology which is still
being explored. Nowadays, QCD is the accepted theory of
the strong interaction and is used as a “working horse” to
interpret experimental data. In the early days, however, the
realms of perturbative and nonperturbative approaches were
not understood, radiative corrections were not applied, and
QCD was not uncontested: Still in 1979, five leading theo-
reticians at CERN, de Rújula, Ellis, Petronzio, Peparata, and
Scott presented a “theatre” discussion in five acts at the Inter-
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national School of Subnuclear Physics on “Point like Struc-
tures inside and outside hadrons” in Erice in which achieve-
ments and failures of perturbative QCD were discussed [77].
In 1992, however, in a workshop at Aachen [78], QCD was
grown up “from a rather fragile construction of ideas into an
actual microscopic quantum field theory of the strong inter-
actions” [79].

In this section, milestones are discussed which convinced
even sceptical physicists of the quark model and of the new
theory. Important first steps to verify the quark model and
QCD were already discussed by Leutwyler in first section
(see Sect. 1.1).

A breakthrough was achieved in the November revolu-
tion: Charmonium was discovered at SLAC, the c-quark was
shown to exist, the GIM mechanism (proposed by Glashow,
Iliopoulos and Maiani in 1964 [80]) explaining the absence
of neutral currents in weak interactions found experimen-
tal confirmation. John B. Kogut’s contribution remembers
the excitement in these days. A new spectroscopy came into
life, many new resonances were discovered, some of them
with completely unexpected properties that are still studied
today, both experimentally (see Sect. 8.5) and theoretically
(see Sect. 8.6).

One year later, the τ -lepton [81] was discovered (later
also its neutrino [82]), the b-quark and the rich bottomo-
nium spectrum [83]. Schaile and Zerwas [84] determined
the weak isospin of the b-quark and established the b and t
quarks as members of the third generation before the t-quark
– completing the third family of fermions – was discovered
[85]. The need for a third family had already been claimed
by Kobayashi and Maskawa to explain CP violation in K
decays [86].

San Lau Wu recalls her personal contributions to the dis-
covery of gluons at DESY where events were found in which
e+e− annihilate into three bunches of particles, three jets.
The three jets were interpreted as processes in which the two
quarks – observed as jets – radiate off a gluon which mani-
fests itself as the third jet.

The evidence for the correctness of QCD grew rapidly.
A huge activity was started at the SPS at CERN and else-
where performing QCD analyses exploiting the Altarelli-
Parisi equations [87], now called DGLAP equations. At that
time, nobody in the western countries had realized the impor-
tant contributions of Gribov and his school.

Yuri Dokshitzer – the “D” in DGLAP – reminds us of
the most important steps. Scaling, observed already in 1972,
proved the existence of interaction centers – called partons
by Feynman – inside of nucleons. In the meantime, elastic
and inelastic scattering off nucleons has grown to an indus-
try supplying us with a detailed view of internal structure
of nucleons (see Sect. 10). From the ratio of the cross sec-
tions for e+e− annihilation into hadrons over that for μ+μ−
the number of colors Nc = 3 was deduced. And the strong

interaction constant αs was shown to decrease with momen-
tum transfer opening QCD to perturbative approaches (see
Sect. 3.2). Dokshitzer introduces many basic concepts like jet
finding algorithms, evolution, divergences and resummation,
which will be discussed in more detail in Sect. 11.

2.1 Discovery of heavy mesons as bound states of heavy
quarks

John B. Kogut

2.1.1 SLAC, light quarks and deep inelastic scattering

Many physicists and accelerators contributed to the establish-
ment of the Standard model. But two accelerators were par-
ticularly important to US-based researchers. They were the
2-mile Linac and the 80 m diameter electron–positron ring,
SPEAR (Stanford Positron–Electron Asymmetric Rings), of
the Stanford Linear Accelerator Center (SLAC), Fig. 1. The
Linac, which was built under the direction of SLAC’s first
director, W. Panofsky (“PIEP”), and started operations in
1965, discovered the light constituents of the protons, the
u, d and s quarks, by measuring the inclusive deep inelas-
tic cross section of e− + p → e−′ + X . The deep inelastic
scattering program was critical to the founding of Quantum
Chromodynamics (QCD) and is discussed extensively else-
where in this journal review.

When I arrived at SLAC as an incoming graduate stu-
dent in 1967, theoretical research revolved around Bjorken
(“bj”) scaling, and the parton model of bj and Feynman. One
of the tools of the trade was the Infinite Momentum Frame
(IMF). D. Soper, bj and I put the IMF on a firm founda-
tion by quantizing Quantum Electrodynamics (QED) on the
light cone [88]. This work initiated the program of light cone
formulations of field theories (later called light front quanti-
zation by some advocates) that will be reviewed in Sect. 5.3.
Later, S. Berman, bj and I developed the parton picture of
the final states of inclusive processes involving large momen-
tum transfers [89] and introduced parton fragmentation func-
tions. This work had to address the mysterious phenomenon
of quark confinement, the fact that quarks were “observed”
when their properties were measured in deep inelastic pro-
cesses, but no quarks were found isolated in the debris of the
collisions. Although considerable progress has been made
and many field theoretic mechanisms have been studied and
proposed, especially in the context of Lattice formulations
of QCD, the quark confinement problem remains open. It
certainly was on many physicists’ minds in the early days.

2.1.2 Charmonium and The November Revolution

Several years later, during the summer of 1974, experimen-
talists from SLAC presented some intriguing data from the
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Fig. 1 Aerial view of SLAC, 2020: The Linac, SPEAR and their
descendents

earliest runs of their very new electron–positron collider,
SPEAR. A later section of this article will sketch the history
of electron–positron colliders at SLAC since these machines
were so central to the establishment of the Standard Model.
The data of the summer of 1974 focused on the ratio R,

R = σe+e−→hadrons

σe+e−→μ+μ−
(2.1)

which, when plotted against the CM energy, showed a high,
broad peak around 3.0–3.5 GeV. This suggested new inter-
actions in the reaction’s direct channel. One popular specu-
lation was that a new quark threshold had been reached. A
notable paper [90] stated that the reported broad peak in R
should be accompanied by narrow resonant peaks at slightly
lower energies. On November 11, 1974, SPEAR announced
such a narrow peak at an energy 3.105 GeV [91] with an
electronic width of Γe ≈ 5.5 keV. Brookhaven also found
this state in proton–proton collisions in fixed target experi-
ments at the Alternating Gradient Synchrotron (AGS) [92]
but that experiment didn’t have the resolution of the rela-
tively clean electron–positron collisions at SPEAR to mea-
sure its narrow width (see Fig. 2). With the news of a nar-
row state at 3.105 GeV, the high energy theory community
exploded with speculations. The charmed quark hypothesis
was just one of many competitors. Recall that the 1960–
1970s was an era of discovery of many strong interaction
states that were described by non-field theoretic approaches
to high energy physics, such as Regge poles, bootstraps, etc.
The field was stunned again two weeks later, on November
25, 1974, when SPEAR announced a second narrow peak
at energy 3.695 GeV [93]! This challenged all the specula-
tions circulating worldwide. The charm hypothesis was the
most appealing to myself and collaborators since we were
students of deep inelastic scattering and local field theory.
The charm hypothesis was critical to the phenomenology
of the electroweak sector of the Standard Model: the four
quark model of u, d, s and c quarks solved the problem of
neutral strangeness changing weak currents (the GIM mech-
anism [80]) of the three quark model. In addition, for the

Fig. 2 The discovery of the J at BNL [94] and of the ψ at SLAC [95]

cancellations of the GIM mechanism to work effectively, the
charm quark could not be too heavy. There were estimates
that its mass mc ≤ 2.0−2.5 GeV which put it inside the
interesting range to explain the new resonances. In fact, the
conventional quark model of mesons and baryons predicted
that the charmed meson threshold of the SPEAR experiment,
the minimum energy to produce two free charmed mesons,
each consisting of a charmed quark and a light (u, d, or s)
quark or anti-quark, should be Mc = 2mc + 0.7 GeV. Since
the second state at 3.695 GeV was very narrow, Mc had to
be above 3.695 GeV. So, if mc lay in the range 1.5–2.0 GeV,
the charm hypothesis appeared to be compatible with all the
known data. The only “fly in the ointment” was that SPEAR
had not announced the discovery of charmed mesons above
3.695 GeV. Nervous charm enthusiasts worried that maybe
the charm idea was flawed!

Following Ref. [90], the new states were tentatively called
“charmonium”, in analogy to positronium. Then the 3.105
state would be the 13S1 state of a c and c̄, and the 3.695
would be the 23S1. S-waves were required so that the c
and c̄ would couple directly to the virtual photon created
in the direct channel when the electron and positron anni-
hilated. I recall that when these ideas were first discussed,
many researchers sought to understand positronium better
and ran off to their physics libraries and read Schwinger’s
classic works on the subject! Positronium spectroscopy had
been calculated in great detail. This was possible because
the static electron–positron interaction potential was just
Coulomb’s law. One needed the generalization of this inter-
action potential to strong interactions, QCD, to repeat those
exercises for charmonium. At short distances it was plausi-
ble to assume a Coulomb-like formula with the fine structure
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constant replaced by αs = g2/4π , where g is the strong
coupling constant of QCD. In fact, g should be the running
coupling, a scale dependent quantity, and αs should be small,
say αs ∼ 0.2 for mass scales of ∼ 2 GeV to accommodate
the success of the parton model in deep inelastic scatter-
ing where experiments suggested that the parton distribution
functions satisfy Bjorken scaling to good approximation for
Q2 ≈ 2−3 GeV2. Next, one needed the potential at inter-
mediate distances, where the cc̄ pair feels the QCD forces
of confinement but the system is below the charm threshold
so that screening by light quarks is not yet active. Studies of
model field theories of confinement [96] and the lattice ver-
sion of QCD [97,98] led to the idea that chromo-electric flux
tubes form in this kinematic region and lead to a linear con-
fining potential between heavy colored quarks. These ideas
lead to the static cc̄ potential [99],

V (r) = −αs

r

{

1− r2

a2

}

(2.2)

where a sets the scale of the linear potential. The need for
the linear term in Eq. (2.2) was actually compelling in the
original data. The ratio of the squares of the wave functions
of the two charmonium states at the origin was called

η =
∣
∣
∣
∣
ψ(13S1; r = 0)

ψ(23S1; r = 0)

∣
∣
∣
∣

2

= 3.105

3.695

Γe(3105)

Γe(3695)
≈ 1.4−1.7

(2.3)

where we related the wave functions at the origin to the elec-
tronic width of each state and used early data to evaluate η.
What do the values 1.4–1.7 imply about the potential? One
can check that for a harmonic potential η = 2/3, for a lin-
ear potential η = 1 and for a Coulomb potential η = 8.
So, to accommodate Eq. (2.3), a combination of a linear
confining potential and Coulomb potential was preferred. In
Ref. [99] the parameters in the potential (αs, a) were deter-
mined from the experimental data of the day by solving the
radial Schrodinger equation and imposing the constraints: 1.
The mass difference between the two charmonium states is
0.59 GeV, 2. Γe(3105) = 5.5 keV, 3. mc should lie between
1.5 and 2.0 GeV, and 4. αs should be between 0.2 and 0.3.
At this point the authors of Ref. [99] needed a convenient
computer program to solve the radial Schrodinger equation
with a potential of the form Eq. (2.2). Luckily, we had access
to a skilled computational physicist with a trove of software
programs! That computational physicist was K. G. Wilson
who used numerical methods to teach undergraduate quan-
tum mechanics. Remember that this was 1974 when uni-
versities had computer centers with IBM mainframes driven
by punch cards! A good fit was found with his program for
mc = 1.6 GeV, αs = 0.2, and a = 2 fm. It was important to
check that these parameters led to a non-relativistic descrip-
tion of the charmonium bound states. In fact, the average

Fig. 3 Charmonium spectroscopy. Note the P-waves 3PJ and the
radiative transitions

velocity-squared of the charmed quarks in the bound states
was computed to be (v/c)2 ≤ 1/25. The bound states of the
cc̄ system that resulted are shown in Fig. 3.

The most relevant result in Fig. 3 was the existence of
the P wave states that lie between the 3.105 and 3.695 GeV
states. For a pure Coulomb potential the P wave states would
be degenerate with the 3.695 state. However, for a linear
potential, the 23S1 state resides at higher energy than the P
wave states, as shown in the figure, because the 23S1 has
a radial node. The existence of these states led to the main
point of Ref. [99]: there are additional states which could be
found experimentally at SPEAR and they constitute strong,
new evidence for the charm hypothesis! Strong E1, electric
dipole, transitions would produce monochromatic photons
when the 3.695 state decays to one of the P waves and then
additional monochromatic photons should appear when each
P wave decays to the 3.105 state! These monochromatic pho-
tons should be “easy” to find at SPEAR because it had a 4π
general purpose detector, the Mark I. The energies of the P
waves and the strengths of the E1 transitions followed from
the wave functions found from the radial Schrodinger equa-
tion. These results were catalogued in Ref. [99] and were
refined in later more ambitious publications. Of course, the
wave functions and the radiative transition rates depend much
more sensitively on the parameters in the potential than the
energies of the P waves themselves. In any case, the pre-
dictions of Ref. [99] were reasonable guides for the exper-
imental program which discovered the states and the radia-
tive transitions in 1976, the same year that the charmed D
mesons were also identified in the final states of the electron–
positron collisions! Many more predictions and calculations
were presented in Ref. [99]] and in similar works done by
other groups [100]. Some of these points will be discussed
in later chapters in this journal review. In addition, more
sophisticated potentials than Eq. (2.2) were eventually stud-
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ied. Tensor interactions, fine and hyperfine interactions were
added in, and their effects are shown in some of the splittings
in Fig. 3 (Refs. [99,100]). And the influence of the nearby
threshold at Mc on the bound states was also accounted for.
All of these developments did not change the main thrust of
Ref. [99]: the existence of the P wave states and their radia-
tive transitions were special to the charm quark interpretation
of the SPEAR experiment and gave additional motivation to
the early acceptance of the Standard Model.

2.1.3 Electron–positron colliders at Stanford

Now let’s change the viewpoint of this article and turn to the
accelerator physicists and the experimentalists at SPEAR.
There is a cliché that behind every invention there is a
visionary. In the case of electron–positron colliders, one of
the field’s several visionaries was definitely Gerry O’Neil.
Other visionaries were Burt Richter and Martin Perl. Profes-
sor O’Neil taught me physics in college, but he was more
interested in building accelerators to collide electrons and
positrons head-on in their center of mass frame to create pure
electromagnetic energy and search for new states of mat-
ter. I recall that he traveled to Novosibirsk, where a collider
was being constructed, several times during a one semester
undergraduate course on modern physics. Upon each return
he “debriefed” his class on the progress of his efforts. In
1965 Gerry O’Neil and others from Princeton and Stanford
built two 300 MeV electron storage rings in the High Energy
Physics Laboratory (HEPL) at Stanford. These rings resulted
in electron–electron collisions which successfully increased
the limits of validity of Quantum Electrodynamics. However,
it was basically a “single experiment” machine, so during
construction Gerry and his collaborators also sketched an
outline of a 3 GeV electron–positron colliding beam facil-
ity. These ideas evolved into the blueprints for the famous
SPEAR collider at SLAC. To many persons’ surprise, just
as electron–positron collider ideas were gaining traction,
Gerry’s visionary ideas moved in a different direction: to
outer space projects, such as a permanent space station in an
earth orbit. He left the fledgling field of colliders just as it
was about to yield great discoveries!

The construction of SPEAR began in 1970 under the
direction of Burt Richter and John Rees, and it was com-
pleted quickly (in 20 months, four months ahead of sched-
ule) in 1972 and at modest cost. The final SPEAR design
was the result of several revisions, forced on the group by
budget restrictions and engineering considerations. During
one of the revisions, the two planned rings for the electrons
and positrons became one and SPEAR was no longer asym-
metric. Nonetheless, the inventors kept the appealing name
“SPEAR”!

Wolfgang Panofsky was still the Director of SLAC and
had lobbied the US Congress and the funding agency, the

Fig. 4 The 80 m SPEAR Ring in a parking lot at SLAC. The photo
also shows the separate e+ and e− beam lines and the detector hall

Atomic Energy Commission (AEC), the predecessor of the
Department of Energy, to fund the construction of SPEAR as
a federal project. However, there were many projects com-
peting with SPEAR at the time, and it did not achieve federal
project status. However, Panofsky and Richter did not want
to delay its construction, so the AEC allowed SPEAR to be
built using ordinary laboratory operating funds! This meant
that it had to be done cheaply. Some have estimated the cost
between 2 to 5 million dollars. So, the usual idea of having
the accelerator constructed underground within an enclosed
building had to be abandoned. SPEAR was built outside on
a parking lot (Fig. 4), with concrete blocks providing the
shielding!

Of course, the accelerator needed a detector or two at
its beam intersection regions. Richter and others formed a
Berkeley/Stanford team to design and build a multipurpose
detection system surrounding one of the SPEAR interaction
regions (Fig. 5). The result was the Magnetic Detector or
Mark I. This was the first 4π general purpose detector. It
proved crucial in the coming discovery process. Other detec-
tor designs with limited angular apertures would have suf-
fered from the relatively low statistics of the early machines
and wouldn’t have operated as well with diverse final states
consisting of photons, leptons and various light mesons.

It was clear at the time that electron–positron colliders
had many attractive properties: 1. All the energy of the beams
goes into creating new particles, unlike fixed target machines,
2. The beams consist of pointlike particles, so the interactions
are simple and clean theoretically. However, they suffer from
one limitation: radiation losses. However, it turned out that
“one man’s problem is another man’s opportunity”. From
the beginning, several Stanford faculty members realized
SPEAR’s potential to produce useful synchrotron radiation,
so they asked Panofsky and Richter to devise a way to form an
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Fig. 5 Photograph of the wide angle SLAC-LBL Mark I detector in
1974

X-ray beam out of SPEAR. The X-ray synchrotron radiation
emitted by the circulating beams in the machine was much
higher in intensity, by a factor of 10 to 100, than any other
facility in the world. It could be used for imaging and struc-
tural analysis in many areas of research, from semiconductor
materials to protein molecules. So, Richter’s team attached
an extra vacuum chamber to SPEAR and made provision for
a hole in the shielding wall for the beamline. This was the
start of The Stanford Synchrotron Radiation Project (SSRP).
Even though it began as a parasitic operation, synchrotron
radiation represented an unparalleled opportunity!

Richter also saw the SLAC Linac as a light source. These
ideas led to the invention and development of a undulator
so that the Linac’s electron beam could become the source
for the most intense Free electron Laser (FEL) on the planet.
The LCLS (Linear Collider Light Source) was born in 2009.
It has led to revolutions in our understanding of the tem-
poral dynamics of atoms, molecules and condensed matter
systems. This is another story which we can’t cover here, but
it is amusing to understand that a “problem” with circular
colliders grew into a new generation of accelerator facilities!

2.1.4 The revolution begins

In the spring of 1973, SPEAR began to gather high-energy
physics data. By the next year, the machine was measuring
very erratic but generally much larger than expected val-
ues of R, Eq. (2.1), the ratio of hadron production to lep-

Fig. 6 The SPEAR Control Room during the Big Night. SLAC and
LBL physicists analyzing the raw data

ton production. These early measurements were done with
wide energy resolution, several hundred MeV, to produce
and measure many interactions and final state particles. But
there were “inconsistencies” in the data: small changes in
the beam energies sometimes led to large changes in the
observed value of R. These were the first signs of a new parti-
cle, which Richter’s team called the “ψ”. “Nobody dreamed
that there was any state, particle, that was as narrow in width
as the W turned out to be,” said Richter in 2003. “So the first
question was what the hell was wrong with the apparatus, is
there something wrong with the computers, is there some-
thing wrong with the data taking?” [101]. No-one could find
any such errors, and some researchers on the Mark I col-
laboration pushed to rescan the region. In fact, by this time,
SPEAR had been upgraded and Robert Hofstadter, who was
running an experiment at SPEAR’s other detector, wanted to
move on to higher energies. Finally, Richter decided to go
ahead with rechecking the anomalous results, but only for
one weekend in November 1974.

2.1.5 Minute-by-minute developments in the
SPEAR control room

“During the night of 9–10 November, the hunt began, chang-
ing the beam energies in 0.5 MeV steps. By 11.00 a.m.
Sunday morning the new particle had been unequivocally
found. A set of cross section measurements around 3.1 GeV
showed that the probability of interaction jumped by a fac-
tor of ten from 20 to 200 nanobarns. In a state of euphoria,
the champagne was cracked open and the team began cel-
ebrating an important discovery. While Gerson Goldhaber
retired to write up the findings ‘on-line’ for immediate pub-
lication, Fig. 6, it was decided to polish up the data by going
slowly over the resonance again. The beams were nudged
from 1.55 to 1.57 MeV and everything went crazy. The inter-
action probability soared higher; from around 20 nanobarns
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the cross section jumped to 2000 nanobarns and the detector
was flooded with events producing hadrons. Pief Panofsky,
the Director of SLAC, paced around the control room invok-
ing the Deity in utter amazement at what was being seen. This
heavy particle, displaying such extraordinary stability, they
called ‘ψ’ and they announced it in a paper beginning with the
words ‘We have observed a very sharp peak’. Within hours
of the SPEAR measurements, the telephone wires across the
Atlantic were humming as information, enquiries and rumors
were exchanged” [102].

Just two weeks later, the scene repeated itself, except at
a higher energy, 3.695 GeV. And the next S-wave charmo-
nium state was found. Physicists around the country had
“befriended” various members of the SLAC/LBL group in
the control room by now and news of the new resonance
spread across the country within minutes. I heard about it in
an early morning phone call with bj. I also learned that it was
he who had suggested the high resolution scans in energy
that led to both discoveries!

SPEAR meanwhile continued to yield breakthroughs. In
1976 the P-waves were discovered through their radiative
transitions [103] and charmed mesons [104] were found
above threshold as well.

Those were the days!

2.1.6 The path forward. Hamiltonian lattice gauge theory
and statistical field theory

After Ref. [99] was published, it was time to move on to
more fundamental considerations. I believed that the most
important implications of the potential model had been
made and working through additional details was less impor-
tant. Instead, there were major challenges in developing an
approach to QCD that would lead to systematic, potentially
exact, predictions of the theory. This was the thrust of Wil-
son’s lattice formulation of QCD [97], which will be dis-
cussed at length in Sect. 4 below. A Hamiltonian version of
the theory [98] was also developed because it emphasized 1.
The spectroscopy of the theory, and 2. The quantum character
of the states. An added bonus of this development was a new
formulation for strongly coupled systems for applications to
condensed matter physics [105]. This development mirrors
the past of SPEAR: SPEAR started out by establishing the
Standard model of high energy physics, and now is pushing
the frontiers of imaging, free electron lasers and quantum
systems. In parallel, the lattice Hamiltonian form of strongly
coupled gauge theories is playing a role in the development of
Quantum Information Systems that may lead to new quan-
tum computers and quantum detectors. These subjects are
now the central themes in a new generation of studies and
workshops on quantum physics [106,107]. References [98]
and [105], which were originally conceived for QCD, are
proving useful here, and are, in fact, among the most cited

publications in the 48 year history of lattice gauge theory.
Perhaps, these contributions will inspire the next generation
of theorists who will push the frontiers of strongly coupled
gauge theories into the next era.

2.2 Experimental discovery of gluons

Sau Lan Wu

2.2.1 Yang–Mills non-Abelian gauge particles

It was in 1954 when Chen Ning Yang and Robert Mills,
who was a graduate student, shared the same office at the
Brookhaven National Laboratory and developed their non-
Abelian gauge theory. Their office was shared with another
famous physicist Burton Richter, who was also a graduate
student at that time. Almost exactly 25 years later, the first
Yang–Mills non-Abelian gauge particle was observed at the
German National Laboratory called Deutsches Elektronen-
Synchrotron (DESY). Here are some of the interesting dates.
The idea of Yang and Mills was first presented at the April
1954 meeting in Washington, DC of the American Physi-
cal Society and the full Yang–Mills paper was submitted for
publication on June 28, 1954 [41]. The first public announce-
ment for the experimental discovery of the first Yang–Mills
gauge particle was made at the Neutrino 79 conference on
June 18–22, 1979 [108], and the first full paper was received
for publication on August 29, 1979 [109].

The word “gluon” was originally introduced by Murray
Gell-Mann to designate a hypothetical neutral vector field
[14] coupled strongly to the baryon current, without reference
to color. Since then, the meaning of this word has changed:
nowadays, this word “gluon” is used exclusively to mean the
Yang–Mills non-Abelian gauge particle for strong interac-
tions.

2.2.2 Harvard to M.I.T. to Wisconsin

After being awarded my Ph.D. degree at Harvard University,
Samuel S. S. Ting of M.I.T. kindly offered me a postdoctoral
position in his group. A few years later, I felt that, for the
development of my career in physics, it was time for me
to get a faculty position. Sam then helped me to look for
a faculty position at the University of Michigan, where he
received his own doctoral degree. I got into contact with
Michael Longo, a professor of physics there, and he was very
supportive. Therefore I applied to the University of Michigan.
Since thanks to Longo I got on the so-called short list of
candidates, I was invited to go to Ann Arbor for an interview.

In the meantime, I contacted David Cline, a professor of
the University of Wisconsin I had met before. David told
me that he would forward my name to Ugo Camerini, a col-
league of his at Wisconsin. I contacted Ugo. Shortly before
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my scheduled interview at Ann Arbor, I got a telegram from
the University of Michigan saying that the position had been
given to somebody else. I hesitated about going to that inter-
view, but my friends told me that I should nevertheless keep
the appointment. In the meantime, I got an invitation from
the University of Wisconsin for an interview. Thus I trav-
eled from Europe for an interview at Michigan first, and then
continued to Wisconsin for another one.

I remember very well that, when I had the interview at
the University of Wisconsin in Madison, Don Reeder took
me out to dinner at an Italian restaurant close to the Univer-
sity Square and we had a very nice discussion. Don was at
that time not only a Professor of Physics but also the Princi-
pal Investigator for the funding of experimental high-energy
physics. Afterwards, I met with a number of faculty members
in high-energy physics, and they were all very supportive.
Again through the effort of Cline, I also got an offer from
Fermilab. I had to make a decision, and I finally chose the
University of Wisconsin. It was one of the best decisions I
have made.

2.2.3 DESY

After becoming an assistant professor at the University of
Wisconsin-Madison in 1977, I had to make the decision of
what important problem in physics to tackle. Once again, I
got wise advice from David Cline, who had helped me so
much. He told me: “Sau Lan, you do not need to work with
anybody, and you have no boss. You are your own boss, and
you decide what to work on.” At that time, the Department
of Energy gave one lump sum of money to the University
of Wisconsin for the faculty members in experimental high-
energy physics to share. From this funding, Don Reeder gave
me the positions of three post-docs and one graduate student.

I spent the first months of my assistant professorship think-
ing about what physics to work on.

At that time, we knew of four quarks: the up quark, the
down quark, the strange quark, and the newly discovered
charm quark from the J/ψ , which has led to the Nobel Prize
for Sam Ting and Burt Richter. The immediate and impor-
tant question is: how do these quarks interact with each? For
this, we knew very little at that time besides that this inter-
action is likely to be mediated by a Yang–Mills non-Abelian
gauge particle – the gluon. In other words, while the elec-
tromagnetic interaction is transmitted by the photon, which
is an Abelian gauge particle, this additional interaction is
transmitted by a Yang–Mills non-Abelian gauge particle.

Indirect indication of gluons had been first given by deep
inelastic electron scattering and neutrino scattering. The
results of the SLAC-MIT deep inelastic scattering experi-
ment [110–113] on the Callan–Gross sum rule were incon-
sistent with parton models that involved only quarks. The
neutrino data from Gargamelle [114] showed that 50% of

the nucleon momentum is carried by isoscalar partons or
gluons. Further indirect evidence for gluons was provided
by the observation of scale breaking in deep inelastic scatter-
ing [115–117]. The very extensive neutrino scattering data
from BEBC and CDHS Collaborations [118–120] at CERN
made it feasible to determine the distribution functions of the
quark and gluon by comparison with what was expected from
QCD, and it was found that the gluon distribution function is
sizeable. This information about the gluon is interesting but
indirect. The discovery of the gluon requires direct observa-
tion.

During my first year as an assistant professor at the Uni-
versity of Wisconsin, I was fascinated by the Yang–Mills
non-Abelian gauge theory. This was to be contrasted with
the experimental situation at that time: while photons were
everywhere in the detectors, no Yang–Mills gauge particle
had been observed in any experiment.

From these considerations, I formulated the following
problem for myself: how could I discover experimentally
the first Yang–Mills gauge particle?

From previous experience with electron accelerators and
proton accelerators at DESY and BNL, it was soon clear to
me that the experimental discovery of the first Yang–Mills
gauge particle was more likely at an electron machine rather
than a proton machine. At that time, two electron–positron
colliding beam accelerators were being built: PEP at SLAC
and PETRA at DESY; after visiting both SLAC and DESY,
I decided that PETRA was a better choice for me.

At PETRA (Positron–Electron Tandem Ring Accelera-
tor), there were five experiments: CELLO, JADE, MARK J,
PLUTO, TASSO. I approached first the PLUTO Collabora-
tion and then the JADE Collaboration, but nothing worked
out. Then my luck changed completely: I ran into Björn Wiik,
one of the two co-spokesman of the TASSO Collaboration,
the other one being Günter Wolf. Björn asked me what I was
doing; when I told him my situation, he was surprised and
said to me: “Come to see me in my office this afternoon.”
When I went to his office, he asked me: “Why don’t you
join the TASSO Collaboration instead?” I said that I would
love to do that. Björn said that he would talk to Günter and
also to Paul Söding, a senior physicist in TASSO, and let me
know. Thanks to Björn, this was how I became a member of
the TASSO Collaboration at DESY. All three of them, Björn,
Günter, and Paul, are excellent physicists.

After becoming a member of the TASSO Collaboration,
the physics problem that I formulated for myself took on a
concrete form: how could I discover experimentally the first
Yang–Mills gauge particle with the TASSO detector?

A feature of the TASSO detector is the two-arm spec-
trometer, which leads to the name TASSO – Two – Arm
Spectrometer SOlenoid. The end view of this detector, i.e.,
the view along the beam pipe of the completed detector, is
shown in Fig. 7. When TASSO was first moved into the

123



Eur. Phys. J. C          (2023) 83:1125 Page 25 of 636  1125 

Fig. 7 End view of the TASSO detector

PETRA beams in 1978, not all of the detector components
shown in Fig. 7 were in working order. For my purpose of the
experimental discovery of the first Yang–Mills non-Abelian
gauge particle, the most important component of the TASSO
detector was the drift chamber, which was already function-
ing properly.

2.2.4 Three-jet events

One of the simplest ways to produce a photon – the Abelian
gauge particle for electromagnetic interactions – is through
electron bremsstrahlung process, i.e.,

e e→ e e γ.

Ellis, Gaillard and Ross had suggested that hard gluons
should be emitted by quarks via bremsstrahlung in analogy
with the radiation of electromagnetic bremsstrah-lung [121]

e+e− → q q̄ g

where q is the quark of Gell-Mann [17] and Zweig [18], and
g is the gluon – the Yang–Mills non-Abelian gauge particle
for strong interactions.

This seemed to be the way to discover the gluon experi-
mentally, but I faced the following two major problems.

(1) How can these production processes e+e− → qq̄g be
found in the TASSO detector?

(2) How high does the center-of-mass e+e− energy have to
be for this process to be seen clearly?

A couple of years before I became a faculty member at
the University of Wisconsin, the production process

e+e− → qq̄

was observed at the SPEAR e+e− collider at SLAC [122].
In the MARK I detector at SPEAR, both the quark q and the
anti-quark q̄ were observed as jets, i.e., groups of particles
moving in nearly the same direction. With this experimental
information from MARK I, I had to make my best guess as to
how the gluon bremsstrahlung process e+e− → qq̄g would
look like in the TASSO detector. Since the gluon is the Yang–
Mills non-Abelian gauge particle for strong interactions, it is
itself a source for gluon fields. It therefore seemed reasonable
to believe that the gluon in the gluon bremsstrahlung process
would be seen in the detector also as a jet, just like the quark
and the antiquark.

Therefore the gluon bremsstrahlung process e+e− →
qq̄g leads to three-jet events.
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Fig. 8 Two-jet and three-jet configurations at SPEAR and PETRA
respectively

Using the SPEAR information on the quark jets from
the process, e+e− → qq̄ , I convinced myself that three-
jet events, if they were produced, could be detected once the
PETRA energy went above three times the SPEAR energy
i.e., 3× 7.4 ∼ 22 GeV. The arguments were as follows:

Figure 8 shows a comparison of the two-jet configuration
at SPEAR with the most favorable kinematic situation of
the three-jet configuration at PETRA. If the two invariant
masses are taken to be the same, i.e.,

√
3E2 ≈ 7.4 GeV, then

the total energy of the three jets is 3E2 ≈ 13 GeV, which
must be further increased because each jet has to be narrower
than the SPEAR jets. This additional factor is estimated to
be 180◦/120◦ = 1.5, leading to about 20 GeV. Phase space
considerations further increase this energy to about 22 GeV.

This answers the question (2) above.
This estimate of 22 GeV was very encouraging because

PETRA was expected to exceed it soon; indeed, it provided
the main impetus for me to continue the project to discover
the first Yang–Mills non-Abelian gauge particle.

At the same time, l had to address the question (1) above:
how could I find three-jet events at PETRA? I made a num-
ber of false starts until I realized the power of the following
simple observation. By energy–momentum conservation, the
two jets in e+e− → qq̄ must be back-to-back. Similarly,
the three jets in e+e−→ qq̄g must be coplanar. Therefore,
the search for the three jets can be carried out in the two-
dimensional event plane, the plane formed by the momenta
of q, q̄ and g. A few pages of my notes written in June 1978
and further historical details can be found in Ref. [123].

The procedure of mine did not identify which jet would
be the gluon. Still, this procedure has a number of desirable
features.

– First, all three jet axes are determined, and they are in the
same plane. This is the feature that played a central role
in the later determination of the spin of the gluon.

– Secondly, particle identification is not needed.
– Thirdly, the computer time is moderate for the “slow”

computers at that time even when all the measured
momenta are used.

– Finally, it is not necessary to have the momenta of all the
produced particles; it is only necessary to have at least one
momentum from each of the three jets. Thus, for example,
my procedure works well even when no neutral particles
are included.

This last advantage is important, and it is the reason why
this procedure is a good match to the TASSO detector at the
time of the PETRA turn-on.

I had Georg Zobernig as my post-doc; he was and is excel-
lent in working with computers. My procedure of identify-
ing the three-jet events in order to discover the gluon, pro-
grammed by Zobernig on an IBM 370/168 computer, was
ready before the turn-on of PETRA in September of 1978.
For that time in 1978, the programming was highly non-
trivial. In his later publications, he has used the name Haimo
Zobernig.

2.2.5 Discovery of the gluon

When we had obtained data for center-of-mass energies of
13 GeV and 17 GeV, Zobernig and I looked for three-jet
events. It was not until just before the Neutrino 79 (Interna-
tional Conference on Neutrino, Weak Interactions and Cos-
mology at Bergen, Norway) in the late spring of 1979 that
we started to obtain data at the higher center-of-mass energy
of 27.4 GeV. We found one clear three-jet event from a total
of 40 hadronic events at this center-of-mass energy. This first
three-jet event of PETRA, as seen in the event plane, is shown
in Fig. 9. When this event was found, Wiik had already left
Hamburg to go to the Bergen Conference. Therefore, during
the weekend before the conference, I took the display pro-
duced by my procedure for this event to Norway to meet Wiik
at his house near Bergen. During this weekend, I also tele-
phoned Günter Wolf at his home in Hamburg and told him of
the finding. Wiik showed the event in his plenary talk “First
Results from PETRA”, acknowledging that it was my work
with Zobernig by putting our names on his transparency of
the three-jet event, and referred to me for questions. Donald
Perkins of Oxford University took this offer and challenged
me by wanting to see all forty TASSO events. I showed him
all forty events, and, after we had spent some time together
studying the events, he was convinced.

With these three-jet events, the question is: what are the
three jets? Since quarks are fermions, and two fermions (elec-
tron and positron) cannot become three fermions, it imme-
diately follows that these three jets cannot all be quarks and
antiquarks. In other words, a new particle has been discov-
ered.

The earliest papers related to the PETRA three-jet events
are Refs. [108,109,124,125] all by members of the TASSO
Collaboration, and TASSO Note 84, June 26, 1979 (by Sau
Lan Wu and Haimo Zobernig). Reference [124] provides the
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Fig. 9 The first three-jet event from electron–positron annihilation, as
viewed in the event plane. It has three well separated jets [108]

method of analysis used in the four later papers, which all
give experimental results.

Very shortly afterwards, the other experiments at PETRA
– JADE, MARK J, and PLUTO Collaborations – published
their own three-jet analyses. Their early papers related to the
PETRA three-jet events are Refs. [126–128], and their results
all confirm the earlier ones of TASSO. Since this discovery of
the gluon was the highlight of the 1979 Lepton-Photon Con-
ference at Fermi National Accelerator Laboratory (FNAL),
Leon Lederman, Director of FNAL, called a press confer-
ence on the discovery of the gluon. Recent reviews of the
discovery of gluons including further studies of jets can be
found in Refs. [129,130].

Because of the discovery of the gluon by the TASSO Col-
laboration, Söding, Wiik, Wolf, and I were awarded the 1995
European Physical Society High Energy and Particle Physics
Prize. With my leading role in this discovery, I was chosen
to give the acceptance speech at the EPS award ceremony.

This was how the first Yang–Mills non-Abelian gauge par-
ticle was discovered experimentally at DESY, Hamburg, Ger-
many in the spring of 1979, a quarter of a century after the
original paper of Chen Ning Yang and Robert Mills. Four
years later, the second and third Yang–Mills non-Abelian
gauge particles – the W and Z – were discovered at CERN
by the UA1 and UA2 Collaborations [131–134].

The experimental discovery of these Yang–Mills non-
Abelian gauge particles points to another prophetic feature
of the original paper of Yang and Mills [41]: the mass of the
first Yang–Mills gauge particle has been found to be nearly
zero, while those of the second and third Yang–Mills gauge
particle are quite high – about 80 GeV for the W and 91 GeV
for the Z . The relevant sentence in the original paper [41]

is the following: “We have therefore not been able to con-
clude anything about the mass of the b quantum.” For further
comments on this point, see pp. 19–21 of [135].

2.2.6 Some later developments

The discovery of the gluon in 1979 was not only the discovery
of a new elementary particle, but also the first elementary
boson that has been seen experimentally as a jet. Indeed, it is
so far the ONLY elementary boson seen this way. In principle,
a scalar quark would share this property, but no scalar quark
has ever been observed in any experiment.

The discovery of such a new type of elementary particle is
guaranteed to lead to subsequent new understanding of fun-
damental physics, both experimental and theoretical. Here I
will discuss one of the of the most important experimental
consequences of this 1979 discovery of the gluon; the role it
plays in the 2012 discovery of the Higgs particle.

An important theoretical topic, the very recent understand-
ing of the quark–gluon coupling constant gs , is discussed in
considerable detail in Sect. 3, and briefly in my Summary
and Outlook, Sect. 2.2.8.

2.2.7 Role of gluon in the discovery of the Higgs particle
[43–45]

Since the gluon is the Yang–Mills gauge particle for strong
interactions, to a good approximation a proton consists of a
number of gluons in addition to two u quarks, one d quark,
and some sea-quarks. Since the coupling of the Higgs par-
ticle to any elementary particle is proportional to its mass,
there is little coupling between the Higgs particle and these
constituents of the proton. Instead, some heavy particle needs
to be produced in a proton–proton collision, for example at
LHC, and is then used to couple to the Higgs particle. Among
all the known elementary particles, the top quark t , with a
mass of 173 GeV/c2, is the heaviest [136,137].

The top quark, which may be virtual, is produced pre-
dominantly together with an anti-top quark or an anti-bottom
quark [138]. Since the top quark has a charge of +2/3 and is
a color triplet, such pairs can be produced by

(a) a photon: γ → t t̄ ;
(b) a Z : Z → t t̄ ;
(c) a W : W+ → t b̄; or
(d) a g: g→ t t̄ .

As discussed in the preceding paragraph, there is no photon,
or Z , or W as a constituent of the proton. Since, on the other
hand, there are gluons in the proton, (d) is by far the most
important production process for the top quark.

Because of color conservation – the gluon has color but not
the Higgs particle – the top and anti-top pair produced by a
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Fig. 10 Feynman diagram for the Higgs (H) production by gluon–
gluon fusion (also called gluon fusion)

gluon cannot annihilate into a Higgs particle. In order for this
annihilation into a Higgs particle to occur, it is necessary for
the top or the anti-top quark to interact with a second gluon to
change its color content. It is therefore necessary to involve
two gluons, one each from the protons of the two opposing
beams of LHC, and we are led to the diagram of Fig. 10 for
Higgs production. This production process is called “gluon–
gluon fusion” (also called “gluon fusion”). As expected from
the large mass of the top quark, this gluon–gluon fusion is by
far the most important Higgs production process, and shows
the central role played by the gluon in the discovery of the
Higgs particle in 2012.

The percentage of this gluon–gluon fusion contribution to
the Higgs production cross section depends on the mass of the
Higgs particle. For the actual mass of the Higgs particle, the
gluon contributes, through this gluon–gluon fusion process,
about 90% of Higgs production at the Large Hadron Collider.
A more dramatic, but perhaps unfair, way of saying the same
is that, if there were no gluon, the Higgs particle could not
have been discovered for years!

2.2.8 Summary and outlook

One of the most influential papers in theoretical physics dur-
ing the second half of the twentieth century – very likely
the most important and influential one – is that of Yang and
Mills published in 1954 [41]. The importance of this paper
on the non-Abelian quantum gauge theory is due to that (1)
it presents a completely new idea, and (2) it points out the
direction for the later development of the understanding of
particle physics.

Twenty five years later, in 1979, the first such particle –
the Yang–Mills non-Abelian gauge particle for strong inter-
actions, later called the gluon, even though this word “gluon”
refers originally to a different proposed particle – was exper-
imentally discovered with the TASSO Collaboration at the
German Laboratory DESY [108,109].

Another 33 years later in 2012, this gluon played a cen-
tral role in the discovery of the Higgs particle [43–45] by
the ATLAS Collaboration [139] and the CMS Collaboration
[140] at CERN: this Higgs particle is produced predomi-
nantly through gluon fusion, i.e., the fusion of one gluon
from one proton beam with another gluon from the opposing
proton beam.

As soon as the gluon was discovered in 1979, the obvi-
ous question was immediately raised: What determines the
strength of the gluon-quark coupling constant? I have kept
this important question in my mind for 40 years. The con-
ventional answer is discussed in Sect. 3 below, but I have a
novel idea about how the Standard Model might be modified
to determine gs . I refer to this idea as the “basic standard
model.” It is discussed in two unpublished notes [141,142].

2.3 Successes of perturbative QCD

Yuri Dokshitzer
Fifty years is a long time, though not for a theory as ambi-
tious as QCD. To cover all the pQCD applications would be
mission impossible. There are many review papers, both top-
ical and anniversary, some good, some excellent. My review
is biased, focusing on issues that I personally find important
and/or entertaining.

QCD?
Sure. It is undoubtedly the true microscopic theory of hadrons
and their interactions. Whether it deserves a status of a well
formulated Quantum Field Theory (QFT) is another matter.
QCD is an ultimate proof of non-maliciousness of the God
of physics. This theory is as amazing as it is embarrassing, in
enabling us to predict so much while understanding so little.

Perturbative?
A perturbative (PT) approach means casting an answer as
power series in a small expansion parameter. By calculat-
ing more terms of the series one aims at increasing accuracy
of a theoretical prediction. The quark–gluon dynamics does
offer such parameter: the QCD coupling. At small distances
it becomes reasonably small thanks to asymptotic freedom,
inviting us to draw and calculate Feynman diagrams for inter-
acting quark and gluon fields.

Successes?
Countless experimental findings speak loudly and clearly in
favor of pQCD. However, until the color confinement prob-
lem is solved, we have to invent hypotheses and build models
linking quark–gluon dynamics and the hadron world. It is
useful to keep this in mind when what is commonly referred
to as a QCD prediction confronts reality.

By trial-and-error we learn.

2.3.1 pQCD: domain of interest

The name of the pQCD kingdom is Hard Processes. We call
“hard” any process involving hadrons where the energy–
momentum that color objects exchange or acquire from
(transfer to) colorless fields is much larger than the confine-
ment scale O(ΛQCD). Classical examples are e+e− annihi-
lation into hadrons, Deep Inelastic lepton–hadron Scattering
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(DIS), or the Drell–Yan process of production in hadron col-
lisions of massive lepton pairs or any other heavy colorless
objects like W±, Z0, H bosons. To the same family belong
production of heavy quarks and their bound states, as well as
large-pT photons and hadron jets.

Heavy quarks are often thought to be more friendly
towards pQCD than their light siblings. This is true, but not
because a massive quark couples to the gluon field more
weakly than a massless one. The QCD interaction strength
is universal, as a matter of principle. An internal structure
of a D meson is as non-perturbative (NP) as that of K or
π . At the same time, heavy quarks are typically produced
with relatively large transverse momenta pT ∼ mQ and are
closer to one another inside the QQ̄ bound states. This is
what actually explains that friendliness motto.

Sometimes pQCD applies even to light hadrons. This
occurs when a hadron is put under a condition forcing its
valence quarks to sit tight in order to hide their color. Small-
size configurations dominate when an initial state hadron,
in spite of having experienced a hit with large momentum
transfer, is forbidden to break up and is asked to scatter elas-
tically. Alternatively, a hadron can be squeezed by demanding
its exclusive production in the final state.

This class of phenomena goes under the name of color
transparency. Diffractive dissociation of an energetic pion on
a nuclear target is a bright example. Normally a big nucleus
would absorb the projectile. However, if an incident pion
happens to be in a squeezed state, its valence quarks act as
a small-size color dipole. Its interaction with the medium
weakens and the pion gets a chance to penetrate the nucleus,
defying the exponential attenuation wisdom. What one finds
behind the target then is a pair of quark jets, because the
probability for such a qq̄ configuration to return back into a
normal pion state is too small to be counted on.

Also pQCD unexpectedly finds its place in the hA (AA)
interaction environment where multiple scattering of a pro-
jectile effectively pushes up the characteristic hardness scale,
〈k2

T 〉 ∝ A1/3, putting interesting physics like induced gluon
radiation or jet quenching under pQCD control.

Whatever the hardness of the process, it is hadrons, not
quarks or gluons, that hit the detectors. This makes the appli-
cability of the pQCD approach, even to hard processes, far
from obvious. One relies on plausible arguments (complete-
ness, duality) and tries to learn from inclusive hadron observ-
ables that are less vulnerable to our ignorance about confine-
ment.

2.3.2 pQCD: domain of applicability

The main lesson we learned from confronting QCD expecta-
tions with reality is quite encouraging. The strong interaction
that is supposed to hold color bearers inside hadrons turns
out to be not so strong, if you think about it. The strong color

Fig. 11 DIS structure function F2 = νW2 precociously scales with
momentum transfer q2 [112]

force gets easily screened at large distances by light quarks
that pop up from the vacuum. We have not yet mastered this
mechanism quantitatively. Meanwhile, the very fact that the
confinement happens to be “soft” dramatically enlarges the
pQCD playing ground.

Precocious pQCD
The parton model [143] pictured electron–nucleon interac-
tions as elastic scattering of an incident electron that trans-
fers, via virtual photon exchange, momentum q to a point-
like constituent of the target hadron – a parton. Inelastic-
ity of the ep collision is characterized by a dimensionless
Lorentz-invariant parameter x = −q2/2(q · P) which deter-
mines an invariant mass W of the final hadronic system:
W 2 − M2

P = 2(q · P)(1 − x). The physical meaning of
the Bjorken variable x becomes transparent in a reference
frame where the virtual photon has zero energy component,
q0 = 0, and collides with the proton head-on (Breit frame).
Here x becomes a fraction of the large proton momentum P
carried by the hit parton (ppart � x P).

This picture culminated in the Bjorken hypothesis: that
the probability of finding a given parton inside the nucleon is
independent from the momentum transfer q2. The Bjorken
scaling was expected to hold asymptotically, that is when |q2|
is so large as to ensure insignificance of any re-interaction
between constituents. In the Bjorken limit |q2| → ∞
the elastic ep cross section dies out, while proton breakup
into large-mass hadron systems dominates: hence Deep and
Inelastic.

The first SLAC–MIT observation of DIS sent a striking
message. Defying expectation, the scaling regime manifested
itself surprisingly early, right above 1 GeV momentum trans-
fer, as shown in Fig. 11. Charged constituents (read: quarks),
probed with better than 0.2 fm resolution, behaved as free
objects. And 50 years later they still do.

Another evidence in favor of precocious freedom comes
from e+e− annihilation into hadrons which provides the
cleanest environment for exploring QCD. Here all the murky
hadron dynamics is restricted to the final state, and we can
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Fig. 12 In e+e− annihilation, a quark and an antiquark born with
momenta above 1 GeV fly away as free partons

watch what happens to a pair of bare quarks created in the
annihilation point and moving apart with light speed.

Figure 12 shows the total hadroproduction cross section,
normalized by the QED cross section e+e− → μ+μ− as
a function of annihilation energy

√
s = 2Eq . We see that

first the quark and the antiquark interact in the final state
producing hadron resonances (vector mesons ρ, ω, φ). As
soon as the quark energy exceeds 1 GeV, the stormy sea calms
down abruptly and turns into still waters. Quarks with larger
energies forget about one another and behave as free particles.
They separate unimpeded and develop their private multi-
hadron images – jets. (The story repeats above the charm
threshold.)

This plot contains more than a mere counting of the num-
ber of families of colored quarks,

R(s) = σe+e−→hadr.

σe+e−→μ+μ−
, Rq.m. = Nc

∑

f

e2
f .

Notice a slight non-linearity of the pQCD red line in Fig. 12.
Its origin – a QCD correction to the annihilation cross section
due to gluon radiation:

R(s)

Rq.m.(s)
= 1+ 3CF

4

αs(s)

π
+ · · · ,

where CF=(N 2
c−1)/2Nc = 4/3 is the quark “color charge”

(quadratic Casimir operator of the fundamental represen-
tation of the SU (Nc) group). The running coupling effect
timidly winks at us.

Tau-lepton as a pQCD blessing.
Even at smaller momentum scales, pQCD can be successfully
applied. It suffices to “properly place your eyes”,6 that is to
choose the right question to ask.

6 M. B. Voloshin.

An amusing and practically important example of preco-
cious pQCD control is provided by hadronic decays of the
τ -lepton. Given lepton-quark universality of the weak inter-
action, by simply counting degrees of freedom one would
expect

Rτ = τ → ντ + hadrons

τ → ντ + e−ν̄e
= Nc = 3.

Experimentally it is 20% higher: Rτ � 3.64. Quite a serious
discrepancy. We could refuse to discuss it by presenting a
legitimate excuse: the lepton mass mτ � 1.78 GeV is too
small for pQCD to apply.

Meantime, there is a more constructive way to address
this discrepancy. In the spirit of the Bloom–Gilman duality
idea that has emerged in the DIS context [144], it is tempting
to explore whether hadron and quark languages would com-
plement each other. The lepton τ decays via many hadronic
channels with squared invariant mass s = (Pτ − pν)2 =
mτ (mτ − 2Eν) ranging from m2

π � 0 all the way up to m2
τ .

Summing over all hadron states and integrating over s one
has a good chance to mimic the QCD prediction, should there
be one.

On the QCD side, since the gluon interaction does not dis-
criminate quark flavors (W− → dū, sū in place of γ ∗ → uū
or dd̄ ), formation of the final state via virtual W− is no dif-
ferent from that in the e+e− annihilation case. This allows
one to express the pQCD correction to the branching ratio
Bh via αs(m2

τ ) – the strong coupling at the tau-mass scale.
Moreover, by employing the Shifman–Vainshtein–Zakharov
(SVZ a.k.a. ITEP) sum rules (discussed in Sect. 5.7) designed
to match theoretical quark–gluon calculations with hadron
phenomenology via dispersion relations [145], it was possi-
ble to prove that the NP contributions are negligible [146]
being suppressed as a high power of the τ mass, (Λ/mτ )

6

[147].
The creator has chosen the τ mass wisely. It lies conve-

niently inside a window where αs(m2
τ ) is sufficiently large as

to make pQCD correction significant and well visible, and at
the same time not too large to undermine the PT treatment.
This resulted in [148,149]

αs(m
2
τ ) = 0.345± 0.010,

which value is three times larger that the reference QCD
coupling at the Z -boson scale, αs(M2

Z ), and is indispensable
as a lever arm for visualizing asymptotic freedom, see Sect. 3
of this volume.

2.3.3 (p)QCD: precursors and hints

QCD inherited quite a dossier of puzzles from the constituent
quark model. It is worth recalling certain successes of the pre-
QCD quark picture of hadrons, some of which are short of a
miracle.
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Inheritance
Among the first dynamical applications of the constituent
quark model of hadrons were the 2-to-3 ratio of the total
πp and pp cross sections [150] and an intriguingly simple
additive pattern of magnetic moments of baryons (see [151]
and references therein). In these and many other phenomena,
well before QCD, quarks already demanded to be treated as
independent quasi-free entities.

Probably the most amusing example of such inheritance is
the so-called quark (or, more precisely, “constituent”) count-
ing rule [152,153]. It links the exponent of the energy fall-off
of large-angle a + b→ c+ d scattering cross sections with
the number of “constituents” of the participating (initial and
final) particles: N = na + nb + nc + nd :

dσ

dt
∝ sN−2, −t/s = O(1). (2.4)

A chilling example of this scaling law is provided by the pro-
cess of photo-disintegration of a deuteron [154]. The scaling
Eq. (2.4) with N = 13 holds in the photon energy inter-
val 1GeV < Eγ < 4GeV while the cross section falls by
whopping six orders of magnitude! (see [155] to enjoy the
picture).

Hints.
An approximate constancy of the total hadron–hadron scat-
tering cross sections hinted at the presence of a vector field
(J=1) as a strong interaction mediator. Invention of gluons
inspired a model of the Pomeron as a two-gluon t-channel
exchange [156–158]). It was a little while before the Low-
Nussinov Pomeron picture was confirmed and extended by
rigorous analysis of high-energy scattering in a non-Abelian
QFT [159], to become known as the BFKL Pomeron.

Another early benefit that QCD has offered was an (at
least qualitative) explanation of the famous Okubo–Zweig–
Iizuka (OZI) rule. It postulated that interacting hadrons do
not mind exchanging constituent quarks but hate to allow a
quark and its antiquark that are present in the initial state to
annihilate. The OZI rule was forged to explain unwillingness
of φ mesons (φ = ss̄) to decay into light u, d-built mesons.
According to QCD, annihilation of a qq̄ pair that constitutes
a vector meson has to proceed via 3-gluons, so that the decay
width becomes small: Γ/M ∝ α3

s . It may look too brave to
rely on the asymptotic freedom concept at scales as small
as Mφ/2 = O(0.5 GeV). However, bound states of heav-
ier quarks (J/ψ = cc̄ and Υ = bb̄ families) can be related
with their QED counterpart – the C-odd e+e− bound state –
orthopositronium [90]. Constructing the ratio of the widths
of hadronic and radiative decays

J/ψ, Υ → ggg→ X, J/ψ, Υ → γ gg→ γ + X,

one arrives at a reasonable quantitative estimate of the QCD
coupling at mc and mb scales, correspondingly. Here gluons
manifested themselves as mediators of the strong interaction.

Gluons as hidden constituents of the proton also showed
up indirectly in DIS as electrically neutral matter that carries
about a half of the energy–momentum of the fast proton.

The last but not the least: the nature of multi-particle pro-
duction in the processes involving hadrons also necessitates
the presence of a vector field as interaction mediator.

Indeed, the bulk of inelastic high energy hadron–hadron
collisions was long known to produce multi-particle final
states with hadrons having finite transverse momenta and
distributed uniformly in rapidity. In 1968 Gribov considered
a fast proton with large energy E � Mp fluctuating into a
system of ln E quasi-real particles as an s-channel image of
the t-channel vacuum pole (a.k.a. Pomeron) exchange [160].
Feynman has reverted the picture by prescribing ln E hadron
multiplicity to a fragmenting quark with energy E [161].

A uniform rapidity plateau is the key attribute of vector
particles, hinting at gluon radiation underlying production of
hadrons.

2.3.4 pQCD: modus operandi

Massless gluons and quarks are treated by pQCD as if they
were photons and electrons. This is clearly not a nice thing
to do. In the QED case electrons and photons are legitimate
QFT objects. They know how to propagate freely, have a def-
inite relation between energy and momentum and therefore
can be prescribed a physical (measurable) mass. Causality
and unitary unequivocally dictate the analytic structure of
their respective Green functions and interaction amplitudes
in general.

Quarks and gluons don’t have this luxury. Being well
aware of this complication, pQCD ignores it in a hope to
be considered innocent until proven guilty.

Renormalization: scale
To calculate probability of radiation, a gluon is put on mass-
shell, k2 = 0, as if it were a photon. Intensity of pho-
ton radiation is proportional to the fine structure constant
αe.m. � 1/137.04, whichever the process and its hardness.
The on-mass-shell value of the QED coupling is a measurable
quantity that determines multitude of macroscopic electro-
magnetic phenomena.

In QCD, on the contrary, the on-mass-shell couplingαs(0)
is undefinable simply because “on-mass-shell gluon” is an
oxymoron, as is “on-mass-shell quark”. One has to choose
some sufficiently large momentum scale μR � ΛQCD and
employ αs(μ

2
R) as an expansion parameter to construct the

PT series. This is called the renormalization scale.
The dependence of αs on μR (hence, running coupling)

is governed by the β-function, see Sect. 3.1. The first two
coefficients β0 and β1 of the Taylor series of β(αs) are driven
by the ultraviolet (UV) behavior of the theory. Their values
are universal, while βn≥2 depend on the way αs is defined.
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Obviously, physical observables should not dependent on
the choice of μR . This enforces, through running, a definite
μR-dependence of the coefficients of higher order terms of
the series, starting from the next-to-leading (NLO) one. In
practice only a few terms of PT expansion are known for a
given observable (say, Born + NLO + NNLO, with N3LO
becoming available in certain cases). One puts the residual
μR-dependence of truncated series to a good use. By vary-
ing μR in some interval (conventionally, between μR/2 and
2μR) one gets an ad hoc estimate of theoretical uncertainty
due to unknown higher orders.

Renormalization: scheme
By slightly lowering the dimension of the world, 4 → D=
4−2ε, one trades UV divergences for singularities in ε to tame
the misbehaving integrals. Logarithmic UV-divergences of
loop integrals that renormalize the coupling translate then
into a pole at ε = 0. By dropping it (“minimal subtraction”)
together with a boring constant (an artifact of the trick) one
arrives at a finite answer – the MS coupling. Dimensional
regularization (DREG) [162,163] is a gentle procedure in that
it respects and preserves internal symmetries of the problem
(with gauge invariance the first to name).7 Being well suited
for multi-loop calculations, the MS scheme has become the
standard of the trade.

Alternatively, one can introduce αs directly from a phys-
ical observable without bothering about the UV problem
[165]. Called effective couplings, many have been suggested
since, emerging from e+e− hadronic annihilation data [166],
the Bjorken sum rule [167], static heavy quark interaction
potential [168] or intensity of dipole gluon radiation off non-
relativistic heavy quarks [169], etc. Effective couplings can
be related to one another via the MS expansions (see, e.g.
[170]).

There is one scheme that deserves special credit. Known
as Monte Carlo (MC), Catani–Marchesini–Webber (CMW),
bremsstrahlung, or simply “physical scheme”, it first appea-
red implemented in the HERWIG MC parton cascades gen-
erator [171] and rediscovered in the context of an optimized
pQCD description of inclusive heavy quark fragmentation
functions [172]. The same coupling shows up in the anoma-
lous dimension of a cusped Wilson line (Polyakov anomalous
dimension) [173,174].

This scheme adds to the MS coupling a definite O(α2
s )

piece that keeps emerging in a multitude of observables.
Among them the behavior of DIS parton distributions (pdf)
and jet fragmentation functions (ff) in the quasi-elastic limit
1−x � 1, threshold effects, quark and gluon Sudakov form
factors and Regge trajectories, etc.

7 When dealing with a sypersymmetric dynamics, one has to sharpen
the DREG tool to preserve the fermion–boson symmetry. This is
achieved by turning to the dimensional reduction (DRED) [164].

The reason is simple: it is the scheme that defines the
coupling by the radiation intensity of gluons with relatively
small energies. Radiation of soft gluons is classical by nature.
In accord with the Low theorem it is fully determined by the
classical trajectory of the charge (be it electromagnetic or
color one) and is insensitive to quantum properties of the
particle that caries it [175].

Infrared-finite coupling
The QCD coupling grows with distance and becomes
infinitely large at some point. This is true both at the one-loop
level (β0) where it develops a simple pole, c.f. (1.8), and in
the two-loop approximation when one takes into account the
β1 term in the running of the coupling. This is often referred
to as the Landau pole/singularity in memory of the discovery
70 years ago by L. Landau and collaborators of the explosive
behavior of running coupling in the context of QED.

Beyond the two loops, however, the situation changes.
With the sign of β2 depending on the scheme, some effective
charges at this level stop suffering from the Landau singu-
larity and instead freeze in the origin [166,176,177]. Actu-
ally, this freezing is as much an artifact as the Landau pole
itself. To unambiguously define αs and establish its behav-
ior at small momenta is inconceivable without cracking the
confinement problem.

At the same time, the very supposition that αs(k2) is finite
for any k2 ≥ 0 (more accurately, is integrable over the
infra-red domain) enhances the predictive power of pQCD.
The Parisi–Petronzio analysis of the differential distribution
of Drell–Yan pairs with very small transverse momenta qT
and large invariant masses q2 � q2

T provided a key exam-
ple [178]. It was enough to assume that such a “good cou-
pling” existed to get a PT prediction that actually did not
depend on details of its behavior in the origin and agreed with
the data.

Assuming the existence of a dispersion relation made it
possible to quantify the leading power-suppressed NP contri-
butions by expressing their magnitude via momentum inte-
grals of the “good coupling” over the NP domain [179].
This approach proved to be especially productive in the
realm of jet shapes, the majority of which suffer from sig-
nificant 1/Q hadronization corrections [180] (see [155] for
details).

2.3.5 Partons and jets

The word jets appeared (though only once!) in a monumental
parton-model study of inclusive production of a nucleon in
e+e− (the process related by crossing with lepton–nucleon
DIS) [181].

The picture of quark jets has been elaborated [182], and
the Feynman conjecture implemented as a working hypothe-
sis to characterize the final state structure of hadroproduction
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processes with large transverse momenta [89]. In a footnote
the authors remarked: “The question of the ultimate fate of
the fractional charge may be a difficulty of the quark–parton
model”. Since “the important longitudinal distances in con-
figuration space for electroproduction” increase linearly with
energy and may become macroscopically large [183] “This
may imply that the active parton tends to travel a consider-
able distance without interaction before disintegrating into
a jet of hadrons. Thus, there can be a separation of frac-
tional charge over large distances in configuration space
as well as momentum space”. The footnote ended with a
prophetic remark: “However, this does not mean that partons
must “backflow” that distance to provide the necessary neu-
tralization of fractional charge. This can be accomplished,
for example, by a polarization current created by parton–
antiparton pairs created from the vacuum by the field of the
active parton”.

The worry was answered 5 years later when, with
the advent of QCD, responsibility for confining fractional
charges has been laid upon color.

In 1974 Kogut and Susskind came up with a picture of
a flux tube (color string) that connects the quarks. With
the color field strength increasing with quark separation, a
chain of successive vacuum breakups, q → q + q ′q̄ ′ →
(qq̄ ′)meson+q ′ → etc, contained fractional charges, together
with the open color, inside colorless hadrons.

The authors have also remarked that hard gluon bremsstr-
ahlung off the qq̄ pairmay be expected to give rise to three-jet
events in the e+e− annihilation into hadrons.

The time had come for pQCD to face the challenge.

Gluon jets
To unequivocally confirm QCD’s claim to an honorable place
of the theory of strong interactions, gluons had to be found
manifesting as true particles.

Section 2.2 is devoted to the groundbreaking discovery of
3-jet e+e− → qq̄g events. We’ll stay on the theory side and
peek into a seminal paper that set up the 3-jet quest [121].
What a shaky ground the authors were pushing off back in
1976! Quote:

• no direct experimental evidence yet exists for gluons
(except possibly the fact that not all the nucleon’s momen-
tum is carried by known quark constituents),

• there is no direct evidence for asymptotic freedom
(though there may be some deviations from scaling in
DIS at high Q2),

• fashion sets αs(Q) to lie between 0.2 and 1 for Q2 ∼
10 GeV2.

The authors professed coplanar structure of the final state,
cross section scaling in xT = 2pT /Q, verified asymptotic
2-jetness, and rightly guessed a 10% fraction of 3-jet events.

Moreover, they drew a picture with two hadron chains
stemming from the gluon fragmentation and remarked, with-
out much ado:

Looking at [this] one might naively expect more
hadrons to be produced in gluon fragmentation than in
quark fragmentation, and therefore that f (x) for gluons
should be more concentrated at low x .

That is, higher hadron multiplicity and softer energy spec-
trum in a gluon jet as compared to quark one. This little
picture became a precursor of the Lund model interpretation
of a gluon as a “kink” on the color string connecting the
separating quark and antiquark [184].

IRCS ideology
In 1977 Sterman and Weinberg drew an image of two-jet
events as opposite cones of angular size δ containing all but
a small fraction ε of the total annihilation energy.

In the Born approximation, e+e− → qq̄ , the back to
back quarks fit in with unit probability. In the next order
in αs there emerge a negative virtual correction to σqq̄ and
a new 3-particle production cross section σqq̄+g , both infi-
nite. However, the collinear divergence at kT ∝ Θ → 0
(present in all logarithmic QFTs with massless fields) and
the soft divergence, k0 → 0 (specific for vector gluons and
photons), cancel in the sum, leaving behind a finite correction
∝ αs ln δ ln ε.

The SW construction became the first hadron observable
that, after the total cross section σtot(e+e− → X), enjoyed
the power of the Bloch–Nordsieck theorem. An ideology of
Infrared-and-Collinear Stability (IRCS) was born:

If radiative corrections to a given observable happen
to be free from collinear and soft gluon divergences
and thus the result is finite, feel free to confront the
PT answer directly with experiment, without worrying
about NP hadronization effects.

The flag got hoisted over the boot camp from where pQCD
went on a rampage to conquer multiple production of hadrons
in hard interactions: “the detailed results of perturbation the-
ory for production of arbitrary numbers of quarks and gluons
can be reinterpreted in quantum chromodynamics as predic-
tions for the production of jets” [185].

Defining and finding
A narrow bunch of hadrons is not good enough: one needs
an operational definition in order to deal with jets, to predict,
study and work with them. There emerged two major threads:
1) to look for a set of cones (of certain angular size) that would
embed the final-state hadrons in an optimal way and 2) to look
for a pair of particles closest in the momentum space and (if
judged close enough) join them into one, thus recursively
reducing an ensemble of N hadrons to a few clusters – jets.
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The original JADE clustering jet finder used an invariant
mass of the pair as closeness measure. It did well exper-
imentally, but did not satisfy theorists. By the time when
the Workshop on Jet Studies at LEP and HERA was taking
place in Durham in 1990, theorists became too greedy. To
deal with respectful IRCS observables (which JADE finder’s
output are) was no longer enough for them.

Jet rates suffer from (or enjoy, up to you) large double-
logarithmic corrections, and theorists were eager to make
all-order resummed predictions. And the JADE finder did not
allow that because of a weird way it was dealing with small-
momenta particles (soft gluons). At a brainstorm session a
proposal from the audience was made to replace the invari-
ant mass distance measure m2

ik � 2Ei Ek(1 − cosΘik) by
the relative transverse momentum k2

T � 2 min{Ei , Ek}(1 −
cosΘik) to cure the problem. The next morning Siegfried
Bethke who spent a sleepless night testing the new idea came
up with encouraging news: the kT measure did well in yield-
ing jets less affected by hadronization.

First reported in the summary of the Hard QCD work-
ing group [186], the “Durham” algorithm [187] has got a
“Geneva” cousin [188], and then “Cambridge” [189] and
“Aachen” [190] fraternal twins that have further reduced
hadronization effects. The kT -algorithm, generalized to DIS
and hadron–hadron collisions [191], allowed theorists to pro-
duce all-order resummed expressions for the jet rates in e+e−
and elsewhere.

For 15 years or so the clustering algorithms lagged behind
the cone-based ones. And for a good reason: N 3 operations
needed to sort out a final state containing N particles. Given
that in the pp environment (not mentioning pA and AA) mul-
tiplicities are large, this made clustering procedures imprac-
tical.

The tables turned when an ingenious application of com-
binatorial geometry to the momenta clustering problem by
Cacciari and Salam has reduced the calculation load down
to N ln N . Development of the “fast-kT ” clustering proce-
dure permitted to analyze large multiplicity final states “in
no time” [192]. This was especially welcome since all then-
known cone-based finders were caught red-handed at violat-
ing the IRCS demand one way or another.

A long and turbulent history of competing jet-finders has
terminated with invention of the “anti-kT ” jet finding algo-
rithm [193]. It came in time – right before the start of the LHC
operation. It satisfied both theorists (as pQCD-friendly, IRCS
respecting) and experimenters (fast and producing aestheti-
cally pleasant roundish jets), and has established itself as the
main (if not only) tool of the trade since. A full coverage of
Jetography can be found in an excellent review [194].

Heavy quark jet
QCD expected the jets initiated by heavy quarks Q to have
a hole in the forward direction – dead cone of the size Θ0�

mQ/E . Indirect consequences of this specific feature have
been experimentally confirmed a while ago: Q loses little
energy (leading particle effect), light hadron multiplicity in a
Q-jet is reduced by a constant, Nq(E)− NQ(E) � Nq(mQ)

[172].
A direct observation of the dead cone by the ALICE was

recently reported in Nature [195].

2.3.6 Many jets, some loops

To construct a scattering amplitude at leading order (LO:
Born approximation with the minimal power of the coupling
constant) one sums up topologically different tree diagrams,
each of which is a product of internal Feynman propagators
and vertices. Momenta of all internal lines are fixed by kine-
matics so that no integration is involved. Because of heav-
ier combinatorics and more complicated color structure, the
complexity of the scattering amplitude increases with the
number of external legs (read: jets).

Loops and divergences
QCD jets have become an indispensable tool for collider
experiments in search for new physics. It is imperative to
know the yield and structure of multi-jet final states with
the best accuracy possible. One has to go beyond the Born
approximation and calculate, step by step, higher order cor-
rections. A virtual correction (VC) generates a loop along
with an integration over the 4-momentum flowing through
the loop. With loops in the game, complexity of the task
rises to all new level.

UV divergences being dealt with, VC is still divergent in
the collinear and soft corners of the integration space. But so
is the inclusive (integrated) cross section of the same order
in αs . This time, due to real emission (RE) of an infinitely
soft gluon or a collinear 2-parton configuration in the final
state phase space. Combining VC with RE one gets rid of
almost all divergences. The surviving collinear divergences
hide into initial state pdf (and ff, should there be hadrons
explicitly registered in the final state). Apart from that, the
answer is finite. However it is difficult to get by subtracting
infinities. One needs to regularize VC and RE separately and
consistently or, better still, to perform subtraction at the level
of the integrand to avoid divergences altogether.

NLO
Early NLO studies sent a rather disturbing message: large
corrections were found both to Drell–Yan [196] and large-pT
production [197] putting under question the very applicabil-
ity of the PT approach. There is a good physical reason why
those corrections turned out to be alarmingly large. I will
hide it from you for lack of space-time. One way or another
the initial shock was mitigated and a systematic attack on the
NLO started.
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The method that has been proposed for e+e− annihila-
tion, used DREG to deal with the VC+RE problem [198].
An idea to employ the notion of color dipoles to accurately
treat collinear and soft singularities and cancel them at the
integrand level gave more flexibility and allowed to construct
a popular general purpose scheme for calculating the NLO
jet cross sections in any hard process [199].

L-loop VCs are given by 4L-dimensional Feynman inte-
grals. They are analytic functions of external momentum
invariants and can be reduced to a finite set of basic scalar
integrals.

The problem has been fully solved for L = 1 [200]. This
means that today all NLO amplitudes are known (with 6-
gluon scattering marking the present-day complexity limit)
[201]. Parton showers have been promoted to NLO as well
[202].

NNLO
Since 2015, the number of important processes controlled
in the following order of pQCD (NNLO) has been steadily
increasing. In the bibliography titles of the Les Houches 2019
Summary [203] next-to-next-to, or NNLO appears 155 times.
Drell–Yan/Higgs [204–207] and semi-inclusive DIS [208,
209] allowed to peek into N3LO.

Just enjoy the names that appear in the N≥2LO context:
CoLoRFulNNLO and Projection-to-Born methods, Nested
soft-collinear and N -jettiness subtractions. A Shakespearean
review [210] discusses pros and contras of DREG vs. sub-
traction regularization.

Mathematical aspects
To calculate Feynman integrals analytically is notoriously
hard. General techniques for attacking loop amplitudes were
listed and demonstrated in 1996 and are being used since:
spinor helicity formalism, color decompositions, supersym-
metry, string theory, factorization and unitarity [211].

The Loop-Tree duality approach (LTD) was initiated [212]
and later generalized to become Four-dimensional Unsub-
traction (FDU) [213].

Proceedings of the topical Florence workshop (cunningly
named WorkStop/ThinkStart) [214] link to 200+ articles that
cover the basics and the progress.

An all-in assault [215] resulted in an astonishing sym-
biosis of theoretical physics and pure mathematics. Particle
theorists, maybe already familiar with integrability, now have
to learn twisted cohomology groups, Hopf algebra, algebraic
number theory and other scary things.

2.3.7 Resummation and evolution

Art of expansion
Series in αs can behave well, as for R(e+e−), or look trou-
bling as is the case of diphoton production, where moving
from NLO to NNLO changes the cross section by 50% [216].

In fact, independent of the observable, PT series in QFT
are asymptotic, so that beyond N1/αLO things are bound to
go haywire. This was not much trouble for QED, but it should
be kept in mind for QCD, where the number of reliable terms
in the expansion may be not so large.

Examining how violently a specific series diverges, hints at
how much the NP physics affects a given observable (infrared
renormalons [217]).

Resummation
Often αs acquires one or even two enhancement factors:
αs ln Q2 (SL), αs ln2 Q2 (DL), and the PT expansion fails.
When this happens, in order to get a reliable approximation
one has to collect enhanced contributions and sum them in
all orders. The Sterman-Weinberg 2-jet cross section acquires
DLogs because of a veto imposed on accompanying gluon
radiation. The QT -spectrum of a Drell–Yan pair or of a
hadron registered in the current fragmentation of DIS in the
kinematical region QT � Q, and an almost back-to-back
energy–energy correlation in e+e− were the first examples
of inclusive observables which, in spite of not being subject
to any explicit veto, are still affected by DLogs [218,219].

In all these cases the origin of one of the logs is soft gluon
radiation which is relatively easy to control. This makes
resummation of DL-enhanced contributions straightforward
and gives rise to Sudakov form factors. Quark and gluon form
factors manifest themselves in a multitude of observables
characterized by the presence of two different momentum
scales. In particular, in distributions of various jet shapes, jet
rates, etc.

It is important to emphasize that the very possibility of an
all-order resummation depends on whether the operational
definition of jets corresponds to the dynamics of the QCD
parton multiplication picture (kT -algorithms vs. JADE, as
discussed above).

All-order resummation of single-logarithmic contribu-
tions (SLogs) becomes mandatory when we deal either with
quasi-collinear configurations of partons with comparable
energies (DGLAP physics) or with ensembles of soft glu-
ons at large angles with respect to energetic emitters (radia-
tive corrections to parton scattering amplitudes). In both
cases particles involved are strongly ordered in transverse
momenta.

Factorization
A particle with the smallest kT in the game factors out, in a
sense that a singular contribution comes only from its attach-
ment to an external leg. Generalization of the Low theorem
from ω � me to arbitrary photon energies [220] was a pre-
cursor of the QCD kT /collinear factorization.

Another arbitrary scale enters: factorization scale μF . It
sets a conventional border between PT and NP ingredients
of the problem. In IRCS observables μF gets replaced by a
variable related to resolution, rendering two well separated
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physical scales. For example, yQ2 � Q2 for jet rates, (1−
T )Q2 � Q2 for the differential thrust distribution, etc.

Whenever there isFactorization, one can carry outResum-
mation, and interpret the results in terms of Evolution and
corresponding Evolution Equations.

A few examples of the application of this idea, both well-
known and lesser-known.

KL
The Kirschner–Lipatov equation resums DLogs in parton
scattering amplitudes with quark exchange in the t-channel
[221]. Such amplitudes fall as the energy s increases, and
higher-order DL contributions decelerate this fall. These
DLog effects are inherently different from the DLog effects
due to accompanying soft gluon radiation (Sudakov form
factors).

By isolating the virtual particle with the lowest kT in the
Feynman graph, and using gauge invariance and the unitarity
relation, one can form the kernel of the evolution equation
for the partial wave amplitudes, with ln kT as the “evolution
time”.

KOS
Kidonakis, Oderda and Sterman have set the quest of resum-
mation of SL radiative corrections to 2 → 2 QCD parton
scattering amplitudes [222]. In QCD it becomes a multi-
channel problem, since each gluon emission (either virtual
or real) changes the color state of a parton pair. For gluon–
gluon scattering, the anomalous dimension is a 6⊗ 6 matrix
(for the general SU (Nc) case; which reduces to 5 ⊗ 5 for
SU (3)). It depends on the scattering angle and, obviously, on
the rank of the color group, Nc. Three of the eigenvalues of
the anomalous dimension matrix are proportional to Nc, and
thus respect the so-called Casimir scaling (the perturbative
expansion running in Nc), see e.g. [223]. The Nc-dependence
of the other three eigenvalues is more involved [224]. They
solve the cubic equation whose coefficients exhibit a weird
symmetry between the number of colors and the scattering
angle:

Nc ⇐⇒ ± ln(s2/tu)

ln(t/u)
.

This symmetry can hardly be accidental, but its origin
remains a mystery.

ERBL
The ERBL equation applies to exclusive high-Q2 reactions
involving mesons and baryons, e.g. electromagnetic pion
form factor [225,226] or photo- (electro-) production of vec-
tor mesons like J/ψ [227,228]. Separate components of the
valence quark wave function (distribution amplitude) acquire
different log Q behavior – anomalous dimensions. The dom-
inant component in the Q2 →∞ limit is called the asymp-
totic wave function: ψπ(z) ∝ z(1−z) with z the longitudinal
momentum of the fast pion carried by a quark.

It is manifest in the distribution of energy between the two
quark jets stemming from diffractive dissociation of a pion
in π A collisions [229].

DGLAP
The parton model implied limited transverse momenta. In
logarithmic QFTs, instead, k2

T are broadly distributed up to
the external momentum transfer scale Q2, resulting in viola-
tion of the Bjorken scaling. The first systematic analysis of
DIS structure functions and e+e− fragmentation functions
was carried out in the Leading Logarithmic Approximation
(LLA) based on selection of enhanced contributions in each
order of PT series,

∑
n Cn(x)(g2 log Q2)n , in the framework

of then-known QFT models [230,231].
In 1974 the results were recast in the language of pdf

evolving via Markov chain of independent 1 → 2 parton
splittings [232].

In 1977 arrived the QCD parton dynamics whose name
was eventually settled as DGLAP [87,233]. It was received
with enthusiasm and gave rise to a host of new ideas: jet
calculus, preconfinement, parton showers, to name a few.

With anomalous dimensions now known in 3 loops [234,
235], DGLAP does its job, predicting pdf evolution due to
space-like cascades. Thanks to factorization, they describe
the flux of initial-state partons as an input for any hard lepton–
hadron or hadron–hadron interaction. The same universality
applies to the final state (time-like cascades).

Parton cascades
Partons have space-like momenta (k2 < 0) in the initial state
cascades; in the final state they are time-like (k2 > 0). In the
LLA, parton splitting functions in space-like (S) and time-
like kinematics (T ) are the same: P(S)

ba (z) = P(T )
ba (z), and

so are the anomalous dimensions – Mellin image of P(z).
Beyond LLA P(T )(z) departs from P(S) acquiring, in partic-
ular, (αs ln2 z)k terms in NkLL.

Originally, the picture of QCD partons was treating the
Bjorken/Feynman variable x as being of the order one. Then
αs ln2 z = O(αs)� 1 and causes no trouble. However, when
x gets parametrically small so that αs ln2 x ∼ 1, an entire
tower of these enhanced terms has to be resummed.

This can be achieved by modifying the “time” in the evolu-
tion equation from ln kT to ln Θ . In other words, by replacing
the kT -ordered cascades (S) by ordering of successive split-
ting angles (T). Angular Ordering (AO) takes care of destruc-
tive soft-gluon interference and affects particle production.

BFKL
The BFKL equation [159,236] was derived in the LLA in
g2 ln s=O(1) to predict high-energy behavior of scattering
amplitudes in Yang–Mills theory.

Gluons reggeize (spin of a t-channel gluon becomes effec-
tively t-dependent, J= Jg(t)). In the vacuum channel lad-
der diagrams dominate with two Low–Nussinov gluons,
now reggeized, connected by multiple gluon rungs strongly
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ordered in rapidity (multiregge kinematics). This yielded the
growing total cross section σtot ∝ scαs . The NLL correction
lowered the exponent. A power-like energy growth contra-
dicts the asymptotic Froissart theorem, σtot≤ A ln2 s, but at
available energies is legitimate. A need to rescue s-channel
unitarity ignited new ideas and, correspondingly, equations:
McLerran–Venugopalan Color Glass Condensate model of
high-energy saturation (CGC), Balitsky–Kovchegov (BK)
and Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov
and Kovner (JIMWLK) equations, for references [237].

The true problem is that the high energy scattering does not
belong to the pQCD jurisdiction. This is not a hard process as
long as no large-kT scale is involved. As a result, the “BFKL
Pomeron” is sensitive to the behavior of the coupling in the
NP domain [238,239]. Strictly speaking it would be safer
to apply to compact projectiles like bound states of heavy
quarks, say σ

J/ψ J/ψ
tot (s).

Triggering a jet with pT ∼ Q in DIS target fragmenta-
tion region should expose the BFKL dynamics (Mueller–
Navelet jets [240]). DGLAP evolution gets suppressed over a
large rapidity interval, leaving room for PT-controlled BFKL
growth. Experimental data are not yet conclusive [241].

Applied to DIS, BFKL predicts a steep growth of pdf in the
x = Q2/s → 0 limit, equivalent to s → ∞. With DGLAP
having its own way of making pdf rise, the two are difficult
to disentangle.

BFKL vs. DGLAP
The meaning of evolution in the two cases is essentially
different. Action d/d ln k2

T , dynamics in x (DGLAP), vs.
action d/d ln(1/x), dynamics in �kT (BFKL). The kernel of
the DGLAP evolution equation is a function of the longi-
tudinal momentum Pba(x), the BFKL kernel lives in the
plane of transverse momenta K (�kT , �qT ). Eigenvalues of
DGLAP are anomalous dimensions; the spectrum of BFKL
– Regge trajectories. The origin of DGLAP evolution is the
kT -factorization [242]; BFKL rests upon t-channel unitarity.
In spite of all the difference the two are intimately related
[243].

2.3.8 Soft gluons and LPHD

It is soft gluon radiation that bears responsibility for faster-
than-logarithmic growth of particle multiplicities in hard pro-
cesses.

Hadron energy spectra in jets brought an exotic fruit. It
was not poisonous, but still not easy to digest.
Inside jet

LEP [244], HERA [245] and Tevatron have found that
the shape of single-inclusive energy spectra of all-charged
hadrons (dominated by pions) is mathematically similar to
that predicted by pQCD for soft gluons [246]. And this in
spite of the fact that the characteristic hump that the spec-

trum develops because of soft-gluon coherence was situated
as low as 1 GeV at LEP (and well below at TASSO energies).

CDF studies proved the origin of the hump due to parton
cascading (as opposed to nonrelativistic finite mass effects)
[247] and confirmed the pQCD expectation that the particle
yield scales with maximal kT of partons, Ejet sin Θc, with
Θc the half-angle of the jet cone [248].

Inter-jet particles
Studies of hadron flows in-between jets added insult to injury.
The message here is even more surprising. Information about
the color structure of the ensemble of hard partons that form
the jets is transmitted to pions with energies of 200–300 MeV,
which make up the bulk of the hadrons produced away from
the jets (“QCD Radiophysics”) [249]. For example, a com-
parison of the hadron yield in the direction transverse to the
3-jet-event plane with the pQCD prediction of the soft gluon
radiation pattern [250], yielded an independent measurement
of the ratio of quark and gluon color charges [251], compet-
ing with results from hard gluon physics (scaling violation
and 4-jet rates) [149].

From a theory standpoint, this similarity was not entirely
unexpected. There was a premonition based on a semi-
classical analysis of the structure of parton cascades in the
configuration space which concluded that when the time
comes for a given parton to hadronize, other partons are too
far away, leaving no chance for cross-talk [252].

Local Parton–Hadron Duality (LPHD) as a Nature-
approved supplement to pQCD sends a powerful message
to the future quantitative theory of confinement: the Poynt-
ing vector of the color field should translate into Poynting
vector of the hadron matter practically undamaged.

2.3.9 Conclusions

There are a number of pQCD-related stories I have left untold.
Why did it take almost 20 years for the inclusive energy–

energy correlation in e+e− → h1h2X , believed to be the
most reliable IRCS pQCD prediction, to agree with the exper-
imental data?

Why did the discovery of angular ordering – so important
for understanding the coherent nature of particle production
– remain unpublished for a long time?

What would make you submit to Phys. Lett. an article
under the wrong title [253]?

How is it that a specific jet shape distribution turns out to
be narrower than that of the underlying parton ensemble, in
spite of usual smearing at the hadronization stage?

How tragic was a misprint in Ref. [254]?
I am confident that by the time QCD-60 gets published,

there will be many more pQCD success stories to tell, in
addition to anecdotes.
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3 Fundamental constants

Conveners:
Eberhard Klempt and Giulia Zanderighi
The previous two sections reviewed the early history of QCD.
Early experiments had provided first support for the quark
model, which was definitely established when the charmo-
nium states were discovered. The new theory of strong inter-
action seemed to account for the non-observation of free
quarks (infrared slavery) and for possibility to understand
deep inelastic lepton scattering off nucleons (asymptotic free-
dom). The following sections turn the focus to major aspects
of the development of the theory of QCD. Of course, no theo-
retical discussion can neglect comparisons with experimental
data, but we will return to a systematic review of the exper-
imental data and how they compare with QCD predictions
only in Sect. 8. Those who want to jump directly to the data
might choose to proceed to Sect. 8, and return to these earlier
sections when needed.

The masses of the six quarks and the strong interaction

constant gs or αs = g2
s

4π are fundamental constants of QCD.
The masses and αs are called “constants” even though they
depend on the momentum transfer at which they are probed.
Quark masses have the additional complication that there
are no free quarks for which masses could be determined
from experiment directly. Section 3.1 reviews how the quark
masses are defined and renormalized, and describes briefly
what measurements are compared with lattice predictions in
order to determine the values of these fundamental parame-
ters. Some quark masses are very small and others are very
large. For the different quark masses, special techniques have
been developed such as Effective Field Theory or Heavy
Quark Symmetry. These will be discussed later.

Section 3.2 reviews recent determinations of αs and dis-
cusses systematic uncertainties and the procedure used by
the current Particle Data Group (PDG) to obtain the world
average value of αs . As it turns out, αs runs; it is small at
high momentum transfer q2 and large at low q2. A precise
knowledge of this coupling constant is needed to predict any
background process in high-energy collisions and to achieve
precision in the calculation of signal processes. Later in this
review, analytic approximations to QCD are discussed that
allow for an extension of αs determinations to very low q2

where αs seems to saturate at αs ≈ 3 (Sect. 5.5).
The editors decided to place the determinations of quark

masses and αs early in the volume in order to emphasize that
the size of αs(Q2) at low Q2 means that perturbation the-
ory cannot work at the modest values of Q2 characteristic of
matter in its ground state. Nonperturbative methods will be
required. Some may prefer to read Sect. 3.1 after the discus-
sion of LQCD (in Sect. 4) and Sect. 3.2 after discussion of
the measurements presented in Sect. 12.

3.1 Lattice determination of αs and quark masses

Luigi Del Debbio and Alberto Ramos
Lattice QCD provides a first-principles, non-perturbative
description of the strong interaction in the Standard Model
(see Sect. 4.1). Current state of the art simulations include
sea quark effects, electromagnetic interactions, and isospin
breaking, yielding accurate predictions for low-energy hadr-
onic quantities that are not accessible in perturbation
theory.

By discretizing space-time in a cubic lattice with spacing
a, lattice QCD provides a non-perturbative regularization of
QCD. Moreover this formulation is amenable to numerical
simulations using Monte Carlo methods. A key ingredient
in any lattice calculation consists in removing the regula-
tor (i.e. taking the continuum limit a → 0). This requires
to tune the bare parameters of the lattice QCD action (n f

bare quark masses in lattice units ami , and the bare coupling
g0) in order to reproduce some hadronic input. Note that
since the input of any simulation are dimensionless quanti-
ties, only dimensionless predictions can be made. Typically
one uses meson masses (π, K and D in case that the simula-
tion includes the charm quark) in units of a reference hadronic
quantity to fix the values of the bare quark masses. The ref-
erence quantity, usually the mass of the omega baryon MΩ

or the π/K meson decay constants fπ , fK is the quantity
used to set the scale: all dimensionless predictions are com-
puted in units of this reference scale. This tuning of the bare
parameters in favor of physical observables constitutes the
renormalization of the theory. Once this process is carried
out one can make solid predictions for many other hadronic
quantities, and also determine the values of the fundamen-
tal parameters of QCD. All in all, quark masses are com-
puted in units of the reference scale. The running of the
strong coupling is also computed at energy scales measured
in units of the same reference scale. Using as input the exper-
imental value of this reference scale (MΩ , fπ , fK or any
other convenient choice), one can quote physical dimension-
full predictions.8 In this way Lattice QCD is able to con-
nect the experimentally observed hadron spectrum (meson
and baryon masses) with the fundamental quark masses and
strong coupling.

Here we address conceptually how the fundamental
parameters of QCD are extracted from Lattice QCD compu-
tations, and what are the dominating sources of uncertainty.
We will also comment on a few recent results. For a detailed
overview on lattice determinations of the strong coupling,
we point the reader to the recent review [255]. An exhaus-
tive and critical list of lattice determinations both of quark

8 The interested reader can consult the section on scale setting in the
review [255] and in the 2021 FLAG document [256] for a more detailed
discussion.
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masses and the strong coupling is available in the excellent
FLAG review [256].

3.1.1 The scale of the strong interactions

It is convenient to frame the determination of the strong cou-
pling constant as a determination of the intrinsic scale of
QCD. We start from an observable P that depends on a sin-
gle scaleμ (i.e. P(μ)). Ideally this observable should be easy
to determine from numerical lattice simulations and with a
known perturbative expansion. As we will see later there are
several possibilities. Once an observable is chosen, it can
be used to define a renormalization scheme (renormalized
coupling with Minimal Subtraction) via

ḡ2
s (μ) ∝ P(μ), (3.1)

where the proportionality factor (a simple normalization) is
fixed by

ḡ2
s (μ)

μ→∞∼ ḡ2
MS

(μ) (3.2)

with ḡ2
MS

(μ) ≡ (4π)αMS(μ). It is convenient to work in
mass independent renormalization schemes (i.e. the observ-
able P(μ) is defined in the chiral limit mq = 0). In these
schemes the energy dependence of the coupling ḡs(μ) is
described by the renormalization group (RG) function that
has a known perturbative expansion

βs(ḡ) = μ
d

dμ
ḡs(μ)

ḡ→0∼ − ḡ3
s

∞∑

k=0

bk ḡ
2k
s , (3.3)

where the first two perturbative coefficients

b0 = 1
(4π)2

(
11− 2n f

3

)
, (3.4a)

b1 = 1
(4π)4

(
102− 38n f

3

)
, (3.4b)

n f is the number of fermions in the fundamental represen-
tation (i.e. quarks). Different renormalization schemes are
related perturbatively by

ḡ2
s′(μ)

ḡs→0∼ ḡ2
s (μ)+ css′ ḡ

4
s (μ)+ · · · . (3.5)

It is easy to check that the first two coefficients of the β-
function Eq. (3.4) are invariant under such changes of scheme
(i.e. they are scheme independent).

Integrating the evolution equation (3.3) yields

log
μ1

μ2
=

∫ ḡ2

ḡ1

dx

βs(x)
, (3.6)

where ḡ1 = ḡs(μ1) and ḡ1 = ḡs(μ1). The integral can be
rewritten as

∫ ḡ2

ḡ1

dx

βs(x)
= 1

2b0

(
1

ḡ2
1

− 1

ḡ2
2

)

+ b1

b2
0

log
ḡ1

ḡ2

+
∫ ḡ2

ḡ1

dx

[
1

βs(x)
+ 1

b0x3 −
b1

b2
0x

]

. (3.7)

Note that given the asymptotic form of the βs function
(Eq. 3.3), the original integral in Eq. (3.6) is divergent when
either ḡ1 → 0 or ḡ2 → 0. On the other hand the integral in
Eq. (3.7) is finite in these limits (cf. the integrand is O(x)).
This observation allows us to split the integral in Eq. (3.7) as∫ ḡ2
ḡ1
= ∫ 0

ḡ1
+ ∫ ḡ2

0 and write Eq. (3.6) in the following way

logμ1− 1

2b0 ḡ2
1

− b1

b2
0

log ḡ1 (3.8)

+
∫ ḡ1

0
dx

[
1

βs(x)
+ 1

b0x3 −
b1

b2
0x

]

= (3.9)

logμ2− 1

2b0 ḡ2
2

− b1

b2
0

log ḡ2 (3.10)

+
∫ ḡ2

0
dx

[
1

βs(x)
+ 1

b0x3 −
b1

b2
0x

]

. (3.11)

Note that this last equation claims that a function of μ1 (the
left hand side) is equal to a function of μ2 (the right hand
side). The only solution is that both are constant. The constant
is defined to be logΛs and we can write

Λs = μ
[
b0 ḡ

2
s (μ)

]− b1
2b2

0 e
− 1

2b0 ḡ
2
s (μ)

× exp

{

−
∫ ḡ(μ)

0
dx

[
1

βs(x)
+ 1

b0x3 −
b1

b2
0x

]}

.

(3.12)

Note that the integration of the renormalization group equa-
tion here is exact, valid beyond perturbation theory. The com-
bination on the right-hand side of Eq. (3.12) has units of
mass, and is independent of μ. It is called the Λ-parameter
and can be understood as the intrinsic scale of QCD. It is a
free parameter, which provides a boundary condition for the
evolution equation of the coupling.

Determining Λ is equivalent to determining the coupling
constant. It is customary to report the value of αs(M2

Z ) in the
MS scheme, however the latter can be used together with the
perturbative expansion of the beta function to compute the
Λ-parameter. While the two pictures are clearly equivalent,
there are some advantages in focussing on Λ as the main
character of our story:

– It makes clear that the determination of the strong cou-
pling constant really amounts to the determination of one
energy scale.

– Although the Λ-parameter depends on the renormaliza-
tion scheme. The relation between Λ-parameters in two
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Fig. 13 Any quantity determined in a lattice simulation must be deter-
mined at energy scales between the intrinsic UV cutoff of a few GeV
(given by the lattice spacing ΛUV ∼ a−1) and the IR cutoff (given by

the volume simulated ΛIR ∼ L−1. On a typical state of the art simu-
lations these scales are a few GeV and a few dozen MeV respectively

different schemes is exactly given by a one-loop compu-
tation. In order to see this we recall that by convention
couplings in different schemes are normalized so that
they agree to leading order (cf. Eq. 3.2). This implies
that renormalized couplings in two schemes s and s′ are
related perturbatively by

ḡ2
s′(μ)

ḡs→0∼ ḡ2
s (μ)+ css′ ḡ

4
s (μ)+ · · · , (3.13)

with css′ a finite number. This implies that the relation

Λs′

Λs
= exp

(−css′
2b0

)

(3.14)

is exact.
– The Λ-parameter is defined non-perturbatively. Even for

schemes that are intrinsically defined in a perturbative
context: MS is a “perturbative scheme”, but ΛMS is a
meaningful quantity beyond perturbation theory thanks
to Eq. (3.14).

– Even if the actual precision in the determination of the
strong coupling looks impressive (≈ 0.7%), this amounts
to a determination of the Λ-parameter with approxi-
mately a 4% uncertainty. In particular some sub-percent
effects (QED and isospin breaking corrections) are sub-
dominant for lattice extractions of the strong coupling.

3.1.2 Challenges in extractions of the strong coupling

The extraction of the Λ-parameter in units of a well deter-
mined hadronic scale μhad (like the proton mass) via
Eq. (3.12) requires the knowledge of the β-function in the
scheme of choice, βs(x), for values x ∈ [0, gs(μhad)].
Although in principle Lattice QCD can determine the running
of gs(μ) at any energy scale (it is just the scale dependence of
the observable O(μ) in Eq. (3.1)), computational constraints
impose that a typical lattice simulation can only resolve a
certain range of scales. In particular if we want to describe
hadronic physics, we can reach at most scales μPT ∼ 2−5
GeV (see Fig. 13). For this reason, any lattice QCD extraction
of the strong coupling uses the perturbative expansion

O(μ) =
nPT∑

k=0

ckα
k
MS

(μ)+O
(
αn+1

MS
(μ)

)
+O

(
Λp

μp

)

,

(3.15)

The known perturbative coefficients ci (i = 1, . . . , nPT)

together with the known 5-loop running of the beta function
allow us to estimate the high-energy contribution

∫ ḡ(μPT)

0
dx

[
1

βs(x)
+ 1

b0x3 −
b1

b2
0x

]

, (3.16)

to ΛMS. It is worthwhile to emphasize a few subtleties
involved in this procedure. Since we only know a few terms
in the perturbative expansion of the observable, the miss-
ing higher orders are a source of systematic error in the
determination of Λ. In fact it is easy to convince oneself
that it introduces uncertainties of order

O(ḡ2nPT(μPT)). (3.17)

A further source of systematic error comes from non-
perturbative (power corrections) to the perturbative expan-
sion. These corrections are suppressed as

O
(
Λp

μp

)

.

Both sources of systematic effect can be eliminated by just
pushing μPT to a high enough scale, but with data only avail-
able in a limited range of energies it is challenging to estimate
the size of these corrections. Moreover, the perturbative cor-
rections O(α

nPT+1
MS

(μ)) decrease very slowly (i.e. logarithmi-
cally) with the scale μPT. This makes reducing perturbative
uncertainties an exponentially difficult problem.

The window problem
The need to use low energies to determine the Λ parame-
ter in terms of a known, precise, hadronic input, is at odds
with the need to reach large energy scales where perturba-
tion theory is applicable with high enough accuracy. This is
usually referred to as the window problem. In practice scales
of a few GeV are reached and the estimates of perturbative
uncertainties remain the main source of error in most lat-
tice calculations. Reference [255] estimates that perturbative
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uncertainties alone amount to about 1–2% error in αs(MZ )

for any method that suffers from the window problem.

Dedicated approaches
There exists however a known solution to overcome this
intrinsic difficulty, and it comes under the name of finite
size scaling [257]. The idea consists in decoupling the sim-
ulations where the hadronic input is determined from the
simulations used to determine the running of the coupling.
Each simulation can only resolve a limited range of scales,
but a recursive procedure called finite size scaling allows us
to relate the energy scales resolved in different simulations
(see below for more details). Another recent proposal [258]
does not provide a complete solution to the window prob-
lem, but reduces the problem substantially. In particular in
this approach we are only concerned with power corrections,
that decrease much faster with the energy scale than pertur-
bative ones.

3.1.3 Lattice observables

There is a wide variety of lattice observables that are used for
a determination of the strong coupling. This rich landscape
allows for multiple independent determinations, providing a
robust cross-check of the methodologies. Here we want to
emphasise the broad range of observables. For a full review
and combination of the results we refer the reader to Refs.
[255] and [256].

We first review the dedicated strategies that aim at solv-
ing (or ameliorating) the window problem with a dedicated
approach. Typically they require dedicated simulations and
the uncertainties are statistically dominated.

Finite size scaling.
An ingenious solution to the window problem is obtained by
separating the RG evolution, resolving only a limited range
of scales in each single simulation, and adopting a recursive
procedure to connect different simulations. The main idea
is to use a finite-volume renormalization scheme, where the
renormalization scale is identified with the inverse volume
of the lattice. The renormalized coupling, denoted here as

ḡ2
SF(μ), (μ = 1/L), (3.18)

is extracted from observables computed in Monte Carlo sim-
ulations. The running of the coupling is encoded in the so-
called step scaling function,

σs(u) = ḡ2(μ)

∣
∣
∣
ḡ2(μ/s)=u, (μ = 1/L), (3.19)

which yields the value of the renormalized coupling at the
scale μ as a function of its value at the scale μ/s, where s a
scaling factor. The step scaling function is evaluated numer-
ically by computing ḡ2

SF(μ) on pairs of lattices of size L
and sL . Thereby multiple simulations on physical volumes

much smaller than the typical hadronic scales are used to
compute the non-perturbative evolution of the coupling from
a hadronic scale μhad up to a high-energy scale, μPT, where
the matching with perturbation theory is fully under control.
While these volumes are too small to study hadronic physics,
they are perfectly suitable to study the RG flow of the cou-
pling. The only experimental input needed in this procedure
is one dimensionful quantity that needs to be compared to one
lattice measurement in a large volume in order to set the scale
in physical units. It is interesting to remark that the strong
coupling constant in this approach is determined from just
one experimental dimensionful quantity. Perturbation the-
ory is only used at scales larger than the perturbative scale,
μPT = snμhad. This scale can be made (almost) arbitrarily
large with a modest (but dedicated) computational effort (typ-
icallyμPT ∼ 100 GeV). Finally it is worthwhile to emphasise
that for the determinations based on finite size methods, the
main source of uncertainty is statistical rather than system-
atic. Dedicated simulations will allow further improvements.

Heavy quark decoupling
Recently a new way to ameliorate the window problem has
been proposed [258] (see also the review [259]). It is well
known that the QCD coupling with nl massless quarks and
nh heavy quarks (with mass M � Λ), can be matched using
perturbation theory to the coupling of QCD with nl massless
quarks. This matching is done in perturbation theory to high
order and the perturbative and non-perturbative corrections
are very small. These perturbative decoupling relations can
also be understood as relations between the Λ parameters
with nl + nh flavors and the Λ parameter with nl flavors

Λ(nl )

Λ(nl+nh) = Pnl,nl+nh (M/Λ). (3.20)

Both perturbative and non-perturbative uncertainties are very
small in these relations even for quark masses of the order of
the charm [260].

The main point of this new proposal consists in simulat-
ing n f fictitious heavy quarks. Since all quarks are heavy, a
coupling computed in this setup ḡ(n f )(μ,M) is, up to heavy
mass corrections just a pure gauge coupling

ḡ(n f )(μ,M)

g(0)(μ)

Λ/M→0∼ 1+O(M−2), (3.21)

where O(M−2) represent corrections that can be (M/μ)2 or
(M/Λ)2. Conversely we can declare that both couplings are
the same at slightly different values of the scale

ḡ(n f )(μ(n f ),M) = g(0)(μ(0)), (3.22)

implying the relation between scales

μ(n f )

μ(0)

Λ/M→0∼ 1+O(M−2). (3.23)
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Together with the basic definition of the Λ parameter
Eq. (3.12), this last relation allows immediately to write a
relation between Λ parameters

Λ(0)

μ(0)

Λ/M→0∼ P0,n f (M/Λ)
Λ(n f )

μ(n f )
+O(M−2) (3.24)

This strategy allows us to determine the n f -flavor Λ-
parameter from the pure gauge one. One only needs the val-
ues of a massive coupling with either three or four flavors
in order to apply the matching condition Eq. (3.22), and the
pure gauge Λ-parameter

Λ(n f ) = lim
M→∞

μ(n f )

P0,n f (M/Λ)
× Λ(0)

μ(0)
(3.25)

The limit of infinite mass ensures that all corrections (both
perturbative and power corrections) vanish, which makes this
an exact relation.

Although this strategy does not completely solve the win-
dow problem, the slowly decreasing perturbative uncertain-

ties are only present in the pure gauge determination of Λ(0)

μ(0) .
Note that the pure gauge theory is much more tractable: sim-
ulations are much cheaper, algorithms are better, and the step
scaling strategy is much more straightforward. Perturbative
uncertainties in the decoupling of heavy quarks are negligi-
ble, and only the power corrections O(M−2) have to be dealt
with. A recent publication [261], using quarks in the range
2–12 GeV shows that precise results can be obtained with
this strategy. The uncertainty is still dominated by statistical
uncertainties, and in fact a substantial part of it comes from
the pure gauge running, which can be further reduced.

Now we move to strategies that suffer from the window
problem described above. In all these methods the uncertain-
ties are dominated typically by the uncertainties associated
with the truncation of the perturbative expansion Eq. (3.15),
or the cutoff effects arising from the difficulty in performing
a continuum extrapolation for quantities defined at scales of
a few lattice spacings.

Ghost-ghost-gluon vertex
The QCD vertices are computed numerically and com-
pared to their perturbative expansion. As the field correlators
involved are not gauge-invariant, these calculations require a
gauge-fixing procedure, which has potential extra uncertain-
ties due to Gribov copies [262,263]. Non-perturbative cor-
rections and lattice cutoff effects are sizeable in the regime
of current simulations (see [255] for a review.).

Static potential
The interaction between static quarks is known to high orders
in perturbation theory, and the data seems to follow to per-
turbative prediction down to scales of the order of 1.5 GeV.
The main drawback comes from the fact that the observable
is not IR-safe, which leads to the resummation of soft and

ultra-soft divergences, and hence the introduction of an extra
soft scale in the problem.

Heavy-quark correlators
The pseudoscalar density correlators are defined as

G(x0) = a6(am0)
2
∑

x

〈ψγ5ψ(x, x0) ψγ5ψ(0, 0)〉. (3.26)

Note that after summing over all spatial sites on the right-
hand side, the correlator only depends on x0. The normal-
ization is fixed by multiplying the field correlator by the
factor a6(am0)

2. Their moments have a well-defined per-
turbative expansion in powers of the strong coupling con-
stant. These correlators are computed in lattice simulations,
which yield a good statistical precision on the final result.
The main drawback of this approach is the large cutoff effects
that affect the quantities used. It is very challenging indeed to
explore energy scales larger than the physical charm quark
mass mc ∼ 1.4 GeV, which is clearly not in the perturba-
tive regime. The recent work in Ref. [264] explores different
energy scales in the range m̄c − 3m̄c, but the continuum
extrapolation is very challenging already at μ � 2mc.

Wilson loops
The expectation values of Wilson loops of multiple sizes
m × n are computed at the scale of the lattice cutoff 1/a.
While these quantities are not extrapolated to their contin-
uum limit, they can be computed in bare lattice perturbation
theory. The perturbative series can then be translated into an
expansion in the remormalized coupling αMS(μ). The typi-
cal scale for these observables is μ ∼ 1/a. Unfortunately the
known perturbative orders are not sufficient to describe the
data and several coefficients of the expansion need to be fit-
ted. While the statistical uncertainty of these determinations
is excellent, they are plagued by the systematic errors due to
the perturbative truncation.

Hadron vacuum polarization (HVP)
The strong coupling constant can be extracted from the cor-
relators of vector and axial vector currents:

Va
μ(x) = ψ̄aγμψa(x),

Aa
μ(x) = ψ̄aγ5γμψa(x),

after a decomposition in Fourier space (with Jμ = Vμ, Aμ)

∫
d4x eıpx 〈Jaμ(x)Jaν (0)〉
= (δμν p

2 − pμ pν)Π
(1)
J (p2)− pμ pνΠ

(0)
J (p2).

The quantity

Π(p2)

= Π
(0)
V (p2)+Π

(1)
V (p2)+Π

(0)
A (p2)+Π

(1)
A (p2)
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is dimensionless and has a perturbative expansion

Π(p2)
p→∞∼ c0 +

4∑

k=1

ck(s)α
k
MS

(μ)+O(α5
MS

),

(s = p/μ)

known up to 5-loops. The constant term c0(s) is divergent,
so that the strong coupling is usually extracted from the dif-
ference Π(p2)−Π(p2

ref), or the Adler function

D(p2) = p2 dΠ(p2)

dp2 . (3.27)

The main issue with extractions based on the HVP is that
power corrections are significant even for large momenta
[265]. Reference [266] pushes the determination to high ener-
gies, so that the data can be described without any power
corrections, but then cutoff effects become larger and the
window of scales to obtain the strong coupling decreases.

Dirac spectral density
The density of the eigenvalues of the Dirac operator,

ρ(λ) = 1

V

〈
∑

k

[δ(λ− ıλk)+ δ(λ+ ıλk)]

〉

, (3.28)

has recently been used to determine the strong coupling via
its perturbative expansion

ρ(λ) = 3λ3

4π2

(
1− ρ1(s)αMS(μ)− ρ2(s)α

2
MS

(μ)

− ρ3(s)α
3
MS

(μ)+ O(α4
MS

)
)
, (s = μ/λ).

The extraction of the spectral density is usually performed
at very low energy scales in order to keep the discretiza-
tion effects under control. Recent work [267] imposes a cut
aλ < 0.5 in order to avoid a substantial deviation from
the continuum result. This restricts the energy scales that
can be reached with their data-set (with lattice spacings
a−1 = 2.5, 3.6 and 4.5 GeV) to λ < 1.2 GeV.

3.1.4 Determinations of the quark masses

Because of confinement, only color-neutral states are observ-
ed as physical states and therefore the quark masses cannot be
measured directly in experiments. On the other hand lattice
QCD offers a unique opportunity to determine these quanti-
ties. In fact the n f bare quark masses appearing as parameters
in the lattice QCD action have to be tuned using n f physi-
cal observables in order to make any meaningful prediction.
Once this tuning is performed, we only need to renormalize
its values to some convenient scheme. The scale dependence
of renormalized values for quark masses in mass-independent
renormalization schemes is described by the mass anomalous

dimension, γ (ḡ), which only depends on the gauge coupling
and obeys the RG equation

μ
d

dμ
m̄i (μ) = γ (ḡ)m̄i (μ)

ḡ→0∼ − ḡ2
∞∑

k=0

dk ḡ
2k, (3.29)

where the leading perturbative coefficient

d0 = 1

(4π)2

(

11− 2n f

3

)

(3.30)

is scheme-independent. As for the coupling, the quark masses
are defined in a given renormalization scheme and at a given
renormalization scale; the conventional practice is to quote a
value for the masses in the MS scheme, m̄MS(μ) (with μ = 2
GeV for light quarks), but as in the case of the coupling we
find more natural to work with renormalization group invari-
ant (RGI) quantities. The evolution equation, Eq. (3.29), can
be integrated exactly to yield

Mi = m̄i (μ)
(

2b0 ḡ(μ)2
)−d0/(2b0)

× exp

{

−
∫ ḡ(μ)

0
dx

[
γ (x)

β(x)
− d0

b0x

]}

. (3.31)

Once again we can think of the RGI mass Mi as a scale-
independent energy that specifies the boundary condition for
the mass evolution and hence fully determines the renormal-
ized mass at all energies. An additional benefit of quoting
RGI quark masses is that they are scheme independent (and
therefore well defined beyond perturbation theory). On the
other hand, the determination of RGI quark masses requires
the knowledge of the evolution of the coupling. Given that
the current precision of the Λ parameter (about 4%) is much
lower than the precision of quark masses at low energies
(about 1%), the values of quark masses at a few GeV are
much more precise than their RGI counterparts. Note how-
ever that this usually means that perturbation theory has been
used at a few GeV, and all the caveats about the use of per-
turbation theory at medium energies raised in the previous
section are also applicable here; the determination of quark
masses is also plagued by a window problem. However from
a practical point of view, the perturbative uncertainties in this
case seem to be much better behaved than in the case of the
extractions of the strong coupling.

Nowadays the most precise results available in the FLAG
review [256] for light and heavy quark masses are obtained
in the isosymmetric limit. There are few subtleties involved
in these extractions; they originate from the fact that experi-
mental inputs include QED and isospin-breaking corrections,
while these effects are not included in the lattice simulations.
These effects are small but they are relevant at the level of
precision of state-of-the-art lattice computations. Ideally one
would like to subtract the isospin breaking corrections from
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the experimental data. The problem is that electromagnetic
interactions affect the RG functions (both β(ḡ) and γ (ḡ))
with O(αEM) contributions: quarks with different electric
charges (like the u and d quarks) run differently. QED makes
the isospin symmetric point ill defined. Even if we impose
m̄u(μ) = m̄d(μ) at μ = 2 GeV, the u and d quarks will
be non-degenerate at another generic renormalization scale.
Since the subtraction of isospin breaking corrections depends
on the definition of the isospin symmetric limit, it is clear
that there are (small) ambiguities whatever convention one
chooses. The FLAG review [256] contains a detailed discus-
sion both in the quark mass section and in the scale setting
section about this particular issue, and the reader is encour-
aged to consult it for more details.

We end this introduction by emphasizing that the inclusion
of the leading QED and strong isospin breaking corrections
(including quark loop effects) is an active area of research
in lattice QCD. Results with a first principles description of
the standard model at low energies, including QCD, QED
and strong isospin breaking, are rapidly becoming the new
standard for lattice computations where this level of precision
is required.

3.1.5 Quark mass definitions

Here we consider the determination of quark masses in QCD
alone (i.e. a sensible definition of the isospin symmetric point
has been made). Quark currents play a central role in QCD.
In particular, the axial current and pseudo scalar density

Aa
μ(x) = ψ̄(x)γμγ5

σ a

2
ψ(x), (3.32)

Pa(x) = ψ̄(x)γ5
σ a

2
ψ(x), (3.33)

are expected, in the continuum, to obey the PCAC relation

∂μA
a
μ(x) = mPa(x). (3.34)

This relation is often used to define renormalized quark
masses. The reason is that we expect the same relation to
hold in the lattice regularized theory after renormalization
and up to cutoff effects.9 The axial current and pseudo scalar
density are renormalized multiplicatively

(AR)
a
μ(x) = ZAA

a
μ(x), (3.35)

(PR)
a(x) = ZP (μ)Pa(x). (3.36)

Note that the axial current renormalization factor is scale
independent. Quark masses are also expected to renormalize
multiplicatively m̄(μ) = Zm(μ)m0, leading to the lattice

9 Depending on the type of fermion formulation used and other details,
the cutoff effects can be O(a) or O(a2). In practice most lattice deter-
minations nowadays choose to eliminate the linear effects in a.

version of the PCAC relation

∂μA
a
μ(x) =

2Zm(μ)ZP (μ)

ZA
m0P

a(x). (3.37)

This relation allows to determine the renormalized quark
masses via the relation

m̄(μ) = Zm(μ)m0 =
ZA〈∂μAa

μ(x)Oext〉
ZP (μ)〈Pa(x)Oext〉 , (3.38)

with much freedom to choose the probe Oext. Note that the
running of the quark masses is given by the scale-dependent
renormalization factor ZP (μ). There are several methods to
determine it on the lattice. Most recent works use nonpertur-
bative renormalization schemes.

RI-(S)MOM schemes
These renormalization schemes are conceptually very simi-
lar to the one used in perturbation theory. There exist several
possibilities, but all are based on imposing a suitable renor-
malization condition to some Green functions with external
momenta playing the role of the renormalization scale. In
principle the renormalization scheme is formulated in infi-
nite volume and at zero mass. In this setup the connection
with perturbation theory is known to high accuracy (up to
4-loops), but this setup cannot be simulated directly on the
lattice, so the infinite volume and zero mass limit require a
dedicated study. In particular these methods suffer from a
window problem (the impossibility to keep the volume large
and at the same time have access to high energy scales where
perturbation theory can be trusted).

Finite volume schemes
In these schemes the renormalization condition is imposed
in a finite volume L , which plays the role of the renormaliza-
tion scale (i.e. μ ∼ 1/L). With a smart choice of boundary
conditions one can directly simulate massless quarks. Con-
tact with perturbation theory is typically only known up to
2-loops, but using the techniques of finite size scaling, this
matching can be performed at very high energies (i.e. 100
GeV), where perturbative uncertainties are negligible.

3.1.6 Approaches for heavy quarks

Heavy quarks are difficult to simulate on the lattice. The
reason is that in order to have discretization errors under
control, the lattice cutoff a−1 has to be much larger than
all other scales considered in the problem. In particular we
require am � 1. The lattice community has typically dealt
with this problem using an effective description for the heavy
quarks (see for example Refs. [288] and [289]). This topic is
beyond the scope of this review. Here instead we will focus
on some recent works that use a relativistic formulation for
the heavy quarks. In particular the recent work [287] uses the
expansion of a heavy-light meson mass Mhl as a function of
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the heavy quark pole mass mh

Mhl = mh + Λ̄+ μπ − μG(mh)

2mh
+O(1/m2

h). (3.39)

Here Λ̄ is the binding energy, μπ/2mh is the kinetic energy
and μG(mh) is the hyperfine energy. This relation allows to
fit meson masses to the heavy quark pole mass, and therefore
to determine it by using the perturbative relation

mh ∼ m̄MS

(

1+
∞∑

k=0

rnα
n+1(m̄MS)

)

. (3.40)

The problem of this approach is that the pole mass has a
terribly behaved perturbative expansion. In fact

rn = (2b0)
nΓ (n + 1+ b1/(2b

2
0)). (3.41)

Reference [287] uses instead the minimal renormalon sub-
traction scheme, that has better PT properties.

Making a long story short, heavy-light meson masses are
directly related to quark masses, without the need of any
non-perturbative renormalization. This approach is used to
determine the b meson mass. Masses of other quarks are
extracted from appropriate quark mass ratios, that do not
need the determination of any renormalization constant.

It has to be pointed out that the heavy quark masses used
in this work are often of the order of the lattice UV cutoff, i.e.
aM ∼ 1, and that the direct connection between heavy-light
meson masses and quark masses depends on the application
of a particular resummed perturbative relation at relatively
low energy scales. Despite these caveats, it is clear that this
work has looked into the future by simulating relativistic
heavy quarks close to the b meson mass.

3.1.7 Conclusions

We conclude this section by summarising briefly the status
of the determinations of the fundamental parameters of the
SM from lattice QCD.

With the advent of dynamical quark simulations and new
methods for non-perturbative renormalization, lattice QCD
determinations of the strong coupling and quark masses have
become both very accurate and very precise. Even if numer-
ical simulations do not qualify as a proof, many of us believe
that these computations have fulfilled the dream of connect-
ing the fundamental quark masses and strong coupling to the
well measured spectra of hadrons from first principles.

There are two challenges that lattice QCD computations
face in this game. On one hand the strong coupling and quark
masses are useful when quoted in the MS-scheme, requiring
to make contact with perturbation theory while most lattice
simulations are performed to explore hadronic low energy
scales. On the other hand experimental input (hadron masses)
have electromagnetic and strong isospin breaking correc-

tions, while most lattice QCD simulations are performed in
the isospin symmetric limit.

The window problem
Connecting the perturbative and hadronic regimes of QCD
is hard. These two scales are separated by a large gap in
energy scales, due to the logarithmic running of the strong
coupling with the renormalization scale. It is very challeng-
ing to accommodate these disparate scales in a single lattice
simulation, and if one insists on doing so, compromises have
to be made and perturbation theory has to be used at a few
GeV.

Isospin breaking corrections
The simulation of electromagnetism on the lattice poses its
own challenges (see [290] for a review), related to the descrip-
tion of charged states in presence of long range interactions.
The simulation of non-degenerate light quarks is also numer-
ically challenging. These facts explain that most lattice com-
putations are performed in the isospin symmetric limit.

The lattice community has made great progress on these
fronts in recent years. The window problem has a known
solution since the early 1990s: finite size scaling [257]. It
has been applied to Nf = 0, 2, 3, 4 QCD [291–293] and
to the determination of quark masses [294–296], but these
determinations traditionally produced results for the strong
coupling with large statistical uncertainties. Thanks to recent
developments [297], finite size scaling studies can achieve
a subpercent level of precision in the strong coupling [298].
These techniques have also been applied to the determination
of quark masses [270,296,299]. Finite size scaling has been
for a long time the only solution to the window problem,
until a new method based on decoupling of heavy quarks
has been proposed [258]. This new method largely reduces
the window problem and recent results show that the strong
coupling can also be determined using these techniques with
a sub-percent precision [261]. This strategy has not yet been
applied to the determination of quark masses, but the method
should also lead to precise determinations of the running of
quark masses.

With the advent of dynamical fermion simulations the pre-
cision of lattice determinations of quark masses has rapidly
reached a very mature status. Renormalization is nowadays
performed in a fully non-perturbative way, and using differ-
ent strategies. Although contact with perturbation theory has
to be made, and in principle there is also a window problem
present in the extraction of quark masses, perturbative uncer-
tainties in this case seem to be much better behaved than in
the case of extractions of the strong coupling. All in all, at the
current level of precision the presence of electromagnetism
and strong isospin in nature is the main factor limiting the
precision of many lattice computations. But the field evolves
very quickly and there exist several lattice computations of
the individual light quark masses mu,md that directly com-
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Table 1 FLAG averages of the RGI quark masses in MeV for
the u, d, s, c and b quarks (see [256]). Several works contribute to
these averages [264,264,268–273,273,273–275,275,275–287] com-

puted with either Nf = 2 + 1 or Nf = 2 + 1 + 1 lattice simulations
with about a percent precision for all different quark masses

MRGI
u MRGI

d MRGI
s MRGI

c MRGI
b [MeV]

Nf = 2+ 1 3.15(13) 6.49(14) 128(2) 1526(17) 6881(63)

Nf = 2+ 1+ 1 2.97(11) 6.53(11) 129.7(1.5) 1520(22) 6934(58)

pute the QED effects in the quenched approximation. We
are convinced that unquenched results will follow soon, and
isospin breaking corrections will be applied to the determi-
nations of all quark masses.

Only 15 years after the first lattice QCD simulations
with dynamical quarks, lattice QCD has been able to deter-
mine from first principles the strong coupling with a 0.7%
error. Quark masses are determined with a percent error
(see Table 1), and soon these computations will include full
isospin breaking corrections. The implications of these cal-
culations are far reaching in constraining the SM descrip-
tion of physical phenomena. Lattice determinations of αs are
the most precise (see the next section). The FLAG average
based on Nf = 2 + 1 + 1 simulations of the u quark mass
is MRGI

u = 2.97(11) MeV (based on the works [269,287],
see also [268]). This value, derived from first principles of
QCD, disfavors a popular solution to the strong CP problem
(a massless u quark) by 30 standard deviations.

3.2 The strong-interaction coupling constant

Giulia Zanderighi

3.2.1 The world average determination of αs

We summarize here the current procedure used in the PDG
[300] to obtain the world average value of αs(M2

Z ) and its
uncertainty, and we discuss future prospects for its improve-
ment.

Preliminary considerations
All observables involving the strong interaction depend on
the value of the strong coupling constant. This implies that a
number of different observables can be used to determine the
coupling constant, provided that a suitable theoretical predic-
tion is available for that observable. Figure 14 presents val-
ues for αs derived from different observables. The following
considerations are used to assess if a particular observable is
suitable for use in the determination of the strong coupling
constant:

– The observable’s sensitivity to αs as compared to the
experimental precision. For example, for the e+e− cross
section to hadrons (e.g. the R ratio), QCD effects are only

Fig. 14 Measurements of the coupling constant αs , as a function of
the energy scale Q. The level of precision of the perturbative prediction
used in the measurement of αs is indicated in brackets (NLO next-to-
leading order, NNLO next-to-next-to-leading order, NNLO+res. NNLO
matched to a resummed calculation, N 3LO next-to-next-to-leading
order). Figure taken from Ref. [300]

a small correction, since the perturbative series starts at
order α0

s , but the experimental precision is high. Three-
jet production, or event shapes, in e+e− annihilation are
directly sensitive to αs since they start at order αs . Four-
and five-jet cross-sections start at α2

s and α3
s respectively,

and hence are very sensitive toαs . However, the precision
of the measurements deteriorates as the number of jets
involved increases.

– The accuracy of the perturbative prediction, or equiva-
lently of the relation between αs and the value of the
observable.
The minimal requirement is generally considered to
be an NLO prediction. The PDG imposes now that at
least NNLO accurate predictions be available. In certain
cases where phase space restrictions require it, fixed-
order predictions are supplemented with resummation.
An improved perturbative accuracy is necessary to guar-
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antee that the theoretical uncertainty is assessed in a
robust way.

– The size of non-perturbative effects. Sufficiently inclu-
sive quantities, like the e+e− cross section to hadrons,
have small non-perturbative contributions ∼ Λ4/Q4.
Other quantities, such as event-shape distributions, typi-
cally have contributions∼ Λ/Q. All other aspects being
equivalent, observables with smaller non-perturbative
corrections are preferable.

– The scale at which the measurement is performed. An
uncertainty δ on a measurement of αs(Q2), at a scale
Q, translates to an uncertainty δ′ = α2

s (M
2
Z )/ α2

s (Q
2)×

δ on αs(M2
Z ). For example, this enhances the already

important impact of precise low-Q measurements, such
as from τ decays, in combinations performed at the MZ

scale.

The PDG determination of αs first separates measure-
ments into a number of different categories, then calculates
an average for each category. This average is then used as an
input to the world average. The PDG procedure requires:

1. a specification of the conditions that a determination of
αs should fulfill in order to be included in the average;

2. a specification of the separations of the different extrac-
tions of αs(M2

Z ) into the separate categories;
3. a specification of the procedure within each category to

compute the average and its uncertainty;
4. a specification of the manner in which the different sub-

averages and their uncertainties are combined to deter-
mine the final value of αs(M2

Z ) and its uncertainty.

Details of the PDG averaging procedure
In the following, we summarize the procedure adopted in the
last edition of the PDG [300]. There, the selection of results
from which to determine the world average value of αs(M2

Z )

is restricted to those that satisfy a well defined set of criteria.
These are that the fit should be

1. accompanied by reliable estimates of all experimental and
theoretical uncertainties;

2. based on the most complete perturbative QCD predictions
of at least next-to-next-to leading order (NNLO) accuracy;

3. published in a peer-reviewed journal at the time of writing
of the PDG report.

Note that the second condition to some extent follows from
the first. In fact, determinations of the strong coupling from
observables in e+e− involving e.g. five or more jets are
very sensitive to αs , and could provide additional constraints.
However, these observables are currently described only at
leading order (LO) or next-to-leading order (NLO), and the

determination of the theoretical uncertainty is thus consid-
ered not sufficiently robust. It is also important to note that
some determinations are included in the PDG, but the uncer-
tainty quoted in the relevant publications is increased by the
PDG authors to fulfill the first condition. Similarly, in some
cases the central value used in the PDG differs from the one
quoted in some publications, but can be extracted from the
analysis performed in that work.

Categories of observables
All observables used in the determination of αs(M2

Z ) in the
PDG averaging procedure are classified in the following cat-
egories

– “Hadronic τ decays and low Q2 continuum” (τ decays
and low Q2): the coupling constant is here determined at
the τ mass, therefore once it is evolved up to the Z mass
the uncertainty shrinks. Perturbative calculations for τ

decays are available at N3LO, however there are different
approaches to treat the perturbative and non-perturbative
contributions that result in significant differences. These
discrepancies are currently the limiting factor in reducing
the uncertainty in this category.

– “Heavy quarkonia decays” (QQ̄ bound states): calcula-
tions are available at NNLO and N3LO.

– “PDF fits” (PDF fits): this category includes both global
PDF fits and analyses of singlet and non-singlet struc-
ture functions. To quantify the theory uncertainty, half of
the difference between results obtained with NNLO and
NLO predictions is added in quadrature.

– “Hadronic final states of e+e− annihilations” (e+e− jets
and shapes): these fits use measurements at PETRA and
LEP. Non-perturbative corrections are important, going
as Λ/Q and can be estimated either via Monte Carlo
simulations or analytic modeling.

– “Observables from hadron-induced collisions” (had-ron
colliders): NNLO calculations for t t̄ or jet production at
both the LHC and HERA, and Z+jet production at the
LHC have allowed measurements for these processes to
be used inαs determinations. An important open question
is whether a simultaneous PDF and αs fit has to be carried
out in order to avoid a potential bias.

– “Electroweak precision fit” (electroweak): αs determina-
tions are averaged from electroweak fits to data from the
Tevatron, LHC, LEP and the SLC. These fits rely on the
strict validity of the Standard Model.

– “Lattice”: the average determined by the FLAG group in
2019 [301] from an input of 8 determinations was used
in the last PDG determination; the subsequent 2021 αs
average is very consistent with that of 2019.

Detailed information about which observables are included
in the different categories can be found in Ref. [300].
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Table 2 PDG average of the categories of observables. These are the
final input to the world average of αs

Category αs(M2
Z )

τ decays and low Q2 0.1178± 0.0019

QQ̄ bound states 0.1181± 0.0037

PDF fits 0.1162± 0.0020

e+e− jets and shapes 0.1171± 0.0031

Hadron colliders 0.1165± 0.0028

Electroweak 0.1208± 0.0028

Lattice 0.1182± 0.0008

Average and uncertainty in each category
In order to calculate the world average value of αs(M2

Z ), a
preliminary step of pre-averaging results within each cate-
gory listed in Sect. 3.2.1 is carried out. For each sub-field,
except for the “Lattice” category, the unweighted average
of all selected results is taken as the pre-average value of
αs(M2

Z ), and the unweighted average of the quoted uncer-
tainties is assigned to be the respective overall error of this
pre-average. An unweighted average is used to avoid the
situation in which individual measurements, which may be
in tension with other measurements and may have under-
estimated uncertainties, can considerably affect the deter-
mination of the strong coupling in a given category. As
an example, the determination of αs(M2

Z ) from e+e− jets
and shapes currently averages ten determinations and arrives
at αs(M2

Z ) = 0.1171 ± 0.0031. Since two determinations
[302,303], both based on a similar theoretical framework,
arrive at a small value of αs(M2

Z ) and have a very small
uncertainty, if one were to perform a weighted average
one would arrive at αs(M2

Z ) from e+e− jets and shapes
of αs(M2

Z ) = 0.1155 ± 0.0006, which is not compatible
with the current world average. This would, in fact, consid-
erably change the world average because of the very small
uncertainties. The current procedure is instead robust against
αs(M2

Z ) determinations that are outliers with small uncer-
tainties as compared to the other determinations in the same
category. For the “Lattice QCD” (lattice) sub-field, the PDG
adopts the LAG2019 average value and uncertainty for this
sub-field [301]. FLAG2019 also requires strict conditions on
its own for a determination to be included in their average,
which are in line with those used in the PDG. The results
of the averages of the categories are given in Table 2. From
the table, it is clear that determinations from different cate-
gories are compatible with each other and accordingly can
be combined to give rise to a final average.

Final average
Since the six sub-fields (excluding lattice) are largely inde-
pendent of each other, the PDG determines a non-lattice
world average value using a standard ‘χ2 averaging’ method.

This results in the final average of the six categories of

αs(M
2
Z ) = 0.1175± 0.0010, (without lattice), (3.42)

which is fully compatible with the lattice determination. In a
last step the PDG performs an unweighted average of the val-
ues and uncertainties of αs(M2

Z ) from the non-lattice result
and the lattice result presented in the FLAG2019 report,
which results in the final average of

αs(M
2
Z ) = 0.1179± 0.0009, (final average). (3.43)

Performing a weighted average of all seven categories
would instead give rise to αs(M2

Z ) = 0.1180± 0.0006. The
PDG uncertainty is instead more conservative and about 50%
larger. These final results are summarized in Fig. 15.

3.2.2 Outlook

Despite the numerous determinations of the strong coupling
constant, it remains to date the least well-known gauge cou-
pling, with an uncertainty of about 1%. Still it is a remarkable
success that all determinations from all categories agree well
with each other, all within about one sigma. Future improve-
ments are likely to be driven by those categories which today
have the smallest uncertainties, i.e. lattice determinations, τ
decays and low Q2 measurements.

As far as the category “τ decays and low Q2 measure-
ments” are concerned, it is important to mention that the
uncertainty quoted in the latter category includes the dif-
ference in the extractions that are obtained using contour
improved perturbation theory (referred to as CIPT) and fixed
order perturbation theory (FOPT). Recent arguments suggest
that FOPT are to be preferred, see also dedicated discussions
on this point in Ref. [304]. If this is confirmed, the value of
αs(M2

Z ) in this category would shift slightly to lower values,
and would allow one to quote a reduced theoretical uncer-
tainty since this additional source of uncertainty would be
completely removed. Further improvements could also come
from a better understanding of non-perturbative effects.

Important progress is also expected in the category “e+e−
jets and shapes”, where the calculation of power corrections
in the 3-jet region [180,305] could have a sizeable impact,
and improve fits of the coupling from event shapes. In fact,
in current determinations that rely on an analytic compu-
tation of non-perturbative power corrections, these calcula-
tions are performed in the two-jet limit and applied to the
kinematic region used in the fits where events typically have
an additional hard emission, i.e. to three-jet configurations.
A treatment of these corrections in the three-jet region is now
possible, at least for some observables and the impact of this
improved treatment of non-perturbative effects on αs(M2

Z )

in this category is eagerly awaited.
As far as the hadron collider category is concerned, it is

an open question if it is always preferred to fit αs(M2
Z ) and
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Fig. 15 Summary of the determinations of αs(M2
Z ) from the seven

sub-fields used in the PDG [300], as discussed in the text. The yellow
(light shaded) bands and dotted lines indicate the pre-average values
of each sub-field. The dashed line and blue (dark shaded) band repre-
sent the final world average value of αs(M2

Z ). The ‘*’ symbol within
the “hadron colliders” sub-field indicates a determination including a
simultaneous fit of parton distribution functions. All other “hadron col-
lider” determinations instead use a set of parton distribution functions
as input to the fit. Figure taken from Ref. [300]

the parton distribution functions simultaneously and how to
best deal with correlations between the parton distribution
function parameters and αs(M2

Z ) in the cases where the fit is
not performed simultaneously. In view of many more NNLO
results to come and many more data from the LHC, we can
expect theoretical work and advances in addressing this ques-
tion. Ratios of cross sections are less sensitive to parton dis-
tribution functions and therefore could be considered more
suitable to extract αs . For instance, NNLO predictions for
3-jet production will enable to perform fits of αs(M2

Z ) from
ratios with at least partial cancellation of some uncertainties.

It is not clear whether this reduction in uncertainty also holds
for the PDF dependence of such ratio predictions. Moreover,
for predictions of ratios of cross sections, the natural central
scale choice in numerator and denominator are in general not
the same. Data from the “hadron collider category” at high
Q2 will also be crucial to test the running of the coupling to
highest energy scales. Such tests are important since heavy
states that couple strongly could modify the running of αs at
high Q2.

Finally, it is important to mention that the recent years have
seen remarkable advances in the determination of αs(M2

Z )
from lattice calculations, also thanks to the FLAG effort
which imposes strict quality criteria for lattice determinations
to be included in the FLAG average. This is now the single
most precise result of all categories included in the PDG and
agrees remarkably well (both in terms of central value and
uncertainty) with the PDG world average of αs without lat-
tice data. Further improvements from lattice calculations are
also expected in the coming decade. Given all the progress
to be expected in the coming years in various aspects and
categories, a determination of αs with sub-percent precision
seems finally within reach.

4 Lattice QCD

Conveners:
Kostas Orginos and Franz Gross
The previous sections have shown how early measurements,
phenomenology, and theoretical arguments lead to the dis-
covery of the QCD Lagrangian, and how the parameters in
the Lagrangian, the QCD fine structure constant αs and the
quark masses mh , could be fixed from experiment.

With this section, we begin a systematic study of the theory
(and provide the discussion needed to understand Sect. 3).
Since αs is not small at energy scales appropriate to the
study of cool nuclear matter, a non-perturbative method is
needed. Lattice QCD (LQCD) is currently the only known
way to obtain accurate, non-perturbative QCD predictions.
Since this method is both complicated and not well covered
in most textbooks, this section presents a detailed, systematic
study of LQCD.

LQCD began in 1974, shortly after Quantum Chromody-
namics was established, when Kenneth Wilson published a
seminal paper in which he formulated the theory on a space-
time lattice. This formulation had profound implications. It
preserved the gauge invariance of the theory while regulating
ultraviolet divergences and providing a definition of QCD as
the continuum limit of the lattice theory. However, one may
argue that the most crucial implication was the fact that it
offered a pathway to non-perturbative computations. Quan-
tities such as the spectrum of stable hadrons, decay constants,
and Parton distribution functions to name a few, could now
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in principle be computed from the fundamental theory with-
out the need for uncontrolled approximations. In the begin-
ning, however, this formulation of QCD lent itself to a dif-
ferent type of analytic computations such as the strong cou-
pling expansion where Wilson showed that color charges are
indeed confined in the strong coupling limit.

Numerical investigations of Lattice QCD (LQCD) started
a few years later with the pioneering work of Michael Creutz
in 1980. There for the first time, the SU(2) pure Yang–Mills
theory was investigated using Monte Carlo methods. Sub-
sequently, many groups around the world started studying
Lattice QCD, developed methods and algorithms, and inves-
tigated the efficacy of the available computer hardware for
numerical calculations in LQCD. Although the fundamen-
tal principles of such calculations were clear, it was evident
from the beginning that the computational cost for achiev-
ing phenomenologically relevant results was enormous. In
addition, the limitations of Euclidean time formulation as
well as the computational limitations imposed by finite vol-
ume and lattice spacing made it clear that computational
power alone will not be enough. Therefore, intense theo-
retical research to develop methods and algorithms started
in the 1980s. Together with that effort, many groups devoted
efforts to designing custom-made supercomputers that were
best suited for the problem at hand. The idea of a massively
parallel computer to solve scientific problems seemed at odds
at the time with the vector machines that defined the com-
mercially available high-performance computers. Yet in the
1990s the rise of massively parallel computers, commercial
or custom-made, led to major advances in LQCD. The new
century brought a combination of powerful supercomputers,
sophisticated numerical techniques, and advanced theoretical
approaches that allowed for the first time to compute physical
quantities at phenomenologically relevant accuracy.

Lattice QCD is now an established field that can provide
results at unprecedented accuracy and can help move for-
ward our fundamental understanding of particle physics. The
impact of lattice QCD computations on strong interaction
physics is evident throughout this volume. Nearly every sec-
tion contains references to landmark lattice QCD computa-
tions. In this section, a brief introduction to the formulation
of lattice QCD is given by Gottlieb, followed by De Tar’s
review of the basic LQCD algorithms. Leinweber discusses
the structure of the QCD vacuum as it emerges from numer-
ical experiments. Karsch reviews computations at non-zero
temperatures and densities relevant to understanding quark–
gluon plasma physics.

The discussion then continues with a focus on appli-
cations. Dudek reviews hadron spectroscopy with empha-
sis on finite volume methods that allow for the extraction
of scattering amplitudes from Euclidean time correlation
functions. Constantinou/Orginos discuss computations of the
nucleon structure including modern approaches that allow

for the extraction of momentum-fraction-dependent distri-
butions from Euclidean time computations. Finally, Davies
reviews computations for Weak matrix element computations
which play a central role in the experimental program for
probing physics beyond the standard model (BSM).

4.1 Lattice field theory

Steven Gottlieb

4.1.1 Introduction

In perturbative quantum field theories loop integrals lead
to infinities. To deal with these infinities, a regularization
scheme must be introduced. Examples of regularization
schemes are Pauli–Villars modification of particle propa-
gators and dimensional regularization in which the num-
ber of space-time dimensions of the system becomes a vari-
able. After regularization, calculations no longer suffer from
infinities, but they do depend on a new parameter specific to
the regularization scheme, e.g., Λ a large mass in the Pauli–
Villars scheme, or ε = 4− d in the case of dimensional
regularization. Since physical results should be independent
of the regularization scheme, a renormalization procedure is
introduced so that the so-called bare parameters of the the-
ory depend on Λ or ε in such a way that physical observables
do not as there is a cancellation between the regularization
dependence of the bare parameters and those of the loop inte-
grals.

In lattice field theories (LFTs), the theory is modified so
that (in finite volume) there are no longer an infinite number
of degrees of freedom. For instance, in a scalar field theory
instead of a real or complex value of the field at each of the
infinite points of space time, there are only a finite number
of real or complex degrees of freedom defined on a hyper-
cubic grid of space time points. In this case, the parameter
that characterizes the regulator is the distance between the
space time points called the lattice spacing, usually denoted
a. Usually, periodic boundary conditions in space and anti-
periodic boundary conditions in time are used. As we will
see in more detail below, the field can be Fourier trans-
formed and in momentum space there is a maximum momen-
tum as each component of the momentum is in the range
−π/a < pi ≤ π/a. In a finite volume, there is also a mini-
mum spacing between allowable momenta components that
serves as an infrared regulator. To summarize, the lattice
field theory regularizes the theory by introducing a maxi-
mum momentum, and the renormalization program is imple-
mented by requiring that physical quantities be independent
of the lattice spacing as a → 0. Also, since the lattice the-
ory only has hypercubic and not full rotational symmetry,
we must demonstrate that the latter is restored for distances
much larger than a.
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Actions for a free scalar theory
To see how LFTs work, let’s start with a free scalar field
theory in the continuum, transform it to a Euclidean field
theory and then put it on a lattice. Start with the Lagrangian
density

L(x) = 1

2
[∂μφ(x)∂μφ(x)− m2φ(x)2] (4.1)

and the action

S =
∫

dt L =
∫

dt
∫

d3xL(x)

=
∫

d4x
1

2
[∂μφ(x)∂μφ(x)− m2φ(x)2]

=
∫

d4x
1

2
[∂tφ(x)∂tφ(x)

−∇φ(x) · ∇φ(x)− m2φ(x)2] (4.2)

where φ(x) is the scalar field andm is its mass. The Feynman
path integral is defined as

Z =
∫
[dφ] exp{i S}, (4.3)

where [dφ] denotes the integration measure of all possible
fields φ(x). To Euclideanize the theory let t → −iτ which
changes the sign of the time derivative term in the Lagrangian
density. It also adds a factor −i because of the change of
integration variable in the action. So, the Euclidean action is
defined to be

SE =
∫

d3xdτ
1

2
[∂τφ(x)∂τφ(x)

+∇φ(x) · ∇φ(x)+ m2φ(x)2], (4.4)

and the path integral becomes

Z =
∫
[dφ]exp{−SE }. (4.5)

At this point, it is traditional to rename τ to t , the time variable
with which we started, or let τ = x4. In any case, the field φ

is defined on a 4-dimension Euclidean domain, SE is positive
definite, and this looks like a partition function of a statisti-
cal mechanical system. The transformation to Euclidean time
allows us to use the importance sampling techniques of sta-
tistical mechanics (Monte Carlo methods) introduced in the
next section.

To convert to a lattice theory, introduce a spacing a
between the points of a hypercubic grid, so the lattice field
φn is defined on a discrete set of points n = (n1, n2, n3, n4)

in R4 and x = an. Typically, work is done in a finite volume
so that ni is an integer between 0 and Ni − 1, where Ni is
the extent of the lattice in the i-th direction. The derivatives
must be replaced by a finite difference approximation. There
is more than one way to do this. Pretending for the moment

that φ depends only on a single variable x , a forward differ-
ence is defined by

Δ+φ(x) = φ(x + a)− φ(x)

a
. (4.6)

Taylor expanding φ(x + a) gives

Δ+φ(x) = φ′(x)+ a

2
φ′′(x)+ · · · . (4.7)

Note that the symmetric finite difference operator

ΔSφ(x) = φ(x + a)− φ(x − a)

2a
(4.8)

= φ′(x)+ a2

6
φ′′′(x)+ · · · (4.9)

is a much better approximation of the continuum derivative
since the correction is second order in the small lattice spac-
ing a.

Actions for a gauge invariant scalar theory with a φ4-type
interaction
To introduce gauge invariance, change the real scalar field to
a complex field, and introduce a φ4-type interaction term

S =
∫

d4x[∂μφ∗(x)∂μφ(x)− m2φ∗(x)φ(x) (4.10)

− λ(φ∗(x)φ(x))2]. (4.11)

A global gauge transformation is just a change φ → φ′ =
Ωφ where Ω is complex phase factor, Ω = exp iθ , with θ a
real number independent of x . The action is clearly invariant
under this gauge transformation since (φ′)∗ = Ω∗φ∗ and for
every factor of Ω coming from transforming φ, there is a
corresponding factor of Ω∗ from transforming φ∗. A cubic
term in the action would break this gauge invariance.

To generalize to local gauge invariance, allow θ to become
a function of x . The mass and interaction terms are clearly
still invariant because they only depend on x . However, the
first term with derivatives transforms in a non-trivial way.

∂μφ
′(x) = ∂μ(Ω(x)φ(x))

= (∂μΩ(x))φ(x)+Ω(x)(∂μφ(x)). (4.12)

To handle the extra term depending on ∂μΩ(x), define a
covariant derivative Dμ that has the property

D′μφ′(x) = Ω(x)Dμφ(x), (4.13)

so that the covariant derivative Dμφ(x) transforms under
a gauge transformation the same way that φ(x) does. To
accomplish this, introduce a vector field Aμ(x), and define
the covariant derivative to be

Dμ = ∂μ + ieAμ. (4.14)

Using this definition in (4.13) gives the constraint

(∂μ + ieA′μ)(Ω(x)φ(x)) = Ω(x)(∂μ + ieAμ)φ(x). (4.15)
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Requiring that this hold for any field φ(x) gives the gauge
transformation for the field Aμ

A′μΩ = ΩAμ + i

e
∂μΩ. (4.16)

This derivation has preserved the order of the terms, so that
this equation will hold even for non-Abelian theories in which
Ω is a matrix. Solving for A′μ in this most general case gives

A′μ = ΩAμΩ
−1 + i

e
(∂μΩ)Ω−1. (4.17)

For the Abelian theory, this reduces to

A′μ = Aμ − 1

e
∂μθ. (4.18)

This all works out very nicely in the continuum theory.
Wilson’s brilliant insight [97] was to define the lattice theory
not with variables from the gauge algebra, but with variables
that are elements of the gauge group, denotedU (n,m). These
are called link variables. or parallel transporters because they
allow the comparison of a field at one point on the lattice with
a neighboring point in a gauge covariant way. If U (n,m) is
associated with the link connecting nearest neighbor points
n and m, then

U (m, n) = U †(n,m) = U−1(n,m) (4.19)

where the second identity follows from the fact that U is a
unitary matrix. So, defining Unμ = U (n, n + μ̂), Eq. (4.19)
shows that U (n + μ̂, n) = U †

nμ.
We want the productUnμφn+μ̂ to transform under a gauge

transformation the same way that the field does at the point
n. In other words, under a gauge transformation U → U ′
and φn → φ′n = Ωnφn , so we must have

U ′nμφ′n+μ̂
= ΩnUnμφn+μ̂. (4.20)

Since φ′n+μ̂
= Ωn+μ̂φn+μ̂, this implies

U ′nμ = ΩnUnμΩ
−1
n+μ̂

. (4.21)

Hence, the products of link variables along a path transform
as Ωn if the left-most point is n and Ω−1

m , if the right-most
point is m. With suitable products of link variables, we can
transport a field as far as we wish and have it transform as a
variable that ‘lives’ at the left-most point in the product.

The difference Unμφn+μ̂ − φn transforms in a gauge
covariant way, since under a gauge transformation it picks
up a factor of Ωn . The relationship between the group ele-
ment Unμ and the gauge field Aμ(x) that takes a value in the
Lie algebra is

Fig. 16 Top: The two paths that contribute to [Dμ, Dν ]. The μ-
direction is the horizontal axis, and ν is vertical. On the left, we have
DμDν , on the right DνDμ Bottom: The links of a plaquette whose
lower-left corner is site n, with directions same as in top figure

Unμ = P exp

{

ie
∫ an+aμ̂

an
dyν Aν(y)

}

= exp

{

iea
[
Aμ(an + aμ̂/2)+ a2

24
∂2
μAμ(an + aμ̂/2)

+ · · ·
]}

= 1+ iaeAμ(an + aμ̂/2)+ · · · . (4.22)

where the lattice spacinga is shown explicitly, and it is natural
to relate the link variable U to the (continuum) gauge field at
the midpoint of the link. Note that in Wilson’s original work,
the lattice gauge field variables are Anμ, i.e., they are labeled
by the left-hand site of the link.

Having defined the covariant derivative, the field strength
tensor can be calculated. In the continuum:

Fμν = ie[Dμ, Dν] (4.23)

where the square brackets denote the commutator. This for-
mula also holds in the case of non-Abelian gauge theory for
which Aμ(x) is a matrix in the Lie algebra of the gauge group.

On the lattice, the covariant derivative involves parallel
transport from a neighboring site (Fig. 16). Since there are
two covariant derivatives a field is transported from two sites
away:

DμDνφn = Unμ(U(n+μ̂)νφn+μ̂+ν̂

−φn+μ̂)−Unνφn+ν̂ − φn
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= UnμU(n+μ̂)νφn+μ̂+ν̂

−Unμφn+μ̂ −Unνφn+ν̂ − φn . (4.24)

The last three terms are symmetric under the interchange
of μ and ν, so only the first term contributes to the commuta-
tor. Thus, the field strength tensor is the difference between
the product of the two two-link paths connecting sites n and
n + μ̂+ ν̂. In one path we move in the μ direction first and
in the other we move in the ν direction first. Also, the field
strength tensor is gauge covariant as the common endpoints
of the two paths determine how Fnμν transforms:

F ′nμν = Ωn FnμνΩ
−1
n+μ̂+ν̂

. (4.25)

In the continuum the gauge action is proportional to F2
μν ,

and is gauge invariant. Having just determined that Fμν can
be expressed in terms of a two-link path, we might expect that
a four-link path would yield F2

μν . It is easy to construct gauge
invariant products of links. If we take the trace of the product
of links along any closed path, it will be gauge invariant. The
only closed four-link paths are those around the elementary
squares of the lattice. The term plaquette is sometimes used
to refer to the elementary squares of a hypercubic lattice. The
plaquette is also used to refer to the product of the four link
matrices around the square, or to the trace of this matrix. The
context should make clear whether the author is referring to
a shape, a matrix, or a number. Here the plaquette Unμν will
be the trace of the product of the four links

Unμν = Tr(UnμU(n+μ̂)νU
†
(n+ν̂)μ

U †
nν) (4.26)

The Wilson plaquette gauge action is defined as

SW = 1

g2

∑

n

∑

μ�=ν

(3− ReUnμν). (4.27)

Actions for fermions
In the continuum, the free fermion action SF is given by:

SF =
∫

d4xψ̄(x)(iγ μ∂μ − m)ψ(x), (4.28)

where the gamma matrices obey {γ μ, γ ν} = 2gμν . Going
through the transformation to Euclidean space time, we
introduce the Euclidean gamma matrices γ E

4 = γ 0 and
γ E
i = −iγ i . These gamma matrices obey {γ E

μ , γ E
ν } = 2δμν .

The Euclidean action is given by

SEF =
∫

d4xψ̄(x)(γ E
μ ∂μ + m)ψ(x). (4.29)

We simplify notation below by dropping the superscript E
on the Euclidean gamma matrices. To include the interac-
tion with the gauge field, the ordinary partial derivative in
Eq. (4.28) is replaced by the covariant derivative. For SEF , a
gauge covariant finite difference approximation is used

∂μψ(x)→ 1

2a
(Unμψn+μ̂ −U †

(n−μ̂)μ
ψn−μ̂) (4.30)

which is the analog of ΔS introduced in Eq. (4.8). This action
is called the naive fermion action, and we are about to see that
it suffers from the so-called “fermion doubling problem.”

To explore this, consider the case of a free fermion, so the
link variables may be replaced by the unit matrix. Going to
momentum space, let

ψn =
∑

p

e(iap·n)ψ(p). (4.31)

On the lattice there is maximum value for each momen-
tum component because if apμ = 2π then the exponential
will always be always be the same as for pμ = 0. Thus,
the momentum components can be restricted to be less than
(2π)/a or more symmetrically,

− π

a
< pμ ≤ π

a
. (4.32)

Because of the periodic boundary conditions on a lattice of
finite extent, say L in each direction, there is another restric-
tion that apμL = 2π j for some integer j . Thus the allowable
momentum components are restricted to (2π j)/(aL), so for
finite L the lattice provides an infrared as well as an ultra-
violet cutoff. However, as L goes to infinity, the momentum
becomes a continuous variable, and in this case Eq. (4.31)
becomes

ψn =
∫ π/a

−π/a
d4 p e(iap·n)ψ(p). (4.33)

The fact that ψ̄ and ψ are displaced from each other on the
lattice results in factors of exp±i pμa. The final result for the
Euclidean action, written in momentum space, is

SEF =
∫

d4 p

[
i

a

∑

μ

ψ̄(p)γμ sin(pμa)ψ(p)+ mψ̄(p)ψ(p)

]

=
∫

d4 p ψ̄(p) S−1(p) ψ(p), (4.34)

The fermion doubling problem
At this point, most authors go on to solve for the free quark
propagator and examine the pole structure. Let’s just look
at the current expression and compare with the continuum.
When pμa is small, we may approximate sin(pμa)→ pμa
so the factor of a−1 before the sum is cancelled and this looks
a lot like i /p + m. As pμ continues to grow toward π/(2a),
the sin function flattens out and then starts to return to zero
at pμ = π/a. That means at the end of the Brillouin zone,
there is again a region were there is linear dependence on the
momentum. More concretely, let pμ = π/a − k and note
that sin(pμa) = sin(ka). We also need the region where
pμ = −π/a + k to have a region in momentum space just
like the one at the origin. Since any component of p can be
near zero, or at the edge of the Brillouin zone there are 24

regions in momentum space where the action takes the form
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of a free action. We wanted one fermion and we wound up
with 16! This is the crux of the doubling problem.

In his Erice lectures, Wilson provided a fix [306]. He added
to the action a higher dimensional term, the lattice Lapla-
cian, multiplied by the lattice spacing. This term vanishes as
a → 0. The covariant version of the second derivative ∇2

μ is
defined

∇2
μψn = 1

a2

(
Unμψn+μ̂ +U †

(n−μ̂)μ
ψn−μ̂ − 2ψn

)
. (4.35)

The Wilson fermion action is therefore

SFW = Snaive − ar

2

∑

x

ψ̄(x)
∑

μ

∇2
μψ(x)

= ψ̄MW (m)ψ, (4.36)

where r is a free parameter, usually set to r = 1, and Snaive
is given by Eq. (4.29) after substituting Eq. (4.30). Fourier
transforming, the free inverse propagator now is

aS−1(p) = i
∑

μ

γμ sin(apμ)+am−r
∑

μ

(
cos(apμ)−1

)
.

(4.37)

The last term, proportional to r , vanishes near p = 0, but
near the edge of the Brillouin zone cos(apμ) = −1 and the
doublers, with n momentum components pμ = ±π/a, now
attain masses m+2nr/a, and only one fermion, with p ≈ 0,
remains light. The Wilson term cures the doubling problem,
but the action with m = 0 no longer has a chiral symmetry so
there is an additive mass renormalization, and we must fine
tune the parameters to determine where the fermion mass
vanishes. The Wilson fermion action has errors O(a).

An important property of the Wilson Dirac operator is its
γ5 Hermiticity. That is

M†
W (m) = γ5MW (m)γ5. (4.38)

We will see in the next section that det MW (m), the fermion
determinant, arises from integrating over the fermion fields.
A consequence of γ5 Hermiticity is that det M†

W (m) =
det MW (m). If a theory has two equal mass fermions, the
fermion determinant will be positive (semi-) definite as

det(MW (m)MW (m)) = det(M†
W (m)MW (m)). (4.39)

In addition to the dimension-5 operator Wilson intro-
duced, there is a second operator introduced by Sheik-
holeslami and Wohlert [307] that can be adjusted to reduce
the error to O(a2). The operator is the lattice analog of
ψ̄(x)σμνFμν(x)ψ(x) where σμν = i

2 [γμ, γν] is the commu-
tator of the γ matrices and Fμν(x) is the field strength tensor
defined in Eq. (4.23). Previously, we were considering elec-
tromagnetism, but the same formula applies to non-Abelian
theories if we replace e by g, the coupling constant for the
non-Abelian group. A lattice expression for the field strength

tensor can be constructed from four suitably oriented (uncon-
tracted) plaquettes surrounding site n. This has come to be
known as the clover action because the four plaquettes look
like a four-leaf clover and clover is easy to spell. Thus, the
Sheikholeslami-Wohlert or clover term in the action is

SSW = iag

4
cSW

∑

n,μ,ν

ψ̄nσμνFnμνψn, (4.40)

whereFnμν is the clover-like term discussed above. The coef-
ficient cSW can be tuned either perturbatively [308,309], or
better yet, non-perturbatively [310,311]. The addition of the
clover term is an example of an improvement program intro-
duced by Symanzik [312,313].

A number of collaborations generate ensembles of gauge
configurations using the Wilson-clover action. The scientific
output from the expense of creating these configurations is
greatly enhanced by sharing them for complementary inves-
tigations. The CLS, HSC, PACS, and QCDSF Collabora-
tions are among those generating ensembles. Reference [314]
describes the ensembles generated by a dozen collaborations
and their plans to share them as presented at Lattice 2022.
This paper also covers several of the other quark actions dis-
cussed below.

4.1.2 Twisted mass quarks

One issue with the Wilson formulation is that for small mass,
it is possible to encounter so-called ‘exceptional configura-
tions’ for which it is very difficult, if not impossible, to con-
struct the quark propagator [315]. This was particularly an
issue in the quenched approximation in which the fermion
determinant is neglected. It can also slow down generation of
configurations with dynamical quarks. For a theory with two
light flavors, such as u and d, the twisted mass operator was
invented to ensure that the fermion determinant is positive
definite [316]. If the lattice Dirac operator is D + m, then

Dtwist = D + m + iμγ5τ3, (4.41)

where τ3 operates on the two flavors of quarks. Then
det Dtwist = det((D +m)†(D +m)+ μ2). So, as long as μ

is non-zero, det Dtwist is positive and exceptional configura-
tions are avoided. This action has been used by the European
Twisted Mass Collaboration for over 15 years. The collab-
oration is now the Extended Twisted Mass Collaboration as
there are non-European members.

4.1.3 Staggered quarks

Staggered quarks are an alternative to Wilson quarks that
reduce the degree of doubling and retain some of the chiral
properties of the continuum theory [98,317–319]. One must
be careful in reading the literature since some authors use x0
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for the time coordinate and others use x4. This can have con-
sequences for the field redefinition essential to the reduction
in the number of fermions. Here we adopt the conventions in
Refs. [320] and [321] rather than those in Ref. [322]. The key
simplification is to rearrange the Dirac components at each
site of the lattice in such a way that the action can be seen as
comprised of four non-interacting fields. In this way, we may
retain a single field component at each site and the doubling
is reduced from 16 to 4. Initially, it was thought that this could
be interpreted as four flavors or quarks, say, u, d, s, and c, but
the modern interpretation is that each flavor has four ‘tastes.’
Tastes are not physical, so we must take a fourth root of the
fermion determinant for each quark, and must be careful in
constructing hadron operators to avoid mixing tastes as phys-
ical operators should really be constructed from a single taste.
In the continuum limit, taste breaking vanishes so operators
with mixed tastes should become degenerate with single taste
operators. The rooting procedure and its validity is quite a
technical subject. We refer the interested reader to Sec. III.C
of Ref. [322] for a detailed discussion with references to the
original literature.

Define a local redefinition of the Dirac components of the
quark field by ψn = Ωnψ

′
n and ψ̄n = ψ̄ ′nΩ

†
n . The 4 × 4

matrix Ωn is defined as

Ωn = γ
n0
0 γ

n1
1 γ

n2
2 γ

n3
3 . (4.42)

This may appear more complicated than it really is. Note that
as γ 2

μ = 1, each gamma matrix appears in Ωn only when the
corresponding coordinate is odd. There are only 16 distinct
values for Ωn , and if we translate two sites in any direction,
we have the same matrix. We will see that staggered quarks
are naturally defined on 24 sub-hypercubes of the lattice. The
gamma matrices are unitary and Hermitian, so

Ω†
nγμΩn+μ̂ = (−1)n0+···+nμ−1 ≡ αμ(n). (4.43)

The hopping term in the naive fermion action

ψ̄nγμUnμψn+μ̂ (4.44)

is transformed into

ψ̄ ′nΩ†
nγμUnμΩn+μ̂ψn+μ̂ = ψ̄ ′nαμ(n)Unμψn+μ̂. (4.45)

The same factor appears in the hopping term that involves
ψn−μ̂ since Ωn+μ̂ = Ωn−μ̂ as the two sites differ by two
units in the μ-direction. The gamma matrices have disap-
peared, and we are left with a unit matrix in Dirac index space,
so there are four equivalent non-interacting components ψ ′n .
We may discard three of the four components and write the
staggered action in terms of a single component field χ .

Sstag = 1

2a

∑

n,μ

χ̄nαμ(n)[Unμχn+μ̂ −U †
(n−μ̂)μ

χn−μ̂]

+ m
∑

n

χ̄nχn . (4.46)

As mentioned above, becauseαμ(n) is periodic in each direc-
tion with period two, it is possible, perhaps natural, to inter-
pret the 16 components on the sites of each 24 as the com-
ponents of four Dirac spinors, i.e., the four tastes.

For the free theory, the four tastes can be expressed in the
following way. Let y be a 4-component integer valued vector
labeling the hypercubes. Let η be a four component vector
whose components may only take the value 0 or 1. That is,
η labels the 16 sites of a hypercube. For each hypercube y,
the sites of the original lattice take the values 2y+ η for one
of the 16 values of η. Let α be a Dirac component index and
a be a taste label. Both α and a range between 1 and 4. We
have

ψαa
y = 1

8

∑

η

Ωαa
η χ2y+η. (4.47)

This is not gauge covariant since we are adding together χ

values from different lattice sites, so in the interacting case,χ
at each site must be multiplied by suitable parallel transporter
to move it to the origin of the hypercube. In practice, one
really does not have to worry about this.

For Wilson quarks the action was improved by adding the
clover term. For staggered quarks there have been similar
advances by improving the action. For the most simple stag-
gered action, the errors are O(a2). Naik [323] introduced a
3-link hopping term. The gauge action was also improved
by adding 2× 1 rectangles, and 6-link terms that circle a 3-
dimensional cube, sometimes called the bent chair diagram,
known as the Lüscher–Weisz gauge action [324,325]. These
terms are depicted in the top of Fig. 17. Essential benefits
come from averaging or smearing the gauge fields in the 1-
link hopping terms. These smearings are designed to reduce
taste symmetry breaking. There have been two major rounds
of these improvements, the first is known as the asqtad action
[326–330] and the second is known as the highly improved
staggered quark or HISQ action [331]. The paths for the
fermion link smearings are shown in the bottom of Fig. 17.
The HISQ action employs two levels of smearing. Refer-
ence [322] details the asqtad and HISQ actions and provides
many physics results using the former action. The MILC Col-
laboration generates HISQ ensembles that are also used by
the Fermilab Lattice and HPQCD Collaborations, and others.
These improvements make the coding more complicated and
require more floating point operations on a fixed grid size,
but the payoffs can be enormous as the errors for the same
lattice spacing are significantly reduced with the improved
actions. If, say, an improvement would allow one to work at
twice the lattice spacing as without the improvement there
would be a significant reduction in computer time as halving
the lattice spacing increases the work by a factor of 32 or
more.
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Fig. 17 Top: Loops that are included in the gauge action for asqtad
and HISQ quarks. Bottom: For the asqtad action, the one-link hopping
term in the naive staggered quark action is replaced by a combination of
1-, 3-, 5-, and 7-link smearings. The right-most 5-link term is known as
the Lepage term. This figure is adopted from Ref. [330]. There is also a
straight 3-link term known as the Naik term. For the HISQ action, there
are two levels of smearing, but no additional paths are involved

4.1.4 Improving chiral symmetry

When the quark mass vanishes, the theory contains an impor-
tant continuous symmetry known as chiral symmetry. The
dynamical breaking of this symmetry is responsible for the
pions being so light. The Wilson action explicitly breaks this
symmetry, and the staggered actions discussed above only
maintain some of the symmetry. However, there are other
lattice actions that have much better chiral symmetry. These
include the domain wall and overlap actions.

In the continuum, chiral symmetry follows from the fact
that γ5 anticommutes with the kinetic operator D = /D.
In 1982, Ginsparg and Wilson [335] considered the conse-
quences of a generalized lattice chiral symmetry which is
currently expressed as

Dγ5 + γ5D = aDγ5D. (4.48)

Note the factor of the lattice spacing a on the RHS. As a → 0,
we restore chiral symmetry; however, even at non-zero a
there is a more complicated chiral symmetry for operators
that obey Eq. (4.48).

ψ → ψ ′ = exp
(
iαγ5

(
1− a

2
D

))
ψ (4.49)

with a similar expression for ψ̄ . As a → 0, Eq. (4.49)
approaches the usual expression for a chiral rotation, but at
non-zero lattice spacing the transformation is more compli-
cated as D is a finite difference operator. Reference [335] was
not heavily cited until 1998 when the overlap operator that
was developed by Narayanan and Neuberger [336–339] was
shown to obey Eq. (4.48) [340]. If A obeys γ5 Hermiticity,
let H = γ5A, then

Dov = 1

a
(1+ γ5 sign[H ]) (4.50)

defines the overlap operator. An alternative expression is

Dov = 1

a
(1+ γ5H(HH)−1/2). (4.51)

A suitable choice for A is DW (0) − r , with 0 < r < 2.
Numerically, it is difficult to compute the sign function or the
inverse square root of a matrix. The χQCD Collaboration
uses overlap fermions.

Two other papers from 1998 were also important in reviv-
ing interest in the Ginsparg–Wilson (GW) relation. In Ref.
[341], Hasenfratz, Laliena, and Niedermayer showed that the
fixed point action obeys the GW relation. Luscher demon-
strated that the GW relation leads to an exact chiral symmetry
even at non-zero lattice spacing [342].

In 1992, Kaplan introduced domain wall fermions in
which chiral modes are bound to a defect in a 5-dimensional
(5D) theory [343]. The theory was further developed by
Shamir [344,345], and Furman and Shamir [346]. We adapt
here the notation of Ref. [347]. Points in the five dimensional
lattice are labeled bym in the four dimensional space and r in
the 5th dimension, with r = 0, . . . , N5− 1. The 5D fermion
field is Ψ (m, s). The 5D Dirac operator consists of two parts:

Ddw(n, s;m, r) = δs,r D(n;m)+ δn,mDdw
5 (s, r). (4.52)

The first term can be an ordinary Wilson operator with a
modified mass:

D(n;m) = (4− M5)δn,m − 1

2

±4∑

μ=±1

(1− γμ)Un;mδn+μ̂,m

(4.53)

where we use notation Un;m to avoid having to specify her-
mitian conjugation for negative directions. Using P± =
(1± γ5)/2,

Ddw
5 (s; r) = δs,r − (1− δs,N5−1)P−δs+1,r

−(1− δs,0)P+δs−1,r + m(P−δs,N5−1δ0,r

+P+δs,0δN5−1,r ). (4.54)

The physical 4D fields come from the boundaries of the 5D
field:

ψ(n) = P−Ψ (n, 0)+ P+Ψ (n, N5 − 1). (4.55)

Domain wall fermions are used extensively for dynamical
quarks, especially by the RBC/UKQCD and JLQCD Collab-
orations.

4.1.5 Continuum limit

To control systematic errors it is crucial to tune the quark
masses to their physical value, to have a volume that is large
enough to avoid finite volume errors, and to take the limit
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Fig. 18 Left: We show how taste breaking of pseudoscalar mesons
decreases as the lattice spacing is reduced for two types of improved
staggered quarks asqtad (blue) and HISQ (red). Different symbols
denote different taste mesons. The quantity plotted is the difference
of squared mesons masses for the plotted meson mass (ξ ) and the Gold-
stone taste combination (γ5). The horizontal axis is the α2

s a
2 in units

determined by the heavy quark potential r1. Taste symmetry is restored
in the continuum limit and taste breaking is much smaller for HISQ
than for asqtad. See Ref. [332] for details. Right; The ρ meson mass
as a function of lattice spacing for multiple actions shows a common

continuum limit, but some actions have much more gentle lattice spac-
ing dependence than others. Red octagons are unimproved staggered
fermions with Wilson gauge action, diamonds are unimproved stag-
gered fermions with Symanzik improved gauge action, crosses are Naik
fermions and blue squares are asqtad fermions, both with Symanzik
improved gauge action. For comparison we also show in light blue tad-
pole clover improved Wilson fermions with Wilson gauge action [333]
(fancy squares) and with Symanzik improved gauge action [334] (fancy
diamonds). (See Ref. [322] for details)

a → 0. In the early days, it was too expensive to use physi-
cally light u and d quarks, so one also had to use chiral pertur-
bation theory to extrapolate to those quark masses. Because
QCD has the property of asymptotic freedom, the coupling
constant goes to zero as the cutoff goes to infinity. On the
lattice, the inverse lattice spacing plays the role of the cutoff.
By dimensional transmutation, instead of expressing physi-
cal results in terms of the coupling, we do it in terms of the
lattice spacing. In the left panel of Fig. 18, we show how
taste breaking decreases as a → 0 in accord with expected
behavior for both asqtad and HISQ quarks. This also clearly
shows that taste breaking is much smaller for HISQ (as it
was designed with that in mind). In the right panel, we show
how the ρ meson mass depends on the lattice spacing. Some
of these results are rather old, and some are in the quenched
approximation; however, the point to be made is that different
ways of putting quarks on the lattice have the same contin-
uum limit, although the rate at which they approach that limit
will vary.

Modern calculations use multiple lattice spacings to con-
trol the continuum limit. Results using various quark actions
are compared by the Flavor Lattice Averaging Group [256].
Calculations must use at least three lattice spacings to sat-
isfy the quality criteria. Some calculations use five or six
lattice spacings and can span a range as wide as about 0.15
fm to 0.03 fm. There is strong evidence from many different

physical quantities that different quark actions agree in the
continuum limit. Differences between calculations with and
without a dynamical charm quark tend to be quite small. See
Sects. 4.5 and 4.7 for results comparing different actions.

4.1.6 Further reading

I have made no attempt at a historically accurate account
of lattice QCD, and due to space limitations much has been
left out. Here I list some books on the topic. As far as I
know, “Quarks, gluons and lattices” by Creutz is the first
monograph[348]. Creutz also edited “Quantum Fields on the
Computer,” which covers scalar and Yukawa theories in addi-
tion to QCD [349]. Proceedings from the 1989 TASI summer
school edited by DeGrand and Toussaint [350] was an early
essential reference. Books by Rothe [351] and by Montvay
and Munster [352] appeared in the early 1990s. The former
is now in its fourth edition and is available online via open
access. Since 2000, at least three books have been published.
Authors are Smit [321]; DeGrand and DeTar [320]; and Gat-
tringer and Lang [347].

4.1.7 Personal remarks

In 1975, I had the opportunity to take my first European
physics trip when I attended the Erice summer school in
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Sicily. Little did I know as I listened to Ken Wilson lecture on
quark confinement and lattice gauge theory how profoundly
his work would impact my own. (As an undergraduate, I
only remember talking to Wilson once when he kindly gave
me advice on which graduate schools I should apply to.) I
recall being quite friendly with Michael Creutz during the
school. Claudio Rebbi was one of the lecturers. I have had
many great interactions with both of them. I was in awe of
seeing Paul Dirac walking quietly around the school. Tom De
Grand would later become a collaborator. Sidney Coleman,
of course, gave a great series of lectures.

During my postdoc at Argonne, Creutz was kind enough
to send me a printed copy of his code. I had a great title
for a paper: “Looking for Glue in SU(2).” Unfortunately, I
didn’t really know anything about glueballs, so I did not pur-
sue that. While at Fermilab, I was looking for something new
and worked on the Migdal–Kadanoff recursion relations with
Khalil Bitar and Cosmas Zachos (who I had known when he
was an undergrad and I was in graduate school). Don Wein-
garten visited and I started my career of Monte Carlo lattice
calculations (using SU(3) not SU(2)). Hank Thacker, Paul
Mackenzie, Weingarten, and I used some of the VAX com-
puters at Fermilab for our calculations to examine ρ decay.
We worked on a 62 × 12 × 18 lattice and had so few con-
figurations we joked that we knew each one by name. For
no good reason, I still have some of the magnetic tapes on
which we stored the configurations. This project continued
when I moved to UC San Diego. A year later, my grad school
housemate Doug Toussaint arrived as an assistant professor.
I started working with him, and more senior people such as
Bob Sugar and Julius Kuti. A few years later the MILC Col-
laboration started, and I would like to mention fellow found-
ing members Claude Bernard and Carleton DeTar. Lattice
gauge theory has been my life ever since then.

4.2 Monte-Carlo methods

Carleton DeTar

4.2.1 Introduction

In 1980, Michael Creutz pioneered the numerical simulation
of lattice QCD [353,354] with studies of Wilson’s lattice for-
mulation of SU(2) Yang–Mills theory. This feasibility study
started a vast enterprise devoted to “solving” QCD in the
nonperturbative regime. Later on, as computing power grew,
it became possible to include quarks, thus bringing simula-
tions in contact with reality. This subsection introduces basic
methods for carrying out the numerical simulation of lattice
QCD using Monte Carlo methods. It concludes with a men-
tion of ongoing improvements.

4.2.2 Lattice path integration

Partition function
The most widely used strategy for numerical simulation of
QCD starts from a Feynman path integral formulation [355],
which is based on the partition function

Z =
∫
[dUdψdψ] exp[−S(U, ψ,ψ)] (4.56)

where

S(U, ψ,ψ) = SW + ψMψ (4.57)

is the Euclidean action for the lattice SU(3) gauge fieldU and
quark field ψ , as defined in Sect. 4.1. For simplicity here, we
treat only one quark flavor, and we suppress the color (c),
vector (μ), and spatial (n) indices on Ucc′,μ(n) and the color,
spin (α), and spatial indices on ψc,α(n). Note that for lattice
volume V (number of sites) there are 4V SU(3) matrices
denoted by U and V spin/color vector fields denoted by ψ .

The integration over the gauge links U is done over the
classical SU(3) gauge field Uμ(n) on each lattice link. We
use the invariant Haar measure dUμ(n) on each link. (We
won’t need it, but there is an Euler-angle representation of the
measure [356].) The integration is done without gauge fixing.
Since the action S is gauge invariant and the gauge group
is compact, the integral over gauge choices is finite. In the
Feynman formulation, fermion fields, in particular ψ , must
be anticommuting Grassmann variables. This assures that
they obey Fermi-Dirac statistics. It would be challenging to
treat them directly in a computer simulation, but, fortunately,
they can be integrated out using only the identities listed
below and their analogs, leaving expressions involving only
the classical gauge field. For a few more details, see Ref.
[320].

In a Euclidean spacetime with finite time extent T , the
quantity Z in Eq. (4.56) is the thermal partition function for
the theory defined by the action S with hamiltonian H at
inverse temperature β = T . Thus

Z(β) = Tr exp(−βH). (4.58)

The zero temperature limit corresponds to an infinite time
extent.

Grassman calculus
We need three important identities from the Grassmann cal-
culus:
∫
[dψdψ] exp(−ψMψ) = det M (4.59)

∫
[dψdψ]ψc,α(n)ψc′,α′(n

′) exp(−ψMψ)

= M−1
c,α;c′,α′(n, n

′) det M (4.60)
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∫
[dψdψ]ψc,α(n)ψc′,α′(n

′)ψd,β(m)ψd ′,β ′(m
′)

exp(−ψMψ) = [M−1
c,α;c′,α′(n, n

′)M−1
d,β;d ′,β ′(m,m′)

−M−1
c,α;d ′,β ′(n,m

′)M−1
d,β;c′,α′(m, n′)] det M (4.61)

The inverse of the fermion matrix M is the fermion propaga-
tor. We see that each ψ , ψ pair in the integrand contributes
a fermion propagator. All pairings can occur, as in the last
example. The minus sign there arises from the anticommut-
ing property of the fields.

Observables
Physical quantities are defined in terms of observables
O(U, ψ,ψ) constructed from the variables U , ψ , and ψ . To
obtain the expectation value of the observable, we calculate

〈O〉 = Z−1
∫
[dUdψdψ]O(U, ψ,ψ) exp[−S(U, ψ,ψ]

(4.62)

Meson propagator
For example, we might want to determine the mass of a pseu-
doscalar meson. To do so we work with an “operator” that
“creates” or “destroys” the meson:

OPS(p, t) =
∑

r

exp(ip · r)ψ(r, t)γ5ψ(r, t), (4.63)

where p is the momentum. Note that if we replace the Grass-
mann field with a quantum field, the same operator in quan-
tum field theory would create or destroy the meson. The sum
over spatial sites r = (x, y, z) for fixed t and p gives a meson
of momentum p at Euclidean time t . To obtain the mass, we
calculate at zero momentum and large |t ′ − t |
CPS(t

′, t) = 〈OPS(0, t ′)OPS(0, t)〉
= z2

PS exp[−MPS|t ′ − t |] (4.64)

where zPS is the amplitude and MPS is the meson mass. In
effect, we are creating the meson at time t and destroying
it at time t ′. The meson propagates between these times. In
Minkowski space the meson propagator would be propor-
tional to the phase factor exp[−iMPS|t ′ − t |]. In Euclidean
space here, it falls exponentially in the time separation at a
rate controlled by the mass MPS . This expression is strictly
valid only for large time separations |t ′ − t |. At smaller sepa-
rations, we would get additional, higher-mass contributions.

The meson interpolating operators are sometimes called
“source” and “sink”. Which is which depends on the point
of view, since they can serve a dual purpose.

Integrating out the fermion fields
Let’s examine the expectation value in Eq. (4.61) in more
detail. Note that we can integrate out the fermion fields
exactly by making use of the identities in Eqs. (4.59) and
(4.61). When we insert the product of two interpolating oper-
ators from Eq. (4.63) into Eq. (4.61) we get a product of two

Fig. 19 Quark line connected and disconnected diagrams

Grassmann fields ψ and two Grassmann fields ψ . According
to Eq. (4.61), we get

CPS(t
′, t)

=
〈∑

r;r′
{Trcs γ5M

−1(r, t; , r′, t ′)γ5M
−1(r′, t ′; r, t))

−Trcs γ5M
−1(r, t; r, t)Trcs γ5M

−1(r′, t ′); r′, t ′)}
〉

G

(4.65)

where Trcs denotes a trace over color and spin indices and
we have defined, for any function E of the gauge field,

〈E〉G = Z−1
∫
[dU ]E exp[−SW ] det M. (4.66)

With the fermion fields integrated out, the Feynman path
integrals now involve only integration over the classical
gauge field, which is amenable to numeric integration. The
meson propagator in Eq. (4.65) has two terms that are rep-
resented diagrammatically in the two panels of Fig. 19. We
call the two contributions quark-line “connected” and quark-
line “disconnected”. The loop in the disconnected diagram
represents the annihilation of the quark and antiquark in the
interpolating operator. It contributes only if the meson is a
flavor singlet. With the addition of flavor we would find that
the pion does not have this term.

Form of the meson propagator
On a finite lattice with Euclidean time extent T and the usual
periodic/antiperiodic boundary conditions on the fields, the
meson correlation function CPS(t ′, t) gets another contri-
bution as the meson propagates in the opposite direction
from the source, exploiting the periodic/antiperiodic bound-
ary condition, and arriving again at the sink. The distance
traveled in Euclidean time is now T − |t ′ − t |. Thus we have

CPS(t
′, t) = z2

PS exp[−MPS|t ′ − t |]
+z2

PS exp[−MPS(T − |t ′ − t |)]. (4.67)

Figure 20 illustrates the result of a calculation of the pion
propagator showing both forward and backward propagation.

Decay constant
The amplitude zPS is proportional to the meson decay con-
stant fPS :

zPS = ZPS fPS (4.68)
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Fig. 20 Zero momentum pion propagator at lattice spacing a = 0.06
fm as a function of Euclidean time expressed in units of the lattice
spacing (courtesy William Jay). The source is at t = 0. In this case
T = 192a

where ZPS is a renormalization constant (“matching factor”)
that relates the lattice interpolating operator to a physical
continuum interpolating operator.

Form factor
Form factors give information about hadron structure and
decay. Here we illustrate the construction of the electromag-
netic form factor for the meson illustrated above. We calcu-
late the three-point function

Cμ(t,q, t ′, t ′′) = 〈OPS(t,q)Jμ(t ′,q)OPS(t
′′, 0)〉, (4.69)

where Jμ(t ′,q) is the current density projected onto spa-
tial three momentum q and 0 denotes zero momentum. For
simplicity we have chosen zero momentum for the meson
interpolating operator at time t ′′, and we have enforced three-
momentum conservation. (In Euclidean space-time, we don’t
have energy conservation, but the meson propagators are on
shell.)

Form of the three-point function
For t � t ′ � t ′′ the three-point function has the form

Cμ(t,q, t ′, t ′′) = zPS(q)ZV zPS(0) exp(−MPS|t ′ − t |)
×Fμ(q) exp(−MPS|t ′′ − t ′|) (4.70)

where Fμ(q) is the desired form factor. The current renor-
malization constant ZV matches the lattice current Jμ to the
continuum current.

Integrating out the fermion fields
There are a variety of choices for the current density. We
could work with the conserved lattice Noether current. Or
we could work with a “local” current

Jμ(r, t) = Qψ(r, t)γμψ(r, t). (4.71)

where Q is the charge. This current is not conserved at
nonzero lattice spacing, but with suitable renormalization,
it should give the same result as the conserved current in the
continuum limit. We use the local current here for simplicity.

We integrate out the fermion fields following the same
steps as for the meson propagator. We display, here, only the
quark-line-connected contribution:

Cμ(t,q, t ′, t ′′) =
∑

r,r′,r′′
exp(−ir · q) exp(ir′ · q)

×
〈
Trcs γ5M

−1(r, t; , r′, t ′)γμM−1(r′, t ′; r′′, t ′′))

× γ5M
−1(r′′, t ′′, r, t)

〉

G
(4.72)

The quark-line structure is the closed loop diagrammed in
the left panel of Fig. 19.

4.2.3 Monte Carlo methods

Importance sampling
The path integral in Eq. (4.66) involves integration over
so many variables that Monte-Carlo importance sampling
becomes the only method of choice. A single point in the
domain of integration is specified by the gauge field val-
ues U on each link – called a gauge field configuration. The
integrand is sampled over random gauge-field configurations
with probability density P of encountering a given configu-
rationU . If the sampling is designed so that P is proportional
to the integrand weight factor

P ∝ exp[−SW ] det M], (4.73)

then in an ensemble of such gauge configurations Ui for i =
1, . . . , N , the expectation value of an observable E is simply
the ensemble average in the limit N →∞.

〈E〉 = lim
N→∞

1

N

N∑

i=1

E(Ui ). (4.74)

Of course, the weight factor must be positive definite in order
to be treated as a probability density. This is usually the case,
but there are important exceptions. One can use the same
path-integral formalism to treat a grand-canonical ensemble
of fermions at nonzero fermion number (or flavor) density;
see Sect. 4.4. In this case the fermion determinant acquires a
complex phase (the so-called “sign problem”) that obviates
a probabilistic treatment.

Markov chain
There are various methods for generating such an ensemble.
They all involve creating a Markov chain of gauge configu-
rationsUi , i.e., a sequence generated by a stochastic rule that
takes the previous configuration U and produces a new con-
figuration U ′. The Markov chain proceeds from an arbitrary
starting configuration. With a properly devised stochastic
rule, after a sufficient number of steps the probability distri-
bution approaches the desired distribution of Eq. (4.73). We
say that the distribution has “reached equilibrium”. Of course
we must also take care that the distribution is “ergodic” in the
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sense that all important regions of the integrand are included
in the ensemble – that the distribution isn’t “frozen” around
one local minimum of the effective action at the expense of
other equally important minima.

Heatbath algorithm
The heatbath algorithm runs through the lattice updating each
gauge link, one at a time. For the gauge link matrix Uμ(n),
the integrand weight is regarded as defining a probability
distribution R[Uμ(n)] for the gauge link being updated. One
chooses a new gauge link Uμ(n)′ from that distribution and
then moves on to the next gauge link. The name “heat bath”
comes from early studies of SU (2) pure gauge theory in
which the effective action was proportional to a coupling
constant that could be interpreted as an inverse Monte-Carlo
temperature (not to be confused with the temperature of the
partition function). So the update was analogous to exposing
each link to a heat bath of that temperature. The heat bath
method has fallen into disuse in lattice QCD now that more
calculations include fermions, because the fermion determi-
nant has a nontrivial dependence on the gauge links, which
makes selecting a new link matrix Uμ(n) from a local prob-
ability distribution R[Uμ(n)] too expensive to implement.

Metropolis–Hastings algorithm
A classic method for generating the desired Markov chain
uses the algorithm of Metropolis et al. and Hastings [357],
usually abbreviated as the “Metropolis” algorithm. It works
with a general class of stochastic rules for proposing a new
gauge configuration U ′ and then either accepts or rejects
the new configuration based on a criterion designed to lead
asymptotically to the desired ensemble:

– Propose a new configurationU ′ with probability Q(U ′←
U ). The transition must satisfy the reversibility condition:

Q(U ← U ′) = Q(U ′ ← U ). (4.75)

Also, it must be possible after some number of steps to
reach any configuration with nonzero probability.

– Choose a random number λ distributed uniformly on
[0, 1].

– If the proposed change decreases the effective action
ΔSeff = Seff(U ′)− Seff(U ) < 0 then accept the change.

– Otherwise, accept the change if exp[−ΔSeff ] > λ. Oth-
erwise, reject it.

The transition process defined by Q(U ′ ← U ) is quite gen-
eral, which makes the algorithm particularly useful.

4.2.4 Molecular dynamics

By far the most common present-day method for generating
the Markov chain uses a “molecular dynamics” method. We

illustrate it for a scalar field φ with path-integral partition
function

Z =
∫
[dφ] exp[−S(φ)]. (4.76)

We pair a dummy “momentum” p(n) with the field φ(n) on
each site of the lattice and rewrite the partition function as

Z ′ =
∫
[dp][dφ] exp[−p2/2− S(φ)]. (4.77)

The momentum integral is trivial and results in an immaterial
constant factor. We then take a lesson from classical statistical
mechanics and observe that this partition function describes a
statistical ensemble of “particles” of unit mass, one per lattice
site, and unit temperature kT = 1 moving in an interacting
“potential” S(φ). The ensemble is microcanonical with total
energy

Etot = p2/2+ S(φ). (4.78)

The Hamilton equations of motion are, as usual,

dφ(n)/dτ = p(n) (4.79)

dp(n)/dτ = −∂S/∂φ(n), (4.80)

where τ is a fictitious “Monte Carlo time”. We then observe
that if the system is large and the interactions are nontrivial,
the classical motion of the system will lead to a Maxwell-
Boltzmann distribution in the coordinates φ given by

P(φ) ∝ exp[−S(φ)]. (4.81)

In standard practice, one chooses an arbitrary starting field
configuration φ and sets the initial momenta according to the
Gaussian distribution exp[−p2/2]. Using a numerical inte-
grator, one integrates the equations of motion over some time
interval Δτ , at which time one saves an “updated” configu-
ration φi . Thus the Markov chain is defined by the values of
φ at a series of time intervals or a series of what are called
“molecular dynamics trajectories”.

Refreshed and hybrid Monte Carlo
The total energy Etot is constant over a given trajectory. But it
has no particular physical significance. To improve coverage
of phase space it is common, at the beginning of each trajec-
tory, to “refresh” the momenta p by drawing new values from
their Gaussian distribution. Thus each trajectory starts in a
new direction with a new total energy, but the coordinates φ

are kept continuous.
Another common variation of the method combines

refreshed molecular dynamics with the Metropolis et al.
method. This combination is called “hybrid Monte Carlo”
[358]. That is, one starts a trajectory with coordinates p, φ. At
the end of the trajectory, one has coordinates p′, φ′. The tran-
sition φ′ ← φ is taken as a Metropolis move. The random-
ness in the refreshed initial momentum p makes the move
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stochastic. Time-reversal invariance in τ assures detailed bal-
ance. If a trajectory is rejected, one reverts to the coordinate
φ at the beginning of the trajectory, selects a new stochastic
momentum, and tries again. The hybrid scheme helps com-
pensate for possible inaccuracies in the numerical integration
scheme, since it absolves many sins.

Autocorrelations
Markov chains have inherent correlations between successive
members. These “autocorrelations” are undesirable, because
they reduce the statistical independence of terms in the
ensemble averages of Eq. (4.74) that give expectation val-
ues of physical observables. Autocorrelation is especially a
concern with methods that make a series of small changes in
the field configuration. With refreshed molecular dynamics
one can adjust the trajectory length Δτ to help reduce corre-
lations between successive terms φi . One might expect that
longer trajectories are better in this regard, but the “molecu-
lar motion” can contain cycles that bring parts of the system
close to their original values. With hybrid schemes, longer
trajectories can lead to lower Metropolis acceptance, which
impedes progress. Shorter trajectories suffer from greater
autocorrelation. Thus there is usually an optimum choice for
the trajectory length that needs to be found empirically.

Molecular dynamics for the gauge field
The methods described above for a scalar field carry over
to the SU(3) gauge field U . The gauge momentum, actually
associated with the vector potential, Aμ(n), is given by a
traceless antihermitian 3x3 matrix Hμ(n) for each Uμ(n).
The molecular dynamics hamiltonian is, then,

H = 1

2

∑

n,μ

Tr Hμ(n)
2 + Seff (4.82)

where we recall that

Seff = SW + ln det[M] (4.83)

To remain an SU(3) matrix, the equation of motion forUμ(n)
must be

dUμ(n)/dτ = i Hμ(n)Uμ(n). (4.84)

The equation of motion for Hμ(n) can be found by requir-
ing that the molecular dynamics Hamiltonian H remain con-
stant in molecular-dynamics time [359]. For the sake of ped-
agogy, we first ignore the fermion determinant and consider
the unimproved SU(3) gauge theory; see Sect. 4.1:

SW = β

6

∑

n,μ�=ν

[3− Re TrUμν(n)] (4.85)

where Uμν(n) is the plaquette product in the μν plane with
corner at site n. The plaquette can also be written as
∑

ν

ReUμν(n) = Uμ(n)Vμ(n)+ Vμ(n)
†Uμ(n)

† (4.86)

where Vμ(n) is the sum of all “staples” attached to the link
Uμ(n). Armed with this notation, we can write

0 = Ḣ =
∑

n,μ

Tr

[

Ḣμ(n)Hμ(n)+ β

6

(
U̇μ(n)Vμ(n)+ h.c.

)
]

,

(4.87)

and, using Eq. (4.84), we get

0 =
∑

n,μ

Tr

[

Ḣμ(n)Hμ(n)+ β

6

(
i Hμ(n)Uμ(n)Vμ(n)− h.c

)
]

,

(4.88)

or

0 =
∑

n,μ

Tr Hμ(n)[Ḣμ(n)+ i Fμ(n)] (4.89)

where the gauge force is

Fμ(n) = −β

6
(Uμ(n)Vμ(n)− h.c.). (4.90)

Since Hμ(n) in Eq. (4.89) is traceless the expression in brack-
ets must be proportional to the identity matrix cI . But if it is
to remain traceless, we must have c = 0. So, finally, we get

i Ḣμ(n) = Fμ(n) = −β

3
Uμ(n)Vμ(n)|TA, (4.91)

where TA denotes the traceless, antihermitian part. The
Eqs. (4.84) and (4.91) form the basis for molecular dynamics
evolution of the pure gauge theory.

Spectrum of the Dirac matrix
The Dirac matrix has the form (see Sect. 4.1)

M(U ) = m + D(U ). (4.92)

where m is the quark mass. For all fermion formulations in
common use today, the operator D satisfies “γ5 hermiticity”,
namely

D† = γ5Dγ5 (4.93)

for some definition ofγ5. (For brevity, we drop the (U )depen-
dence of M and D in the following.) This implies that the
complex eigenvalues of D appear in complex conjugate pairs.
Thus we can write the fermion determinant as

det M =
∏

Imλi=0,i

(m + λi )
∏

Imλi>0

(m2 + |λi |2). (4.94)

In order for det M to serve as a probability weight, it must be
real and positive definite. Indeed, for all but the Wilson and
clover actions, the real parts of the eigenvalues are nonnega-
tive. For domain-wall and Wilson fermions, the eigenvalues
λi populate an ellipse in the right-half plane with voids, as
illustrated in Figs. 21 and 22. For staggered fermions, they
lie entirely on the imaginary axis (not shown). For overlap
fermions, they lie on a circle in the right-half complex plane
tangent to the imaginary axis (also not shown). For Wilson
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Fig. 21 The spectrum of the free Wilson Dirac operator for a massless
quark [360]

Fig. 22 The spectrum of the domain wall operator at quark mass 0.05.
[361]

and clover fermions, they appear mostly in the right-half
plane, but real, negative eigenvalues are possible, depend-
ing on the gauge configuration U . The eigenvalues of M are
m + λi , so negative λi usually causes trouble for M only
for light quarks. As the lattice spacing is decreased, negative
real parts become less frequent. Twisted-mass fermions (see
Sect. 4.1) do not have this problem at maximal twist [362].

The Φ algorithm
The fermion determinant in Eq. (4.66) can be cast in a form
compatible with the molecular-dynamics treatment of the
gauge field. Perhaps the simplest approach is the “Φ algo-
rithm”. We introduce a complex lattice scalar field Φ, often
called a pseudofermion field, and first try

det M =
∫

dΦdΦ∗ exp[−Φ∗M−1Φ]. (4.95)

This works as long as the eigenvalues of M have positive defi-
nite real parts. However, this form is awkward to implement.
A more convenient form works with the normal operator
M†M . From γ5 hermiticity we have

det M = det[γ5M
†γ5] (4.96)

det M2 = det[M†M] (4.97)

so

det M2 =
∫

dΦdΦ∗ exp{−Φ∗[M†M]−1Φ}. (4.98)

Now the integral is always well defined for nonzero quark
mass, but the square doubles the number of fermions. That
could be acceptable if we are simulating up and down quarks
in the isospin symmetric limit (mu = md ), but it would be
a bad approximation for the other quarks. Remedies are dis-
cussed below. We continue with this form.

Molecular dynamics with fermions
To simulate Eq. (4.98), we note that the integrand has the
form exp(−R†R) for R = M−1Φ, so if we draw R from a
Gaussian distribution, thenΦ = MR is distributed according
to the desired weight.

The Φ algorithm begins a short trajectory by constructing
Φ = MR for a given starting gauge field U . The gauge field
is then evolved with Φ fixed. The force exerted on the gauge
field in Eq. (4.91) acquires a new contribution, namely, the
fermion force:

i FF,μn = ∂

i∂Aμ,n
Φ∗[M†M]−1Φ

= X∗ ∂

i∂Aμ,n
(M†M)X, (4.99)

where M†MX = Φ. Typically, one refreshes the gauge
momentum, evolves the gauge field at the initial fixed value
of Φ, and then repeats.

Rational function approximation
As we saw above, working with the normal operator M†M
doubles the number of fermion species. To eliminate the
doubling, we should replace M†M with

√
M†M . Similarly,

for staggered fermions, we start with four tastes per flavor,
which suggests (M†M)1/8. With staggered fermions, the nor-
mal operator is checkerboard block-diagonal, so restricting
the calculation to even lattice sites eliminates the normal-
operator doubling. We then want (M†M)1/4|even.

Such fractional powers are difficult to implement. A
now commonly used remedy introduces a rational-function
approximation for the fractional power [363]. Expanded in
terms of its poles, the rational function approximation for a
real function f (x) of real x has the form

f (x) ≈ r(x) =
N∑

i=1

αi

x − βi
, (4.100)

where αi and βi are parameters of the rational function, and
N is a suitably high order. The approximation deteriorates for
small x . It is designed to work over an interval [xmin, xmax].
The smaller xmin or the finer the desired accuracy, the larger

123



 1125 Page 64 of 636 Eur. Phys. J. C          (2023) 83:1125 

the needed order N . The Zolotarev method [364] is widely
used to obtain an efficient set of parameters αn and βn .

We note that M†M = D†D+m2 for mass m. It is conve-
nient to treat this expression as a function of x = D†D. So
to apply the rational function approximation, we write

(M†M)h ≈ rh(D
†D) =

N∑

i=1

αh,i

D†D − βh,i
, (4.101)

where we have labeled the coefficients of the expansion with
the desired power h. So, finally, we have

det(M†M)h ≈
∫

dΦdΦ∗ exp[−Φ∗rh(D†D)]Φ] (4.102)

To implement the Φ algorithm with fractional power h,
∫

dΦdΦ∗ exp{−Φ∗(M†M)hΦ}, (4.103)

we choose Gaussian random R and calculate

Φ = [M†M]−h/2R (4.104)

using a rational function approximation r−h/2(D†D). Then
we calculate the fermion force with

i FF,μn = ∂

i∂Aμ,n
Φ∗(M†M)hΦ

= Φ∗ ∂

i∂Aμ,n
rh(D

†D)Φ (4.105)

=
∑

i

X∗i αh,i
∂

i∂Aμ,n
[M†M]Xi , (4.106)

where Xi = [D†D − βh,i ]−1Φ. Here the rational function
parameters are appropriate for rh . The Xi are obtained using
a multishift conjugate-gradient solver.

Multiple flavors
The rational function approximation can be extended to han-
dle the products of determinants that arise with multiple fla-
vors. For example, suppose we are simulating two degenerate
light quarks (up and down) ml = mu = md and one strange
quark ms . We use f to distinguish the flavors in the fermion
matrix M f . After integrating out the Grassmann fields, the
fermion integrand becomes

det(M†
l Ml) det(M†

s Ms)
1/2. (4.107)

We could simulate this product by introducing a separate
pseudofermion field for each flavor and proceeding as we
did for a single flavor for each contribution. However, we
can also simulate it using just one pseudofermion field:
∫

dΦdΦ∗ exp{−Φ∗(M†
l Ml)

−1(M†
s Ms)

−1/2Φ} (4.108)

We construct a rational function that approximates the entire
product.

(M†
l Ml)

−1(M†
s Ms)

−1/2 = r−1,−1/2(D
†D), (4.109)

where we have added more labels to r(x). The Φ algorithm
is otherwise similar to that of the single-flavor case.

4.2.5 Improvements

Hasenbusch term
One popular and effective improvement [365] introduces a
“preconditioning” determinant, a “Hasenbusch term”, with
moderately large mass mx together with its compensating
inverse, for example, as

(M†
l Ml)

−1(M†
s Ms)

−1/2(M†
x Mx )

3/2(M†
x Mx )

−3/2. (4.110)

The first three factors are then assigned a single pseud-
ofermion field and approximated with a single rational func-
tion, and the fourth factor is assigned a separate pseud-
ofermion field with a separate rational function. The Hasen-
busch term tends to reduce the condition number of the prod-
uct operator, thus reducing the needed rational function order
and the associated computation time. The last (compensat-
ing) factor also has a lower condition number because of the
larger mass.

Multigrid solvers
To evaluate the rational function in Eq. (4.106) requires solv-
ing a large linear system. As the lattice spacing decreases,
the condition number of the linear system grows, making
the conventional conjugate-gradient calculation more costly.
This “critical slowing down” can be mitigated by using an
adaptive geometric multigrid solver instead [366,367]. So far
the benefits of using multigrid solvers for gauge-field evo-
lution have been demonstrated only for the Wilson-clover
action [368]. Algorithms for multigrid solvers for staggered
fermions [369] and domain-wall fermions [361,370] are
newer, so it remains to be seen whether they will lead to
improvements in molecular dynamics evolution for those
fermion formulations as well.

Accelerating molecular dynamics
As the lattice spacing decreases, the gauge-field evolution
slows, and it gets trapped in a subset of gauge configura-
tions with the same total topological charge. Thus it takes
more computational time to obtain a new, statistically uncor-
related gauge configuration. Long-distance decorrelation is
slower than short-distance. This observation suggests Fourier
transforming Hamilton’s equation for the gauge momentum,

idHμ(n) = Fμ(n)dτ (4.111)

to (coordinate) momentum space, and, instead of using a
common time step dτ for each momentum component, con-
sider using a larger time step for the low-momentum modes
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[371] to move them farther. This method never proved effec-
tive enough to use in full-scale simulation. Modern versions
of the Fourier acceleration scheme are under investigation.
See, for example, [372].

Trivializing map
If we can find an invertible map of the gauge fieldU to a new
field V ,

U = F(V ), (4.112)

such that the Jacobian of the transformation cancels the gauge
action:

det[∂Uμ(n)(V )/∂Vν(m)] exp[−S(U )] = 1, (4.113)

then the path integral becomes trivial [373–375]. Lüscher
describes this as a “map to the strong-coupling limit” and
discusses possible maps for the pure gauge action. Of course,
finding such a map is entirely nontrivial, but if one can at
least find one that moves the action partially toward strong
coupling, then one could construct a hybrid Monte Carlo
scheme that updates the gauge field according to the recipe

U → V → V ′ → U ′ (4.114)

where the V → V ′ step uses standard gauge evolution for the
transformed gauge field V . This stronger coupling evolution
would suffer less from critical slowing down. Recently, there
have been efforts to find such a map using machine-learning
methods. See, for example, Ref. [376].

4.2.6 Personal remarks

I first learned about the lattice formulation of QCD and its
virtues when Ken Wilson gave a seminar at the MIT Cen-
ter for Theoretical Physics around the time he was develop-
ing his lattice formulation. I was quite impressed with how
easily confinement, in the form of an area law for Wilson
loops, emerged in the strong-coupling regime. But I wasn’t as
brave or savvy as Creutz in proceeding to develop numerical
methods for working out the nonperturbative consequences
of Wilson’s formulation. I didn’t turn to numerical lattice
calculations until shortly after Creutz’s seminal papers. For
the rest of my career, I have enjoyed participating in and
contributing to the remarkable progress in this field. As a
graduate student schooled in the analytic S-matrix and boot-
strap, I was pleased when I could make a strong-interaction
prediction to an accuracy of 25%, based on phenomenolog-
ical considerations. There was always the inevitable doubt
about the validity of the methods. Today, in some cases, we
are able to obtain per mille accuracy for aome hadronic prop-
erties. Furthermore, we have little doubt that our results are a
correct prediction of the Standard Model, since our methods
are grounded in first-principles. That has been enormously
satisfying.

4.3 Vacuum structure and confinement

Derek Leinweber

4.3.1 Introduction

The self interactions of gluons make the empty vacuum unsta-
ble to the formation of quark and gluon field configura-
tions which permeate spacetime. These ground-state QCD-
vacuum field configurations form the foundation of matter.
Lattice QCD simulations enable first principles explorations
of this nontrivial vacuum field structure.

These gluon field configurations form the foundation of
every lattice QCD calculation. Each field configuration on
its own contains a rich diversity of emergent nonperturbative
structure. It is the process of averaging over thousands of field
configurations that restores the translational invariance of the
vacuum. Each field configuration with its own rich structure
is uncorrelated with other configurations considered in the
averaging process.

Deep insight into the mechanisms giving rise to the
observed quantum phenomena can be obtained through the
visualization of these complex scientific data sets constructed
in Lattice QCD simulations, insights that would otherwise
remain hidden in the typical gigabyte data sets of modern
quantum field theory.

The essential, fundamentally-important, nonperturbative
features of the QCD vacuum fields are: the dynamical gen-
eration of mass through chiral symmetry breaking, and the
confinement of quarks. But what are the fundamental mecha-
nisms of QCD that underpin these phenomena? What aspect
of the QCD vacuum causes quarks to be confined? Which
aspect is responsible for dynamical mass generation? Do the
underlying mechanisms share a common origin?

In this brief review, we will address these questions in a
chronological manner to convey the progress in developing
an understanding of the essential mechanisms underpinning
the phenomena of QCD.

4.3.2 Nonperturbative vacuum structure

Among the earliest of vacuum-structure visualizations are
images of the Euclidean action density, or energy density

SE (�x, t) = 1

2
Fab
μν(�x, t) Fba

μν(�x, t), (4.115)

= Tr
( �E2(�x, t)+ �B2(�x, t)

)
, (4.116)

where Fab
μν is the Euclidean field strength tensor

Fab
μν = ∂μA

ab
ν − ∂ν A

ab
μ + ig[Aab

μ , Aba
ν ], (4.117)
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Fig. 23 Frames from the
animation of Ref. [377]
illustrating the Euclidean action
density or energy density of
Eq. (4.116) (left) and the
corresponding topological
charge density of Eq. (4.118)
(right) at an instant in time. The
spatial volume is approximately
2.4 by 2.4 by 3.6 fm

with color indices a, b = 1, 2, 3. The corresponding topo-
logical charge density proportional to �E(�x, t) · �B(�x, t)

q(�x, t) = g2

32π2 εμνρσ Fab
μν(�x, t) Fba

ρσ (�x, t), (4.118)

is also of interest as it characterizes the profile of instantons,
nontrivial solutions of the classical Yang–Mills equations,
discussed in further detail in Sect. 5.11.4.

Reference [378] provides one of the earliest observations
of instanton-like objects in lattice gauge-field configurations.
Here cooling with the standard Wilson action was used to
suppress short-distance field fluctuations enabling the obser-
vation of long-distance structures.

However a problem with the use of the standard Wilson
action or even the O(a2)-improved plaquette plus rectan-
gle action is that the lattice action of an instanton can be
reduced by shrinking the size of an instanton [379] through
lattice-spacing errors. Instantons shrink under cooling with
these lattice actions and “fall through the lattice.” This led to
the development of highly-improved actions [380,381] elim-
inating errors to O(a4) or even over-improved actions where
improvement terms are tuned to stabilize instantons, ensuring
their stability under smoothing algorithms [379,382].

The results presented in this section are based on pure
SU(3) gluon fields created with the standard Wilson action
atβ = 6.0 on a 243×36 lattice with a lattice spacing, a � 0.1
fm. The first coordinate of the Euclidean lattice was used for
the time axis creating a 242 × 36 spatial volume. It is these
calculations [383] that captured the attention of Prof. Frank
Wilczek as he prepared his 2004 Nobel Prize lecture. Refer-
ence [384] provides a link to the QCD Lava Lamp animation
that appeared in his Nobel Lecture [385]. In support of the
Nobel Lecture a web page incorporating the best algorithms
and visualization techniques of the time was created [386].
Parallel spatially-uniform O(a4)-improved smoothing algo-
rithms [387] and an O(a4)-improved lattice field strength
tensor [380] were formulated to accurately retain and present
the long-distance nonperturbative properties of the ground-
state vacuum fields. These images and animations [377,386]
have since appeared in popular-science publications, leading
YouTube channels [388,389], etc. [390].

Figure 23 displays two frames from the animation of Ref.
[377]. Here 25 sweeps of three-loop, mean-field, O(a4)-
improved cooling has been applied. Areas of high energy
density are rendered in red and regions of moderate energy
density are rendered in blue. The lowest energy densities are
not rendered such that one can see into the volume. Simi-
larly the topological charge density has regions of positive
density rendered in red through yellow and regions of nega-
tive density rendered blue through cyan. While instanton-like
objects are manifest, current research is examining the extent
to which instanton-dyon degrees of freedom [391], i.e. frac-
tionally charged regions, can be observed within these field
configurations.

To directly view the the eight chromo-electric and eight
chromo-magnetic gluon fields composing the vacuum, one
must select a gauge. Figure 24 presents a stereoscopic illus-
tration of one of the chromo-magnetic fields in Landau gauge
[392]. Here the color and length of the arrows describe the
magnitude of the vector fields. Animations of the fields are
also available [377].

To see the 3D image of Figs. 24 and 31, try the following:

1. If you are viewing the image on a monitor, ensure the
image width is 12 to 13 cm.

2. Bring your eyes very close to one of the image pairs.
3. Close your eyes and relax.
4. Open your eyes and allow the (blurry) images to line up.

Tilting your head from side to side will move the images
vertically.

5. Move back slowly until your eyes are able to focus.
There’s no need to cross your eyes!

With its lattice implementation of chiral symmetry, the
overlap-Dirac operator provided a new approach to the explo-
ration of the nonperturbative structure of the vacuum with-
out resorting to smoothing algorithms [341]. Here low-lying
Dirac eigenmode densities could be used to construct the
topological charge density with the level of smoothness
inversely related to the number of low-lying modes one
considers [393]. Strong correlation with the instanton-like
objects observed via smoothing algorithms was observed.
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Fig. 24 Stereoscopic image of
one of the eight
chromo-magnetic fields
composing the nontrivial
vacuum of QCD. Hints for
stereoscopic viewing are
provided in the text

The zero modes are chiral and are distributed across topo-
logical charge regions of a unique sign. Low-lying eigen-
mode densities are also highly correlated with the topologi-
cal structures revealed under smoothing [393]. These corre-
lations between gluonic and fermionic structures expose the
dynamics underpinning dynamical chiral symmetry breaking
and the origin of mass.

The manner in which the topological charge density is ren-
dered can lead to rather different views on the nature of how
topological charge is distributed in the vacuum. Figure 25
illustrates two different renderings of the same topological
charge density. The sheet-like structure associated with the
sign-changing nature of the topological charge density corre-
lator 〈 q(0) q(x) 〉 [394,395] is manifest when all magnitudes
of the topological charge density are rendered down to zero.
This is the celebrated sheet-like structure of the topologi-
cal charge density [396]. However, when the rendering is
restricted to larger values, one reveals a more lumpy struc-
ture with regions of significant coherent topological charge
density.

More recently explorations of correlations between QCD
phenomena and QED phenomena have commenced draw-
ing on QCD+QED lattice simulations [290,397,398]. First
results [399,400] and links to associated animations are
reported in Ref. [390].

4.3.3 Center cluster structure of QCD vacuum fields

Further insight into the structure of QCD vacuum fields, their
temperature dependence, and their evolution under Monte-
Carlo evolution can be obtained through the consideration
of the local Polyakov loop. The expectation value of the
Polyakov loop is related to the finite temperature phase tran-
sition in QCD. It has an expectation value of zero in the con-
fined phase and becomes nonzero in the deconfined phase.

Fig. 25 The short-distance sheet-like structure of the vacuum is made
apparent in the left-hand illustration by rendering all magnitudes of
the topological charge density down to zero. Negative charge density is
rendered green to blue, and positive charge density is yellow to red. The
same data is rendered in the right-hand plot, this time only rendering the
regions having large topological charge density, revealing a structure of
topological lumps

The local Polyakov loop is the traced gauge-invariant
product of time-oriented gauge links around the time extent
of the lattice at each spatial point

L(�x) = Tr
Nt∏

t=1

U4(t, �x) = ρ(�x) eiφ(�x), (4.119)

Here, U4 is the time-oriented link variable on a lattice with
lattice spacing a, given by

Uμ (x) = P exp

(

ig
∫ x+μ̂a

x
dxμAμ(x)

)

. (4.120)

Center clusters [401,402] are defined in terms of L(�x).
They are regions of space where the local Polyakov loop
prefers a single complex phase associated with the center
of SU(3). The deconfinement transition occurs through the
growth of a center cluster.
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Fig. 26 Center clusters on a gauge field configuration at T =
0.89(1) TC (left), T = 1.14(2) TC (middle), and T = 1.36(2) TC
(right), This rendering from Ref. [402] is based on the proximity of
the local Polyakov loop phase, φ(�x), to one of the three center phases

of SU(3). The length of each side of the cubic volume is 2.4 fm. The
percolation of the red phase in the middle and right-hand plots illustrates
the deconfinement of quarks above TC

In the final expression of Eq. (4.119), the local Polyakov
loop is decomposed into a phase, φ(�x) and a magnitude,
ρ(�x). Both the proximity of the phase to one of the cube-
roots of one and the magnitude are considered in visualizing
the structure of the center domains of the gluon field. In
either case, the most proximal cube root of one to the phase
is indicated by the use of color.

In Ref. [402] an anisotropic gauge action was used to
explore the evolution of coherent center domains in the
gluon field under both temperature and the Hybrid Monte
Carlo (HMC) update algorithm. To investigate the larger-
scale behavior of the clusters, small scale noise is removed
from the visualization by performing four sweeps of stout-
link smearing [403] prior to calculating the Polyakov loops.

In Fig. 26, clusters are rendered where the phase φ(�x) is
within a small window around each center phase, and the rest
of the volume is rendered transparent. Within these coher-
ent center domains, color-singlet quark–antiquark pairs or
three-quark triplets have a finite energy and are spatially cor-
related. Thus, these fundamental domains govern the size
of the quark cores of hadrons. As one domain dominates the
vacuum above the critical temperature, the correlation length
diverges and quarks become deconfined.

The evolution of these clusters with HMC simulation time
is presented in Ref. [405], showing how center clusters are
slowly moving with correlations in the center clusters per-
sisting for approximately 5 seconds corresponding to 25
HMC trajectories. The temperature dependence of the center-
cluster structure is also explored in these animations where
a single phase eventually dominates above the critical tem-
perature, as illustrated in Fig. 26.

4.3.4 Flux tubes in QCD ground-state vacuum fields

Early seminal work on the static quark potential considered
the transverse fluctuations of confining strings connecting

Fig. 27 Gauge-link paths for three static quark propagators, U1, U2,
andU3, are connected in a gauge-invariant manner via spatially smeared
link paths. εabc and εa

′b′c′ provide color anti-symmetrisation at the
source and sink respectively, while τ indicates evolution of the three-
quark system in Euclidean time [404]

static quark–antiquark pairs in non-Abelian gauge theories
[406–408]. In the large L limit one finds a logarithmic rela-
tionship between the flux-tube width, σ , and its length, L
with σ 2(L/2) ∼ σ 2

0 ln(L/λ). The string model describes the
divergence of the width as the flux-tube length L → ∞ as
arising from the large quantum mechanical fluctuations of a
thin bare flux tube connecting the quark with the antiquark.
This prediction was observed in a precise manner in a (2 +
1)-dimensional SU(2) Yang–Mills theory lattice calculation
using a multi-level algorithm [409].

Flux tubes in the QCD-vacuum fields of lattice QCD are
revealed by examining the correlation between ground-state
field properties and the positions of static quarks within the
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fields. One begins with the standard approach of connect-
ing static quark propagators by spatial-link paths in a gauge
invariant manner. For mesonic systems, this is the standard
Wilson loop. However, for baryonic systems one needs the
structure illustrated in Fig. 27. The spatial link paths are typ-
ically broadened through a smearing algorithm to approxi-
mate the shape of the flux tube and thus obtain better over-
lap with the ground state potential of interest. While early
calculations tuned the amount of smearing to provide opti-
mal overlap with the ground state, more modern approaches
create a basis of smeared sources and solve the generalized
eigenvalue problem [410–412] to obtain the optimal com-
bination of sources. The static quark propagators are con-
structed from time directed link products at fixed spatial coor-
dinate,

∏
i Ut (�x, ti ), using the untouched “thin” links of the

gauge configuration.
The correlation of the gluon field with the static quark

positions is characterized by the gauge-invariant Euclidean
action density SE (�y, t) observed at spatial coordinate �y and
Euclidean time t measured relative to the origin of the three-
quark Wilson loop. For the results presented herein, the action
density is calculated using the highly-improved O(a4) three-
loop improved lattice field-strength tensor [380] on four-
sweep APE-smeared gauge links [404].

Defining the quark positions as �r1, �r2 and �r3 relative to
the origin of the three-quark Wilson loop, and denoting the
Euclidean time extent of the loop by τ , one evaluates the
following correlation function

C(�y; �r1, �r2, �r3; τ)
=

〈
W3Q(�r1, �r2, �r3; τ) SE (�y, τ/2)

〉

〈
W3Q(�r1, �r2, �r3; τ)

〉 〈
SE (�y, τ/2)

〉 , (4.121)

where 〈· · · 〉 denotes averaging over configurations and trans-
lational/reflection/rotational lattice symmetries [404]. Note
that the correlation is examined at the midpoint in the time
evolution of the static quark propagation to ensure the three
quark state has relaxed to its ground state form. For fixed
quark positions and Euclidean time, C is a scalar field in
three dimensions.

This measure has the advantage of being positive definite,
eliminating any sign ambiguity on whether vacuum field fluc-
tuations are enhanced or suppressed in the presence of static
quarks. The correlation, C , is generally less than 1, signal-
ing the expulsion of vacuum fluctuations from the interior
of heavy-quark hadrons. In other words, flux tubes represent
the suppression of the vacuum field fluctuations that form the
foundation of matter.

Figure 28 provides an illustration of the correlation C(�y).
For values of �y well away from the quark positions �ri , there
are no correlations andC → 1. As the separation between the
quark–antiquark pair changes, the flux tube of Fig. 28 (top)
gets longer, but the diameter of the tube and the depth of the

expulsion remain approximately constant. As it costs energy
to expel the vacuum field fluctuations, the confinement poten-
tial grows linearly as the quark separation increases.

Of historical significance was the endeavor to determine
whether baryon flux tubes are Y-shape or Δ-shape (empty
triangle) in nature. For the latter, the expectation was two-
body tube-like structures around the edge of the three-quark
system would dominate. Quantitative analyses of the static
quark potential and the distribution of flux tubes led to a
consensus [413] that the distribution is Y shape for large
quark separations more than∼ 0.5 fm from the system center
with the observation of filled Δ shapes at shorter-distance
separations. The Y-shape ground state localizes at the Steiner
point which minimizes the total string length.

The characteristic sizes of the flux-tube and node were
quantified in Ref. [404]. The ground state flux-tube radius is
∼ 0.4 fm with vacuum-field fluctuations suppressed by 7%.
The node connecting the flux tubes is larger at 0.5 fm with a
suppression of the vacuum action at 8%.

It is also of interest to consider flux-tube dynamics. Non-
trivial flux-tube dynamics give rise to hybrid quarkonium
states where excited gluon fields give rise to excited poten-
tials between a static quark–antiquark pair. The energy spec-
trum of the excited gluon field was summarized in Refs.
[414,415]. With the static potentials determined via lattice
simulations, the spectrum of conventional and hybrid quarko-
nium states were found to be in good agreement with the
spin-averaged experimental measurements of bottomonium
states [414].

4.3.5 Flux tube string breaking in QCD

With the advent of numerical simulations incorporating the
dynamics of light fermion loops in the QCD vacuum, the
observation of flux-tube breaking or string breaking was
keenly anticipated. The idea is that for increasing quark sepa-
rations, eventually there would be enough energy in the flux
tube joining the two static b quarks that it would become
energetically favorable to break the string through the cre-
ation of a light quark–antiquark pair and the formation of
two B mesons. Even to this day, this implicit form of string
breaking has yet to be observed. The difficulty lies in the
extraordinarily poor overlap of the two-B meson state with
the spatial flux-tube operators used to create the string state.

This situation is in contrast to explorations of the struc-
ture of the Λ(1405) baryon, where lattice-QCD calcula-
tions of the quark-sector contributions to the baryon mag-
netic moment indicate a molecular meson–baryon structure
[416,417]. Here a three-quark operator carrying the quan-
tum numbers of the Λ(1405) have implicitly excited quark–
antiquark pairs to form the five-quark molecule.

In the absence of implicit string breaking, Bali et al. [418]
led the breakthrough in observing string breaking in QCD
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Fig. 28 The suppression of QCD vacuum fields, as represented by the
energy density, from the region between a quark–antiquark meson (top)
or three-quark baryon (bottom). Quark positions are illustrated by the
colored spheres. The separation of the quarks in the meson are 0.50 fm
(left), 1.00 fm (middle), and 1.50 fm (right). The baryon frames illus-
trate the spherical cavity (or bag) observed at small quark separations
of 0.27 fm from the center (left), the development of a filled-Δ shape at
moderate separations of 0.42 fm (middle) and finally the emergence of

a Y-shape flux tube (right) at large quark separations of 0.72 fm from
the system center [404]. The surface plot illustrates the reduction of the
vacuum energy density in a plane passing through the centers of the
quarks. The vector field illustrates the gradient of this reduction. The
tube joining the quarks reveals the positions in space where the vacuum
energy density is maximally expelled and corresponds to the “flux tube”
of QCD

via a variational method with explicit B-meson operators.
These interpolating fields mix with the traditional flux-tube
operators in a matrix of correlation functions. Upon solving
for the energy eigenstates, mixed states with their associated
avoided level crossings are observed.

Following the notation of Ref. [418], the calculation
proceeds as follows. The QQ static quark operator con-
nected with an optimized spatially smeared flux-tube opera-
tor Vt (r, 0) from position 0 to r at Euclidean time t is

Q(r,t)
γ · r
r

Vt (r, 0) Q(0,t), (4.122)

where γ · r/r selects the spin-symmetric state to be com-
bined with the symmetric gluonic string Vt (r, 0), enabling
mixing with two pseudoscalar B mesons. Note, the anti-
symmetric spin-combination is obtained via γ · r/r → γ5

and yields the same energy levels, as both spin cases are
calculated from the same Wilson loop.

Similarly, the BB meson interpolating field for a pseu-
doscalar B meson at r and a B meson at 0 at Euclidean time
t is

Q(r,t) γ5 q
i
(r,t) q̄

i
(0,t) γ5 Q(0,t), (4.123)

where qi(r,t) annihilates the light-quark flavor, i . The four
elements of the correlation matrix are obtained from the four
combinations of these two operators.

Contracting the heavy-quark operators in the standard
flux-tube operators provides

[
Q(r,t)

γ · r
r

Vt (r, 0)Q(0,t)

]†
Q(r,0)

γ · r
r

V0(r, 0)Q(0,0)

= 2 tr
{
V †
t (r, 0)Ur(t, 0) V0(r, 0)U †

0 (t, 0)
}
≡

(4.124)

where the heavy-quark mass dependence has been sup-
pressed for simplicity. Here Ur(t, 0) denotes the product of
time-oriented links at the position r from time 0 to t and the
trace is over color indices. This is the standard Wilson loop
depicted by the r (horizontally) by t (vertically) rectangle in
Eq. (4.124).

Similarly, contracting out the quark field operators in the
mixed correlator provides

Q(0,t) γ5 q
i
(0,t) q̄

i
(r,t) γ5 Q(r,t) Q(r,0)

γ · r
r

V0(r, 0) Q(0,0)

≡ = (4.125)

where the wavy line depicts a light quark operator. Finally,
contraction of the quark operators in the BB correlator pro-
vides
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Fig. 29 From Ref. [418], the two energy levels obtained in the vari-
ational analysis are plotted as a function of the static quark–antiquark
separation r/a with lattice spacing a ≈ 0.083 fm. Energy values are
relative to twice the mass of the B-meson, 2mB (horizontal line). The
curve corresponds to the three parameter fit of E1(r) = V0+σr − e/r ,
for 0.2 fm ≤ r ≤ 0.9 fm < rc with rc ≈ 15 a ≈ 1.25 fm.. The bottom
plot zooms into the avoided level crossing

Q(0,t) γ5 q
i
(0,t) q̄

i
(r,t) γ5 Q(r,t) Q(r,0) γ5 q

j
(r,0) q̄

j
(0,0) γ5 Q(0,0)

≡
(

δi j −
)

. (4.126)

Considering n f fermion flavors, one finally arrives at the
correlation matrix

C(t) =

⎛

⎜
⎜
⎜
⎜
⎝

√
n f

√
n f −n f +

⎞

⎟
⎟
⎟
⎟
⎠

. (4.127)

Calculation of the light-quark propagators demands the
use of all-to-all techniques. Reference [418] used a trun-
cated eigenmode approach, complemented by a stochastic

estimator technique, improved by hopping parameter accel-
eration. Through the use of a tuned flux-tube operator and
tuned smeared-local quark propagators in the meson opera-
tors, the correlation matrix is parameterized in terms of two
low lying energy eigenstates and solved.

Figure 29 illustrates the two energy levels obtained in the
n f = 2 analysis of Ref. [418]. Remarkably, the region of
mixing is small and the energy associated with the mixing
is subtle. The analysis has since been extended to 2 + 1
light+strange fermion flavors in Ref. [419] where both B
and Bs mesons participate in the mixing.

These results reflect the diverse nature of these two states.
Indeed with so little overlap between the two states away
from the avoided crossing region, a string-oriented system
may evolve such that it maintains the string structure at very
large separations [420]. In this “sudden approximation,” the
system evolves along the red lines of Fig. 29 providing a
pathway to extraordinarily high energy excitations. The sub-
sequent decay is considered “adiabatic” [420] where hadrons
then follow the energy-eigenstate curves and split into frag-
ments.

4.3.6 Impact of dynamical fermions on vacuum field
structure

With the advent of full QCD simulations incorporating the
effects of light dynamical-fermion flavors, attention turned to
understanding how these light fermion loops in the vacuum
changed the QCD ground-state structure. Drawing on gauge
fields from the MILC collaboration [421,422], advances
in instanton-preserving smoothing algorithms [382] were
deployed to reveal the impact of dynamical fermions on the
topological charge density of the gauge fields [395].

The MILC simulations were performed using a one-loop
Symanzik improved gauge action and an improved Kogut-
Susskind quark action. Using the static quark potential, the
lattice spacings were determined and tuned to be the same
in all the runs to better expose differences due to dynamical
fermions. At large distances, screening of the string tension
was observed for light dynamical flavors [421,422].

Figure 30 illustrates the topological-charge densities
revealed following four sweeps of over-improved stout-link
smearing [395]. The top illustration from quenched QCD, is
qualitatively different from the lower illustration for a 2+ 1
flavor dynamical-fermion configuration.10 The zero modes

10 In the top illustration, one can see through the bulk of the topo-
logical charge distribution and observe the white background and the
dotted lattice grid lines. This is not the case in the lower illustra-
tion where the topological charge fills out the space. Only a sprin-
kling of white space is observed. The quark-mass dependence of the
dynamical-fermion illustration is subtle [395] indicating that the qual-
itative differences in the distributions comes about through the intro-
duction of dynamical fermions in generating the configurations through
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Fig. 30 The topological charge density from Ref. [395] for the
quenched (top) and the light-quark dynamical ensemble from the MILC
Collaboration [421,422], with dynamical masses of amu,d = 0.0062,
am=0.031

associated with well-separated topological objects act to sup-
press the fermion determinant, such that the top configuration
is improbable in full QCD. In the full-QCD simulations, the
topological objects grow in size and number [395] to sup-
press the zero modes.

4.3.7 Center vortex structure of QCD vacuum fields

The essential, fundamentally-important, nonperturbative fea-
tures of the QCD vacuum fields are the dynamical generation
of mass through chiral symmetry breaking, and the confine-
ment of quarks. But what is the fundamental mechanism of
QCD that underpins these phenomena?

One of the most promising candidates is the center vortex
perspective of QCD vacuum structure. While the ideas of a
center-vortex dominated vacuum were laid down long ago
[423–425], it wasn’t until 1997 when Jeff Greensite, Man-
fried Faber, et al. demonstrated that lattice QCD techniques
could be used to explore the importance of these ideas [426–
431]. Indeed by the end of the millennium, the field had
attracted broad interest with a comprehensive review in 2003
[432].

This perspective describes the nature of the nontrivial vac-
uum in terms of the most fundamental center of the gauge
group. Herein our focus is on the SU (3) gauge group where
center vortices are characterized by the three center phases,
3
√

1.

Footnote 10 Continued
Monte-Carlo methods. Not only are the objects in the quenched simula-
tion further apart, a statistical analysis indicates there are fewer objects
and the objects themselves are smaller in size when compared with the
dynamical fermion distributions [395]. The physics underpinning these
differences in the topological charge density distributions can be under-
stood in terms of the modes of the Dirac operator generated by these
distributions.

By identifying center vortices within the ground-state
fields and then removing them, a deep understanding of their
contributions has been developed. Removal of center vortices
from the ground-state fields results in a loss of dynamical
mass generation and restoration of chiral symmetry [433–
435], a loss of the string tension [436–439], a suppression of
the infrared enhancement in the Landau-gauge gluon propa-
gator [437,440–442], and the possibility that gluons are no
longer confined [442].

One can also examine the role of the center vortices alone.
Remarkably, center vortices produce both a linear static quark
potential [436,438,439,443,444] and infrared enhancement
in the Landau-gauge gluon propagator [441,442]. The pla-
nar vortex density of center-vortex degrees of freedom scales
with the lattice spacing providing a well defined contin-
uum limit [436]. These results elucidate strong connections
between center vortices and confinement.

A connection between center vortices and instantons was
identified through gauge-field smoothing [444]. An under-
standing of the phenomena linking these degrees of freedom
was illustrated in Ref. [445]. In addition, center vortices have
been shown to give rise to mass splitting in the low-lying
hadron spectrum [433,434,446].

Still, the picture in pure SU (3) gauge theory is not perfect.
The vortex-only string tension obtained from pure Yang–
Mills lattice studies has been consistently shown to be about
∼ 60% of the full string tension. Moreover, upon removal
of center vortices the gluon propagator showed a remnant of
infrared enhancement [441]. In short, within the pure gauge
sector, the removal of long-distance non-perturbative effects
via center-vortex removal is not perfect.

Understanding the impact of dynamical fermions on the
center-vortex structure of QCD ground-state fields is a con-
temporary focus of the center-vortex field [435,438,439,442,
447,448]. Herein, changes in the microscopic structure of
the vortex fields associated with the inclusion of dynami-
cal fermions are illustrated. The introduction of dynamical
fermions brings the phenomenology of center vortices much
closer to a perfect encapsulation of the salient features of
QCD, confinement and dynamical mass generation through
chiral symmetry breaking.

As such, it is interesting to ask, what do these center-vortex
structures look like? To this end, we present visualizations of
center vortices as identified on lattice gauge-field configura-
tions. Some of these visualizations are presented as stereo-
scopic images. See the instructions provided in Sect. 4.3.2
for help in viewing these images.

Center vortex identification
Center vortices are identified through a gauge fixing pro-
cedure designed to bring the lattice link variables as close
as possible to the identity matrix multiplied by a phase
equal to one of the three cube-roots of 1. Here, the original
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Fig. 31 Stereoscopic image of
center vortices as identified on
the lattice from Ref. [447].
Vortex features including vortex
lines (jets), branching points
(3-jet combinations), crossing
points (4 jets), indicator links
(arrows) and singular points
(spheres) are described in the
text

Monte-Carlo generated configurations are considered. They
are gauge transformed directly to Maximal Center Gauge
[436,449,450]. This brings the lattice link variables Uμ(x)
close to the center elements of SU (3),

Z = exp

(
2π i

3
n

)

I, (4.128)

with n = −1, 0, or 1 enumerating the three cube roots of 1
such that the special property of SU (3)matrices, det(Z) = 1,
is satisfied. One considers gauge transformations Ω such
that,
∑

x,μ

∣
∣trUΩ

μ (x)
∣
∣2 Ω→ max, (4.129)

and then projects the link variables to the center

Uμ(x)→ Zμ(x) where Zμ(x) = exp

(
2π i

3
nμ(x)

)

I.

(4.130)

Here, n has been promoted to a field, nμ(x), taking a value of
−1, 0, or 1 for each link variable on the lattice. In this way, the
gluon field,Uμ(x), is characterized by the most fundamental
aspect of the SU (3) link variable, the center, Zμ(x). In the
projection step, eight degrees of freedom are reduced to one
of the three center phases. This “vortex-only” field, Zμ(x),
can be examined to learn the extent to which center vortices
alone capture the essence of nonperturbative QCD.

The product of these center-projected links, Zμ(x), around
an elementary 1 × 1 square (plaquette) on the lattice also
produces a centre element of SU (3). The value describes the
center charge associated with that plaquette

z =
∏

�
Zμ(x) = exp

(
2π i

m

3

)
, m = −1, 0, or 1. (4.131)

The most common value observed has m = 0 indicating that
no centre charge pierces the plaquette. However, values of

m = ±1 indicate that the center line of an extended three-
dimensional vortex pierces that plaquette.

The complete center-line of an extended vortex is iden-
tified by tracing the presence of nontrivial center charge,
m = ±1, through the spatial lattice. Figure 31 exhibits rich
emergent structure in the nonperturbative QCD ground-state
fields in a stereoscopic image. Here a 3D slice of the 4D
space-time lattice is being considered at fixed time. Features
include:

Vortex Lines:
The plaquettes with nontrivial center charge, characterized
by m = +1 or −1, are plotted as jets piercing the center
of the plaquette. Both the orientation and color of the jets
reflect the value of the non-trivial center charge. Using a
right-hand rule for the direction, plaquettes with m = +1 are
illustrated by blue jets in the forward direction, and plaquettes
with m = −1 are illustrated by red jets in the backward
direction. Thus, the jets show the directed flow of m = +1
center charge, z = e2π i/3, through spatial plaquettes. They
are analogous to the line running down the center of a vortex
in a fluid.

Vortices are somewhat correlated with the positions of
significant topological charge density, but not in a strong
manner [445]. However, the percolation of vortex structure
is significant and the removal of these vortices destroys most
instanton-like objects.

Branching Points or Monopoles:
In SU (3) gauge theory, three vortex lines can merge into or
emerge from a single point. Their prevalence is surprising,
as is their correlation with topological charge density [445].

Vortex Sheet Indicator Links:
As the vortex line moves through time, it creates a vortex
sheet in 4D spacetime. This movement is illustrated by arrows
along the links of the lattice (shown as cyan and orange
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Fig. 32 From Ref. [448], the center-vortex structure of a ground-state
vacuum field configuration in pure SU(3) gauge theory (left) is com-
pared with a field configuration in dynamical 2+1 flavor QCD corre-
sponding to mπ = 156 MeV (right). The flow of +1 center charge

through the gauge fields is illustrated by the jets. Blue jets are used
to illustrate the single percolating vortex structure, while other colors
illustrate smaller structures

arrows in Fig. 31) indicating center charge flowing through
space-time plaquettes in the suppressed time direction.

Singular Points:
When the vortex sheet spans all four space-time dimensions,
it can generate topological charge. Lattice sites with this
property are called singular points [431,451–453] and are
illustrated by spheres. The sphere color indicates the number
of times the sheet adjacent to a point can generate a topolog-
ical charge contribution [445].

Reference [448] presents the first results demonstrating
the impact of dynamical fermions on the center-vortex struc-
ture of QCD ground-state fields. There matched lattices
were considered, one in pure-gauge and the other a 2 + 1-
flavor dynamical-fermion lattice from the PACS-CS Collab-
oration [454]. These 323 × 64 lattice ensembles employ
a renormalisation-group improved Iwasaki gauge action
and non-perturbatively O(a)-improved Wilson quarks, with
CSW = 1.715.

The lightest u- and d-quark-mass ensemble identified by
a pion mass of 156 MeV [454] is presented here. The scale is
set using the Sommer parameter [455] with r0 = 0.4921
fm providing a lattice spacing of a = 0.0933 fm [454].
A matched 323 × 64 pure-gauge ensemble using the same
improved Iwasaki gauge action with a Sommer-scale spacing
of a = 0.100 fm was created [448] to enable comparisons
with the PACS-CS ensembles.

The center-vortex structure of pure-gauge and dynamical
fermion ground-state vacuum fields is illustrated in Fig. 32
from Ref. [448], where interactive 3D plots of this struc-
ture which can be activated in Adobe Reader. The impact of
dynamical fermions on the center-vortex structure is much
more significant than that discussed in Sect. 4.3.6.

In both illustrations, the vortex structure is dominated by
a single large percolating structure. Whereas small loops will
tend to pierce a Wilson loop twice with zero effect, it is this

extended structure that gives rise to a net vortex piercing of a
Wilson loop and the generation of an area law associated with
confinement. These two illustrations are representative of the
ensemble in that the vortex structure is typically dominated
by a single large percolating cluster.

Closer inspection reveals a continuous flow of center
charge, often emerging or converging to monopole or anti-
monopole vertices where three jets emerge from or converge
to a point. These are referred to as branching points, as a+1
center charge flowing out of a vertex is equivalent to+2 cen-
ter charge flowing into the vertex and subsequently branching
to two +1 jets flowing out of the vertex.

With the introduction of dynamical fermions, the struc-
ture becomes more complex, both in the abundance of vor-
tices and branching points. The average number of vor-
tices composing the primary cluster in these 322 × 64 spa-
tial slices roughly doubles from ∼ 3000 vortices in the
pure gauge theory to ∼ 6000 in full QCD. Still, there are
322 × 64× 3 = 196,608 spatial plaquettes on these lattices
and thus the presence of a vortex is a relatively rare occur-
rence.

By counting the number of vortices between branching
points one discovers the distribution is exponential, indi-
cating a constant branching probability. This probability is
higher in full QCD by a ratio of ∼ 3/2.

With an understanding of the impact of dynamical-
fermion degrees of freedom on the center-vortex structure
of ground-state vacuum fields, attention has turned to under-
standing the impact on confinement. In a variational analy-
sis of standard Wilson loops composed of several spatially-
smeared sources to isolate the ground state potential, the
static quark potential has been calculated on three ensembles
including the original untouched links, Uμ(x), the vortex-
only links, Zμ(x), and vortex-removed links, Z†

μ(x)Uμ(x)
[442] where the multiplication of the conjugate of the centre-
projected field ensure all plaquettes have z = 0.
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Fig. 33 The static quark potential, as presented in Ref. [438], calcu-
lated on the vortex-modified dynamical-fermion ensemble, correspond-
ing to a pion mass of 156 MeV. The lower plot shows the local slope
from linear fits of the potentials in the upper plot over a forward-looking
window from r to r + 4a

For the original untouched configurations, the static quark
potential is expected to follow a Cornell potential

V (r) = V0 − α

r
+ σ r. (4.132)

As center vortices are anticipated to encapsulate the non-
perturbative long-range physics, the vortex-only results
should give rise to a linearly rising potential. On the other
hand, the vortex-removed results are expected to capture the
short-range Coulomb behavior. Figure 33 from Ref. [442]
illustrates the static quark potentials obtained from these
three ensembles for the dynamical 2 + 1-flavor ensemble
with a pion mass of 156 MeV [454].

Qualitatively, center vortices account for the long-distance
physics. The removal of center vortices completely removes
the confinement potential. And while the vortex-only string
tension is typically 60 % of the original string tension
in the pure gauge sector, the introduction of dynamical
fermions has improved the vortex-only phenomenology sig-
nificantly. Vortices alone capture both the screening of the
pure-gauge string tension and the full string tension of
the original untouched ensemble. This result is associated
with the significant modification of the center-vortex struc-
ture of ground-state vacuum fields induced by dynamical
fermions.

The improved separation of perturbative and nonpertur-
bative physics through the consideration of vortex-removed
and vortex-only ensembles in full QCD is also manifest
in the nonperturbative gluon propagator [442]. This time
vortex removal removes the infrared enhancement of the
gluon propagator, leaving a tree-level structure. Indeed the
vortex-removed Euclidean correlator remains positive defi-
nite, admitting the possibility of a positive-definite spectral

density associated with free gluons. The vortex-only ensem-
bles capture the infrared enhancement of the gluon propa-
gator and the screening of this enhancement in full QCD
[442].

Similarly, dynamical mass generation in the nonperturba-
tive quark propagator is suppressed under vortex removal in
full QCD while the vortex-only ensemble provides dynam-
ical mass generation [435]. While explicit chiral symmetry
breaking through the quark mass, leaves a remnant of dynam-
ical mass generation, it is anticipated that for sufficiently light
current quark masses, chiral symmetry will be restored [434]
and dynamical mass generation will be completely elimi-
nated in the vortex-removed theory.

In summary, center-vortex structure is complex. Each
ground-state configuration is dominated by a long-distance
percolating center-vortex structure. In SU (3) gauge field the-
ory, a proliferation of branching points is observed, with fur-
ther enhancement as light dynamical fermion degrees of free-
dom are introduced in simulating QCD. There is an approx-
imate doubling in the number of nontrivial center charges
in the percolating vortex structure as one goes from the
pure-gauge theory to full QCD. Increased complexity in
the vortex paths is also observed as the number of branch-
ing points is significantly increased with the introduction
of dynamical fermions. In short, dynamical-fermion degrees
of freedom radically alter the center-vortex structure of the
ground-state vacuum fields. This change in structure acts to
improve the phenomenology of center vortices better repro-
ducing the string tension, dynamical mass generation and bet-
ter removing nonperturbative physics under vortex removal.
This represents a significant advance in the ability of cen-
ter vortices to capture the salient nonperturbative features of
QCD.

4.3.8 Summary

In the 50 years following the advent of QCD, the complex-
ity of the nontrivial QCD vacuum has been exposed. Many
theoretical ideas have been created and developed to explain
the salient features of this nontrivial vacuum and their explo-
ration continues. Numerical experiments within the realm of
lattice QCD have been particularly useful in testing the verac-
ity of the theoretical ideas proposed. Today, these numeri-
cal experiments are exploring the ideas of instanton-dyons
and center-vortices as the essential features of QCD vacuum
structure, confining color and dynamically generating mass
through dynamical chiral symmetry breaking. The results are
fascinating, and encourage further exploration of the essence
of QCD vacuum structure.
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4.4 QCD at non-zero temperature and density

Frithjof Karsch

4.4.1 QCD thermodynamics on Euclidean lattices

The path integral formulation of QCD can easily be applied
to cases of non-vanishing temperature (T ) and other external
control parameters, e.g. the chemical potentials (μ f ) that
couple to the conserved currents of quark-flavor number.

Using the lattice regularization scheme of QCD, intro-
duced by K. Wilson [97], QCD thermodynamics is formu-
lated on Euclidean space-time lattices of size N 3

σ Nτ where,
for a given lattice spacing (a), the lattice extent in Euclidean
time controls the temperature T = 1/Nτa and the spatial
extent is related to the volume of the thermodynamic system,
V = (Nσa)3. The chemical potentials enter directly in the
fermion matrices, M f , which arise from the QCD Lagrangian
after integrating out the fermion fields.

Bulk thermodynamics can then be derived from the lattice
regularized partition function,

Z =
∫ Nτ∏

x0=1

Nσ∏

xi=1

3∏

ˆν=0

DUx,ν̂ e
−SG

×
∏

f=u,d,s..
det M f (m f , μ f ), (4.133)

where x = (x0, �x) labels the sites of the 4-dimensional lat-
tice, SG denotes the gluonic part of the Euclidean action,
which is expressed in terms of SU (3) matrices Ux,ν̂ and M f

is the fermion matrix for quark flavor f . It is a function of
quark mass, m f and flavor chemical potential μ̂ f ≡ μ f /T .
Basic bulk thermodynamic observables (equation of state,
susceptibilities, etc.) can then be obtained from the logarithm
of the partition function, Z , which defines the pressure, P ,
as

P/T = 1

V
ln Z(T, V, �μ, �m) . (4.134)

Applying standard thermodynamic relations one obtains
other observables of interest; e.g. the energy density is related
to the trace anomaly of the energy–momentum tensor, Θμμ,

Θμμ

T 4 = ε − 3P

T 4 ≡ T
∂P/T 4

∂T
, (4.135)

and the conserved charge densities are obtained as,

nX

T 3 =
∂P/T 4

∂μ̂X
, X = B, Q, S . (4.136)

While the framework of lattice QCD provides easy access
to QCD thermodynamics at vanishing values of the chemical
potentials, major difficulties arise at μ f �= 0. The fermion
determinants, detM f (m f , μ f ), are no longer positive defi-
nite when the real part of the chemical potential is non-zero,

Reμ̂ f �= 0. This includes the physically relevant case of
strictly real chemical potentials. The presence of a complex
valued integrand in the path integral makes the application
of standard Monte Carlo techniques, which rely on a prob-
abilistic interpretation of integration measures, impossible.
The two most common approaches to circumvent this prob-
lem are to either (i) perform numerical calculations at imag-
inary values of the chemical potential, μ̂2

f < 0 [456,457],
or to (ii) perform Taylor series expansions around μ̂ f = 0
[458,459]. In the former case numerical results need to be
analytically continued to real values of μ f . In the latter case
the QCD partition function is written as,

P/T 4 = 1

VT 3 ln Z(T, V, �μ) =
∞∑

i, j,k=0

χ
BQS
i jk

i ! j !k! μ̂
i
Bμ̂

j
Qμ̂

k
S ,

(4.137)

with χ
BQS
000 ≡ P(T, V, �0)/T 4 and expansion coefficients,

χ
BQS
i jk (T ) = ∂P/T 4

∂μ̂i
B∂μ̂

j
Q∂μ̂

k
S

∣
∣
∣
∣
∣
μ̂=0

, (4.138)

can be determined in Monte Carlo simulations performed at
μ̂X = 0.

The phase structure of QCD can be explored using suitable
observables that are sensitive to the spontaneous breaking and
the eventual restoration of global symmetries. They can act
as order parameters in certain limits of the parameter space
spanned by the quark masses. In QCD exact symmetries exist
either in the chiral limit, i.e. at vanishing values of n f quark
masses, or for infinitely heavy quarks, i.e. in pure SU (Nc)

gauge theories, with Nc denoting the number of colors.
In order to probe the restoration of the global chiral sym-

metries one analyzes the chiral condensate and its suscepti-
bilities,

〈χ̄χ〉 f = T

V

∂

∂m f
ln Z = T

V
〈TrM−1

f 〉 , (4.139)

χ
f g
m = ∂〈χ̄χ〉 f

∂mg
, χ

f
t = T

∂〈χ̄χ〉 f
∂T

. (4.140)

The former is an order parameter for the restoration of the
SU (n f )L × SU (n f )R chiral flavor symmetry of QCD and
distinguishes, in the limit of vanishing quark masses, a sym-
metry broken phase at low temperature from a chiral sym-
metry restored phase at high temperature,

lim
m!→0

〈χ̄χ〉!
{
> 0 T < Tχ
= 0 T ≥ Tχ

. (4.141)

Similarly one considers the Polyakov loop 〈L〉 and its sus-
ceptibility χL ,

〈L〉 = 1

N 3
σ

〈
∑

�x
TrL �x

〉

, L �x =
Nτ∏

x0=1

U
(x0,�x),0̂ ,
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Fig. 34 First evidence for the existence of a deconfinement phase tran-
sition in SU (2) gauge theories using the Polyakov loop expectation
value as an order parameter (left) [460] and a first extrapolation of the
phase transition temperature to the continuum limit (middle) [461] . The

right hand figure shows a first comparison of the temperature depen-
dence of the Polyakov loop (W ≡ 〈|L|〉) and chiral condensate (〈ψ̄ψ〉)
order parameters in a SU(3) gauge theory [462]

χL = N 3
σ

(
〈L2〉 − 〈L〉2

)
, (4.142)

to probe the breaking and restoration of the global Z(Nc)

center symmetry of pure SU (Nc)gauge theories; i.e. SU (Nc)

gauge theories at finite temperature, formulated on Euclidean
lattices, are invariant under global rotation of all temporal
gauge field variables, U�x,0̂ → zU�x,0̂, with z ∈ Z(Nc).
The Polyakov loop expectation value vanishes as long as this
center symmetry is not spontaneously broken.

The Polyakov loop expectation value also reflects the long
distance behavior of Polyakov loop correlation functions,

|〈L〉|2 ≡ lim
|�x |→∞

GL(�x)
{
= 0 ⇔ Fq = ∞, T ≤ Td
> 0 ⇔ Fq <∞, T > Td

(4.143)

where

GL(�x) = e−Fq̄q (�x,T )/T = 〈TrL�0TrL†
�0〉 (4.144)

is the correlation function of two Polyakov loops. It denotes
the change in free energy (excess free energy, Fq̄q ), that is
due to the presence of two static quark sources introduced
in a thermal medium. At zero temperature this free energy
reduces to the potential between static quark sources.

At least in the case of pure gauge theories this provides
a connection between the confinement-deconfinement phase
transition and the breaking of a global symmetry, the Z(Nc)

center symmetry of the SU (Nc) gauge group. This symme-
try, however, is explicitly broken in the presence of dynam-
ical quarks with mass m f < ∞. Unlike chiral symmetry
restoration, deconfinement thus is not expected to be related
to a phase transition in QCD with physical quark masses.
Nonetheless, the consequences of deconfinement, related to
the dissolution of hadronic bound states, becomes clearly
visible in many thermodynamic observables.

4.4.2 Early lattice QCD calculations at non-zero
temperature

Almost immediately after the formulation of QCD as the the-
ory of strong interaction physics, its consequences for strong
interaction matter at non-zero temperature were examined
[463,464]. It rapidly became obvious that fundamental prop-
erties of QCD, confinement and asymptotic freedom on the
one hand [464,465], and chiral symmetry breaking on the
other hand [466], are likely to trigger a phase transition in
strong interaction matter that separates a phase being dom-
inated by hadrons as the relevant degrees of freedom from
that of almost free quarks and gluons. The notion of a quark–
gluon plasma was coined at that time [467].

Soon after these early, conceptually important develop-
ments it was realized that the formulation of QCD on discrete
space-time lattices, which was introduced by K. Wilson as a
regularization scheme in QCD [97], also provides a powerful
framework for the analysis of non-perturbative properties of
strong interaction matter through Monte-Carlo simulations
[353]. This led to a first determination of a phase transition
temperature in SU (2) [460,461] and SU (3) [462,468,469]
gauge theories, and a first determination of the equation
of state of purely gluonic matter [470,471]. The interplay
between deconfinement on the one hand and chiral symme-
try restoration on the other hand also was studied [462] early
on and the question whether or not these two aspects of QCD
may lead to two distinct phase transitions in QCD has been
considered ever since. Some results from these first lattice
QCD studies of the thermodynamics of strong interaction
matter are shown in Fig. 34.

At physical values of the quark masses, neither deconfine-
ment nor the effective restoration of chiral symmetry leads to
a true phase transition. Still the transition from the low tem-
perature hadronic to the high temperature partonic phase of
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Fig. 35 The so-called color averaged, heavy quark free energy (Fav ≡
Fq̄q ) in the vicinity of the pseudo-critical transition temperature (Tpc)
in 2-flavor QCD [472]. Results shown cover a temperature range from
T/Tpc � 0.75 to T/Tpc � 2

QCD is clearly visible in the pseudo-critical behavior of the
heavy quark free energy and the chiral condensate respec-
tively. Some recent results on these observables, obtained in
simulations of QCD with light, dynamical quark degrees of
freedom, are shown in Figs. 35 and 36.

4.4.3 Global symmetries and the QCD phase diagram

The early studies of QCD thermodynamics made it clear
that universality arguments and renormalization group tech-
niques, successfully developed in condensed matter physics
and applied in statistical physics to the analysis of phase tran-
sitions, also can be carried over to the analysis of the phase
structure of quantum field theories [473,474]. The renormal-
ization group based arguments for the existence of a second
order phase transition in the universality class of the 3-d Ising
model in a SU (2) gauge theory, and a first order transition for
the SU (3) color group of QCD [475] have been confirmed
by detailed lattice QCD calculations [476,477].

In the presence of n f light, dynamical quarks, distin-
guished by a flavor quantum number, it is the chiral symme-
try of QCD that triggers the occurrence of phase transitions
[466]. In addition to a global U (1) symmetry that reflects
the conservation of baryon number and is unbroken at all
temperatures and densities, the massless QCD Lagrangian is
invariant under the symmetry group

U (1)A × SU (n f )L × SU (n f )R . (4.145)

The SU (n f )L × SU (n f )R symmetry corresponds to chiral
rotations of n f massless quark fields in flavor space. This
symmetry is spontaneously broken at low temperatures, giv-
ing rise to n2

f − 1 massless Goldstone modes, which for
n f = 2 are the three light pions of QCD. They have a non-
vanishing mass only because of the explicit breaking of chi-
ral symmetry by a mass term in the QCD Lagrangian that

Fig. 36 Quark mass dependence of chiral order parameter, M , defined
in Eq. 4.146 for QCD with two degenerate light quark masses and a
strange quark mass tuned to its physical value. Shown are results from
calculations on lattices with temporal extent Nτ = 8 performed for sev-
eral values of the light quark masses [478,479]. The light quark masses,
m!, are expressed in units of the strange quark mass, H = m!/ms . In the
figure we give 1/H = ms/m! together with the corresponding values
of the Goldstone pion mass

couples to the chiral order parameter field χ̄ f χ f . The axial
U (1)A group corresponds to global rotations of quark fields
for a given flavor f . Although it is an exact symmetry of
the classical Lagrangian, it is explicitly broken in the quan-
tized theory. This explicit breaking of a global symmetry,
arising from fluctuations on the quantum level, is known as
the U (1)A anomaly.

The renormalization group based analysis of the chiral
phase transition, performed by Pisarski and Wilczek [466],
made it clear that the chiral phase transition is sensitive to
the number of light quark flavors that become massless. Fur-
thermore, it has been argued in [466] that the order of the
transition may be sensitive to the magnitude of the axial
anomaly at non-zero temperature, which is closely related to
the temperature dependence of topological non-trivial field
configurations.

Although it was generally expected that the chiral phase
transition in 3-flavor QCD becomes a first order phase tran-
sition in the chiral limit [466], there is currently no direct
evidence for this from lattice QCD calculations. In fact, the
current understanding is that the chiral phase transition is
second order for all n f ≤ 6 [480].

In Fig. 37 (top) we show the original version of the QCD
phase diagram in the plane of two degenerate light (m!)

and strange (ms) quark masses, proposed in 1990 [481],
together with an updated version from 2021 [480]. Here
m! denotes the two degenerate up and down quark masses,
m! ≡ mu = md . This sketch of our current understanding of
the 3-flavor phase diagram also is supported by the increas-
ing evidence for a non-singular crossover transition in QCD
with physical light and strange quark masses and the absence
of any evidence for a first order phase transition at lighter-
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Fig. 37 Sketch of the phase diagram of QCD in the plane of degenerate,
light up and down quark masses and a strange quark mass (Columbia
plot). The figure shows the original version from 1990 [481] (top) and
an updated version from 2021 [480] (bottom)

than-physical values of the light and strange quark masses
[480,482]. In the chiral limit, i.e. for vanishing up and down
quark masses,11 a second order phase transition will then
occur.

4.4.4 The chiral phase transition at vanishing chemical
potential

The occurrence of the chiral phase transition is signaled by
the vanishing of the light quark chiral condensate. In order
to remove multiplicative and additive divergences in 〈χ̄χ〉!
one considers instead the order parameter M which is a com-
bination of light and strange quark condensates,

M = 2
(
ms〈ψ̄ψ〉! − m!〈ψ̄ψ〉s

)
/ f 4

K , (4.146)

11 Lattice QCD studies of the (2+1)-flavor phase diagram generally are
performed with degenerate up and down quark masses.

and its derivative with respect to the light quark masses, i.e.
the chiral susceptibility χM

χM = ms

(
∂M

∂mu
+ ∂M

∂md

)

mu=md≡m!

. (4.147)

Here the kaon decay constant fK = 156.1(9)/
√

2 MeV, has
been used to introduce a dimensionless order parameter. The
scaling behavior of M andχM , have been used to characterize
the chiral phase transition,

M ∼
m! → 0

⎧
⎨

⎩
A

(
T 0
c −T
T 0
c

)β

, T < T 0
c

0 T ≥ T 0
c

(4.148)

χM
∼

m! → 0

⎧
⎨

⎩

∞, T ≤ T 0
c

C
(
T−T 0

c
T 0
c

)−γ

, T > T 0
c

(4.149)

where β, γ are critical exponents.
We note that the low temperature behavior of the order

parameter susceptibility, χM , is quite different from that
known, for instance, in the 3-d Ising model. The suscepti-
bility diverges in the massless limit at all values of the tem-
perature, T ≤ T 0

c . This is a consequence of the breaking of a
continuous rather than a discrete symmetry. The former gives
rise to Goldstone modes, the pions in QCD, which contribute
to the chiral condensate and as such to the order parameter
M , i.e.,

M ∼ a(T )
√
m! , T < T 0

c . (4.150)

As a consequence the chiral susceptibility diverges below
T 0
c , χM ∼ 1/

√
m!, while at T 0

c its divergence is controlled
by the critical exponent δ = 1+ γ /β,

χM ∼
{
H−1/2 T < Tχ
H1/δ−1 T = Tχ

, (4.151)

with H = m!/ms . As 1− 1/δ > 1/2 in all relevant univer-
sality classes χM develops a pronounced peak at small, but
non-zero values of the quark masses,

χ
peak
M ≡ χM (Tpc(H)) ∼ H1/δ−1 , H = m!/ms . (4.152)

The location of such a peak in either χM or similarly
in T ∂M/∂T , defines pseudo-critical temperatures, Tpc(H),
which converge to the unique chiral phase transition, T 0

c , at
H = 0. Some results on the quark mass dependence of M
and χM are shown in Figs. 36 and 38, respectively. A scal-
ing analysis of these observables, performed in [478], led to
the determination of the chiral phase transition temperature
[478],

T 0
c = 132+3

−6 MeV. (4.153)
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Fig. 38 Same as Fig. 36 but for the chiral susceptibility

Similar results have also been obtained in [483] where a quite
different discretization scheme for the fermion sector of QCD
has been used.

For physical light and strange quark masses, correspond-
ing to H � 1/27, one finds as a pseudo-critical temperature
[484],

Tpc = 156.5(1.5) MeV , (4.154)

which is in good agreement with other determinations of
pseudo-critical temperatures in (2 + 1)-flavor QCD [485–
487].

The chiral symmetry group SU (2)L × SU (2)R is isomor-
phic to the rotation group O(4). It thus is expected that the
chiral phase transition for two vanishing light quark masses
is in the same universality class as 3-d, O(4) symmetric spin
models. In fact, the rapid rise of χM , shown in Fig. 38, is
consistent with a critical exponent in this universality class,
δ = 4.824 [488]. However, a precise determination of this
exponent in 2-flavor QCD is not yet possible. This leaves
open the possibility for other symmetry breaking patterns
and other universality classes playing a role in the chiral
limit of 2-flavor QCD [489]. In fact, the discussion of such
possibilities is closely related to the yet unsettled question
concerning the influence of the axial U (1)A symmetry on
the chiral phase transition. For a recent review on this ques-
tion see, for instance [490].

Thermal masses and screening masses
The restoration of symmetries is reflected also in the mod-
ification of the hadron spectrum at non-zero temperature.
Interactions in a thermal medium lead to modifications of
resonance peaks that can modify the location of maxima
and the width of spectral functions that control properties of
hadron correlation functions. This gives rise to so-called ther-
mal masses as well as thermal screening masses that control
the long-distance behavior of hadron correlation functions in
Euclidean time and spatial directions, respectively.

Fig. 39 Temperature dependence of masses of parity partners in the
baryon octet [491]

A consequence of U (1)A breaking in the vacuum or at
low temperature is that masses of hadronic states that are
related to each other through a U (1)A transformation differ,
while they become identical, or close to each other, when the
U (1)A symmetry is effectively restored. This is easily seen
to happen at high temperature. The crucial question, of rel-
evance for the QCD phase transition, however, is to which
extent U (1)A symmetry breaking is reduced, or already dis-
appeared at the chiral phase transition temperature. Settling
this question requires the analysis of observables sensitive
to U (1)A breaking close to T 0

c and for smaller-than-physical
light quark masses.

The calculation of in-medium modifications of hadron
masses is difficult, but has been attempted for quark masses
close to their physical values [491]. Results for the tempera-
ture dependence of the mass-splitting of parity partners in the
baryon octet [491] are shown in Fig. 39. These results sug-
gest a strong temperature dependence of the negative parity
states while the positive parity partners are not sensitive to
temperature changes. At Tpc the masses of parity partners
are almost degenerate.

More easily accessible are so-called screening masses,
which also are obtained from ordinary hadron correlation
functions and can be analyzed close to the chiral limit. Rather
than analyzing the long-distance behavior of hadron corre-
lation functions in Euclidean time, one extracts a so-called
screening mass from the long-distance behavior in one of
the spatial directions [494,495]. Finite temperature meson
screening correlators, projected onto lowest Matsubara fre-
quency of a bosonic state, p0 ≡ ω0 = 0, and zero transverse
momentum, p⊥ ≡ (px , py) = 0, are defined by

GΓ (z, T ) =
∫ β

0
dτ

∫
dxdy

〈
MΓ (�r , τ )MΓ (�0, 0)

〉

∼
z →∞ e−mΓ (T )z , �r ≡ (x, y, z) , (4.155)
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Fig. 40 Screening masses (top) and the related susceptibilities (bot-
tom) of scalar and pseudo-scalar mesons [492,493]

where MΓ ≡ ψ̄Γ ψ is a meson operator that projects onto a
quantum number channel that is selected through an appro-
priate choice of Γ -matrices [492,494]. At large distances
this permits the extraction of the screening mass, mΓ , in the
quantum number channel selected by Γ from the exponen-
tial fall-off of these correlation functions. In Fig. 40 (left)
we show results for the scalar and pseudo-scalar screening
masses obtained in (2+1)-flavor QCD calculations for differ-
ent values of the light to strange quark mass ratio. The inte-
grated correlation functions define susceptibilities in these
quantum number channels, which also should be degener-
ate, if U (1)A is effectively restored. Both observables seem
to suggest that there remains a significant remnant of U (1)A
breaking at the chiral phase transition temperature, T 0

c , which

however reduces quickly above the chiral transition and gives
rise to an effective restoration of U (1)A at T � 1.1T 0

c .
In the region T > T 0

c the difference between pseudo-
scalar and scalar susceptibilities is related to the so-called
disconnected part, χdis , of the chiral susceptibility, χM =
χdis + χcon , with

χdis = 1

4Nτ N 3
σ

(
〈(TrM−1

! )2〉 − 〈TrM−1
! 〉2

)
, (4.156)

χcon = 1

2Nτ N 3
σ

〈TrM−2
! 〉 . (4.157)

While the disconnected chiral susceptibility can in general be
expressed in terms of an integral over the quark mass deriva-
tive of the eigenvalue density [496], ρ(λ), of the fermion
matrix M f , it is directly related to an integral over ρ(λ) in
the chirally symmetric high temperature phase,

χdis =
∫ ∞

0
dλ ρ(λ)

2m2
!

(λ2 + m2
!)

2
. (4.158)

In the chiral symmetric phase the density of vanishing eigen-
values, ρ(0), vanishes. In order for χdis to be nonetheless
non-zero in the chiral limit, the density of near-zero eigenval-
ues needs to converge to a non-vanishing value (δ-function)
at λ = 0 in the limit m! → 0 and V →∞. Controlling the
various limits involved and also taking into account that the
pseudo-critical transition temperature, Tpc(H), has a size-
able quark mass dependence is difficult. Nonetheless, studies
of the temperature dependence of the eigenvalue density of
the Dirac matrix are crucial for a detailed understanding of
the influence of the U (1)A anomaly on the QCD phase tran-
sition. Not surprisingly, it turns out that at non-zero values
of the lattice spacing the spectrum of low lying eigenvalues
is quite sensitive to the fermion discretization scheme. Using
fermions with good chirality even at non-zero lattice spacing
seems to be advantageous, although after having performed
the extrapolation to the chiral limit, they should lead to results
identical with those obtained, e.g. within the staggered dis-
cretization scheme. Current results are ambiguous. We show
in Fig. 41 results from a calculation of eigenvalue distri-
butions obtained from calculations with dynamical overlap
fermions [497,498]. These calculations provide evidence for
a large density of near-zero eigenvalues and a non-zero eigen-
value density, possibly building up at λ = 0. This is in con-
trast to calculations performed with domain wall fermions
[499] as well as so-called partially quenched calculations
that use the overlap fermion operator to calculate eigenvalue
distributions on gauge field configurations generated with
dynamical staggered fermions [500]. Obviously this subtle
aspect of the chiral phase transition is not yet resolved and
the analysis of U (1)A restoration will remain to be a central
topic in finite temperature QCD in the years to come.
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Fig. 41 Eigenvalue density of the overlap fermion matrix obtained in
calculations with dynamical overlap fermions [497]

Fig. 42 Sketch of a possible QCD phase diagram in the space of tem-
perature (T ), baryon chemical potential (μB ) and light quark masses
(mu,d )

4.4.5 The chiral phase transition at non-vanishing
chemical potential

In the studies of QCD at non-vanishing baryon chemical
potential the search for the existence of a second order phase
transition at physical values of the quark masses, the criti-
cal end point (CEP), finds particular attention. It separates
the crossover regime at small values of the chemical poten-
tial from a region of first order phase transitions, which is
predicted in many phenomenological models to exist at high
density. The CEP is searched for extensively in heavy ion
experiments and, if confirmed, would provide a solid predic-
tion for the existence of first order phase transitions in dense
stellar matter, e.g. in neutron stars.

The dependence of the transition temperature on the chem-
ical potentials, e.g. Tpc(μB), can be deduced from the μB-

dependent shift of the peak in the chiral susceptibility. At
non-vanishing values of the baryon chemical potential, μB ,
the QCD phase transition temperature in the chiral limit as
well as the region of pseudo-critical behavior in QCD with its
physical quark mass values shifts to smaller values of the tem-
perature. This shift has been determined in calculations with
imaginary values of the chemical potentials as well as from
Taylor series expansions of the order parameter M and its
susceptibility χM . Using a Taylor series ansatz for Tpc(μB),

Tpc(μB) = T 0
pc

(

1− κB
2

(
μB

T 0
c

)2

− κB
4

(
μB

T 0
c

)4
)

(4.159)

one finds for the curvature coefficients κB
2 � 0.012 while the

next correction is consistent with zero in all current studies,
e.g. κB

4 = 0.00032(67) [487]. The pseudo-critical temper-
ature Tpc at physical values of the light and strange quark
masses thus drops to about 150 MeV at μB � 2Tpc. This
is still considerably larger than the chiral phase transition
temperature, T 0

c , determined at μB = 0. As various model
calculations [504,505] suggest that the CEP at non-zeroμB is
located at a temperature belowT 0

c one thus needs to get access
to thermodynamics at large chemical potentials. Assuming
that the curvature of the pseudo-critical line does not change
drastically at large values of the chemical potentials, our cur-
rent understanding of the QCD phase diagram in the m!-T -
μB space (see Fig. 42) suggests that a possible CEP in the
phase diagram may exist only at a temperature,

TCEP (μCEP
B ) < 130 MeV, μCEP

B > 400 MeV . (4.160)

Reaching the region μB/T > 3 is a major challenge for any
of the currently used approaches in lattice QCD calculations
as well as for collider based heavy ion experiments that search
for the CEP.

4.4.6 Equation of state of strongly interacting matter

The equation of state (EoS) of strongly interacting matter, i.e.
the pressure and its derivatives with respect to temperature
and chemical potentials provides the basic information on
the phase structure of QCD. It is of central importance not
only for the analysis of critical behavior in QCD but also
for the analysis of experimental results on strong interaction
thermodynamics that are obtained in relativistic heavy ion
collision experiments.

At vanishing values of the chemical potentials the QCD
EoS is well controlled and consistent results for pressure,
energy and entropy densities, as well as derived observ-
ables such as the speed of sound or specific heat, have been
obtained by several groups [501,502]. We show results for
some of these observables in Fig. 43. The figure on the right
shows the square of the speed of sound, c2

s , as function of
the energy density. It can be seen that c2

s has a minimum in
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Fig. 43 Left: Pressure, energy and entropy densities in (2+1)-flavor QCD at vanishing chemical potential. The figure is taken from [501]. Also
shown in the figure are results obtained with the stout discretization scheme for staggered fermions [502]. Right: The speed of sound as function
of energy density

Fig. 44 μB -dependent contribution to the pressure (left) and net
baryon number density (right) in (2+1)-flavor QCD at several values
of the baryon chemical potential chemical potential, μ/TB = 1.0, 1.5,
2.0, 2.5, (bottom to top) and for μ̂B = 2.0. Shown are results from Tay-

lor expansion up to eighth order in μ̂B in the pressure series for isospin
symmetric (μQ = 0) strangeness neutral (nS = 0) matter and cor-
responding Padé approximants obtained from these Taylor expansion
coefficients. The figures are taken from [503]

the transition region, sometimes called the softest point of
the QCD EoS [506]. The energy density in the vicinity of
the pseudo-critical temperature (Tpc � 155 MeV) is found
to be,

εc � (350± 150) MeV/fm3 , (4.161)

which is compatible with the energy density of the nucleon,
mN/(4πr3

N/3) for nucleon radii in the range rN = (0.8−1)
fm. Also shown in the top figure is the trace of the energy–
momentum tensor, (ε−3P)/T 4. Its deviation from zero gives
some hint to the relevance of interactions in the medium (for
an ideal gas as well as to leading order in high tempera-
ture perturbation theory one has ε = 3P). Not unexpected
this is largest close to the transition region and decreases
only slowly in the high temperature regime. This large devi-

ations from ideal gas or perturbative behavior is seen in many
observables at temperature Tpc < T < 2Tpc.

Calculations of the equation of state as a function of T
and μB have been performed using direct simulations at
imaginary chemical potentials, which then get analytically
continued to real values of the chemical potentials [507], as
well as calculations using up to eighth order Taylor expan-
sions in μB [503]. Results of such calculations agree well
for μB/T ≤ (2−2.5). In Fig. 44 we show results for the
μB-dependent contribution to the pressure and net baryon
number density. Comparing Fig. 44 (left) with Fig. 43 (left)
shows that at μB/T � 2 and T � Tpc the pressure increases
by about 30%, which is due to the increase in number of
baryons in the medium.

At larger values of the baryon chemical potential the Tay-
lor series will not convergence due to the presence of either
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poles in the complex μB-plane or a real pole, that may cor-
respond to the searched for CEP. The occurrence of poles in
the complex plane also generates problems for the analytic
continuation of results obtained in simulations at imaginary
values of μB as a suitable ansatz for the continuation needs
to be found. Many approaches to improve over straightfor-
ward Taylor series approaches or simulations at imaginary
chemical potential are currently being discussed [508–511].
In the context of Taylor expansions a natural way to proceed
is to use Padé approximants, which provide a resummation
of the Taylor series and reproduce this series, when expanded
for small μB [503,512]. Results from [4,4] and [3,4] Padé
approximants for the pressure and number density series,
respectively, are also shown in Fig. 44. The good agreement
with the Taylor series for μB/T ≤ 2.5 gives confidence in
the validity of the Taylor series results and once more seems
to rule out the occurrence of a CEP in this parameter range.

4.4.7 Outlook

Achieving better control over the influence of the axial
anomaly on the QCD phase transition in the chiral limit at
vanishing chemical potentials and getting better control over
the dependence of the QCD phase diagram at large non-zero
values of the chemical potentials certainly are the two largest
challenges in studies of QCD thermodynamics for the next
decade.

4.5 Spectrum computations

Jozef Dudek

4.5.1 Motivation for hadron spectroscopy

Many decades of experimental data collection has lead to a
compendium of observed hadrons [513], most of which are
short-lived resonances. The job of hadron spectroscopy is to
understand the patterns in the spectrum, such as the distri-
bution of states by spin, parity and flavor, and which decays
are preferred by which states. These patterns are typically
interpreted in terms of models or ‘pictures’ of hadron struc-
ture in which e.g. certain mesons are assigned status as qq̄ ,
as glueballs, as hybrids, as higher quark Fock states, or as
molecular states of lighter hadrons [514].

For a long time, simplified dynamical models whose con-
nection to QCD is often obscure have dominated the field,
and through these significant intuition has been developed,
but in recent years lattice QCD has matured to the level where
it can address the physics of excited hadrons directly. Using
this tool we aim to build an understanding of how QCD binds
quarks and gluons into hadrons from first principles.

Fig. 45 Summary of hadron spectrum calculations taken from Ref.
[515]. Different symbol shapes indicate different quark discretizations,
while the colors (red, orange, green, blue) indicate an increasing level
of systematic control in the calculation. b-flavored meson masses are
shifted down by 4000 MeV

4.5.2 Precise mass determination for stable hadrons

As described in Sect. 4.2, hadron masses can be deter-
mined from the large time behavior of two-point correla-
tion functions utilizing operators with the quantum numbers
of hadrons constructed from quark and gluon fields. These
correlation functions are calculated using quark propagators
computed with a particular choice of discretization of the
QCD action, and particular values of parameters which set
the lattice spacing and the quark masses. When seeking pre-
cise determination of hadron masses, one can calculate with
several quark masses and lattice spacings, and attempt to
extrapolate to the physical limit where the quark mass takes
its true value and where the lattice spacing becomes zero.

Figure 45 (taken from Ref. [515]) summarizes a number
of efforts in this direction, showing the masses for low-lying
mesons and baryons constructed from light, strange, charm
and bottom quarks, comparing the computed values to mea-
sured values. Clear agreement is observed for many stable
or nearly-stable hadrons. With increasing levels of precision
on the mass estimates, the role of small effects like QED
become important, and in recent years, these too have been
estimated (e.g. Refs. [516–519]) .

4.5.3 Expanding the scope of lattice spectroscopy

There are relatively few calculations in which hadron masses
have been determined with a somewhat complete study of
systematics, and they have been largely restricted to those
situations where only a single completely-connected Wick
contraction features in the relevant correlation function, and
where the state of interest is the lightest with a given quantum
number.
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Examples which require something beyond this include
isoscalar mesons in which quark–antiquark annihilation dia-
grams must be computed. Conventional propagator tech-
niques cannot handle these diagrams, and while various
stochastic techniques have been used, it was the introduction
of the distillation approach [520] which not only opened up
isoscalar meson spectroscopy but also the determination of
multiple excited states.

Distillation is in essence a quark-field smearing imple-
mentation, where the smearing operator,

�(x, y) =
N∑

i=1

vi (x) v
†
i (y),

is constructed from a limited number of low-lying eigenvec-
tors of the gauge-covariant spatial Laplacian,

−∇2vi (x) = λivi (x).

All quark fields in hadron interpolating operators are smeared
by this operator, enhancing overlap with low-lying states. The
unique advantage of this approach though is the way that
the outer-product nature of the smearing operator allows a
factorization of correlation functions into objects describing
hadron operators, independent of objects called “perambula-
tors” describing quark propagation,

τi j (t, t
′) =

∑

x,y

v
†
i (x)M

−1(x, t; y, t ′)v j (y).

Annihilation contributions can be handled straightforwardly
using timeslice-to-timeslice perambulators, τi j (t, t).

The factorization within distillation allows for massive
re-use of the propagation objects, so that the inversion time
cost of building a set of perambulators is amortized over a
huge number of subsequent calculations.12 In the context of
determining excited states, it allows for the computation of
many correlation functions using a large basis of interpolat-
ing operators.

While in principle any single correlation function

C(t, 0) =
∑

n

an e
−Mnt

contains information about the entire excited spectrum,
{Mn}, in practice determining the spectrum by fitting sub-
leading time-dependence is highly unstable. It is obvious for
example, that degenerate or near-degenerate states cannot be
distinguished by their time-dependence alone. A much more
powerful approach makes use of orthogonality – if one con-
siders a large basis of hadron interpolating operators all with
the same overall quantum numbers, we expect there to be one
linear combination that most effectively produces the ground

12 There is also a stochastic implementation of distillation [522], which
is argued to have a better cost-scaling with the volume of the lattice, but
at the cost of somewhat less flexibility in re-use.

state, another that produces the first-excited state and so on.
It is straightforward to show that if one forms the matrix of
two-point correlation functions

Ci j (t) = 〈0|Oi (t)O
†
j (0)|0〉,

with a basis of operators {Oi }i=1...N , the optimal combina-
tions correspond to the eigenvectors of the generalized eigen-
value problem,

C(t) vn = λn(t, t0)C(t0) vn,

where the eigenvalues give access to the corresponding mass
or energy spectrum, λn(t, t0) ∼ e−En(t−t0). This approach is
typically referred to as variational analysis [410–412].

An example of a large basis of operators with the quan-
tum numbers of mesons is the one presented in Ref [521],
where smeared quark field bilinears featuring up to three
gauge-covariant derivatives are used [523–526]. In order to
respect the reduced rotational symmetry of the cubic lattice,
operators of definite J P are subduced into irreducible repre-
sentations (irreps) of the cubic symmetry. Using a basis like
this, with the variational analysis approach presented above,
can lead to results like those shown in Fig. 46. The extracted
spectrum shows many of the systematics of the experimen-
tal meson spectrum such as the J PC ordering of states and
the presence of an “OZI-rule” in the hidden-light/hidden-
strange composition of isoscalar mesons (dominantly ideal
flavor mixing except for a few notable exceptions like 0−+).
Also present in these extracted spectra are mesons with exotic
J PC = 1−+, 0+−, 2+−, i.e. those not accessible to just a qq̄
pair. Examining which interpolating operators are the largest
components in the optimal operators for these states, we
observe the presence of non-trivial gluonic structures, and
it is natural to interpret these states as hybrid mesons. Non-
exotic J PC states high in the spectrum are also observed
to have these gluonic operator overlaps (states outlined in
orange in Fig. 46), and this leads to an identification of the
lightest supermultiplet of hybrid mesons [527], ruling out
certain previously reasonable models.

A closely related calculation using a large basis of oper-
ators with baryon quantum numbers appeared in Refs.
[528,529], with the spectra for N # (isospin-1/2) and Δ#

(isospin-3/2) excitations shown in Fig. 47.
The calculation presented in Fig. 46 was performed with a

light quark mass heavier than physical, and at a single lattice
spacing, and as such the results cannot be treated as precise, or
suitable for direct comparison to experiment. But in the case
of excited spectroscopy, precision is not the main aim, rather
the intent is to build an understanding of the systematics of
the hadron spectrum having a direct connection to QCD. In
fact there is a more relevant problem with these results – they
do not reflect the complete physics of excited states which
lie above hadronic decay thresholds – these states should be
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Fig. 46 Spectrum of excited mesons extracted from lattice QCD cal-
culation with heavier that physical light quarks. States labelled by their
J PC . Vertical height of each box represents the statistical uncertainty.
Isoscalar meson boxes show the hidden-light (black) versus hidden-

strange (green) composition. States with orange outlines have large
overlap with operators featuring the chromomagnetic field, suggesting
an identification as the lightest supermultiplet of hybrid mesons. Taken
from Ref. [521]

Fig. 47 Spectrum of excited baryons extracted from lattice QCD cal-
culation with heavier than physical light quarks. States labelled by their
J P . Vertical height of each box represents the statistical uncertainty.

States colored orange have large overlap with operators featuring the
chromomagnetic field, suggesting an identification as the lightest super-
multiplet of hybrid baryons. Taken from Refs. [528,529]

unstable resonances, and resonances are not simply charac-
terized by a mass.

4.5.4 Resonances and the finite-volume approach to
scattering

The simplest context in which resonances appear is elastic
hadron–hadron scattering in which the initial and final states
are identical, and the amplitude can be expanded in partial-
waves. Resonances of definite spin appear as enhancements
in a single partial-wave in the continuous energy spectrum,

and formally may be associated with pole singularities at
complex values of the scattering energy.

In a finite spatial volume, such as that provided by the
lattice, there can be no continuous energy spectrum, and
instead only a discrete spectrum, but it is easy to see that this
spectrum should be volume-dependent and sensitive to the
infinite-volume scattering amplitudes. This can be illustrated
in one-dimensional quantum mechanics [320] – a finite-
length of L can be implemented by applying periodic bound-
ary conditions to a scattering wavefunction and its derivative.
This leads to a quantization condition on possible allowed
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momenta, pn = 2π
L n − 2

L δ(pn), where δ(p) is the elastic
phase-shift that describes scattering.

This observation is the core principle behind the lattice
QCD approach to scattering. If the discrete spectrum of states
in the finite spatial volume defined by the lattice can be
obtained, it can be used to provide a set of constraints on
the energy dependence of scattering amplitudes.

The analogous formalism for relativistic scattering in three
spatial dimensions was derived in Refs. [530,531], and has
been extended many times to now be in a form that is appli-
cable to any number of coupled channels of two-body scat-
tering (see the review, Ref. [532]). One way of writing this
quantization condition is

det
[
1+ iρ(E) t(E)

(
1+ iM(E, L)

)] = 0, (4.162)

where the scattering t-matrix is a dense matrix in the space of
scattering channels, but block diagonal in angular momen-
tum, !, while the matrixM, which features known functions
(of essentially kinematic origin) of energy and box-size, is
block-diagonal in channels, but dense in !.

The presence of multiple ! in the quantization condition is
an important complicating factor that reflects the fact that the
basis of partial waves of definite !, in which one naturally
expands scattering, is not respected by the reduced rotational
symmetry of the cubic boundary of the lattice. The angular
momentum barrier at low energies ensures that in practice
only a small finite number of ! values need to be considered.

Equation (4.162) can be interpreted as follows: if one knew
the scattering amplitudes t(E), one would seek to find all the
zero-crossings of the determinant function for a fixed value
of L , and these would determine the finite-volume spectrum,
En(L), corresponding to this scattering amplitude. Of course
in practice, lattice QCD will supply the discrete finite-volume
spectra and one must work backwards to find the correspond-
ing t(E).

One situation in which this is relatively straightforward
is when we are in an energy region where only elastic scat-
tering is kinematically allowed, and where one partial wave,
!, is dominant. In this case Eq. 4.162 reduces to the simple
form cot δ!(E) = M!,!(E, L). In this case, given a lattice
QCD determined finite-volume energy E , one simply plugs
into the right-hand-side to obtain a value of the scattering
phase-shift at that energy. If enough finite-volume energies
are determined, in one or more lattice volumes, the energy
dependence of δ!(E) can be mapped out.

So the job of lattice QCD computation in studies of reso-
nances is to provide accurate discrete finite-volume spectra.
In order for calculations to resolve the full discrete spectrum
of states (as opposed to the limited set described in the previ-
ous section) it proves necessary to include in the basis of oper-
ators a set which resemble pairs of mesons. These “meson–
meson-like” operators are typically constructed from a prod-
uct of two quark-bilinears, with each one being projected into

a definite momentum. The important difference with respect
to the single quark-bilinear operators described in the previ-
ous section, is that the “meson–meson-like” operators sam-
ple the entire spatial volume, causing them to have a much
enhanced overlap with finite-volume eigenstates resembling
a pair of mesons.

A basis of “meson–meson-like” operators can be con-
structed [533–535] and a natural guide to which are required
in any given calculation comes from a non-interacting energy
associated with each such operator. For example, opera-
tors resembling a pair of pions with ! = 0 can be con-
structed as

∑
p̂ Oπ (p)Oπ (-p) where Oπ (p) is a quark bilin-

ear with the quantum numbers of a pion, and where the
sum is over directions of momentum allowed on a cubic lat-
tice. These operators naturally have a non-interacting energy
En.r. = 2

√
m2

π + p2 associated with them that corresponds to
the energy a state interpolated by this operator would have if
there were no residual pion–pion interactions. Because there
are interactions, the actual energy spectrum will differ from
this, but it should be clear that operators with non-interacting
energy far above the energy region under consideration will
not need to be included.

Adding “meson–meson-like” operators to the basis
increases the variety of Wick diagrams that need to be eval-
uated, and in general diagrams including quark–antiquark
annihilation are present. Distillation is a very powerful tool to
evaluate these diagrams using previously computed peram-
bulators, without the need to make further approximations,
or to introduce noise through stochastic approaches.

4.5.5 Elastic meson–meson scattering

An example of the approach described in the previous sec-
tion is presented in Fig. 48 which shows the P-wave of ππ

scattering with isospin–1. The calculation, done with light-
quark masses such that the pion mass is 391 MeV, computed
the finite-volume spectrum in three lattice volumes. The pan-
els on the left show the spectra in the rest frame ([000]) and
several frames in which the ππ system has a net momentum
P = 2π

L [nxnynz]. Each discrete energy is used to obtain a
value of δ1 at the same energy, and these are plotted in the
right panel, where the behavior is clearly that of a narrow
resonance. The energy dependence can then be fitted using
a Breit–Wigner or other suitable amplitude parameterization
from which the mass and width of the ρ resonance can be
determined.

Calculations like this one, of theρ resonance, have become
mainstream within the lattice community [533,535–547],13

and the vector K ∗ resonance in Kπ scattering is similar
(although in this case one has to deal with the effect of

13 One calculation has considered the ρ in ππ scattering using two
lattice spacings [544], finding no statistically significant differences.
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Fig. 48 Isospin–1 ππ scattering with J P = 1− from lattice QCD
with mπ = 391 MeV taken from Ref. [533]. Left five panels show dis-
crete spectrum of states in three lattice volumes, for five values of total
ππ momentum. Red curves indicate the non-interacting ππ energies,

and the green dashed line shows the K K̄ threshold where scattering
ceases to be elastic. Rightmost panel shows the P-wave elastic scatter-
ing phase-shift determined using the discrete spectrum points which is
observed to correspond to a narrow ρ resonance

Fig. 49 Isospin–0 ππ scattering with J P = 0+ from lattice QCD at
two pion masses taken from Ref. [558]. Intersection of p cot δ0 with
−|p| indicates the presence of a bound-state σ at the heavier pion mass
which is not present at the lower pion mass, or in experiment, where a
broad resonance is believed to be present

S-wave scattering in moving frames) [541,548–552]. The
elastic scattering amplitudes do not need to be resonant for
this approach to be used, an example is ππ scattering with
isospin–2 where the relatively weak effects can be resolved
[534,542,553–557].

Pion–pion scattering with isospin–0 has received less
attention [557–559]. In order to evaluate the relevant cor-
relation functions, many diagrams featuring qq̄ annihilation
are required. One example calculation [558] that made use
of distillation to evaluate all these diagrams is summarized in
Fig. 49, where a function of the phase-shift as a function of
energy is shown for calculations at two different light quark
masses. The behavior at the heavier quark mass is that of
a system featuring a stable bound state, while at the lower
quark mass, which much more closely resembles the exper-
imental data, there appears to be a broad resonance. These
results provide the first signs within QCD of the quark mass
evolution of the σ meson.

Scattering of mesons featuring charm or bottom quarks
can be studied using the same technology [561–573]. Rel-
atively few calculations have so far attempted to deter-
mine meson–baryon scattering and the baryonic resonances
therein [574–576], largely because of the increased com-
putational cost of such efforts above what is required for
meson–meson scattering, and the fact that the lowest-lying
resonance, the Δ(1232), only becomes unstable for decay to
Nπ at relatively low light-quark masses.

4.5.6 Coupled-channel scattering

The bulk of experimentally observed hadron resonances can
decay into more than one hadronic final state, and as such can
be considered to be resonances in coupled-channel scatter-
ing. Coupled-channel scattering (in a particular partial wave)
can be described by a t-matrix, ti j (E), where the indices i, j
run over hadronic channels, e.g. ππ, K K̄ . . ..

Equation (4.162) controls how the discrete spectrum in a
finite volume is related to the t-matrix, but practical use of this
equation when lattice QCD-obtained finite-volume spectra
are in hand requires some thought. It is not possible to work
energy-level by energy-level as we did for elastic scattering,
as the t-matrix contains multiple unknowns at each energy.
Rather, a successful approach has been to parameterize the
energy-dependence of t(E), and to attempt to describe the
entire finite-volume spectrum using this parameterization. A
χ2 can be defined which quantifies the difference between the
finite-volume spectrum obtained from solving Eq. (4.162) for
a particular parameterization and the lattice QCD obtained
spectrum. This χ2 can be minimized by varying the free
parameters to obtain a best fit.

In order to carry this out, it is necessary to construct
appropriate parameterizations of t(E)which must include all
kinematically open channels in the energy region being con-
sidered. They must also exactly respect two-body unitarity
which is implicit in Eq. (4.162). A rather general framework
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Fig. 50 Coupled ππ, K K̄ scattering (also ηη, not shown) computed
on three lattice volumes with mπ = 391 MeV. Taken from Ref. [560].
Lower panels show resonance pole locations found by analytically con-

tinuing into the complex energy plane. In J P = 0+ case, ratio of cou-
plings of f0 resonance to ππ , K K̄ given. In J P = 2+ case, branching
fractions of two resonances to ππ , K K̄ final states are given

to achieve this is to use parameterizations of the K -matrix,
which is flexible enough to handle both resonant and non-
resonant cases in any number of channels.

The first lattice QCD calculation of coupled-channel scat-
tering considered the πK , ηK system which was found to be
almost decoupled, with resonances appearing coupled only
toπK [577,578]. Since then there has been a steady stream of
calculations of meson–meson scattering of gradually increas-
ing complexity [535,560,566,579–584].

An example of what can be extracted from lattice QCD
for coupled-channel scattering is shown in Fig. 50, taken
from Ref. [560]. In this calculation of coupled ππ, K K̄ , ηη

scattering, performed with 391 MeV pions, the finite vol-
ume spectrum was found in three lattice volumes and several
moving frames, leading to 57 energy levels to constrain the
S-wave t-matrix and 36 levels to constrain the D-wave.

We observe a highly non-trivial energy-dependence in the
S-wave where a broad enhancement at low energies is fol-
lowed by a dip in the ππ → ππ amplitude at the K K̄
threshold, while amplitudes leading to a K K̄ final state turn
on rapidly at threshold. While this energy dependence does
not “by-eye” immediately suggest a simple resonance inter-
pretation, the t-matrix can be analytically continued to com-
plex energies, and two poles are found: one lies below ππ

threshold and corresponds to the stable σ discussed earlier,
while the second lies close to the K K̄ threshold, and might be
associated with the experimental f0(980) resonance (which
also appears as a sharp dip in ππ scattering). This resonance
pole has large couplings to both ππ and K K̄ . These results
prove to be robust to variations in the detailed form of the
amplitude parameterization.

The D-wave result reflects more closely our intuitive pic-
ture of resonances, with two bumps appearing, associated to

two pole singularities. The lighter state dominantly couples
to ππ , and a heavier narrower state is dominantly coupled
to K K̄ , a situation that is very similar to the experimen-
tal f2(1270), f ′2(1525) states. The selective final state cou-
plings reflect the ‘OZI-rule’ emerging dynamically from a
non-perturbative calculation if we interpret the lighter state
as dominantly uū + dd̄ and the heavier as dominantly ss̄.

A different complication can occur when the scattering
hadrons have non-zero spin. In this case, the same total J P

can be constructed by more than one hadron-spin, orbital
angular momentum combination. For example, if one scatters
a vector ω meson from a pion, J P = 1+ can be constructed
from ! = 0 or from ! = 2, or using the spectroscopic nota-
tion, 3S1,

3D1. In this case, even if πω is the only channel
accessible, one still has a system of coupled-partial-waves,
and a two-dimensional t-matrix.

A version of Eq. (4.162) still holds in such situations,
and once again, provided enough energy levels can be com-
puted in lattice QCD to provide sufficient constraint, the t-
matrix can be determined. An example is shown in Fig. 51
where coupled πω, πφ scattering was studied with pions of
mass 391 MeV. With light quarks as heavy as this, the ω and
φ mesons are absolutely stable. A clear resonant behavior
is observed which can be associated with the experimental
b1(1235) state, and the couplings at the pole yield a value for
the D/S amplitude ratio, a quantity that has been measured
previously (references are listed in Ref. [513]).

The coupled channel technology has also been applied
to scattering systems with charmed mesons [566,584], and
recently, for the first time to a scattering system housing an
exotic J PC resonance believed to be a hybrid meson [582].
For meson resonances having decays only to one or more
two-body final states, rigorous study within lattice QCD is
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Fig. 51 Coupledπω, πφ scattering, withπω in coupled partial waves,
3S1,

3D1, computed on three lattice volumes with mπ = 391 MeV.
Taken from Ref. [581]. b1 resonance pole and coupling to channels
shown in bottom panel

today a reality, with observables being the mass and width of
the resonance, as well as the couplings to decay channels, all
of which follow from scattering amplitudes. Going beyond
this, more information about resonances can be obtained if we
generalize away from scattering to also consider processes
in which an external current probes the system.

4.5.7 Beyond scattering

An extension of the finite-volume formalism allows us to
study systems in which a stable hadron emits or absorbs an
electroweak current and transitions into a pair of strongly-
interacting hadrons which may resonate. Applications incl-
ude semileptonic heavy flavor decays with resonances in the
final state, e.g. B → !+!−K ∗ where the K ∗ decays to Kπ .
To date the only application of this technology has been to
a simpler reaction, γπ → ππ , where the final state fea-
tures the ρ resonance [585–587]. The approach requires first
the determination of the ππ elastic scattering amplitude as
described earlier, followed by computations of three-point
correlation functions, from which transition matrix elements
are extracted. The effect of the finite-volume is encoded in a
correction to the normalization of theππ state [588–590] that

Fig. 52 Upper panel shows the transition amplitude for πγ → ππ

with J P = 1− computed from a lattice QCD calculation with mπ =
391 MeV for two sample values of the photon virtuality. The lower
panel shows the corresponding ππ → ππ elastic scattering amplitude.
Taken from Ref. [586]

requires knowledge of the scattering amplitude. Figure 52
illustrates one result of such a calculation, showing the tran-
sition matrix element for πγ → ππ (for two sample values
of photon virtuality) along with the elastic ππ scattering
amplitude – the clear ρ resonance is present in both.

As well as computation of experimentally measurable pro-
cesses (such as the heavy flavor decays), this approach also
allows us to compute in lattice QCD quantities that cannot
be easily accessed in experiment. For example, analytically
continuing the transition amplitude obtained above to the
ρ resonance pole, one obtains a resonance transition form-
factor ρ → πγ ∗, whose virtuality dependence can be used
to infer structural information about the ρ. A recent exten-
sion of the finite-volume formalism [592] to be able to handle
processes like ππγ → ππ will allow us to compute the true
resonance form-factors.

4.5.8 The three-hadron frontier and other challenges

The progress reported above in the two-hadron sector has
opened up the world of hadron resonance spectroscopy to
first principles study using lattice QCD, but to go further
an extension in formalism is required. The applicability of
Eq. (4.162) is limited to energies below the lowest three-
hadron threshold, and this is particularly constraining as the
light quark mass is decreased and the threshold for πππ

becomes very low, lower than the mass of most interesting
resonances.

Development of finite-volume formalism to extend into
the three-body sector has been underway for some time, mak-
ing use of several approaches to three-body scattering, and
they are now converging to a consensus, as reviewed in Ref.
[593]. The resulting formalism is, as one might expect, sig-
nificantly more complicated than in the two-body case, but
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Fig. 53 A lattice QCD determination of the spectra in two volumes of isospin–2 ππ and isospin–3 πππ with mπ = 391 MeV. Orange curves
show a description of these spectra using two-body and three-body finite-volume formalism with the amplitudes shown on the right. Taken from
Ref. [591]

the essential idea is still the same – the input from lattice is a
set of discrete energy levels, now computed in channels with
the quantum numbers of a three-hadron system.

The lattice QCD determinations of the finite-volume spec-
tra follow a similar pattern to those described above, includ-
ing now operators resembling systems of three-hadrons, but
these are relatively straightforward to compute. The first
investigations have focussed mostly on systems of maxi-
mal isospin [591,594–598], e.g. πππ with isospin–3, where
there are no resonances either in the three-hadron system,
nor in the two-hadron subsystems.

An example is presented in Fig. 53 where we see discrete
lattice QCD energy levels in two volumes for theππ isospin–
2 system and theπππ isospin–3 system. These spectra can be
described by two-body and three-body scattering amplitudes
propagated through the finite-volume formalism, as shown
by the orange curves. The amplitudes, as shown on the right
of the figure (see the paper for the definition of the quantities
plotted), are essentially structureless as expected in this non-
resonant system. With proof-of-principle calculations like
this one now done, the field is moving towards cases in which
there are resonances, either in two-body subchannels, or in
the three-body system, or both.

4.5.9 Summary

The progress in applying lattice to problems in hadron spec-
troscopy, as illustrated in this volume, suggests we have the
beginnings of a rigorous foundation for the subfield, ground-
ing it in first-principles QCD. The experimental hadron spec-
trum is already well studied, and there is a considerable
corpus of model-based understanding, with which the lat-
tice effort has to catch up. But already, with examples like
the hybrid meson spectrum, lattice calculations are resolv-
ing long-standing conflicts. The ability to resolve excited
hadrons as they truly are, as unstable resonances, makes a
more direct connection to experiment possible, and the fact
that calculations are possible of quantities which cannot be
easily reached in experiments, like resonance form-factors,
provides an opportunity to explore the internal structure of
states that are otherwise poorly understood.

4.6 Hadron structure

Martha Constantinou and K. Orginos
The structure of the nucleon has been a central compo-

nent to the development of QCD. Fundamental properties of
strong interactions, such as asymptotic freedom, were dis-
covered while trying to unravel the nature of the nucleon.
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Hofstadter’s elastic electron scattering experiments [599]
discovered the first indications of a complex structure inside
the proton. Later on, Deep Inelastic Scattering (DIS) discov-
ered that partons, the constituents of the nucleon, are nearly
free at short distances and led to the discovery of asymptotic
freedom. Confinement, the fact that partons cannot break free
from a hadron, is also a property of strong interactions that
emerges from the study of hadronic structure. It was asymp-
totic freedom that eventually convinced theorists that QCD
can describe the rich phenomenology of strong interactions.

Since its first exploration more than half a century ago,
hadronic structure continues to be studied intensely both
experimentally and theoretically. Theoretical studies include
computations of various hadronic properties using lattice
QCD, which offers a powerful non-perturbative, and sys-
tematically improvable way of computing fundamental prop-
erties of hadrons. This section summarizes the current sta-
tus of lattice QCD calculations relevant to hadron structure.
We start from simple observables such as nucleon charges
which are important matrix elements for searches for physics
beyond the standard model. We then proceed to a review of
computations of nucleon form factors which are observables
that give us information about the low energy structure of
the hadron. Finally, we discuss modern methods for obtain-
ing distribution functions from lattice QCD. Parton distribu-
tion functions are the simplest of such observables, which
are relevant to understanding high-energy scattering experi-
ments and give us a one-dimensional picture of the hadron.
Generalized parton distribution functions (GPDs) and Trans-
verse Momentum dependent distributions (TMDs) and their
determination from lattice QCD will also be discussed.

4.6.1 Nucleon charges

Nucleon matrix elements of local quark bi-linear operators of
the form OΓ,τ (t) = q̄(t)Γ τq(t) define the nucleon charges.
Here Γ is a general spin matrix and τ a flavor matrix. Isovec-
tor charges are obtained when τ = τ3 the diagonal flavor
Pauli matrix, while flavor diagonal charges are defined with
an appropriate choice of τ that selects individual flavors.
Nuclear matrix elements are obtained through computations
of three-point functions of the form

Cs,s′
Γ,τ (t

′, t) = 〈Ns(t)OΓ,τ (t
′)Ns′

(0)〉, (4.163)

where Ns(t) is a nucleon interpolating field at time t , with
helicity s and projected to zero momentum. Typical nucleon
interpolating fields can be written as

∑
abc,i jk εabcC

s
i jkq

a
i q

b
j

qck with Cs
i jk appropriate weights. For a discussion of how

these weights are obtained, see Ref. [600]. In the limit of
t � t ′ � 0 the above correlator can be written as

Cs,s′
Γ,τ (t

′, t) = zs(zs
′
)∗〈s|OΓ,τ |s′〉e−MN t (4.164)

Fig. 54 Lattice QCD determinations of the isovector axial charge com-
pared to the experimental world average is taken from PDG. Figure from
Ref. [256], and reprinted based on the arXiv distribution license

where 〈s|OΓ,τ |s′〉 is the desired nucleon matrix element and
MN is the nucleon mass and zs is the overlap factor 〈0|Ns |s〉.
Using appropriate fitting procedure together with a nucleon
two-point function

C(t) = 〈Ns(t)N
s
(0)〉 = zs(zs)∗e−MN t (4.165)

one obtains the desired matrix element. In general, these
matrix elements require renormalization to obtain the matrix
element at a given scale μ in a particular renormalization
scheme. For a review of various methods used in lattice QCD
to renormalize quark bi-linear operators, we refer the reader
to Ref. [601]. Following this procedure, the nucleon charges
have been obtained from lattice QCD. The isovector and fla-
vor diagonal charges are essential quantities that, together
with experimental observation, can constrain Beyond the
Standard Model (BSM) theories. Therefore a significant
effort in lattice QCD has been devoted to precise compu-
tations of the nucleon charges.

Establishing the lattice formulation of QCD requires that
experimentally well-known quantities are correctly repro-
duced from numerical simulations. The axial charge of the
nucleon, gA, falls under this category and has been under
investigation for several years. The field exhibits tremen-
dous progress and among the highlights is the calculation of
gA with controlled statistical uncertainties. The Flavor Lat-
tice Averaging Group (FLAG) periodically reviews lattice
results on several quantities, including gA, and produces the
FLAG averages. In Fig. 54, we provide a summary plot of lat-
tice calculations [256] demonstrating that lattice results have
improved in accuracy over the years and recent calculations
at the physical point agree with the experimental average.
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The overall progress stimulated an intense activity in the
field of hadron structure with the study of a large class of
observables, some of which are known experimentally, but
many that are still unexplored or difficult to measure [256,
602]. The investigations include nucleon charges such as the
tensor and scalar and form factors for mesons and baryons.
Selected results with simulations at physical quark masses
can be found in Refs. [256,602].

4.6.2 Nucleon form factors

The Nucleon form factors are important properties of the
nucleons that are essential for understanding their interac-
tions in low-energy scattering experiments. They convey
information about the internal structure of the hadron and
their response to external probes, such as electromagnetic
and weak currents. Properties such as the internal distribu-
tion of electric currents and charge and the size of the hadron
can be deduced from electromagnetic form factors. Axial
form factors describe the response of the hadron to external
weak interaction probes. Future experiments, such as DUNE
at Fermilab [603] and Hyper-Kamiokande [604], that aim
to understand the properties of neutrinos, will require pre-
cise knowledge of the Nucleon axial form factors in order to
achieve the precision they aim for. Therefore, lattice QCD
computations of the Nucleon form factors are deemed essen-
tial and are vigorously pursued by several groups at this point.
Advances in lattice QCD methods and computer hardware
make such computations possible with sufficient precision
to impact phenomenology [605].

Nucleon form factors are matrix element computations
that require 3-point function computations

Cs,s′
Γ,τ (t

′, t; �p, �p′) = 〈Ns( �p, t)OΓ,τ (t
′)Ns′

( �p′, 0)〉, (4.166)

where �p′, �p are the initial and final momenta of the hadrons.
In the limit of t � t ′ � 0, the above correlator can be written
as the matrix element associated with the form factor, which
emerges as:

Cs,s′
Γ,τ (t

′, t; �p, �p′) = z(p)s z(p′)s′
∗
e−E(p)(t−t ′)

×〈s, �p|OΓ,τ |s′, �p′〉e−E(p′)t ′ (4.167)

where E(p) is the energy of the nucleon with momentum
p and zs is the overlap factor 〈0|Ns( �p)|s, �p〉. The matrix
element 〈s, �p|OΓ,τ |s′, �p′〉 is related to the appropriate form
factor for the operator OΓ,τ and is extracted with appropriate
fitting methodology (see Refs. [605–607] for details of some
of these methods).

In the case of the electromagnetic form factor where Γ =
γμ and the flavor matrix combines the flavors of quarks with

their appropriate charges, the matrix element is

〈s, �p|
∑

f

e f q̄ f γμq f |s′, �p′〉

= Ū ( �p)
[

F1(Q
2)+ iσμν

2M
qνF2(Q

2)

]

U ( �p′) (4.168)

where U ( �p) is the spinor associated with the nucleon, qμ =
pμ − p′μ, Q2 = −q2, and F1, F2 the two Lorentz invariant
Dirac and Pauli form factors. The electric and magnetic form
factors are defined as

GE (Q
2) = F1(Q

2)− Q2

4M2 F2(Q
2)

GM (Q2) = F1(Q
2)+ F2(Q

2). (4.169)

With these form factors we can define the charge radius 〈r2
E 〉

and the magnetic radius 〈r2
M 〉 of the nucleon as

〈r2
E 〉 = −6

dGE (Q2)

dQ2

∣
∣
∣
∣
Q2=0

〈r2
M 〉 = −

6

GM (0)

dGM (Q2)

dQ2

∣
∣
∣
∣
Q2=0

. (4.170)

Because of the finite volume in lattice QCD computations,
the form factors are only known on a set of discrete points.
The full Q2 dependence is recovered by fitting the data points
to particular phenomenologically motivated forms. The sim-
plest such form is the dipole:

Fdipole(Q
2) = rF

(
1+ Q2

M2
F

)2 , (4.171)

where rF is the residue and M2
F is a mass parameter associ-

ated with the form factor at hand. This simple parametriza-
tion works well for the lattice calculations that are typically
restricted to low Q2. Recently the z-expansion [608] given
by

F(Q2) =
∞∑

k=0

ak z(Q2)k, (4.172)

with

z(Q2) =
√
tcut + Q2 −√tcut − t0√
tcut + Q2 +√tcut − t0

, (4.173)

has been employed for a more flexible parametrization. The
position of the cut, tcut, is the time-like kinematic thresh-
old for particle production associated with the current whose
form factor is discussed. The parameter t0 is the point in Q2

that is mapped to z = 0 and is chosen for convenience.
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Fig. 55 Status of recent lattice QCD results for the isovector nucleon
electric form factor in comparison with the Kelly parametrization of
experimental results (figure from Ref. [609]). Reprinted under the terms
of the Creative Commons Attribution 4.0 International license

Multiple lattice QCD collaborations have recently com-
puted the nucleon vector form factors. Several lattice collab-
orations have recently computed the isovector electric form
factor (i.e., the difference between the proton and the neu-
tron form factors). After many years of study of various sys-
tematics involved, we now have computations with physical
quark masses, careful analysis of excited state contamina-
tion of the ground state matrix element, and large enough
volumes to avoid finite volume effects. In Fig. 55, the lat-
tice data together with the Kelly parametrization [610] of
experimental results are presented. The lattice data of PND-
ME20 [607] are plotted as blue circles, the Mainz21 [611]
data are the orange triangles, the ETMC18 [612] data are
the green diamonds, and the PACS18 [613] data are the red
triangles. All these calculations are performed with differ-
ent methodologies and approaches in treating excited state
effects and varying fermion actions in both the sea and the
valence sectors. PNDME20 uses the HISQ action in the sea
sector and smeared Clover action in the valence sector. The
ETMC18 calculations use the twisted mass action. Both the
Mainz21 and the PACS18 collaborations use Clover fermion
actions. Clearly, there are some tensions between various
collaborations that will be resolved in future, more refined
calculations. However, it should be noted that there is a fairly
good agreement between the state-of-the-art calculations and
experiment.

Lattice QCD computations of the form factors can lead
to the determination of the radii of the nucleon. In addi-
tion, direct methods of determining the nucleon radii also
exist. Lattice QCD calculation results for the magnetic and
the charge isovector radius of the nucleon are presented
in Fig. 56. In this figure, the magenta right triangles are
PNDME20 [607] using the mixed actions with Clover on
HISQ, and the green triangles are from ETM18/20 [612,614]
using the twisted-mass action. Calculations using the Clover

Fig. 56 Lattice results for charge magnetic radii of the nucleon. The
vertical bands are the estimates from experiment (see text for details)

fermion action are represented by the maroon octagons
[611] from Mainz21, the blue diamonds from PACS18/20
[613,615], the red circle is from LHPC17, and the magenta
left triangles from NME21 [606]. Note that results from
[614,615] are obtained with methods that directly estimate
the slope of the form factor at Q2 = 0. The vertical bands
represent the phenomenological values for the radii obtained
from the experiment by combining data from the proton and
the neutron. In particular the isovector charge r ivE and mag-
netic r ivM radii are given by

r ivE =
√
r2
Ep − r2

En , r ivM =
√

μpr2
Mp − μnr2

Mn

μp − μn
, (4.174)

where r2
Ep, r2

En are the proton and neutron charge radii, r2
Mp,

r2
Mn are the proton and neutron magnetic radii, and μp, μn

are the proton and neutron magnetic moments. By combining
results exclusively from the particle data group (PDG) [616]
we obtain the red bands. For the charge radius, the cyan band
is obtained by using the CODATA2018 value for the proton
charge radius and the neutron charge radius from the recent
work in [617]. The cyan band for the magnetic radius was
obtained using the proton radius obtained by [618] and the
rest of the needed quantities from PDG.

In the case of the isovector axial form factors, one can
take τ+ as the flavor matrix and Γ = iγ5γμ and the resulting
matrix element is

〈s, �p|q̄(iγ5γμτ
+)q|s′, �p′〉

= Ū ( �p)
[
FA(Q

2)+ qμ
M

γ5FP (Q
2)

]
U ( �p′), (4.175)

with FA and FP being the corresponding invariant form fac-
tors. In Fig. 57, recent lattice QCD computations of the

123



Eur. Phys. J. C          (2023) 83:1125 Page 95 of 636  1125 

Fig. 57 Lattice QCD results for the nucleon axial form factor com-
pared to the experimental results from neutrino deuteron scattering.
Figure from Ref. [605] and reprinted under the terms of the Creative
Commons Attribution 4.0 International license

axial form factor are presented. The red band denotes the
parametrized experimental results from neutrino deuteron
scattering [619]. The purple band are results from NME21
[606], and the green band are results from RQCD20 [620],
where continuum, chiral and finite volume extrapolations
have been performed. The rest contain results [613,615,621–
624] from a few ensembles and are presented as points with-
out the interpolating curves. It is clear that although there
is tension between lattice QCD results and experiment, lat-
tice QCD calculations are consistent with each other. As
it is argued in Ref. [605] that lattice QCD calculations of
axial nucleon form factors may play an essential role in
future experiments and thus help us better understand neu-
trino physics.

4.6.3 Partonic structure

Information on the internal structure of hadrons is obtained
through their partonic content, particularly parton PDFs,
GPDs, and TMDs (see Sect. 10). These quantities are light-
cone correlation functions and cannot be calculated using
the Euclidean formulation of lattice QCD due to the rotation
t → iτ . The most common avenue to proceed is to calcu-
late Mellin moments of distribution functions, which provide
partial information on distribution functions.

Lattice QCD calculations have focused on proton charges,
vector, and axial form factors, that are, the first Mellin
moments of PDFs and GPDs, respectively. There are also
limited studies of the scalar and tensor charges, as well as
the second Mellin moments of PDFs and GPDs.

In theory, one can use a large number of Mellin moments
to reconstruct the parton distributions using an operator
product expansion (OPE). Practically, a proper and exact
reconstruction is not possible due to the challenges of cal-
culating reliably high moments; the signal-to-noise rapidly

decreases, and an unavoidable power-law mixing occurs
beyond the fourth moment [625–629]. Therefore, alterna-
tive methods are needed to obtain the x dependence of dis-
tribution functions from a Euclidean formulation. The real-
ization that matrix elements of momentum-boosted hadrons
coupled with bilinear non-local operators can be related to
light-cone distributions has transformed the field of PDF,
GPDs, and TMDs calculations. The pioneering method of
Large-Momentum Effective Theory (LaMET) that uses the
aforementioned non-local operators has renewed the inter-
est of the community to access the x dependence of par-
ton distributions. Over the years, there have been several
methods proposed: a technique based on the hadronic ten-
sor [630–632], auxiliary quark field approaches [633–635],
a method to obtain high Mellin moments using smeared oper-
ators [636], LaMET [637,638], pseudo-ITD [639], current–
current correlators [640–642], and a method based on OPE
[643].

In this review, we highlight selected results demonstrating
the field’s progress. More details can be found in the recent
reviews [644–648].

Isovector PDFs
The isovector leading-twist PDFs have been the most well-
studied and serve as a benchmark of the various method-
ologies to extract x dependence from lattice data. Results
with ensembles at physical quark masses have already been
obtained for the unpolarized [649–652], helicity [649,650,
653] and transversity [650,654,655] PDFs for the pro-
ton. Here we focus on the unpolarized case that has the
most results allowing comparison between different meth-
ods and lattice formulations. The work of Ref. [650] uses a
twisted-mass fermions ensemble with physical pion mass and
employs the quasi-PDFs method. The lattice spacing is about
0.09 fm, and the nucleon momentum boost is up to 1.4 GeV.
The unpolarized PDF of Ref. [651] has been obtained using
the pseudo-ITD framework on three clover Wilson ensembles
with pion mass 172, 278, and 358 MeV; a chiral extrapolation
has been performed to get the physical point. The pseudo-ITD
methodology computes the Lorentz invariant amplitudes that
contribute to the non-local matrix element and isolates the
amplitude that contains the leading twist contribution. This
amplitude is a function of the so-called Ioffe time ν, which
is the Fourier-dual of the momentum fraction x [656–658].
The analysis of [651] includes lattice data up to Ioffe time
ν = 8 for the near-physical mass ensemble. Finally, the work
of Ref. [652] extends and reanalyzes the data of Ref. [650]
within the pseudo-ITD framework with up to ν = 8. Having
three independent calculations of the unpolarized PDF allows
one to compare them and understand potentially systematic
effects related to the method and computational setup. Such a
comparison can be found in Ref. [651], which we include in
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Fig. 58 Lattice results for the unpolarized PDF using quasi-PDFs
[650] (red band) and pseudo-ITDs from Ref. [651] (gray band) and
Ref. [652] (blue band). Plot from Ref. [651]. Reprinted under the terms
of the Creative Commons Attribution 4.0 International license

Fig. 58. A good agreement is observed between the different
calculations, which is very encouraging, as each methodol-
ogy may suffer from different systematic effects.

Gluon PDFs
In general, gluon contributions are limitedly studied due
to the enhanced gauge noise, the involvement of discon-
nected diagrams, and the challenges in the non-perturbative
renormalization. In the case of x-dependent gluon PDFs, the
renormalization cancels out using the pseudo-ITD method,
which is a significant advantage. Recently, there have been
calculations of the gluon PDF for the proton and the pion
using the pseudo-ITD method [659,660]. Reference [659]
presents a calculation using clover fermions at a pion mass
mπ = 358 MeV. One novelty of the calculation is the use of
the momentum-smeared distillation technique [661] to sup-
press gauge noise. The work also employs Jacobi polynomi-
als to reconstruct the x dependence of the distribution [662].
The main results are shown in Fig. 59. The work of Ref.
[660] presents a calculation of the gluon PDF for the pion
using two HISQ coarse ensembles (a = 0.12, 0.15 fm) and
pion masses mπ = 220, 310, 690 MeV. While the current
status of gluon PDFs is exploratory, the available results are
promising.

Individual quark PDFs
Calculations of individual-quark PDFs are challenging due to
the involvement of disconnected diagrams that increases the
statistical fluctuations of the correlators. The flavor decom-
position of quark PDFs is interesting in its own right but is
also needed to form the flavor-singlet combination to elim-
inate mixing with the gluon PDF. The mixing holds only
for the unpolarized and helicity cases; there is no gluon
transversity. Furthermore, the strange and charm quark PDFs
are more susceptible to mixing as they enter the sea sec-

Fig. 59 Lattice QCD results on the gluon PDF from Ref. [659] (cyan
band) compared to estimates from global analyses [663–665]. Reprinted
under the terms of the Creative Commons Attribution 4.0 International
license

tor from gluon splitting. The effect of mixing is expected to
be smaller for the light quarks that appear in the valence
sector of the proton. The individual light quark unpolar-
ized, helicity, and transversity PDFs were calculated in Refs.
[666,667] using an ensemble of twisted mass fermions at
mπ = 260 MeV. The work shows that disconnected con-
tributions to the unpolarized and transversity PDFs are tiny
and can be neglected. However, calculations at the physical
value of the quark masses are needed to confirm this. Ref-
erences [666,667] include the strange quark contributions,
which may have increased systematic effects due to the mix-
ing with the gluon PDFs. The same holds for Ref. [668]
(clover on HISQ, mπ = 220, 310, 690 MeV), which calcu-
lates the strange and charm quark PDFs for the proton.

GPDs
Another progress for lattice QCD is related to calculating x-
dependent GPDs. These are computationally more expensive
than PDFs due to the momentum transfer between the ini-
tial and final hadronic states. The momentum transfer must
be equally split between the initial and final states, as the
GPDs are defined in the symmetric frame; such a frame is
computationally costly, preventing the extraction of GPDs
for a dense set of values of t . A novel approach that related
light-cone GPDs to Lorentz-invariant amplitudes has been
recently proposed [669]. First results on the proton unpolar-
ized and helicity GPDs have been obtained using the quasi-
distribution approach [666]. The calculation is performed on
a 260 MeV pion mass ensemble of twisted mass fermions.
The work was extended for the chiral odd twist-2 GPDs in
Ref. [670]. In Fig. 60, we compare the three types of GPDs
for zero and nonzero skewness. As can be seen, the intro-
duction of nonzero skewness leads to the appearance of a
nontrivial ERBL region. Another calculation of the unpolar-
ized GPDs can be found in Ref. [671], which was originally
reported in a non-symmetric frame similar to the one used
for frame-independent form factors.
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Fig. 60 Top: H , H̃ , HT GPDs t = −0.69 GeV2, ξ = 0. Bottom: H ,
H̃ , HT GPDs t = −1.02 GeV2, ξ = 1/3. The unpolarized, helicity,
and transversity data are shown with red, yellow, and purple bands,
respectively. Figure from Ref. [670] and reprinted under the terms of
the Creative Commons Attribution 4.0 International license

TMDs
Unlike PDFs and GPDs, TMDs contain, in addition, rapid-
ity divergences that require regularization. The regulator is
encapsulated within the so-called soft function. The evo-
lution in rapidity of the soft function can be studied sepa-
rately through the Collins–Soper (CS) kernel. Aspects of the
soft function are actively studied in lattice QCD [668,672–
676,678], which is the ideal formulation as the soft-function
is a non-perturbative quantity. A summary plot for the CS
kernel is shown in Fig. 61.

Higher-twist
One of the latest developments in extracting x-dependent
distribution functions is the exploration of twist-3 PDFs and
GPDs that contain information on quark–gluon–quark cor-
relations [679]. They are also related to the transverse force
acting on transversely polarized quarks [680] and to the
nuclear electric dipole moments [681]. First exploratory stud-
ies of twist-3 PDFs e(x), gT (x), and hL(x) can be found in
Refs. [677,682–684], with numerical results for gT (x) and
hL(x). An interesting investigation of twist-3 PDFs is the

Fig. 61 Lattice QCD determinations of the Collins–Soper evolution
kernel obtained from Ref. [672] (SWZ 20), Ref. [673] (LPC 20), Ref.
[674] (Regensburg/NMSU 21), and Ref. [675] (ETMC/PKU 21), and
Ref. [676] (SWZ 21). Figure adapted from Ref. [676] and reprinted
under the terms of the Creative Commons Attribution 4.0 International
license

Fig. 62 The Wandzura–Wilczek approximation for gT . Figure from
Ref. [677] and reprinted under the terms of the Creative Commons
Attribution 4.0 International license

Wandzura–Wilczek (WW) approximation [685] according to
which the twist-3 gT can be fully determined by its twist-2
counterpart, g1. The WW approximation can also be stud-
ied for hL . In Fig. 62 one can see gWW

T , demonstrating that
the approximation holds in some regions of x , but an overall
violation of up to 40% is permitted. Note that the 2-parton
twist-3 PDFs mix with quark–gluon–quark correlations and
the mixing should be addressed within the matching kernel
[686,687].

4.6.4 Outlook

Since the early days of lattice QCD in the 1980s, hadron
structure calculations have been pursued vigorously. Over
the years, the methods used to perform these calculations
have improved steadily, and the Monte Carlo methods for
sampling the QCD vacuum have reached the degree of effi-
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ciency required for such computations. Furthermore, com-
puter hardware has now reached the Exaflop era. As a result,
calculations for hadron structure are now achieving unprece-
dented precision in some cases (ex., nucleon charges). In
other cases, new horizons open up, such as the ability to
compute the momentum fraction x-dependence of distribu-
tion functions. In the future, lattice QCD computations of
hadronic structure will continue to improve and provide us
with the theoretical input needed to understand strong inter-
action physics better.

4.7 Weak matrix elements

Christine Davies
Quarks have the special property that they experience all of
the fundamental forces in the Standard Model. As well as
exchanging the gluons that keep them confined into hadrons,
quarks can also occasionally emit weak interactionW bosons
or QED photons. Because W and γ have no color charge they
escape cleanly from the hadron, carrying valuable informa-
tion about the structure of the bound state. This structure is
determined by strong interaction physics and so predictions
from QCD can be tested against experimental information
on these processes. The number of different quark flavors,
and hadrons constructed from them, makes a rich mine for
lattice QCD to work in.

In the bigger picture of the Standard Model we need to
determine accurately the couplings between quarks and the
W boson given by the elements of the CKM matrix ([688],
Sect. 13.2). This programme is a crucial ingredient in con-
straining the possibilities for new physics beyond the Stan-
dard Model. However, quarks are not free particles when they
emit W bosons. The experimental measurement of appropri-
ate hadronic weak decay rates allows us to determine CKM
elements but only if, as discussed above, we have under-
stood the strong interaction physics that confines the quarks
through calculation of the appropriate hadronic matrix ele-
ments of the weak current. As we will see below, some of
the experimental information for weak (and electromagnetic)
decay rates is very accurate and correspondingly accurate
theoretical calculations in QCD are needed to make the most
of it. These have always been a high priority for lattice QCD.
Results have improved over time to the point where uncer-
tainties are now below 1% in some cases. We will discuss the
current status below, and briefly mention developments that
will lead to improvements in future.

4.7.1 Decay constants

Decay constants are the hadronic parameters that encode the
amplitude for finding the valence quark and anti-quark of
a meson at the same point. This is then the parameter that
is needed to determine the rate of annihilation of mesons

Fig. 63 Schematic diagram of a meson annihilation to leptons via the
coupling of the valence quark–antiquark pair to a W or γ . The decay
constant parameterises the amplitude to find the quark and antiquark at a
point, the key hadronic information needed to determine the annihilation
rate

with appropriate flavor quantum numbers to a W or γ (see
Fig. 63). For a pseudoscalar meson the decay constant, f ,
is defined from the vacuum to meson matrix element of the
axial current. For meson P of quark content ab

〈0|aγμγ5b|P(p)〉 ≡ fP pμ. (4.176)

For a meson at rest, applying the partially-conserved axial
current (PCAC) relation ∂μAμ = (ma + mb)Ps to relate
axial-vector and pseudoscalar currents gives

(ma + mb)〈0|aγ5b|P( �p = 0)〉 = fPM
2
P , (4.177)

where MP is the meson mass.
In lattice QCD the matrix element on the l.h.s. of

Eq. (4.176) or (4.177) is obtained from the two-point correla-
tion function between source and sink ab currents (Sect. 4.2)
with Euclidean time separation, t , between them. The two-
point function has contributions, exponential in t , from a
tower of ab mesons. The exponential corresponding to the
ground-state (lowest mass) meson dominates at large t and
this is the meson for which the parameters of the fit, the ampli-
tude and mass, are most precisely determined. This mirrors
experiment, where accurate meson weak or electromagnetic
annihilation rates are possible when strong-interaction decay
channels are heavily suppressed (not usually true for excited
states). Note, however, that lattice QCD can determine f for
mesons which do not have the flavor quantum numbers to
annihilate to W or γ – these results are still useful in other
contexts.

The fit to the two-point function C(t) gives both the
ground-state meson mass and its decay constant. The con-
tribution of the ground-state to C(t) is

C(t) = a0(e
−M0t + e−M0(T−t))+ · · · . (4.178)

Here T is the lattice time extent and . . . represents contribu-
tions from higher mass states. M0 is the ground-state meson
mass and the amplitude a0 is given by
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a0 = (〈0|J |P0〉)2/(2M0) (4.179)

where J is the current used at the source and sink of C(t).
The decay constant for P0 can then be obtained from a0 using
Eq. (4.176) or (4.177) as appropriate for J .

Decay constants for light pseudoscalar mesons ( fπ and
fK ) have been calculable in lattice QCD with errors at the
few percent level since 2004 [689]. This was one of the first
calculations to be done once ensembles of gluon field config-
urations were available (from the MILC collaboration) that
included u, d and s sea quarks with multiple values of the
lattice spacing and light enough u/d quarks for a reason-
ably well-controlled extrapolation to the physical continuum
limit.

To achieve a small uncertainty in the result for the ground-
state meson mass and decay constant it is important to have a
large sample of correlators (to achieve small statistical errors)
at multiple values of the lattice spacing using a discretisation
of the QCD action with small discretisation errors (Sects. 4.2,
4.1). An accurate determination of the lattice spacing (to con-
vertC(t)’s fit parameters from lattice units to GeV) is needed.
Attention must also be paid to the effect of the finite-volume
of the lattice on the π and K . Finite-volume (and discreti-
sation) effects are incorporated into the chiral perturbation
theory [690] used to fit the results as a function of u/d quark
mass (or Mπ ) to extrapolate to the continuum limit with phys-
ical quark masses. Mπ is used to fix the average u/d quark
mass (u and d are taken to be degenerate in almost all cal-
culations) and the physical value appropriate to a calculation
in which the quark electric charges are ignored is the experi-
mental value of the π0 mass. MK fixes the s quark mass and
the physical value used is an average of the masses of K 0

and K+ with an allowance for QED effects [689].
For decay constants a further important consideration is

the normalisation of the axial vector current that appears in
Eq. (4.176) so that it matches that of the continuum QCD
current. For lattice QCD actions that have an exact PCAC
relation (such as asqtad staggered quarks used in [689])
no renormalisation is needed. Rather than use the partially
conserved axial current (which is a complicated point-split
construction) it is easiest to use the pseudoscalar current,
which is local, and calculate the decay constant directly from
Eq. (4.177). The quark masses that appear in this expression
are then the bare lattice quark masses being used in the cal-
culation.

The key physics importance of the lattice QCD calcula-
tions of fπ and fK is in determining the rate for π+/K+
annihilation to a W boson, which can be measured accu-
rately in experiment. The annihilation rate for meson P with
appropriate quark flavor quantum numbers is

Γ (P → !ν) = G2
F |Vab|2

8π
f 2
Pm

2
!MP

(

1− m2
!

M2
P

)2

(4.180)

up to well-studied QED corrections. Only the A of the V − A
weak interaction contributes in this case, so that Γ ∝ f 2

P .
Vab is the appropriate CKM element; this can be determined
from the experimental measurement of Γ given a value for
fP from lattice QCD.

Several systematic errors are reduced in an analysis of the
ratio of widths for K and π [693]. This enables the ratio
|Vus |/|Vud | to be determined and converted to a result for
|Vus | using accurate |Vud | values from super-allowed nuclear
β decay [616]. Lattice QCD calculations have then largely
concentrated on determining the ratio fK / fπ , equivalent to
fixing the lattice spacing from fπ . Following a great deal
of work by the lattice community, current day results have
improved to the point where the uncertainty on fK+/ fπ+ is
reduced to 0.2%. The recent FLAG review [256] quotes an
average of

fK+/ fπ+ = 1.1932(21), n f = 2+ 1+ 1 (4.181)

from lattice QCD results that include u, d, s and c quarks
in the sea obtained in Refs. [692,694–696]. The average is
dominated by the result from the Fermilab Lattice/MILC col-
laborations [692]. The lattice calculations now include an
analysis of the impact of the u/d mass difference; work is
ongoing to analyse QED effects on the lattice [697].

Heavier pseudoscalar mesons also annihilate to W s, giv-
ing access to other CKM elements. For example, the rate for
B → !ν depends on |Vub| and fB . The experimental deter-
mination of the decay rates is harder and they currently have
larger uncertainties than for K and π [616]. On the lattice
QCD side the heavier masses of the c and b quarks increase
discretisation errors, since they take the form of powers ofma
for quark mass m. To counteract this lattice QCD theorists
must improve the discretisation of the QCD (Dirac) action
to increase the power of ma (for ma < 1) with which these
errors first appear. A very successful action in this regard is
the Highly Improved Staggered Quark (HISQ) action [331]
developed by the HPQCD collaboration, with tree-level dis-
cretisation errors starting at (ma)4.

This discretisation allowed the first 1% accurate calcula-
tions for charmed meson decay constants [703]. The current
state-of-the-art results are from the Fermilab Lattice/MILC
collaborations using HISQ quarks and have 0.3% uncertain-
ties [692]. The dominant uncertainty in the values of Vcs and
Vcd from meson leptonic decay is then from the experimental
decay rate [616].

For b quarks discretisation errors are even more of a
headache. During the 1990s methods were developed that
exploited the nonrelativistic nature of the b quark in its bound
states, thus removing the b quark mass as a dynamical scale
(so that discretisation errors instead depend on the much
smaller scales of the b quark kinetic energy and momentum).
These approaches are based on the discretisation onto a lattice
of Heavy Quark Effective theory (HQET) [704] (for ‘heavy-
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light’ hadrons) and of non-relativistic QCD (NRQCD) [289]
(applicable also to heavyonium). It was also shown that the
large-mass limit of the clover-improved Wilson quark action
[307] could be interpreted as a nonrelativistic effective theory
[705]. A limitation of these formalisms is the need to nor-
malise the weak current to match that of continuum QCD; this
requires challenging calculations in lattice QCD perturbation
theory and has only been done through O(αs) [706–708].
The ETM collaboration developed a ratio approach [709] to
interpolate between results for quark masses around c using
the twisted mass quark formalism [316] and the infinite-mass
(static) limit. These methods have been able to achieve a 2%
uncertainty on B decay constants [709,710].

As increased computational power could be exploited to
generate gluon field configurations with finer values of the
lattice spacing, alternative methods became available. The
MILC collaboration led the way including 2 + 1 flavors of
asqtad sea quarks with a range of lattice spacing values down
to a = 0.044 fm. On these lattices the HPQCD collaboration
showed that b quarks could be treated with the relativistic
HISQ formalism (with its absolute current normalisation) if
calculations were done for a range of quark masses > mc

and a range of lattice spacing values [691]. Fig. 64 shows
the lattice results for the heavy-strange meson along with the
joint fit of the dependence on the heavy meson mass and the
lattice spacing. This enables a curve for the dependence of
the decay constant on the heavy meson mass to be obtained
in the continuum limit, from which the decay constant for
the Bs meson can be read. At the same time the dependence
on heavy meson mass becomes clear; fDs > fBs but only
by about 10%, rather less than the leading order result from
HQET, fP

√
MP = constant [711] would suggest. The Fer-

milab Lattice/MILC collaborations have now extended this
to B mesons and including 2 + 1 + 1 flavors of HISQ sea
quarks for uncertainties on fB and fBs below 1% [692].

The SU(3)-isospin-breaking ratio of decay constants,
fPs/ fP , is calculated to better than 0.4% in Ref. [692] with
results summarized in Fig. 65. The ratios are all close to 1.2
but there are small and significant differences as the mesons
increase in mass from K/π to Bs/B.

Vector mesons with appropriate quark flavor quantum
numbers can also annihilate to leptons via a W boson.
Although the decay rate is not suppressed by lepton masses
in that case (because of the meson spin) it is nevertheless
hard to see experimentally because it is overwhelmed by the
QED radiative decay V → Pγ ; it may be possible in future
for the D∗s [712]. The vector leptonic decay proceeds through
the vector piece of the weak current and is determined by the
corresponding vector decay constant. The lattice QCD vector
current must again be normalized to match continuum QCD.
Although in principle a conserved vector current can be used,
it is easier to use a local vector current and renormalise it.
There are a number of techniques to do this (Sect. 4.2). The

Fig. 64 The decay constant of the heavy-strange pseudoscalar meson
as a function of its mass from lattice QCD calculations [691] using the
HISQ action [331]. Points with different colors are results for different
lattice spacing values, with smaller lattice spacings having more reach
to heavier masses. The grey curve is the continuum limit of an HQET-
inspired fit to the results including discretisation effects. The result for
fBs can be read off at the mass of the Bs meson

Fig. 65 SU(3)-isospin breaking ratios of decay constants from lattice
QCD. fK / fπ is from Eq. (4.181) [68], other results from Ref. [692]

ratio of vector to pseudoscalar decay constants for heavy-
light mesons has been calculated using NRQCD [700] (with
perturbative renormalisation [713]) and using twisted-mass
quarks [699] (using a MOM scheme [714]). Interestingly
it is found that the ratio of fV / fP is larger than 1 for D
mesons and less than 1 for B mesons. Reference [699] gives
1.078(36) for fD∗/ fD and 0.958(22) for fB∗/ fB .

Vector qq mesons can annihilate to !! via a γ , and such
decay rates have been determined experimentally to better
than 2% for heavyonium mesons [616]. This provides an
excellent opportunity for accurate comparison of lattice QCD
and experiment for a decay rate free from CKM elements
since

Γ (V → !+!−) = 4πα2e2
q

3

f 2
V

MV
, (4.182)

with eq the valence quark electric charge in units of e. Results
for f J/ψ [279] and fΥ [702] calculated with HISQ quarks,
normalized via an SMOM scheme [715,716] show good
agreement with values inferred from the experimental decay
rates, providing a solid underpinning for the other decay con-
stants being discussed here.

Figure 66 summarises the values of meson decay con-
stants that are well-determined in lattice QCD, arranged by
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Fig. 66 Summary of meson decay constant values calculated in lattice
QCD and arranged in order of their size. Points with error bars use
different symbols for values needed to determine weak or QED leptonic
decay rates or those not linked to any simple decay mode. The decay
constants inferred from experimental values for QED leptonic decay
are given by blue bands. For weak decays, experimental results must be
combined with lattice QCD to obtain CKM elements; fπ can be inferred
from the π+ leptonic rate taking |Vud | from nuclear β decay [616] and
is shown by a purple band at 130.56(14) MeV. The lattice QCD result
for fπ comes from RBC/UKQCD [285], using the Ω baryon mass to
fix the lattice spacing. Other results shown use fπ to determine the
lattice spacing, and so do not give a value for that quantity. fK is taken
from Eq. 4.181; fB , fD , fDs from Ref. [692]; fBc [698], fD∗

(s)
/ fD(s)

and fB∗
(s)
/ fB(s) [699]; fB∗c / fBc [700]; fφ [701] and charmonium and

bottomonium results [279,281,702]

value order. It does not include values for mesons, such as
the ρ or K ∗, that have a large decay width from a strong-
interaction decay mode (Sect. 4.5). Notice that the range of
decay constant values, from fπ+ = 130.2(9) MeV [285] to
fηb = 724(12) MeV [702] is much smaller than the range of
meson masses. As discussed above, decay constants reflect
meson internal structure set by momenta inside the bound
state rather than quark masses. For mesons containing u/d
quarks the range of variation is even smaller, less than a fac-
tor of two from fπ to fD+ = 212.7(6) MeV [692], and
the ordering is not intuitively obvious. Results are shown
for decay constants relevant to weak leptonic decays (where
comparison to experimental results yields a determination of
the relevant CKM element) as well as those relevant to QED
leptonic decays (where direct comparison to experimental
rates is possible). It also includes decay constants that cannot
be simply related to a decay process, but which nevertheless
help to fill in the ‘big picture’ that we now have from lattice
QCD for these simple matrix elements.

4.7.2 Mixing matrix elements and bag parameters

A fascinating phenomenon for neutral K and B mesons is
that of ‘oscillations’, induced by the tiny weak interaction
coupling between the mesons and their antiparticles. For
exact CP invariance the eigenstates of the Hamiltonian are
then +/− combinations of the strong-interaction P0 and

P
0

states, analogous to the eigenstates of two weakly cou-
pled pendulums. An initial P0 beam, created by a strong-
interaction process, is equivalent to setting one pendulum
swinging. At later times it becomes clear that the other pen-

dulum is swinging/P
0

is present (from interrogating the beam
via suitable decay processes). The oscillation frequency is set
by the eigenstate mass difference ΔMP and can be measured
very precisely in experiment. The coupling is a second-order
weak process with the short-distance contribution given by
the ‘box diagram’ of Fig. 67. As such it is sensitive to new
physics that can be tested with accurate matrix elements for

the box diagram between P0 and P
0
, calculated in lattice

QCD.
At the hadronic mass scales of the lattice the box diagram

shrinks to an effective 4-quark operator (multiplied by a Wil-
son coefficient). For the SM case, the ‘left-left’ operator is

O(1) =
[
h
α
γμ(1− γ5)!

α
] [

h
β
γμ(1− γ5)!

β
]
. (4.183)

h is either s or b andα/β are color indices. Matrix elements of
further (BSM) 4-quark operators have also been calculated,
see Ref. [256].

The matrix element of Eq. (4.183) between P0 and P
0
,

having a hadron on either end, is much harder to determine
in lattice QCD than a decay constant, so results are not as
mature and have larger uncertainties. The renormalisation of
the 4-quark operator to match continuum QCD is also more
challenging. Results are most usefully presented in terms of
‘bag parameters’ by removing factors of masses and decay
constants from the matrix elements that would appear in
the ‘vacuum saturation approximation’, i.e. inserting |0〉〈0|
between the two halves of the 4-quark operator. For O(1) this
gives [717]

〈P0|O(1)|P0〉 = 8

3
f 2
PM

2
P B

(1)
P (μ) (4.184)

where the leftover ‘fudge factor’, BP , is the bag parame-
ter. It is normally quoted in the MS scheme; note its scale-
dependence. Historically the assumption was then made that
B ≈ 1 but lattice QCD can achieve a much better result than
this.

The bag parameter is often converted from B(1)(μ) to its
renormalisation-group-invariant (RGI) value,

B̂(1) = cRGIB
(1)(μ) (4.185)

where cRGI is calculated to two-loops in perturbative QCD
[256] and takes values 1.369 for BK (when μ = 2 GeV) and
1.516 for BB (when μ = mb)).

Reference [256] quotes an average for B̂(1)
K = 0.7625(97)

as an average of several lattice QCD results [285,718–
720] using different lattice QCD actions and renormalisation
approaches with n f = 2 + 1 sea quarks; Ref. [721] gives
an n f = 2 + 1 + 1 result. B meson results are less accu-
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Fig. 67 Schematic diagram of the short-distance contribution to neu-
tral meson mixing via the ‘box diagram’ (left) involving W bosons and
top quarks. The matrix element that must be calculated in lattice QCD
is that of the equivalent 4-quark operator (right)

Fig. 68 A comparison of RGI bag parameters from lattice QCD for K 0,
D0, B0 and Bs , showing significant deviations from the naive vacuum
saturation approximation estimates of 1 and a trend with meson mass

rate, because of a significantly worse signal/noise problem
in the determination of the correlation functions [722]; direct
determination of BB rather thanO(1) matrix elements cancels
discretisation and light quark mass effects, however. Results
including n f = 2 + 1 + 1 sea quarks are available from
HPQCD using NRQCD b quarks (with O(αs) renormalisa-
tion [723]), giving B̂(1)

Bd
= 1.222(61) and B̂(1)

Bs
= 1.232(53))

[722]; n f = 2 + 1 results using other lattice QCD actions
are given in [724–726]. Note that B̂Bs/B̂Bd is consistent with
1 (1.008(25) from [722]), showing that the SU(3)-breaking
in the 4-quark matrix elements is entirely that of the decay
constants.

Figure 68 compares the results for B̂, including a value
for B̂D [721] that lies between B̂K and B̂B . The D0 box
diagram is mediated by down-type quarks and is expected
to contribute only a small part of ΔMD , dominated by long-
distance contributions. The short-distance results can be used
to constrain new physics, however, see Ref. [727].

For B/Bs mesons the box diagram with top quarks of
Fig. 67 dominates mixing (since Vtb ≈ 1) so that

ΔMq =
G2

FM
2
WMBq

6π2 S0(xt )η2B

∣
∣
∣V ∗tqVtb

∣
∣
∣
2
f 2
Bq B̂

(1)
Bq

, (4.186)

and lattice QCD results for the bag parameters can be com-
bined with (the very accurate) experimental results for the
oscillation frequency to determine CKM elements |Vts | and
|Vtd | that multiply the effective 4-quark operator. Agreement
is seen within 2σ with CKM values from tree-level weak
decays and unitarity [722].

For K oscillations the situation is more complicated
because of sizeable long-distance contributions to ΔMK

involving u- and c-mediated contributions. At the same time
analysis of K → ππ amplitudes [256] is also needed to
determine the direct and indirect CP-violation parameters,
ε′ and ε that describe the CP-properties of the mass eigen-
states and their decays. These are very hard calculations that
have required the development of new techniques, and results
are still at a fairly early stage, e.g. often only available at one
value of the lattice spacing. The RBC/UKQCD collaboration
has led the way here, exploiting the excellent chiral proper-
ties of the domain-wall quark action. They have calculated the
amplitude A2 to the isospin 2 two-pion state (the ΔI = 3/2
amplitude) [728] and the amplitude A0 to the isospin 0 state
(ΔI = 1/2) [729]. This enables a result of Ref. [729]

ε′/ε = 21.7(8.4)× 10−4 (4.187)

in good agreement with experiment (16.6(2.3)×10−4), sug-
gesting no violation of the CKM paradigm at this level of
accuracy. At the same time the lattice QCD results provide
some insight into the observed ΔI = 1/2 rule by which A0

exceeds A2 by a factor of 20. A factor of 2 is provided by
perturbative QCD corrections to the coefficients of the appro-
priate 4-quark operators; lattice QCD shows that the other
factor of 10 arises from the fact that, contrary to naive expec-
tations, the contributions from different color contractions
of the dominant operator tend to cancel in A2 and reinforce
each other in A0 [729,730]. The development of methods to
determine the long-distance contributions to ΔMK [731] are
also aimed at long-distance contributions to K+ → π+νν
and K → π!+!−.

Future improvements here require improved renormalisa-
tion techniques for lattice 4-quark operators. Gradient flow
methods look promising here, see e.g. Ref. [732].

4.7.3 Form factors

Semileptonic weak decays of hadrons in which one of the
constituent quarks changes flavor and the virtual W boson
emitted is seen as a !νl pair (see Fig. 69) provide a huge range
of possibilities for determining CKM elements and under-
standing hadron structure. The hadronic parameters that con-
trol the rate of these processes are known as form factors and
they are functions of q2, the squared 4-momentum trans-
fer from parent hadron, $, to child, χ . The kinematic range
of q2 is from q2

max = (M$ − Mχ )
2 (where ! and ν! have

maximum back-to-back momentum in the $ rest-frame) to 0
(where χ and the !ν! pair are back-to-back). The form fac-
tors are largest at q2

max and fall towards q2 = 0, reflecting the
internal momentum transfer via gluon exchange necessary to
achieve the final state configuration.

Form factors are defined from matrix elements between
$ and χ of weak currents. The simplest situation is when
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Fig. 69 Schematic diagram of a meson to meson semileptonic decay.
The hadronic information needed to determine the rate is parameterized
by form factors

both $ and χ are pseudoscalar mesons. In that case only the
vector current and vector form factor, f+(q2), contribute to
the decay rate for $ → χ!ν for zero lepton mass, with m!-
dependent corrections from the scalar form factor, f0(q2).
We have

dΓ

dq2 =
G2

F

24π3 |Vab|2(1− ε)2 × [| �pχ |3(1+ ε

2
)| f+(q2)|2 +

| �pχ |M2
$

(

1− M2
χ

M2
$

)2
3ε

8
| f0(q2)|2] (4.188)

for quark transition a → b, ε = m2
!/q

2, and �pχ is the 3-
momentum of child χ in $’s rest frame. The form factors are
defined from matrix elements

〈χ |Vμ|$〉 = f $→χ
+ (q2)

[

pμ$ + pμχ −
M2

$ − M2
χ

q2 qμ

]

+ f $→χ
0 (q2)

M2
$ − M2

χ

q2 qμ, (4.189)

〈χ |S|$〉 = M2
$ − M2

χ

ma − mb
f $→χ
0 (q2), (4.190)

with kinematic constraint f+(0) = f0(0). Equation (4.190)
makes use of the partially conserved vector current relation
∂μVμ = (ma −mb)S that means f0 is correctly normalized
in lattice QCD [733]. The renormalisation factor, ZV , for
the vector current can then be determined by, for example,
matching f0(q2

max) from Eqs. (4.189) and (4.190) (see Ref.
[734]).

To determine the form factors in lattice QCD requires the
calculation of three-point correlation functions with appro-
priate source and sink operators for parent and child hadrons,
and a current insertion at an intermediate time between them.
Usually the parent hadron is taken to be at rest on the lattice
and different spatial momenta are given to the child to map
out the q2 range. Fitting the three-point correlation function
simultaneously with the two-point correlation functions for

parent and child allows the parent-to-child matrix elements
to be determined and Eqs. (4.189) and (4.190) applied. To
obtain form factors in the continuum limit, interpolation in
q2 and extrapolation to a = 0 and physical quark masses is
needed. Modern calculations (see, for example, Ref. [734])
transformq2 into a region within the unit circle in z-space and
then apply a polynomial fit in z that allows for discretisation
effects and mistuning of quark masses.

The channel K → π!ν is a key for the determination of
Vus . The q2 range for this decay is very small and so con-
ventionally experiment accounts for the q2 dependence of
Eq. (4.188) and gives the final result as a value for |Vus | f+(0).
Combining charged and neutral meson decay rates with
QED radiative and strong-isospin-breaking corrections gives
a result with 0.2% accuracy : Vus f+(0) = 0.21635(39)(3)
[735], where the first, dominant, error is from the experi-
ment. The 0.2% accuracy is now also available from lattice
QCD with 2+1+1 flavors. Reference [256] gives f+(0) =
0.9698(17) from averaging [736,737]. The two lattice QCD
calculations take contrasting approaches. Reference [736]
determines f+(q2) and f0(q2), interpolating to q2 = 0 and
testing q2 dependence against experiment; Ref. [737] tunes
to q2 = 0 using twisted boundary conditions [738] and cal-
culates f0(0) since this needs no renormalisation. The result
for Vus from K → π!ν then shows an intriguing 3σ tension
with CKM first row unitarity [735] and 2.5σ tension with
Vus from K → !ν [616].

D meson decays (to K or π ) have a larger q2 range and
experimental data is available in bins of q2. This provides
the opportunity to test the q2-dependence predicted by QCD
against experiment as well as to determine Vcs and Vcd . Fig-
ure 70 shows how this is done [734]. The upper plot shows the
determination of the f+ and f0 form factors and the lower
plot shows the result of determining Vcs bin-by-bin in q2

using Eq. (4.188). A good fit is obtained to a constant with
Vcs = 0.9663(80), with errors from lattice QCD, experi-
ment and QED corrections making similar contributions to
the total uncertainty. See Ref. [739] for a determination of
Vcd using lattice QCD D → π form factors.

The semileptonic decays of B mesons have a huge poten-
tial in searches for new physics as well as in giving access
to key CKM elements Vub and Vcb. Form factors for these
decays are challenging for lattice QCD, however, because the
large b quark mass means a large q2 range. To reach q2 = 0
the child spatial momentum must approximate MB/2. Large
values of a| �p| induce poor signal/noise in correlation func-
tions as well as discretisation effects, so early lattice QCD
calculations worked close to q2

max with nonrelativistic for-
malisms for the b quark.

To determine Vub from B → π!ν, Ref. [256] performs
a joint fit to lattice form factor results from Refs. [741,742]
(which use different variants of the improved Wilson action
for the b quark and different light quarks) and experimen-
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Fig. 70 (Upper) Data points show lattice QCD results at multiple val-
ues of q2 and multiple lattice spacings. Blue and red curves show the
final determination of f0 and f+ in the continuum limit at physical
quark masses. (Lower) Bin-by-bin values of Vcs from combining these
form factors with experimental data. The constancy of Vcs shows that
the q2 dependence predicted by QCD matches that of experiment [734]

tal data from BaBar and Belle, leaving Vub as a parameter.
Such a fit allows experimental information onq2-dependence
to constrain the lattice results. The value for Vub obtained,
3.74(17)×10−3 is 1.7σ lower than that obtained from inclu-
sive b→ u determinations that do not specify the final state
hadron.

The transitions b → c have also shown a persistent ten-
sion between inclusive and exclusive results. Here the pre-
ferred exclusive method is to use B → D∗ decay. Although
a pseudoscalar to vector transition is more complicated, with
4 form factors, only the axial vector A1 form factor con-
tributes at q2

max. Lattice QCD therefore initially concentrated
on this point [743,744]. Now it has become clear that the q2-
dependence of the differential rate must be understood from
the lattice QCD side and form factors have been calculated
by the Fermilab Lattice/MILC collaboration [745] that cover
more of the q2 range using their improved-Wilson action for
both b and c. This does not resolve the inclusive/exclusive
Vcb tension but points the way to improved future analyses.

Recent B form factors have been calculated using rel-
ativistic formalisms that can make use of nonperturbative

Fig. 71 (Upper) Comparison of b → s form factors for meson tran-
sitions with different spectator quarks. Increasing the spectator mass
to that of c quarks reduces the form factors at low q2 values [740].
(Lower) The dependence on heavy meson mass, MH , of the form fac-
tors for H → K decay at q2

max and q2 = 0. Notice the slow downward
drift at q2 = 0 and for f0(q2

max) as H varies from D to B, but much
stronger variation upwards for f+ and fT (the tensor form factor) at
q2

max (remembering that q2
max depends on MH )

current normalisation techniques discussed for Eqs. (4.189)
and (4.190). They obtain results for multiple heavy quark
masses and lattice spacings and fit to obtain results for B
mesons in the continuum limit in a similar way to that for
decay constants in Fig. 64. Calculations include HPQCD’s
form factors for Bs → Ds [746], Bs → D∗s [747] and
B → K [740] using HISQ quarks and JLQCD’s form factors
for B → π using domain-wall quarks [748]. This is likely
to be the way forward for the future.

It is important to remember that QCD provides a smooth
connection between different form factors as we change the
mass for one or other of the participating quarks. In this way
lattice QCD can provide ‘a big picture’ for form factors.
Figure 71 shows this connection for different spectator (not
part of the weak current) quarks for the b → s transition. It
also shows results for H → K decay where H is a meson
containing a heavy quark with mass varying from c to b [740].

Future calculations will improve B form factor uncertain-
ties to the 1% level [749] for the increased datasets planned
from LHC and Belle II. New developments include tech-
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niques for inclusive B decays [750] and for handling final-
state mesons that decay strongly (e.g. for B → K ∗!ν anal-
ysis) [589]. An important focus will be improving lattice
calculations needed to understand ‘B anomalies’ seen, for
example in ratios of branching fractions to different flavors
of leptons and differential rates for flavor-changing neutral
current b → s transitions (e.g. B → K!+!−) that proceed
through loops in the SM.

The lattice QCD calculation of form factors for weak
decays of baryons is still in its infancy, because of the extra
challenges provided by the poorer signal-noise. The nucleon
axial coupling, gA, has been a particular focus of attention
and is discussed in Sect. 4.6. A notable success has been the
use of lattice QCD form factors for Λb → Λc and Λb → Λ

[751] to determine Vub/Vcb by LHCb [752]. This is clearly
a developing area for the future.

5 Approximate QCD

Conveners:
Stanley J. Brodsky and Franz Gross
The previous sections have introduced the QCD Lagrangian
and shown how to make numerical predictions using LQCD.
These predictions are subject to numerical uncertainties, but
otherwise use the Lagrangian fully, without truncations, and
can be systematically improved by going to smaller and
smaller lattice spacings; in this sense they are sometimes
referred to as “exact” calculations.

The disadvantage of LQCD predictions, however, is that
they usually do not give much insight into the physical pro-
cesses involved – they do not help us “understand” how cer-
tain physical properties emerge from QCD. Analytical solu-
tions usually lead to this understanding, even though even
after 50 years we still have no method to solve the equations
of QCD analytically!

In situations where the momentum transfers are large, so
that the coupling constantαs is small, we can use perturbation
theory to gain physical insight. But even then, higher order
corrections will have loops with low momenta and large val-
ues ofαs so that these terms can only be estimated. For “cold”
nuclear matter under normal conditions, the only analytical
approaches today are to develop theoretical models which
usually are tailored to treating some part of the problem care-
fully, and lumping other parts into “constants” which must
be fit to data. Study of a variety of these models will be the
subject of the next two sections of this volume.

At the heart of all modern models are quarks. Early mod-
els of mesons and baryons assigned (constituent) masses to
the u and d quarks of 300 -350 MeV, and ∼500 MeV to the
strange-quark mass, in sharp contrast to the (current) quark
masses that enter the QCD Lagrangian (see Sect. 3.1). Nev-
ertheless, quark models met with considerable success and

are still used as benchmarks when data on spectroscopy are
interpreted. These models are reviewed in Sect. 5.1 (see also
Sect. 8 for mesons and Sect. 9 for baryons). The section then
moves on to a discussion of the Bethe Salpeter (BS) and
Dyson Schwinger (DS) equations (Sect. 5.2), where quark–
gluon interactions are treated microscopically, much as pion–
nucleon interactions were described in an earlier era. Here
the multiple interactions make it impossible to treat them all
systematically, and the equations must be truncated, intro-
ducing approximations with an accuracy that is sometimes
hard to estimate. Light front coordinates are the preferred
way to describe multi-quark systems, and Sect. 5.3 describes
methods for expanding multi-quark quark wave functions in
a light front basis that avoids some of the issues with the
microscopic description, but also requires truncations of the
expansion to a finite number of basis states.

These methods handle the confinement of quarks in differ-
ent ways with very different assumptions. In Sect. 5.4, recent
developments based on superconformal quantum mechan-
ics, light-front quantization, and its holographic embedding
in a higher-dimension classical gravity theory, known as
AdS/QCD, have led to new analytic insights into the non-
perturbative structure and dynamics of hadrons in physical
spacetime, such as color confinement and chiral symmetry
breaking. This contribution is followed by a short discus-
sion (Sect. 5.5) of the model dependence of predictions of
the behavior of the strong fine structure constant, αs(Q2) at
small Q, where it becomes large. This discussion comple-
ments and completes the discussions of αs(Q2) in Sect. 3.
Next, the interesting features that can be drawn from the study
of QCD with a large number of colors, and the solvable ’t
Hooft model, are reviewed in Sect. 5.6.

The next four contributions in this section discuss approx-
imations that treat specific issues: the use of sum rules based
on the operator product expansion (OPE) to explain prop-
erties of mesons and other physical quantities (Sect. 5.7);
approximations that work for high energy reactions which
can be factorized into reaction specific high energy parts
that can be computed perturbatively and low energy, reaction
independent parts expressed in terms of unknown functions
that are extracted from many experiments (Sect. 5.8); the
power counting rules that describe the behavior of exclusive
processes at very high energy (Sect. 5.9); and finally the pos-
sibility of new hidden color states, i.e. virtual colored degrees
of freedom occupied by groups of quarks at short distances
(Sect. 5.10).

Finally, a theoretical discussion of the complexity of the
QCD vacuum needed to understand confinement and chiral
symmetry breaking is presented in Sect. 5.11. This discussion
is complementary to the Lattice discussion of the same topic,
Sect. 4.3.

This Sect. 5 covers a very wide range of topics, but as you
will see from what follows, is only part of the theoretical tool
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box developed to “solve” a theory based on a Lagrangian that
can be written in one line!

5.1 Quark models

Eric Swanson

“It is more important to have the right degrees of
freedom moving at the wrong speed, than the wrong
degrees of freedom moving at the right speed.”
– Gabriel Karl, as frequently quoted by Nathan Isgur.

5.1.1 Early quark models

The phrase “quark model” originally meant something like
the “quark idea”, referring to the introduction of quarks as
the elements of the fundamental representation of SUF (3)
by Gell-Mann and Zweig in 1964 [17,18,753]. Gell-Mann
initially avoided attributing physical reality to the quark con-
cept, and it was others, such as Dalitz [754], Becchi and Mor-
pugo [755], Rubinstein, Scheck and Socolow [756], and Lip-
kin and Scheck [757] who developed the idea into a viable and
predictive model in the sense we use now. That this was not
a simple task is illustrated by a famous line from Kokkedee’s
review of the quark model, “The quark model should …not
be taken for more than it is, namely, the tentative and sim-
plistic expression of an as yet obscure dynamics underlying
the hadronic world” [758].

Kokkedee’s pessimism was not misplaced. The inability
to observe free quarks was originally explained by assum-
ing that they had very high masses. The existence of rela-
tively light hadrons then implied that the interquark binding
force was “ultra-strong”, which in turn requires relativistic
and nonperturbative techniques. These technical problems
were further exacerbated by the “statistics problem”, wherein
bound states of fermions must be antisymmetric. Thus, for
example, the Δ++ requires an antisymmetric spatial wave-
function, in contrast with expectations for a low lying state.
No satisfactory solution to the problem was found, in spite
of the great contortions theorists invented.

Nevertheless, a few determined individuals persisted with
the notion that quarks are “real”. Early computations drew
from long tradition in nuclear physics [755,759,760] and
tended to focus on electroweak transitions since the cou-
plings are weak and the effects of unknown spatial wave-
functions can be ignored (in magnetic dipole transitions) or
simply modelled (in electric dipole transitions). These com-
putations typically assumed nonrelativistic dynamics, fac-
torized spatial wavefunctions, and electroweak currents cou-
pling directly to quarks. The state of the art was formal-
ized in a classic paper from 1967 by van Royen and Weis-
skopf, which placed the topic on firm footing (even though
the quark model problems remained unresolved) [761]. By

1969, Copely, Karl, and Obryk had brought the quark model
to a high level of predictiveness, introducing explicit simple
harmonic oscillator wavefunctions and a “constituent” quark
mass of roughly one third the proton mass, in line with its
modern value [762].

5.1.2 QCD-improved quark models

It is no surprise that the advent of QCD revolutionized the
conceptualization and application of the quark model, releas-
ing a flood of research. QCD, of course, is the theory of
hadrons; thus the quark model was no longer the first and
final word for hadronic properties, and it quickly evolved
into its current role as a computationally feasible model for
QCD in the strong coupling regime.

Already by 1975 (November 1974), Appelquist and
Politzer famously applied QCD to the R ratio (proportional
to the cross section for e+e− to hadrons) and noted that lad-
der exchanges of gluons should give rise to “orthocharmo-
nium” (the J/ψ) and “paracharmonium” (the ηc) states [90].
This was the time of the “November revolution” described in
Sect. 2.1 above. These notions were greatly expanded by De
Rujula, Georgi, and Glashow, who argued that one gluon
exchange should dominate the short-distance quark inter-
action and that it explained a wealth of experimental data,
concluding that “The naive quark model, supplemented by
color gauge theory, asymptotic freedom, and infrared slav-
ery, is turning out to be not so naive, and more than just a
model.” [763]. In fact the results were successful enough that
the authors initiated and ended the field in the same paper,
declaring,

Not until many of these predicted charmed states are
discovered and measured can the subject of hadron
spectroscopy join its distinguished colleagues, atomic
and nuclear spectroscopy, as subjects certainly worthy
of continued study, but understood (at some level) in
principle.

Needless to say, such proclamations seem premature to mod-
ern eyes!

Amongst the first to join the fray were Isgur and Karl, who
wrote a complete model Hamiltonian for baryons, assuming
nonrelativistic dynamics, a quadratic confinement potential,
and short distance spin-dependence as given by one gluon
exchange [764]. (For a full discussion of baryon quark mod-
els, see Sect. 9.1) The resulting reasonably complete descrip-
tion of the low lying baryon spectrum and its properties
caused a sensation, as it was realized that comprehensive and
quantitative computations of hadronic properties were pos-
sible. However, there was a price to be paid: the good results
were obtained only upon neglecting the spin–orbit interac-
tion arising from one gluon exchange. It is, of course, difficult
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to argue in favor of one aspect of perturbative QCD while
neglecting another! By way of defense, Isgur and Karl noted
that the confinement interaction should contribute Thomas
precession spin–orbit interactions, even though it is spin-
independent, and that the long range spin–orbit interaction
tends to cancel that due to one gluon exchange.

The issue of the spin-dependence of the long range (con-
finement) interaction reappeared in a nearly contemporary
and seemingly disconnected area. At issue was the Dirac
structure of a (presumed) relativistic long range two-body
interaction for quarks,

1/2
∫∫

J (x)K (x − y)J (y),

where the current is written as J = ψ̄Γ ψ , ψ is a quark field,
and Γ is a four-by-four Dirac matrix. In 1978, Schnitzer
realized that the masses of several newly discovered char-
monia and bottomonia permitted settling the issue in favor
of a scalar (Γ = 1) confinement interaction [765,766].

Of course, assuming that the interaction between quarks
is specified by a current–current operator yields more than
spin-dependence – it also gives the amplitude for quark pair
creation, and therefore opens the field of strong hadronic
transitions to investigation. (Such investigations actually date
to the beginnings of the quark model, starting with Micu’s
hypothesis that quark pairs are produced in a spin-triplet
angular-momentum-one state [767,768].)

In 1978, Eichten et al. produced the most famous version
of such a model, the “Cornell model” (first introduced in
1975), in an ambitious attempt to understand the properties
of charmonia, including their coupling to the open charm
continuum [769]. Pragmatism forced compromise: the Cor-
nell group had to assume a color density current to obtain
agreement with the – by now well-established – one-gluon-
exchange short-range structure of the quark interaction, and
in disagreement with the decay model of Micu (which is
admittedly a guess) and Schnitzer’s scalar confinement. Nev-
ertheless, the model is well-constrained and does admirably
well in predicting a wealth of charmonium properties.

By 1985 the field had progressed enough that comprehen-
sive models capable of describing all mesons and baryons
were being attempted. The most famous of these is that due to
Godfrey and Isgur (mesons) and Capstick and Isgur (baryons)
[770,771]. The model has much in common with earlier ones
such as Ref. [772]. The model assumes relativistic quark
kinematics, the full one-gluon-exchange short-range inter-
action, and a scalar confinement interaction (including its
spin–orbit relativistic correction). All interactions were con-
voluted over a Gaussian to ameliorate the strength of the
short range terms (which are not legal operators in quantum
mechanics).

A model of the running strong coupling was used because
there is strong evidence that weaker spin-dependent interac-

tions are required for heavier quarks. The possibility of quark
annihilation in isoscalar channels was allowed by including
a phenomenological term. The model was “relativized” by
including factors of (m/E)ν , where ν is a model parame-
ter, in various matrix elements. Finally, additional factors of
meson and quark mass were introduced to certain rates to
bring their form into alignment with low energy theorems.
The resulting masses, strong decays, and electroweak tran-
sitions have served as a benchmark in hadronic physics over
the intervening 37 years.

5.1.3 Bag models

The advent of QCD raised the possibility of inventing field-
theoretic models of hadrons. The opportunity was seized first
by Ken Johnson, who drew an analogy to bubble nucleation
in first-order phase transitions to imagine a hadron as per-
turbative fields confined to a vacuum bubble of size about 1
fm. The resulting model, developed with colleagues in 1974,
became known as the “MIT bag model” [773]. The starting
point is a postulated nontrivial QCD vacuum that exerts a
pressure (described by the constant B) on a region of trivial
space-time (called the “bag”). The model Hamiltonian is

Lbag = (LQCD − B) θ(bag) (5.1)

where θ is zero outside the bag region. Because the action
involves an integration over a finite region of space, the loca-
tion of the bag surface is itself a dynamical field, related
through the Euler–Lagrange equations to the quark and gluon
fields by a complicated, nonlinear expression. As a result
quantization is very difficult and semiclassical approxima-
tions are used to study the system. In particular, the “static
bag approximation” is made, wherein quarks and gluons are
presumed to be confined to a region of a given radius (it
is possible to make more complicated models where small
oscillations in the bag surface are permitted). The result-
ing equations of motion describe free fields subject to cavity
boundary conditions, which can be obtained by summing
cavity modes.

Almost simultaneously, similar ideas were being explored
at Stanford, giving rise to the “SLAC bag model” [774]. In
this case a scalar field played a role similar to the bag. Sym-
metry breaking in the scalar vacuum served to confine quarks
to a small region where the scalar field exhibits soliton-like
behavior. However, this implies that quarks are confined to a
spherical shell, which contradicts experiment [775]. A subse-
quent model, called the “soliton bag model”, is able to avoid
this feature while interpolating the MIT and SLAC bag mod-
els [776]. Many variant bag models have been developed
over the years that seek to address various shortcomings.
For example, the MIT, SLAC, and soliton models all violate
chiral symmetry. This can be overcome by explicitly intro-
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ducing pion fields [777,778] or topological features [779].
Other models will be discussed below.

A number of advantages of bag models are apparent:
hadrons are bound systems of relativistic quarks and glu-
ons, obey asymptotic freedom automatically, are confined
to regions of order 1 fm in size, and respect color gauge
invariance. These benefits spurred a large theoretical effort in
hadronic modelling that lasted through the 1980s, and contin-
ues at a reduced level to the present. Unfortunately, the com-
plexity of the model introduces a number of conceptual and
technical difficulties. The cavity approximation, for exam-
ple, is not translationally invariant and no projection onto
momentum eigenstates exits. This has the practical demerit
of introducing undesired center-of-mass degrees of freedom
to the problem. Quark and gluon propagators can be formed
by summing over appropriate cavity modes, but in practice
this is difficult, and evaluating Feynman diagrams is techni-
cally cumbersome [775]. For example, self-energy diagrams
are difficult to evaluate and are often ignored. Similarly, the
expectation value of the bag Hamiltonian has a sum over zero
point energies that diverges. Renormalizing this quantity is
subtle, and the zero point energy is often replaced with a
simple model. Lastly, the rigid cavity gives rise to spurious
states that must be identified.

Early MIT bag-model computations contained three para-
meters, the bag constant, the gauge coupling, and a zero-
point energy parameter. Fits to the ρ, N , and Δ masses then
fixed these constants. Unfortunately the resulting value for
the strong coupling wasαS ≈ 2.2, which gives spin splittings
that are too large in other hadrons. The resulting phenomenol-
ogy is often of poor quality; for example, an early calcu-
lation of P-wave masses gives disappointing results [780].
Bag model phenomenology is clearly geared toward light
hadrons. Heavy quark states, on the other hand, are surely
described by nonrelativistic kinematics, a string-like confine-
ment mechanism, and a value of the strong coupling that is set
by αS(mQ). These features can be incorporated by allowing
the bag to distort into a tube shape (in practice the distor-
tion is small) and refitting the model parameters [781]. The
resulting model does a reasonable job with the low lying
charmonium and bottomonium vectors, predicts a J/ψ − ηc
splitting of 180 MeV (the measured value is 113 MeV), and
J PC = 1−± charmonium (bottomonium) hybrids at mass of
approximately 4.0 (10.49) GeV.

One of the great advantages of bag models is that they
made it clear that states incorporating gluonic degrees of free-
dom (glueballs and hybrids) should be considered seriously.
Early contributions to the theory of glueballs include Jaffe
and Johnson [782], who examined many novel states in the
model, and Barnes, Close, and Monaghan, who computed
spin-dependent mass shifts in the glueball spectrum [783].
These shifts are very large when common model parameters
are used, giving glueball masses of m(0++) = 100 MeV,

Table 3 Diquark quantum
numbers

J P Color Flavor

0+ 3̄ 3̄

1+ 3̄ 6

0− 3̄ 6

1− 3̄ 3̄

m(0−+) = 400 MeV, and m(2++) = 1300 MeV, all of
which are in strong disagreement with modern lattice values
[780].

Studies of hybrid (qq̄g) mesons originated in the MIT bag
model [784] only a few years after the advent of both QCD
and bag models, thereby raising interest in these novel states
and highlighting the unusual (“exotic”) quantum numbers
that are available to these systems. Early computations in the
MIT bag model worked to first order and focussed on light
hybrid mesons [785,786], obtaining, for example, a J PC =
1−+ light hybrid mass of 1300 MeV [787].

Problems with complexity and fidelity have caused bag
models to largely fall out of favor as descriptions of hadrons.
They do, however, continue to find applications in models of
strongly interacting matter or other complex hadronic sys-
tems.

5.1.4 Diquark models

Two quarks in a baryon experience a (perturbative) mutual
attraction that is one half of the strength of that between a
quark and an antiquark in a meson. If the third quark is iso-
lated in some sense, it is fruitful to consider this quark–quark
state as a compact object, called a diquark. More generally, a
diquark is any system of two quarks considered collectively.
The idea is already mentioned by Gell-Mann in 1964 [17]
and was introduced in Refs. [789] and [790] as a way to
reduce three-body dynamics to the computationally simpler
two-body dynamics.

In general a pair of quarks, denoted [qq] in the follow-
ing, can form 3̄ and 6 color states, with the former being
antisymmetric and the latter being symmetric under quark
interchange. Because a pair of quarks in the 6 representa-
tion has a (perturbative) repulsive interaction ( +αS/(6r)),
diquarks are only considered in the 3̄ representation. In this
case, possible quantum numbers for [qq ′] are as listed in
Table 3. The first two of these entries are often called “good”
and “bad” diquarks respectively [788].

An early application of diquarks was to the description of
light baryons [791]. The primary effect is a reduction in the
number of degrees of freedom compared to a “symmetric”
quark model, with commensurate decrease in the complexity
of the excitation spectrum. For example, a symmetric quark
model will feature orbital excitations in two relative coordi-
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Fig. 72 a Quark content of a diquark–antidiquark nonet. b Mass levels of ideally mixed qq̄ nonet and diquark–antidiquark nonet. c Light scalar
mesons. The shaded region indicates large widths. Figure from Ref. [788]

nates (often taken to be the Jacobi coordinates �ρ and �λ) while
a quark–diquark bound state can only have orbital excitations
in a single relative coordinate. Recent progress in the field
is telling us that this simple diagnostic is incompatible with
our knowledge of the excited baryon spectrum: one degree
of freedom is not sufficient to explain the richness of of the
spectrum of light-quark baryons (see Sect. 9.2).

Light baryons do experience flavor-dependent correla-
tions, which might be attributed to diquarks. For example,
a neutron will have a negative charge radius because the d
quarks are in a spin-one state and are repelled via the hyper-
fine interaction, leaving the positive u quark in the center (on
average). Similarly, diquark overlaps (denoted by I ) affect
static observables like the ratio of magnetic moments and the
ratio of axial and vector couplings:

μp

μn
= −4+ 5I

2+ 4I
,

∣
∣
∣
∣
GA

GV

∣
∣
∣
∣ =

2+ 3I

2+ I
. (5.2)

Unfortunately, the additional freedom (represented by I )
does not permit a simultaneous fit to the experimental values
of − 1.46 and 1.25, respectively [791].

At a more formal level, the similarity of light quarks makes
it difficult to separate one quark from the other two. In the
extreme case of identical quarks, antisymmetrization of the
state implies that such a separation is not feasible. This was
noted long ago by Lichtenberg [792], who suggested includ-
ing exchange forces to accommodate transitions of the form
q[qq] → [qq]q. Of course this implies that the diquark can
no longer be thought of a simple quasiparticle, but is rather
something with internal structure that can be modified and
excited.

Perhaps the most famous application of light diquarks is
a model of the scalar mesons. In the 1970s Jaffe noted that a

good diquark and a good antidiquark naturally make a scalar
nonet of states, as shown in Fig. 72a. This nonet forms a
spectrum as shown in panel (b) with counting that contrasts
strongly with the “normal” qq̄ scheme, shown at the top of
panel (b). Remarkably this scheme agrees with the observed
spectrum, as shown in panel (c) [788]. This ostensibly simple
observation has a long and somewhat controversial history, as
general acceptance of the existence of the light scalar mesons
f0(600) and κ has waxed and waned over the years.

More recently, the diquark simplification has been applied
to Bethe–Salpeter approaches to the baryon spectrum with
some success [793]. The concept has also found support
in lattice computations that see evidence for the good light
diquark [794].

The discovery of the X (3872) prompted a surge in mod-
elling of exotic hadronics, and led to renewed interest in
diquarks. A prominent model, due to Maiani and collabo-
rators [795], advocated that the X (3872) is a J P = 1+ dou-
ble diquark state with composition [cq]1[c̄q̄]0 + [cq]0[c̄q̄]1.
This assignment sets the mass of the open charm diquark,
m[cq] = 1933 MeV, and implies a rich spectrum of exotic
states. A novel prediction of the model is that two neutral
vector exotic states should exist with a mass difference of
approximately 8 MeV. Focussing on flavor quantum num-
bers, these are mixtures of [cu][c̄ū] and [cd][c̄d̄]. Amongst
others, scalar states are predicted at 3723 MeV and 3832
MeV. In spite of the explanatory power of the model, and
reasonable agreement with properties of the X (3872), none
of these additional states have been observed. (For a complete
discussion of this issue, see Sect. 8.5.2.)

Notwithstanding the checkered history of the diquark
model, it must become relevant as quark masses become
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much greater than the QCD scale, Λ. In this case the quarks
will sit deeply in a Coulombic well, are compact, and are
described well by perturbative gluon exchange. It is widely
believed that bottom quarks are sufficiently heavy for these
phenomena to occur. If a pair of bottom quarks forms a hadron
with light degrees of freedom (such as light quarks or glu-
ons), then it is reasonable to model the bottom quarks as a
[bb] diquark, and this expectation becomes rigorous as the
heavy quark mass becomes very large.

A consequence of this concerns spin splittings in heavy-
light mesons and baryons, as first observed by Savage and
Wise [796]. In the following Q represents a quark with mass
larger than the QCD scale, Λ (thus b, c), while q represents
a quark with mass much less than Λ. The latter then refers to
u and d quarks. The strange quark is ambiguous in this clas-
sification, and is sometimes grouped with the light quarks,
and sometimes with heavy quarks. In practice heavy quark
symmetries only become clear at the bottom mass and higher,
while light quark (chiral) symmetry applies well to u and d
quarks, and fairly well to s quarks.

Heavy quark spin degrees of freedom interact via their
color dipole moments, which permits relating spin splittings
in QQq baryons and Q̄′q states, with a relationship given by

mΣ∗(Q) − mΣ(Q) = 3

2

mQ′

mQ

(
αS(mQ)

αS(mQ′)

)9/33−2n f

× (
mV (Q′) − mP(Q′)

)
. (5.3)

Here V and P refer to vector and pseudoscalar mesons,
while Σ∗ and Σ refer to ground state and spin-excited QQq
baryons.

A slightly more model-dependent application establishes
that the heavy J P = 1+ udb̄b̄ tetraquark state must be
strongly bound. The argument relies on the spin splittings,
Σb − Λb and Ξ ′

b − Ξb, which indicate that the (3̄F , 0, 3̄c)
light diquark lies approximately 100 MeV below the spin-
averaged light diquark mass. This diquark interacts with a
b meson with quantum numbers (1F ,

1
2 , 3c) to produce the

relevant baryons. As argued above, and verified by small
B∗ − B and Σ∗

b − Σb mass splittings, the heavy (di)quark
spin must decouple from the light degrees of freedom. Thus
a light diquark has a similar mass when coupled to a heavy
[b̄b̄] diquark. Since the heavy diquark has quantum numbers
(3F , 0, 3c), the [ud][b̄b̄] tetraquark has quantum numbers
I = 0, 1/2 and J P = 1+. Recent lattice field theory com-
putations have proven these expectations correct [797].

Diquarks continue to find application in a variety of
areas: reducing the daunting complexity that arises in Bethe–
Salpeter equations for many-quark systems, Sect. 5.2, the
operator-product expansion, Sect. 5.7, instanton vacuum
modelling, Sect. 5.11, heavy quark effective field theory,
Sect. 6.1, models of quark matter, Sect. 7.2, tetraquark mod-

els, Sect. 8.5, baryons, Sects. 9.1, 9.2, 9.4, and models of
hadronization, Sect. 11.4.

5.1.5 Current developments

The advent of new theoretical tools and the discovery of
many novel hadrons have fueled the continued development
of the constituent quark model. Amongst the latter are the
X (3872) that strongly hints at qqq̄q̄ structure and the impor-
tance of coupling mesons to the meson–meson continuum.
Strong evidence for states consisting of qqqqq̄ , called “pen-
taquarks”, also exists. At the same time, the maturation of
lattice field theory has permitted the theoretical exploration
of many nonperturbative hadronic properties and novel states
involving glue, such as glueballs and hybrids. Such stud-
ies also inform the development of refined quark models
that are capable of describing an ever greater range of phe-
nomena. The development of effective field theory and its
application to hadronic physics has also greatly expanded
and strengthened the base upon which quark models are
developed. Finally, field-theoretic nonperturbative methods,
such as those based on the Schwinger–Dyson and Bethe–
Salpeter methods, have served to expand the understanding
and purview of quark models.

These new tools have helped to clarify several longstand-
ing issues in the field. For example, it is well-known that the
pion is anomalously light because it is the pseudo-Goldstone
boson of QCD, reflecting the (broken) near chiral symmetry
of the theory. Alternatively, the pion is light in quark models
because the hyperfine interaction drives its mass well below
that of the rho meson. The size of this mass splitting is infinite
according to the one gluon exchange interaction (because it
is proportional to δ(r))! In practice the hyperfine operator
is smeared, which introduces a smearing parameter that can
be fit to obtain the pion mass. This is hardly a satisfactory
situation! In spite of this, Isgur has argued that the smooth
evolution of hyperfine splitting from bottomonium to light
quarks (Fig. 73) is a sign that the formalism is correct [798].
How these views can be made consistent is demonstrated in
a specific model in Ref. [799], wherein it is shown how chi-
ral symmetry breaking induced by a nontrivial vacuum and
an effective hyperfine interaction mesh in a smooth fashion.
Further insight is gained from the Schwinger–Dyson formal-
ism, which convincingly demonstrates that chiral symmetry
breaking gives rise to both a light pion and a dynamical quark
mass that can be interpreted as the constituent quark [800].

Recent results from the lattice and other theoretical anal-
yses indicate that long-held notions are likely incorrect. For
example, scalar confinement cannot be correct–it has been
known since the 1980s that a confining scalar qq̄ interac-
tion implies an anti-confining qqq interaction because of
the lack of an antiquark line. (This disaster was avoided in,
for example, the Godfrey–Isgur and Capstick–Isgur mod-

123



Eur. Phys. J. C          (2023) 83:1125 Page 111 of 636  1125 

Fig. 73 “A graphic illustration of the universality of meson dynamics”.
Figure taken from the original [798]

els by simply applying an extra sign.) The problem appears
again in attempts at inducing chiral symmetry breaking in
model field theories, where it is learned that scalar confine-
ment interactions do not lead to a stable BCS-like vacuum
[801]. In fact, it is not clear at all that the long range quark
interaction need be described by a two-body interaction of
the sort given above; QCD is much more complicated than
this simple model [802].

Recent computations in lattice field theory have essen-
tially settled the matter. This work relies on the model-
independent expansion of the quark interaction in terms
of nonperturbative matrix elements of gluonic operators
[802,803], which are evaluated numerically. The results dis-
agree strongly with an assumed scalar long range interac-
tion. They do agree in large part with a Dirac vector interac-
tion, with the exceptions that the hyperfine interaction resem-
bles a smeared delta function and the spin orbit interactions
have effective string tensions that are reduced by a factor of
approximately 77% [804]. The picture emerging is that per-
turbative gluon exchange dominates the interaction at very
short distances (less than 0.1 fm) and an effective vector-
like interaction dominates at intermediate ranges. At long
range (greater than 1 fm), one must saturate gluon exchange
with a sum over hybrid intermediate states. This brings in
the nonperturbative matrix elements of chromoelectric and
chromomagnetic fields (mentioned above) that give rise to the
nontrivial structure seen in lattice field theory. It is somewhat
ironic that early enthusiasm for perturbative gluon exchange
has evolved in this fashion!

Other quark model lore from the 1980s has been swept
away in a similar fashion. For example, the Godfrey–Isgur
computation of meson decay to γ γ employed a perturbative
amplitude with a “mock meson” correction factor involving
the meson mass. More sophisticated computations, where the
amplitude is computed with relativistic quark currents and a
sum over intermediate states is made, reveal good agreement
with data and no need for artificial factors [805].

Fig. 74 “The adiabatic potentials of the flux tube model (a) and of the
�Fi · �Fj potential model (b) for two qqq̄q̄ geometries.” Figure taken
from the original [798]

5.1.6 Open problems

One of the major goals in modern quark modelling is incor-
porating the effects of nonperturbative gluonic degrees of
freedom, which, of course, permits modelling glueballs and
hybrid hadrons. Outright guesses from the past have been
superseded by a body of lattice explorations of gluonic prop-
erties. Among these are the spectrum of adiabatic gluonic
excitations [414,806], the gluelump (bound states of gluons
and a static adjoint color source) spectrum [410,807–809],
and properties of charmonium hybrids [810–812]. Of partic-
ular interest is the confirmation that the heavy quark multiplet
structure anticipated in Ref. [414] is reflected in the charmo-
nium spectrum [810]. It is interesting, and very suggestive,
that this multiplet structure can be reproduced by degrees of
freedom consisting of a quark, an antiquark, and an effec-
tive axial gluon with quantum numbers J PC = 1+− [527],
pointing the way to possible future models.

The advent of compelling experimental evidence for tetra-
and pentaquark states has heightened interest in modelling
multiquark hadrons. This is an old field, which in the past suf-
fered from sufficiently poor computations that Isgur dubbed
it the “multiquark fiasco” [798]. Many technical problems
were present in these calculations, but the chief physics prob-
lem is the nature of the quark interaction when more than
three quarks are present. The issue, for example, is that a
qqq̄q̄ can separate into two meson–meson channels and that
the gluonic degrees of freedom should experience adiabatic
surface crossing when transitioning between these configu-
rations (see Fig. 74). Thus new gluonic interactions are nec-
essarily introduced in multiquark states. Of course, one could
always model these as a sum of two-body interactions with
a perturbative color structure, but this seems unlikely to be
viable. A widely accepted model of multiquark gluodynam-
ics does not exist yet, and is urgently needed.

Multiquark states necessarily couple to systems of mesons
and baryons, which makes it incumbent on modellers to
understand the effects of coupled channels on hadronic prop-
erties. This requires knowing the effective quark pair opera-
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tor. A common model, dating to 1969, has already been men-
tioned [767], but this can surely be improved. As a result,
existing models of Fock sector mixing remain speculative.
The problem is not amenable to effective field theory, so
progress will likely rely on input from lattice field theory.
Progress is urgent since channel coupling effects are expected
to be important in many sectors of the spectrum, including
the perpetually enigmatic light scalars mesons, and all states
near thresholds, such as the X (3872), the Pc pentaquarks,
and the Zc and Zb states.

It is perhaps a surprise that a model dating back nearly
60 years remains an active field of research. Such are the mys-
teries of QCD. On thing is certain: the quark model remains
the de facto standard by which hadrons are interpreted.

5.2 DS/BS equations

Franz Gross and Pieter Maris

5.2.1 Introduction

In this section we look at two closely related approaches
to treating the strong interactions that existed before 1972,
and remained very useful, even after the onset of QCD.
One of these originated with papers by Dyson (1949) [813]
and Schwinger (1951) [814,815], referred to as the Dyson–
Schwinger equations (DSEs), and the second is the well
known Bethe–Salpeter equation (BSE) [816], introduced in
1951.14

In general, the DSEs form an infinite set of coupled inte-
gral equations for the Green’s functionsGn of a quantum field
theory.15 These equations are exact, but in practical calcula-
tions this set has to be truncated. The equations can be derived
formally from the matrix elements of the Lagrangian density
(as was done in the original papers), or in the path-integral
formalism using functional derivatives [823], but Feynman
diagrams can be used to provide a simple, pictorial way to
understand them. Using QED as an example,16 Fig. 75 shows
the exact DSEs needed to describe the self-energy of each
fermion, and the dressed ψ iγ

μψi Aμ vertex Γ
μ
i .

The fermion–antifermion scattering amplitude G4 of the
two different fermions can be written as a series of interac-
tions shown in the upper line of Fig. 76. Here the kernel K
is the sum of irreducible contributions to the off-shell scat-
tering (i.e.diagrams that cannot be reduced by drawing an

14 Although the BSE can be used to describe scattering, this seminal
paper was entitled A relativistic equation for bound state problems,
particularly serendipitous for applications to QCD, where all physical
states are bound states of quarks, antiquarks and gluons.
15 For recent reviews of the DSEs in the context of QCD and hadron
physics, see Refs. [800,817–822]
16 When applied to QCD, with the photon replaced by a gluon, addi-
tional terms, such as the 3-gluon vertex, must be added.

Fig. 75 Top row: The exact DSE for the inverse dressed fermion prop-
agator (in the dotted box), and its approximation to 4th order in QED.
Bottom row: two versions of the exact DSE for the dressed QED vertex
Γμ (green diamond): Diagram (A) in terms of the qq̄ irreducible kernel
K , and (B) in terms of the full scattering amplitude G4. The thick green
(dashed red) lines are the fermion (photon), solid green (red) circles are
the fermion (photon) self energies so that a fully dressed propagator is
a green (red) line with a green (red) circle; and small red dots label the
point coupling γμ and have no structure (renormalization constants are
ignored here)

Fig. 76 Diagrammatic representation of the BSE propagator for two
unequal mass particles m1 > m2. The first line represents the iteration
of an irreducible kernelK, which is summed by the BSE (first part of the
second line). If the propagator has a pole, then the BSE vertex function
satisfies the homogeneous BSE shown in the last line

internal line through the diagram that intersects only the two
fermions). The infinite series of iterations of the irreducible
diagrams (each referred to as reducible because it can be
cut into two pieces by an internal line which intersects only
the two particles), connected by dressed propagators, is then
summed by the equation shown on the left-hand side (LHS) of
the middle line. This is the DSE17 for the scattering amplitude
G4. If a bound state exists, it shows up as pole in this scat-
tering amplitude, as illustrated on the right-hand side (RHS)
of the second line in Fig. 76. The BSE for the Bound State
Amplitude (BSA) or vertex function,Γ (shown in the bottom
line), has the same kernel as G4. Figure 77 shows contribu-
tions to the QED kernel up to order g6. There is no known
way to sum these contributions in closed form.

The bound state BSE
As an example, the BSE for a q Q̄ bound state in QED is

17 For two particle scattering, DSE and BSE are used interchangeably.
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Fig. 77 Diagrammatic representation of the BSE kernel up to 6th order
in g. Diagram (2) is the dressed xbox diagram and diagrams (3) are
irreducible photon dressings of the box and xbox

ΓMB (p; P̂) =
∫

d4k

(2π)4 Ki j (p, k; P̂)OiχMB (k; P̂)O j

→ 4πα

∫
d4k

(2π)4 Dνμ(p, k; P̂)γ νχMB (k; P̂)γ μ, (5.4)

where χMB (k; P̂) is the BS wave function

χMB (k; P̂) = S2(k2)ΓMB (k; P̂)S1(k1), (5.5)

with Si (ki ) the dressed propagator for particle i and P̂2 =
M2

B . The first line is exact, with the kernel written in the gen-
eral form K = Ki jOi ⊗O j

18; the second line is the ladder
truncation with the kernel describing one photon exchange
only, so K → 4παDνμγ

ν ⊗ γ ν . Dirac indices have been
suppressed, and the four-momentum of the incoming Q is
p1 = p − (1− η)P̂ and of the outgoing q is p2 = p + η P̂ ,
reflecting the fact that the total momentum P̂ is conserved
in relativistic equations. The physical observables do not
depend on the choice of η, and the natural choice for mesons
with equal-mass constituents (like a pion) is η = 1

2 . The
canonical normalization condition for the BSE bound state
vertex function can be derived directly from the inhomoge-
neous BSE (see e.g. Refs. [823,824]).

Very soon after the BSE was introduced, Wick [825]
showed that the equation could be transformed from
Minkowski space to Euclidean space by rotating the time
component to the imaginary axis {t, r} → {iτ, r} (now
referred to as a Wick rotation). Building on Wick’s results,
Cutkosky [826] found all the exact solutions to the bound
state BSE in ladder truncation for a scalar theory of the
χ2φ type where the exchange particle φ is massless. The
solutions are symmetric under the O(4) symmetry group,
and hence have the same degeneracy as the nonrelativistic
hydrogen atom. Some of the solutions correspond to excita-
tions in the time direction that have no nonrelativistic ana-
logues. Furthermore, these solutions have a negative norm (at
least in QED and QCD), and are therefore unphysical. As far
as we know, no other analytic solutions have been found, but
in the last 25 years accurate solutions of the BSE in ladder

18 Each of the operators Oi describes the structure of the dressed ver-
tices, including possibilities like those illustrated in diagrams (2) and
(3) of Fig. 77.

truncation have been obtained numerically for both scalar
and fermionic systems, discussed below.

Several facts about the BSE are sometimes overlooked:

• The equation shown in Fig. 76 is exact, but only if the
exact kernel and self energies are known.

• All applications of the BSE are therefore approximations
using an approximate kernel and self-energies.

• In addition to Eq. (5.4), which is a homogeneous equa-
tion, there is also a canonical normalization condition for
the BSA; one should not normalize the BSA to just any
seemingly convenient observable.

Methods to solve the BSE in Minkowski metric
Due to the presence of poles in both the constituent propaga-
tors and in the kernel (coming from the exchanged bosons),
it is highly nontrivial to solve the BSE numerically in
Minkowski metric, even in ladder truncation. There are two
methods to investigate the BSE directly in Minkowski met-
ric, both dating back to the late 60s: the Covariant Spectator
Theory (CST) which we discuss in Sect. 5.2.2, and use of the
Nakanishi representation (also known as Perturbation The-
ory Integral Representation) [827].

The Nakanishi representation for the BSA is a spectral
representation in which the singularities that arise from the
poles in the propagators are isolated, allowing the BSE to be
reduced to an integral equation for the (non singular) spec-
tral function. This has been done initially for scalar field the-
ory [828], and subsequently for fermion–antifermion bound
states [829–831]. The obtained BSAs have been bench-
marked against direct numerical solutions of the ladder BSE
for Euclidean (spacelike) relative momenta.

Recently, the scalar BSE in ladder truncation has also
been investigated in Minkowski metric by starting in the
Euclidean formulation and rotating the p4 axis to i p0 (i.e.
undoing the Wick rotation numerically) [832], and by using
contour deformations in order to avoid singularities [833].
These methods give, within numerical precision, the same
results for the BSA in the timelike region as the Nakanishi
representation.

Connection to the light-front wavefunction
The use of the light-front (LF, first referred to as the infi-
nite momentum frame) was introduced by Weinberg in 1966
[834], and the technique was developed very extensively in
the 1980s by Lepage and Brodsky [226] and many others.
It is now a standard method for describing the structure of
hadrons and calculating a range of observables. Application
of this technique will be extensively discussed in Sect. 5.3.
Use of the LF is not manifestly rotationally invariant, but this
can be handled by imposing the so-called angular conditions;
see, for example, Ref. [835].

The LF wave function can be obtained from χ(p; P) by
integrating over p− = p0 − p3, leaving p0 + p3 ≡ x P+
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and p⊥ = {px , py} as independent variables. It turns out that
the LF wave function, ψ(x, p⊥), is only nonzero for 0 <

x < 1, and vanishes outside this range, even though p+ runs
from minus infinity to plus infinity. This has been confirmed
numerically for scalar theories in ladder truncation.

Instead of solving the BSE in Minkowski metric, and then
projecting onto the light-front, one can also reconstruct the
LF wave function (or e.g. parton distributions) from their
moments, which can be evaluated directly from the BS wave
function [836–838]. One caveat to keep in mind is that the
BSE is typically solved in covariant gauges; the most com-
monly used gauge in the literature is the Landau gauge,
though other gauges such as Feynman gauge are also used.
On the other hand, the LF wave function is usually investi-
gated in LF gauge.19 This makes it nontrivial to compare LF
wave functions obtained from the explicitly covariant BSE
to LF wavefunctions obtained within a LF approach.

5.2.2 The covariant spectator theory (CST)

The CST, which is related, but not identical, to the BSE, can
be obtained from the BSE if the internal loop energy is eval-
uated keeping only the pole contribution from the heaviest
particle [839].20 If m+ = m1 > m2 = m−, η = 1

2 , treating
particle 1 as outgoing, and working in the rest frame where
P = {W, 0}, then p1 = 1

2 P − p, and the one-channel CST
equation can be obtained from (5.4) using the prescription21

Γ (p; P) = −i
∫

d4k

(2π)4

F(p, k; P)

d+(k)d−(k)

→
∫

d3k

(2π)32E+k

[
F(p, k̂; P)

δ2
m +W (2E+k −W )

]

, (5.6)

where d±(k) = m2± − (k∓ 1
2 P)2 − iε, F is any covariant

function, k̂1 = 1
2W − k̂ = {E+k ,k}, (E+k )2 = m2+ + k2,

so that (̂k+)2 = m2+, and δ2
m = m2− − m2+. The CST equa-

tion is covariant in three dimensional space, and, unlike the
LF, is rotationally invariant. The major motivation for the
use of CST equations is that they have a smooth nonrela-
tivistic limit, and in a few cases their ladder approximation
is more accurate than the ladder approximation to the BSE.
Their major disadvantage is that their kernels can be singular,
and the treatment of these introduces an additional level of
phenomenology (see below).

In scalar field theories when m1 →∞, it has been shown
that the sum of all ladders and crossed ladders (the general-

19 For further discussion of the LF calculations and an explanation of
the LF gauge see Sect. 5.3.
20 This is sometimes referred to as “restricting the particle to its mass
shell.”
21 With our choice of momenta, this is obtained by closing the k0 con-
tour in the upper half plane and keeping only the positive energy pole
of particle 1, at k0 = 1

2W − E+k .

ized ladder sum) is given by the solution of the CST equation
with only the one-boson-exchange (OBE) kernel (see Refs.
[824] and [839]).22 This is referred to as the cancellation
theorem.

While the complete cancellation holds only in an excep-
tional case, partial cancellations occur for other cases. Using
the Feynman–Schwinger representation [840], it is possi-
ble to calculate the exact result for the generalized ladder
sum without vertex or self-energy corrections. For scalar
theories where m1 = m2 �= ∞ and the exchanged mass
μ = 0.15m [841], the BSE in ladder approximation gives
only about one-quarter of the correct binding energy (at large
coupling), while the one-channel CST equation, also in lad-
der approximation, gives a little more that half the correct
result. The OBE approximation in the light-front approach
gives the same result as the BSE in ladder approximation
[842].23 Another approach, the equal-time (ET) favored by
Tjon [844] is slightly better than the CST, but only the CST (to
our knowledge) uses the same two-body scattering amplitude
in both the two-body and three-body systems. In a later paper
[845], it was shown that the contributions of all self-energies
and vertex corrections for scalar QED are very small, so that
in this case the generalized ladders dominate (and are well
approximated by the CST and ET). These remarkable results
apply only to scalar theories, so the main justification for the
use of the CST must rest on its simple nonrelativistic limit.

It turns out that the one-body CST prescription (5.6) must
be generalized if it is to be used for all cases including m− =
m+ and W → 0. To treat these limits successfully, all four
k0 poles from the two fermion propagators must be included.
There are two poles in the upper half k0 plane (r = −) and
two in the lower half (r = +), and if s = ± denotes the
poles from particles m±, then they can all be denoted by
ks0r = r Es

k + 1
2 sW − irε. Since the contour can be closed

in either half plane (but not both), we average over the two
choices. This gives the new prescription

Γ (p; P)→ 1

2

∑

s,r

∫
d3k

(2π)32Es
k

[
F(p, k̂sr ; P)

sδ2
m −W (2rsEs

k +W )

]

,

(5.7)

where k̂sr = {ks0r ,k} with (E±k )2 = m2± + k2.
The sum on the RHS of this equation has four terms, and

substituting the four values p→ p̂sr into the LHS gives four
coupled equations.24 As discussed above, only one channel

22 In other words, when m1 → ∞, the CST in OBE approximation
gives the same result as the BSE for a kernel containing all irreducible
crossed ladders.
23 This is not true for three-body systems, due to contributions with two
(or more) exchange bosons in flight, which are included in the ladder
BSE, but not in the OBE approximation on the light-front [843].
24 This should be considered the correct form for the CST in all cases,
but often some of the channels can be ignored.
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is needed when m+ →∞. When the particles are identical,
symmetry under interchange requires that the equation trans-
form into itself when p1 ↔ p2, or k1 ↔ k2, and looking at
ks0r shows that this requires (if P is not small) at least the
channels where {r, s} = {+,+} and {−.−}, so that rs = +
in both cases. Looking at (5.7), it is clear that it is symmet-
ric under this transformation, remembering that for identical
particles, δ2

m = 0 and E+k = E−k . Finally, when W is small,
there will be a singularity at W = 0 unless all four channels
are kept.

Unfortunately, when a OBE kernel connects a channel
with particle 1 on-shell to a channel with particle 2 on-shell,
the kernel will develop singularities. These are discussed in
detail in Ref. [846], but the preferred way to remove them
was only developed recently.25

Nuclear physics applications of the CST
The two-channel CST has been used to give a high preci-
sion fit to the np scattering data below 350 MeV (χ2 = 1.12
using only 15 parameters [846]), to explain the deuteron form
factors (giving a quadrupole moment within 1% of its exper-
imental value [848]), and to study the three nucleon system.
All of these studies were done with two models. The simplest
and most successful one uses a covariant OBE kernel con-
sisting of the exchange of 6 mesons: π , η, σ0 and σ1 (scalar
mesons with isospin 0 and 1), and ρ and ω. An interesting
feature of these OBE models is that they include an off-shell
coupling for the σ mesons of the form

Λσ (p, k) = gσ − νσ

[
1− /p + /k

2m

]
, (5.8)

where the term proportional to νσ will give zero when the
nucleons are on shell (with /p → m ← /k). As it turns out
(see below), this off-shell coupling is very important to the
success of the model.

In the early days before the advent of QCD and powerful
computers, the study of three nucleon systems posed special
problems. The Alt–Grassberger–Sandhas equations [849],
developed in 1967, introduced a systematic procedure for
finding the solutions of n-body problems from the solution
of the n − 1 body problem. Examples of early papers work-
ing directly with the the three nucleon equation are found in
Ref. [850], which presents solutions with realistic potentials,
and Ref. [851], which solves the 3-body BSE with separable
kernels.

The three-body CST equation given in Ref. [853] was
used to compute the triton binding energy [854], and the
three-nucleon form factor [855,856]. During these studies a
remarkable discovery was made: the best fits to the np data

25 FG: These singularities troubled me for years. They are integrable,
giving finite results, but only with the method described in Ref. [847]
do I feel the problem is fully under theoretical control.

Fig. 78 The red line (left-hand scale) shows how χ2 varies with νσ ,
with the best fit at νσ � −2.6. The blue line (right-hand scale) shows
the (linear) variation of the triton binding energy with νσ , with the best
fit also at νσ � −2.6. (From Ref. [852].)

require νσ �= 0,26 and the same value of νσ also gives the
best fit to the triton binding energy! This shows that three
body-forces are not needed to explain this observable. This
discovery, first found in 1996 [854], is shown with the latest
(and best) fits in Fig. 78. It is a robust result that has continued
to hold as the fits were improved, and is still not understood.

Meson spectrum in the CST
In the CST treatment, mesons are qq bound states with one
quark confined to its mass-shell. States like the ρ, where
mρ > 2mq , could have both the quark and anti-quark on-shell
at the same time unless the interaction forbids it. Fortunately,
the structure of the CST equations permits an attractive rela-
tivistic generalization of linear confinement. This definition
of confinement was first introduced in 1991 [857], and in
1999 it was shown explicitly that the confining interaction
does indeed guarantee that meson vertex functions are zero
when both quark and antiquark are on shell [858]. Subse-
quently, an improved definition [859] was found. For any
smooth S-state function φ(p) the action of the linear con-
finement kernel is
〈
VLφ

〉
(p1) = −

∫

k

m

Ek

8πσ [φ(̂k1)− φ( p̂R)]
(p1 − k̂1)4

(5.9)

where the spin dependence, and the form factors that pro-
vide convergence at large momenta have been omitted, σ is
the string tension, p1 and k̂1 are the momenta of particle 1,
k̂2

1 = m2
1 is on-shell, and p̂R is chosen to reduce the singu-

26 FG: Originally we (Stadler and I) tried to fit the np data without the
off-shell coupling, and got the very high χ2 that an extrapolation of
the curve shown in Fig. 78 suggests. Only after a frantic attempt to do
better did we discover the importance of νσ . Later, we were surprised
to realize that the same mechanism also gave the correct triton binding
energy.
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Fig. 79 The form factor of a bound state (meson or deuteron). Left
panel: the four diagrams that give the lowest anomalous thresholds for
the dispersion integrals, with dispersion cuts shown by the dashed lines.
Note the multiple spectators on shell. The dashed red line represents the
exchanged particles that bind the state. Right panel: diagram showing
the triangle (or impulse) contribution expressed in terms of the BS vertex
function Γ and dressed current (large red dot), needed to ensure gauge
invariance (only in a CST calculation is the spectator on-shell)

larity at (p1 − k̂1)
4 = 0 to an integrable principal value (for

details see Ref. [859]). Extension of this definition to states
with non-zero angular momentum is discussed in Ref. [860].
Using this confining kernel, together with a phenomenologi-
cal constant plus a one-gluon-exchange (OGE) contribution
in a 1-channel CST equation, gives a good account of the
spectrum of heavy-heavy and heavy-light mesons [861,862],
as shown in Fig. 88.27 The 4-channel CST equation also
provides a good description of the pion consistent with the
axial-vector Ward–Takahashi identity (AV-WTI) [859].

The origin of the CST – FG
My involvement with this subject began in 1960 when nucle-
ons and pions were thought to be fundamental particles and
S-matrix theory was believed to be the best way to tackle the
strong interactions. For my Ph.D. it was suggested that I look
at the deuteron electromagnetic form factor. The upshot of
my study lead to the realization that the form factor was dom-
inated by a large number of meson-exchange processes, the
first four of which are shown in the left panel of Fig. 79,28 and
that these were best calculated by introducing a new equation

27 Since both the light front and CST are relativistic wave functions
depending on only three variables, it has long been thought that, perhaps,
they can be transformed into one other. The basis for such a comparison
might be based on a connection between one of the components of the
CST internal momentum (take pz for example) and the LF momentum
fraction x , and a good candidate is Ep + pz = yD0, where D0 is the
energy of the bound state, and y = x . This transformation suggests an
equivalence in some cases [863], but since 0 ≤ y ≤ ∞, it is clear that
y �= x . Our conclusion is that CST and LF wave functions seem to
describe the physics differently.
28 A novel feature of the dispersion integrals describing these processes
is the presence of anomalous thresholds starting at si < 4m2. The
imaginary part of the dispersion integral in the anomalous region (from
si to 4m2) is given entirely by the contributions from these diagrams
when the four-momentum of all the spectators are on shell. For diagram
Footnote 28 Continued

that would sum these contributions – the one-channel CST
equation.

If the internal propagators in the triangle diagram (right
panel of Fig. 79) are dressed by form factors, then the off-
shell nucleon current must also be dressed in order to ensure
gauge invariance.29

5.2.3 DSE for the quark propagator

We now turn to a discussion of the DSE for the quark propa-
gator. The exact equation for the quark propagator is shown
in the upper left-hand box in Fig. 75. In Euclidean metric
({γμ, γν} = 2δμν , γ †

μ = γμ and a · b = ∑4
i=1 aibi ) it is

given by

S(p)−1 = i � p Z2 + mq (μ) Z4

+ Z1 g
2
∫

d4k

(2π)4
Dμν(q) γμ

λi

2
S(k)

λi

2
Γν(k, p),

(5.10)

where Dμν(q = k − p) is the renormalized dressed gluon
propagator, and Γν(k, p) is the renormalized dressed quark–
gluon vertex. The solution of Eq. (5.10) can be written as

S(p) = 1

i /pA(p2)+ B(p2)
= Z(p2)

i /p + M(p2)
, (5.11)

renormalized according to S(p)−1 = i /p + mq(μ) at a suf-
ficiently large spacelike μ2, with mq(μ) the current quark
mass at the scale μ. For divergent integrals a translationally-
invariant regularization is necessary. Note that in the chiral
limit, the current quark massmq(μ) is absent from Eq. (5.10)
and there is no mass renormalization.

The most commonly used truncation is the rainbow trunca-
tion (analogous to the ladder truncation to the BSE discussed
above), in which the dressed gluon propagator and the quark–
gluon vertex are replaced by their bare counter-parts, with a
model effective running coupling

Z1g
2Dμν(q)γμ ⊗ Γν(k, p) → 4π αs(q

2) Dfree
μν (q)γμ ⊗ γν.

(5.12)

This truncation is the first term in a systematic expansion
[866,867]; furthermore, the preferred gauge for the fermion

(1) this threshold is at

s0 = M2
B

m2

(
4m2 − M2

B

)
� 16mε

where ε = 2m − MB is the binding energy [864]. For diagrams (2a)
and (2b), one additional spectator is on shell, and for diagram (3), two
additional spectators are on shell. The thresholds for these diagrams are
larger than s0 but still much less than the normal threshold of 4m2.
29 D. O. Riska and I constructed such a current [865], which is used in
all CST calculations. This current plays a role analogous to the BC or
CP currents discussed below.
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Fig. 80 Dynamical quark mass function M(p2) for spacelike
momenta: using the rainbow truncation with the Maris–Tandy
model [868] (top, adapted from [869]), and from quenched (N f = 0)
and unquenched (N f = 3 chiral quarks) DSEs using the CP vertex
[870], as well as results obtained with a bare quark–gluon vertex, com-
pared to quenched lattice data in the overlap [871] and Asqtad [872]
formulations (bottom, adapted from [873])

DSE is Landau gauge, which has the advantage that asymp-
totically, Z(p2)→ 1.

By choosing a suitable model for the effective running
coupling αs that reduces asymptotically to leading-order per-
turbation theory, realistic quark mass functions, as shown in
Fig. 80, are obtained. In particular, with a nonzero current
quark mass, the dynamical mass function behaves at large
p2 like

M(p2) � m̂
(
ln

[
p/ΛQCD

])γm , γm = 12

11Nc − 2N f
, (5.13)

with the anomalous mass dimension, γm , in agreement with
perturbation theory. In the chiral limit this model gives a
nontrivial solution for the mass function that falls off like a

power-law, modified by logarithmic corrections [874]

Mchiral(p
2) � 2π2γm

3

−〈q̄q〉0
p2

(
ln

[
p/ΛQCD

])1−γm
, (5.14)

with 〈q̄q〉0 the quark condensate, in agreement with the Oper-
ator Product Expansion [875].

Of course, quantitative details of the quark propagator
functions in the infrared region do depend on the trunca-
tion. The bottom panel of Fig. 80 shows the quark mass
function M(p2) of the quark propagator in the chiral limit,
obtained from the coupled quark, ghost, and gluon DSEs
using the Curtis-Pennington (CP) vertex30 suitably general-
ized for use in a non-Abelian QFT [870]. Qualitatively, these
results agree with the quark mass functions shown in the top
panel (both in the chiral limit, and with a nonzero current
quark mass), though quantitatively they clearly do depend
on both the details of the effective interaction and the vertex
Ansatz.

Do real quark mass poles exist?
Knowledge of the behavior of the quark propagator in the
complex momentum plane is necessary not only to solve the
BSE at the bound state mass pole, but also because of pos-
sible connections to confinement, the CST, and the LF wave
function. In QED, we know that real mass-poles must exist
on the time-like axis, but early DSE studies of the fermion
propagator in ladder truncation suggested the existence of
complex “mass-like” singularities instead of real mass-poles
at timelike momenta [877–879]. The absence of a mass-pole
in the fermion propagator on the timelike axis would prevent
the fermion from being on-shell, and could be an indica-
tion of confinement [880,881].31 More recently however, is
has been shown that, with proper regularization of poten-

30 The CP vertex [876] is a nonperturbative Ansatz for the electron–
photon vertex that satisfies the Ward–Takahashi Identity.
31 PM: My interest in the fermion DSE started with my Masters
research in the late 80s, with the question whether or not there was
a dynamical mass generation in (2+1)-dimensional QED. In addition to
dynamical chiral symmetry breaking, QED3 also exhibits confinement;
these two features make it an illustrative toy model for QCD. Consis-
tent treatment of the photon propagator turns out to be crucial in QED3:
in the quenched approximation (no fermion loops, and hence no vac-
uum polarization), there is a logarithmically rising potential between a
fermion and anti-fermion. This logarithmically confining potential per-
sist in the presence of massive fermion loops in the vacuum polarization,
but with massless fermions, this confining potential disappears. With
the coupled DSEs for the fermion and photon propagator, it was found
that there is a critical number of fermion flavors of about N f ∼ 3 to 4,
below which there is both dynamical mass generation and a confining
potential. Furthermore, it was found that in the presence of the loga-
rithmically confining potential, the fermion propagator exhibits a pair
of ‘mass-like’ singularities at complex conjugate momenta in the com-
plex momentum plane, whereas in the absence of this logarithmically
confining potential, the fermion propagator appears to have a real mass-
pole at timelike momenta, as one would expect based on perturbation
theory.
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tially divergent integrals (e.g. using Pauli–Villars), that at
least in weak-coupling quenched QED, the DSE for the elec-
tron propagator has the expected analytic structure, namely
a mass-pole in the timelike region. This was obtained both in
Feynman gauge and in Landau gauge; and using two inde-
pendent numerical methods, explicitly rotating the spacelike
region to the timelike region and using the Nakanishi formal-
ism [882].

In QCD however, quarks (and gluons) are confined, and
the quark propagator need not have a mass-pole at time-
like momenta. A convenient way to study this is to use the
Schwinger function, Δ(t), defined by

Δs,v(t) =
∫

d3x
∫

d4 p

(2π)4 e
i(tp4+�x · �p)σs,v(p2)

= 1

π

∫ ∞

0
dp4 cos(t p4)σs,v(p

2
4) ≥ 0 (5.15)

where σs,v(p2) is the scalar or vector part of the dressed
quark propagator,

S(p) = i /p σv(p
2)+ σs(p

2) . (5.16)

For a propagator with a real mass-pole in the timelike region,
this Schwinger function falls off like an exponential. In con-
trast, a propagator with a pair of complex-conjugate mass-
like singularities, the Schwinger function is not positive-
definite and exhibits an oscillatory behavior

Δ(t) ∼ e−a t cos(bt + δ). (5.17)

In Ref. [873] a striking qualitative difference between the
use of a bare quark–gluon vertex and the BC [883] or CP
vertex was found: with a bare vertex, the Schwinger function
behaves like a pair of complex-conjugate mass-like poles for
the quark propagator, whereas the results with the BC and
the CP vertex behave like a real mass-pole in the timelike
region. Qualitatively similar results were found employing
different models for the effective running coupling, including
(3+1) dimensional QED. The existence of a pair of complex-
conjugate mass-like singularities in the DSE solutions of the
dressed quark propagator in rainbow truncation was also con-
firmed by direct analytic continuation of the quark DSE into
the complex-momentum plane; the obtained real and imag-
inary parts of these singularities agree with those extracted
from the Schwinger function. Whether or not confinement
is realized through the absence of mass-like singularities on
the real timelike axis remains to be seen. Note that these
results are not inconsistent with the CST, which assumes the
existence of real quark mass poles.

5.2.4 Pions: Goldstone bosons of QCD

Pions, and to some extent also kaons, are the pseudo-
Goldstone bosons of QCD: in the chiral limit, mq = 0, chiral

symmetry is broken dynamically, which implies the existence
of massless Goldstone bosons. In the flavor SU(2) chiral
limit, there are three Goldstone bosons (three pions); and in
the flavor SU(3) chiral limit, there would be eight Goldstone
bosons. In the real world, the up, down, and strange quarks
are not massless, but have a small current quark masses; in
addition, one of the eight ‘would-be’ Goldstone bosons mixes
with the isoscalar pseudoscalar meson (which is massive due
to the axial anomaly) to form the η and η′. This explains
qualitatively why the three pions and four kaons are so much
lighter than all other mesons, among other things. Therefore,
in order to describe pions (and kaons), any truncation has
to respect all constraints coming from chiral symmetry. Fur-
thermore, it implies that the pion BSA is closely related to the
(dynamically generated) scalar part of the quark self-energy,
which can be made explicit by using the AV-WTI [884].

The axial-vector vertex Γ
μ

5 satisfies a DSE as illustrated
in the second row of Fig. 75, with an inhomogeneous term
γ 5γ μ. But even without solving the DSE, one can relate this
vertex directly to the dressed quark propagators via the AV-
WTI

PμΓ
μ

5 (p; P) = S−1(p2)γ5 + γ5S
−1(p1)

− 2mq(μ) Γ5(p; P), (5.18)

where Γ5(p; P) is the pseudoscalar vertex, which also sat-
isfies a DSE as shown in Fig. 75, with inhomogeneous term
γ 5. This can be compared to the more familiar vector WTI
for the quark–photon vertex (which satisfies the same DSE
with inhomogeneous term γ μ),

PμΓ
μ(p; P) = S−1(p2)− S−1(p1) (5.19)

which ensures electromagnetic current conservation.
Meson poles in the quark–antiquark scattering amplitude,

G4, also appear in these vertices, depending on their quan-
tum numbers. For the quark–photon vertex this automatically
leads to Vector Meson Dominance (VMD), a model for the
coupling of photons to hadrons that predates QCD [885] (see
below). In the case of the axial-vector vertex, near a pseu-
doscalar meson pole at P̂2 = −M2

PS, we have32

Γ
μ

5 (p; P) ≈ ΓPS(p; P̂)

P2 + M2
PS

Z2Nc

∫
d4k

(2π)4 Tr[χPS(k; P̂) γ5 γμ]

= ΓPS(p; P̂)

P2 + M2
PS

fPS P̂
μ (5.20)

with fPS the pseudoscalar decay constant, which governs the
coupling of a pseudoscalar meson to the axial-vector current.

Similarly, pseudoscalar mesons appear as poles in the
pseudoscalar vertex, and near P̂2 = −M2

PS this vertex

32 Remember we are using Euclidean metric here.
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behaves as

Γ5(p; P) ≈ ΓPS(p; P̂)

P2 + M2
PS

Z4Nc

∫
d4k

(2π)4 Tr[χPS(k; P̂) γ5]

= ΓPS(p; P̂)

P2 + M2
PS

rPS(μ) (5.21)

with rPS(μ) the (renormalization-scale dependent) residue in
the pseudoscalar channel. The AV-WTI relates the residues
at these poles

fPS M2
PS = −2mq(μ) rPS(μ), (5.22)

which holds for any pseudoscalar meson. Therefore, in the
chiral limit, mq(μ) = 0, either fPS or MPS must be zero. (If
they are both zero, chiral symmetry will not be dynamically
broken; see below.)

Furthermore, expanding the AV-WTI in powers of M2
PS

in the chiral limit, mq(μ) = 0, and using the most general
Dirac decomposition of ΓPS

33

ΓPS(k; P̂) = γ5
[
i E + /̂P F + /k G + σμν kμ P̂ν H

]
(5.23)

one finds, to leading order in MPS,

fPSE(p; 0) = B(p2) (5.24)

where B(p) is the scalar part of the quark self-energy.
Thus, if chiral symmetry is dynamically broken, that is, if

mq(μ) = 0 but B(p2) �= 0, fPS is nonzero, see Eq. (5.24),
and pions necessarily emerge as massless Goldstone bosons,
see Eq. (5.22). Furthermore, the pseudoscalar component of
the pion BSA is proportionally to the (dynamically gener-
ated) scalar self-energy of the quarks. In addition, the AV-
WTI implies that the decay constant of excited pions (which
necessarily have nonzero mass) has to vanish in the chiral
limit.

These relations are exact, and the asymptotic behavior of
the canonical pion BSA component can be obtained from the
asymptotic behavior of the mass functions shown in Fig. 80.
The same asymptotic behavior of the canonical BSA compo-
nent also holds with nonzero current quark masses; as well
as for excited pseudoscalar mesons.

Finally, with the definition of rPS implicitly given in
Eq. (5.21) and the relation (5.24), we arrive at the well-known
Gell-Mann–Oakes–Renner relation

f 2
π m2

π = 2mq(μ) 〈q̄q〉μchiral, (5.25)

with the chiral condensate

〈q̄q〉μchiral = Z4Nc

∫
d4k

(2π)4

4 Bchiral(k2)

k2A2(k2)+ B2
chiral(k

2)
. (5.26)

33 Here E , F , G, and H scalar functions of k2 and k · P̂; for equal-
mass mesons with η = 1

2 , the functions E , F , and H are even in k · P̂ ,
whereas G is odd in k · P̂ .

Note that the renormalization scale dependence of the cur-
rent quark mass, mq(μ), exactly cancels that of the chiral
condensate.

5.2.5 Mesons in rainbow-ladder (RL) truncation

Different types of mesons, such as pseudoscalar (pions,
kaons) or vector mesons (ρ, φ), are obtained by consider-
ing the most general Dirac and flavor (isospin) structure for
the meson of interest, and solving the BSE, Eq. (5.4), at the
bound state pole.34

To obtain practical solutions from the exact BSE, Eq. (5.4),
the kernel K must be truncated; furthermore, one needs to
approximate the dressed quark propagators. The most com-
monly used truncation is the ladder truncation, in which
the BSE kernel K in Eq. (5.4) is replaced by an one-gluon
exchange (or, in the case of QED, a one-photon exchange)

Ki j (p, k; P̂)Oi ⊗O j → 4π α(q2) Dfree
μν (q) λ

i

2 γμ ⊗ λi

2 γν,

(5.27)

with a model for the effective running coupling α(q2). Here
we use the ladder truncation, in combination with quark prop-
agators that are the solution of the DSE in rainbow truncation
– hence we refer to it as the Rainbow-Ladder (RL) truncation.

The resulting approximate BSE is solved numerically,
starting from the Euclidean metric, and analytically continu-
ing P̂2 to negative values while keeping the integration vari-
able Euclidean. This leads to complex momenta for the quark
propagators, which is trivial with bare constituent propaga-
tors; it is also well-defined and straightforward to implement
for (nonperturbatively) dressed propagators as long as there
are no singularities in either the (dressed) propagators or
the model for the effective interaction over a well-defined
domain in the complex momentum plane, depending on the
meson mass, choice of η, and choice of frame35 – though
one may have to solve the quark DSE numerically over this
domain.

In the previous section we showed in detail that the pion is
the Goldstone boson associated with chiral symmetry break-
ing; it becomes massless in the chiral limit; and its canonical
BSA component is given by the scalar self-energy of the
quark. The ladder truncation by itself, in combination with
bare propagators, does not preserve these features of the pion.

34 The bound state mass is not known a priori; therefore one has to
vary P̂2 until one finds a solution. This is most conveniently done by
introducing a fictitious eigenvalue λ in front of the LHS of Eq. (5.4) to
turn it into an eigenvalue problem, and search for a solution with λ = 1
by varying P̂2.
35 The BSA is frame independent, but in Euclidean metric, k·P is purely
imaginary in the restframe (remember P̂2 is negative), and becomes
generally complex in a moving frame. It has been shown that physical
observables are indeed frame independent by solving the BSE in RL
truncation explicitly in a moving frame [886].
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However, the RL truncation with consistent dressed quark
propagators does preserve the Goldstone nature of the pion,
which one can prove analytically using Eq. (5.18) and per-
forming a shift in integration variables.36

The RL truncation has been used extensively over the past
25 years, not only for pions, but also for other quantum num-
bers, and both for light systems, heavy systems, and heavy-
light systems. A commonly used model for the interaction
is the Maris–Tandy model [868]. This model is finite in the
infrared region, with sufficient strength for dynamical chi-
ral symmetry breaking, and agrees perfectly with pQCD for
q2 > 25 GeV2. The dynamical mass function of the up/down
quarks, strange quarks, and charm quarks were shown in
Fig. 80.

For the light pseudoscalar and vector mesons, consisting
of u, d, and s quarks, we find excellent agreement with the
experimental data, not only for the spectrum, but also for
the decay constants. For the charmed mesons (both charmo-
nium, and heavy-light systems) we also find agreement with
experiment, within our numerical precision which is domi-
nated by the need to solve the quark propagator over a large
domain in the complex momentum plane. Results for axial-
vector and scalar mesons are much less in agreement with
experiment, but it is known that leading-order corrections to
the RL truncation are significantly larger in the axial-vector
and scalar channels than in the pseudoscalar and vector chan-
nels. Furthermore, the scalar mesons are notoriously difficult
to describe, and are likely to have a significant 4-quark con-
tent (in particular the broad σ meson, if it can be called a
meson).

Meson form factors and scattering
With the BSA we can evaluate a range of other physical
observables. We have already mentioned the electroweak
decay constant, but more interesting are processes with three
external probes such as mesons and/or photons. Consider
the elastic form factor of a meson: the right panel of Fig. 79
shows the coupling of a photon to a meson in impulse approx-
imation. One can show analytically that if one considers the
dressed quark–photon vertex as the solution of its inhomoge-
neous BSE using the same RL kernel as for the quark prop-
agators and the meson BSE, current conservation is auto-
matically guaranteed. Another advantage of using such a
dressed quark–photon vertex, instead of a bare vertex, is
that vector meson poles will automatically appear as poles at
Q2 = −M2

V in the dressed vertex; thus, VMD is unambigu-
ously included in this approach [887].

A practical challenge is that at least one of the mesons
in Fig. 79 has to be in a moving frame. For small values
of Q2 one can use a Taylor expansion of the BSA in the

36 Hence the need for translationally-invariant regularization of poten-
tially divergent integrals – this is also necessary for ensuring current
conservation in electromagnetic interactions.

Fig. 81 Spacelike pion form factor: comparison between experiment
and a VMD model, DSE in RL truncation [869,887], and a recent LF
calculation [888]. For the experimental data, see Refs. [889,890] and
references therein

rest frame, but explicitly solving the BSE in a moving frame
greatly improves the accessible domain in Q2 and reduces
numerical uncertainties associated with e.g. a Taylor expan-
sion. Figure 81 shows the predictions from the Maris–Tandy
model in RL truncation for the pion elastic form factor, which
are in perfect agreement with the data. For comparison, we
also include a simple VMD model, as well as a recent LF
calculation [888] discussed in more detail in Sect. 5.3.

Similar diagrams can and have also been used for elec-
troweak transition form factors and the anomalous π0 → 2γ
process [891]. One finds generally good agreement with
experimental data, thanks to the fact that this approach sat-
isfies all constraints coming from electromagnetic current
conservation, chiral symmetry, and dynamical chiral symme-
try breaking; furthermore, it includes unambiguously VMD
effects, and it also agrees with perturbative QCD at large
momenta. This is not to say that there are no short-comings
in this approach: obviously there is physics beyond the RL
truncation that is important, some of which are discussed
below.

More challenging are scattering observables involving
four external mesons and/or electroweak probes. Based on
the success of describing form factors in impulse approxima-
tion, one might consider just the box diagram with dressed
vertices and propagators for such processes. However, it
turns out that this is insufficient, and does not reproduce the
expected results for e.g. ππ scattering or γ 3π coupling –
which are both constrained by chiral symmetry. For a con-
sistent description of scattering observables involving four
external probes, one needs to include the same RL kernel
inside the box diagram as well, resummed to all orders, as
indicated in Fig. 82. With these ladder diagrams added to
the box diagram, it has been shown explicitly that both the
anomalous γ 3π process [892] and ππ scattering [893] are
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Fig. 82 RL truncation for γ 3π consistent with chiral symmetry and
electromagnetic current conservations: quark propagators, vertices and
box-diagram all dressed with the same RL kernel (adapted from [892])

in perfect agreement with chiral symmetry and electromag-
netic current conservation. The same approach can in princi-
ple also be used for other processes, involving other mesons,
and it would be very interesting to extend this approach in
the future to e.g. Compton scattering on hadrons, as well as
pion–nucleon scattering.

5.2.6 Beyond the RL approximation

Over the past two decades significant progress has been made
in improving the RL truncation while preserving the relevant
vector and axial-vector WTIs [867,894,895]. Although the
details of these investigations differ, the general conclusion
is that corrections beyond RL are relatively small in the pseu-
doscalar and vector channels, but can be significantly larger
in the axial-vectors and scalar channels. This makes it under-
standable why the pseudoscalar and vector meson masses
and decay constants are in such good agreement with data,
but at the same time an accurate description of mesons with
other quantum numbers requires going beyond RL.

One of the more promising methods to go beyond the RL
truncation is based on the n-Particle Irreducible (n-PI) effec-
tive action, in particular the 2-PI and 3-PI effective action up
to 3 loops [822,896]. This generally leads to coupled integral
equations for the quark, gluon, and ghost propagators, the
quark–gluon vertex (and possibly other vertices), and possi-
bly higher n-point functions. Computationally, solving these
coupled sets of integral equations in multiple variables is
significantly more complicated and time consuming than the
RL truncation, but with current (and future) computational
resources, the resulting integral equations can be solved for
selected cases. The spectrum obtained for the light mesons
(including the axial-vector mesons) is in good agreement
with available data, see Fig. 83; the only obvious disagree-
ment is in the scalar channel, where pion loops play an impor-
tant role.

Higher Fock components
Although the RL truncation appears to be quite successful
for a range of meson observables, it has its limitations. Con-
sider the pion form factor: Fig. 81 shows this form factor in

Fig. 83 Light meson spectrum beyond RL truncation (Figure adapted
from [896])

Fig. 84 Pion form factor with pion loops in the timelike region (figure
adapted from [897])

the spacelike region, but we can also extend these calcula-
tions to the timelike region. In the timelike region, we find
a pole at Q2 = −M2

ρ ; exactly as one would expect, because
we already know that the homogeneous BSE for the vector
channel has a solution at P̂2 = −M2

ρ . However, this pole is
above the 2π threshold – in the real world, this pole is shifted
to the second Reimann sheet, and there is a resonance peak
with non-zero width at Q2 = −M2

ρ . Indeed, incorporating
pion loops in the dressed quark–photon vertex in the timelike
region changes the vector-meson pole to a resonance peak,
and the resulting form factor is in good agreement with the
data [897], see Fig. 84. Although the center of the peak is
slightly shifted compared to the data, the peak height and
width are in good agreement with the data in the timelike
region

Similarly, pion loops are likely to be important for the
scalar mesons, which can be included by incorporating con-
figurations with two quarks and two anti-quarks in the BSE.
This leads to a set of coupled equations between the usual
quark–antiquark components, as well as ‘meson–meson’
contributions and ‘diquark–diquark’ contributions. This has
recently been implemented for the scalar channel [898],
which reveals that the σ meson is indeed dominated by two-
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Fig. 85 Baryon spectrum in RL truncation in the quark–diquark pic-
ture (blue bars) and as three-quark bound state (open boxes), compared
to experimental spectrum (figure adapted from [899])

pion contributions, as one might expect. This approach will
also be very useful to investigate exotic mesons, tetraquarks,
and in the future also pentaquarks, all within the same frame-
work.

5.2.7 Baryons

The notion of diquarks has been around for almost as long as
QCD; see e.g. Ref. [791] and Sect. 5.1.4. Initial DSE stud-
ies of baryons were therefore formulated in terms of bound
states of a quark and a diquark; specifically a scalar and an
axialvector diquark.

However, as described in Sect. 5.2.2, three fermion states
can also be described by a 3-body BSE, and in recent years
there has been significant progress in describing and under-
standing baryons as three-quark bound states using the DSE
with essentially the same RL approximations as used for the
mesons. An effective interaction is modeled using the Dirac
structure of a one-gluon exchange between two quarks, see
Eq. (5.27), in combination with consistent nonperturbatively
dressed quark propagators. Figure 85 shows the calculated
spectrum for nucleon and Delta resonances together with
the experimental spectrum. The results for the ground state
nucleons, as well as their radial excitations, are in fair agree-
ment with experiment, both in the quark–diquark and the
three-quark bound state pictures. For the other quantum num-
bers we see noticable differences between the quark–diquark
and three-quark bound state results (and note that not all
quantum numbers have been done as a three-quark bound
state). The obtained bound state amplitudes can be used for
the evaluation of nucleon form factors, see e.g. [899] and
references therein, analogous to the calculation of the pion
form factor discussed earlier.

5.2.8 Conclusions

At the energy scales of mesons and barons, nonperturbative
methods are needed, and the DSEs and BSE (or the CST)
work very well. The main shortcoming of these methods is
that the kernels needed to solve for the self energies of wave
functions are unknown, and must be modeled. The combina-
tion of the ladder (L) truncation of the BSE with the closely
related rainbow (R) truncation of the DSE for self energies
are reasonably successful, in particular in describing chiral
symmetry breaking and the role of the pion as the Goldstone
boson of QCD. The few calculations beyond the RL trunca-
tion that exist show that the additional effects are not large,
except in particular spin-isospin channels.

We expect this technique to develop in the years ahead
and to remain an attractive method for theoretical study of
QCD.

5.3 Light-front quantization

James Vary, Yang Li, Chandan Mondal and Xingbo Zhao
In this section, we discuss non-perturbative light-front
Hamiltonian quantization methods. We primarily focus on
introducing the Hamiltonians for QED and QCD derived
in the light-cone gauge (for extensive reviews, see Refs
[900,901]). We introduce methods of solution and results
for mesons and baryons. We focus on the Discretized Light
Cone Quantization (DLCQ) and Basis Light Front Quanti-
zation (BLFQ) methods due to their ability to include gluons
and sea quarks dynamically.

Light-front quantization is the natural language for descri-
bing the partonic degrees of freedom of QCD at high ener-
gies. This connection has been extensively exploited in phe-
nomenological approaches to hard inclusive and exclusive
processes (see Sects. 5.8, 5.9). In these approaches, instead
of solving the QCD dynamics, the symmetries and proper-
ties of QCD are employed to construct phenomenological
partonic amplitudes or densities on the light front.

Before introducing specific light-front Hamiltonian meth-
ods of solution, let us recap the key concepts of the light-
front Hamiltonian approach that spring from Dirac’s formu-
lation of Poincare’ invariant quantum frameworks [902]. Our
choice of light-front variables can be summarized in relation
to equal-time variables by introducing

P=(P0+P3, P0−P3, P⊥)=
(

P+, M
2 + (P⊥)2

P+
, P⊥

)

,

where P and M represent the 4-momentum and mass of the
hadron, respectively. For the hadron’s constituents (quarks,
antiquarks, gluons), which we refer to as partons, we adopt
p⊥i as the transverse momentum of the i th parton, xi =
p+i /P+ is its longitudinal momentum fraction, λi is its
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light-front helicity [903], and roman alphabet subscripts run
through the partons of the hadron.

The Hamiltonian eigenvalue problem for the mass-squared
eigenstates and their associated light-front wave functions
(LFWFs) begins with defining the light-front Schrödinger
equation for the system’s eigenstates. Taking P⊥ = 0 and
H = P+P−

H |P,Λ〉 = M2|P,Λ〉 (5.28)

where Λ is the hadron’s light-front helicity and H contains
kinetic, interaction and Lagrange multiplier terms

H =
∑

i

p⊥2
i + m2

i

xi
+ Hint + λCMHCM . (5.29)

Here, the sum is over all partons and mi is the mass of the
i th parton. The role of the Lagrange multiplier term ensures
factorization of the state vector’s transverse component into
an internal, boost invariant, component times a center of mass
(CM) component [904].

We note that this eigenvalue problem applies to systems
with arbitrary baryon number so that, for example, it applies
to atomic nuclei as well. An eigenstate of a system can be
written in terms of a Fock-space expansion over sectors with
N -partons as

|P,Λ〉 =
∑

N

∑

λ1,...,λN

∫ ∏N
i=1 dxidp⊥i

[
2(2π)N

]2√
x1xN

δ

(

1−
N∑

i=1

xi

)

× δ2

(
N∑

i=1

p⊥i

)

ψΛ{λi }N ({pi }N )|{λi , pi }N 〉, (5.30)

whereψΛ
λ1,...,λN

(p1, . . . , pN ) is the light-front helicity ampli-
tude for each component. Each of the multi-parton basis
states |{λi , pi }N 〉 is defined as a properly normalized string
of N fermion, anti-fermion and gluon creation operators act-
ing on the vacuum. Eq. (5.30) is schematic since, for fixed
N , there can be many subcases with the same net fermion
number. We note that the kinetic term in Eq. (5.29) is diag-
onal in this multi-parton basis. In the following sections, we
introduce the discretized and basis function alternatives to
Eq. (5.30).

For gauge theories, a traditional approach is to adopt the
light-front gauge, A+ = 0, and to reduce the Hamiltonian to
the minimum number of dynamical degrees of freedom using
constraint equations. For QED and QCD this produces the
Hint term of Eq. (5.29) expressed in terms of Pauli spinors
with the boson-fermion vertices (QED and QCD) as well
as boson-boson vertices (QCD only). In addition to these
vertices, the gauge-fixing and reduction procedures lead
to higher-order instantaneous interactions which manifest
divergences. The resulting 3(7) vertices for QED [88] (QCD
[905,906]) are deceptively simple and are shown in Fig. 86.

Fig. 86 Vertices appearing in the LF Hamiltonian term Hint of
Eq. (5.29) upon choosing the LF gauge A+ = 0 for QED [88] and
additional vertices for QCD [905,906]. See [900] for a recent review.
Solid lines represent fermions (vertices with antifermions are obtained
by reversing a fermion line) and wavy lines represent gauge bosons. A
graph that includes a fermion or boson with a horizontal line through
it represents an instantaneous interaction term. Though one LF time
ordering is pictured (increasing LF time flows to the right), all allowed
LF time orderings are included in Hint . Thus, for example, an incoming
line can be switched to an outgoing line at any vertex and vice-versa

Like its Lagrangian counterpart, Hamiltonian field the-
ory needs to be regularized and renormalized. Dimensional
regularization is only available for perturbative calculations.
In non-perturbative solutions, the invariant mass cutoff and
the Pauli–Villars regularization are often adopted. Since non-
perturbative eigenvalue problems have to be solved numeri-
cally, finite discretization schemes are also needed. One can
choose to use the discretization to define the regularization.
DLCQ and BLFQ are such schemes. Alternatively, the dis-
cretization can be used purely as the numerical method. The
problem remains to take the continuum limit. Thanks to the
kinematical nature of the light-front boosts, cluster decom-
position remains available in the continuum scheme. Hence
perturbative type renormalization can be extended to this
scheme, as realized in Fock sector dependent renormalization
[907].

The similarity renormalization group (SRG) approach is
another non-perturbative approach based on Wilson’s renor-
malization group evolution [908,909]. Thanks to asymptotic
freedom, the SRG transformation can be evaluated perturba-
tively up to some scale, say, a few GeV. Different schemes
were designed for implementing SRG, notably the Bloch–
Wilson formulation [910] and the renormalization group pro-
cedure for effective particles (RGPEP [911]). An RGPEP
effective Hamiltonian for heavy flavor hadrons is derived
using a gluon mass ansatz [912]. In the gluon sector, it
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successfully reproduces asymptotic freedom in the 3-gluon
effective vertex [913].

The Fock space expansion (Eq. 5.30) provides the most
straightforward representation of the eigenvalue problem
Eq. (5.28). Within this basis, the eigenvalue equation beco-
mes an infinite tower of coupled integral equations. The inte-
grations can be evaluated using standard numerical tech-
niques; however, truncation is needed to obtain numer-
ical solutions. The situation is similar to the Dyson–
Schwinger/Bethe–Salpeter equations approach in the covari-
ant formulation (see Sect. 5.2). The light-front Tamm–
Dancoff approximation (LFTDA) truncates the Fock sections
in terms of the particle number [914]. LFTDA can be system-
atically renormalized using the Fock sector dependent renor-
malization [907]. This was used to investigate various theo-
ries within few-body truncation (see Ref. [901] for a review).
Typically, the convergence of the Fock sector expansion can
be checked numerically [915], although the numerical com-
plexity increases dramatically as the number of Fock sectors
increases. The light-front coupled cluster method was pro-
posed to improve the convergence and pathology associated
with the hard Fock sector truncation by adopting a coherent
basis [916].

Another major development in light-front quantization is
the discovery of the remarkable connection between light-
front dynamics, its holographic mapping to gravity in a
higher-dimensional anti-de Sitter (AdS) space, and con-
formal quantum mechanics, known as light-front hologra-
phy (LFH). This approach introduces a remarkably simple
yet universal confining potential, which underlines the vari-
ous phenomenological applications in light-front QCD. See
Sect. 5.4 for details.

5.3.1 Discretized light-cone quantization

While lattice calculations (see Sect. 4) solve QCD in
Euclidean spacetime, DLCQ formulates the problem directly
in Minkowski spacetime using a discretized momentum basis
(see Ref. [900] and references therein).

In DLCQ, one defines a mesh in momentum space that
corresponds to standing waves in a box of length L in each
transverse direction and a similar set of modes in the longi-
tudinal direction. Either periodic or anti-periodic boundary
conditions are applied. Early applications of DLCQ to gauge
theories included solving QED for positronium at strong cou-
pling [917]. Similarly, early successes include solving QCD
in 1+1 dimensions [918]. Moving to QCD in 3+1 dimen-
sions with DLCQ revealed formal and numerical challenges
but produced many valuable results as reviewed in Ref. [901].

A hybrid light-front DLCQ/lattice formulation was intro-
duced and employed to evaluate parton distribution functions
for a sample set of meson states over a range of coupling
strengths [919,920]. These applications of DLCQ motivated

the quest for an approach that both preserves the LF kine-
matic symmetries and provides a computational path with
improved numerical efficiency.

5.3.2 Basis light front quantization

The quest to develop LF Hamiltonian approaches in Minkow-
ski-space that retain all available kinematic symmetries
began with adoption of basis function methods for solving
light front wave equations [921]. Later, the BLFQ approach
[922] was introduced to treat gauge theory Hamiltonians
using basis-functions that satisfied very general mathemati-
cal conditions and respected the LF kinematic symmetries.
In addition, the BLFQ framework is well-suited for a longer-
term goal of developing basis functions that approximated
anticipated dynamical features of QCD such as confinement
and chiral symmetry breaking for applications to hadron
spectra. Such basis functions have the promise of facilitating
convergence in non-perturbative LF QCD calculations.

In BLFQ, one introduces an alternative to the momen-
tum space representation of the LF eigenstate presented in
Eq. (5.30). Instead of working with LF plane waves, BLFQ
introduces a superposition of orthonormal N-parton Fock
space states expressed as independent partons in some con-
venient orthonormal single-parton basis. That is, we replace
the conventional quantization in terms of LF plane waves
with LF quantization in modes of a solvable single-parton
LF Schrödinger equation akin to Eq. (5.28). Thus, the LF
many-parton basis states can be written as strings of fermion,
antifermion and boson creation operators that populate inde-
pendent modes of the single-parton LF Schrödinger equa-
tion. All applications described below elect the 2D Harmonic
Oscillator for the transverse modes owing to the ability to
preserve transverse boost invariance. This choice is further
motivated by holographic light-front QCD (see Sect. 5.4 for
details) and has been our default choice for practical calcula-
tions. For the longitudinal modes there have been a number of
choices including DLCQ. In principle, the basis is arbitrary
within general mathematical restrictions so convenience and
numerical efficiency are the key drivers for the choices rep-
resented in applications to date.

Let us label the set of quantum numbers for each single-
parton mode with a lower-case Greek letter. This Greek
label symbolizes the collection of all space-spin-color-flavor
degrees of freedom of a single parton in QCD. Fermion
and boson single-parton states are orthonormal and com-
plete. Their creation operators satisfy the conventional anti-
commutation (commutation) relations for fermions (bosons).
In BLFQ, an eigenstate of a system can then be written in
terms of a Fock-space expansion over sectors with N -partons
as
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|P,Λ〉 =
∑

N

∑

{αi }N
ψΛ{αi }N |{αi }N ,Λ〉, (5.31)

where the inner sum includes all allowed configurations of
N -partons satisfying global symmetry constraints such as
baryon number, charge, total helicity projection on the x−
direction, total LF momentum, flavor, etc. For states with two
or more bosons, an additional factor is applied to maintain
normalization when bosons occupy the same mode.

Up to this point, the Hamiltonian eigenvalue problem of
Eq. (5.28) is infinite dimensional in both the number of
single-parton modes and the number of Fock sectors. With
a well-chosen BLFQ single-parton basis (see Sect. 5.3.7 for
recent advances) and the vertices of QCD from Fig. 86, one
hopes to achieve reasonable bound state properties with prac-
tical cutoffs in these sums suitable for low-resolution appli-
cations of QCD for spectra, electroweak transitions, form
factors at low-Q2, etc.

5.3.3 BLFQ with QED applications

Early applications of BLFQ aimed at solving strong cou-
pling QED problems in order to establish computational tech-
niques and validate BLFQ for achieving converged results
in agreement with other methods. These test cases were
demanding since they employed the transverse 2D harmonic
oscillator and DLCQ for the longitudinal direction to form a
basis space that, while suitable for bound state problems in
QCD, is far from ideal for these QED applications.

The first application successfully solved for the electron
anomalous magnetic moment in an external 2D harmonic trap
and took the limit of removing the trap to verify agreement
with the well-known Schwinger result [923]. For this appli-
cation, the first and second vertices in Fig. 86 are included
and sector-dependent renormalization [907] was successfully
employed.

The next major advance successfully calculated the elec-
tron anomalous magnetic moment directly in free space and
at the physical coupling [924,925] using the same LF Hamil-
tonian and renormalization procedures as Ref. [923] except
that the instantaneous vertex was omitted. The demands on
the numerical procedures increased dramatically due, in large
part, to the slow convergence rate with increasing basis cut-
off. The extrapolated result agrees with the Schwinger result
to within 0.06% which approximately corresponds to the
level of agreement expected between a non-perturbative and
a perturbative calculation.

Moving ahead from these early applications, the goals
of BLFQ were extended to evaluate additional observables
familiar to hadronic physics using the resulting LFWFs. In
particular, the BLFQ approach was applied to evaluate the
GPDs [926] and the TMDs of the dressed electron [927]. In

Fig. 87 Positronium spectrum extracted from a BLFQ calculation of
QED with an unphysically large coupling α = 0.3 [928]. The positron-
ium masses are expressed in terms of the electron mass m f . The photon
mass, μ, serves as an infrared regulator. The positronium states are
labeled by the spectroscopic notation N 2S+1L J . The O(α4) perturba-
tive results are marked by red crosses on the vertical axis [929]. The
blue crosses are obtained from extrapolating Nmax → ∞ at fixed and
sufficiently large K . For comparison, the results with extrapolated K
are shown in solid red disks. The blue and red curves are second order
polynomials used to fit and extrapolate the regulator μ to zero

all cases, the non-perturbative BLFQ results compared favor-
ably with results from perturbation theory at weak coupling.

The next major application was to solve for the low-lying
spectrum of positronium at strong coupling (α = 0.3) in
the valence space of the electron and the positron using a
derived effective interaction [932]. The application of BLFQ
to positronium adopted the LF effective one-photon exchange
interaction of Ref. [933], where they achieved a delicate
cancellation of the instantaneous photon interaction term
through a suitable choice of energy denominators in second
order perturbation theory. These calculations were performed
in the fermion single-particle basis with the 2D transverse
harmonic oscillator and DLCQ for the longitudinal basis.
Convergence was achieved directly in K and by extrapola-
tion in Nmax, the regulators introduced above. The results
for the lowest bound states of positronium as a function of
the photon regulator mass are shown in Fig. 87. At zero reg-
ulator mass, one obtains good agreement with results from
perturbation theory. The resulting LFWFs were employed to
demonstrate methods of calculating GPDs [934] and reveal
relativistic effects in strongly-coupled positronium.

More recently, the BLFQ approach has been successfully
applied to solve for the structure of the photon [935]. The
basis space consists of the photon sector and the electron–
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positron sector so that only the first interaction term from
Fig. 86 is retained in solving the Hamiltonian eigenvalue
problem of Eq. (5.28). The basis space is defined as for the
positronium application above with the addition of the Fock
sector for the photon as a single-particle state. Factorization
of the CM motion from the LFWFs is addressed using the
Lagrange multiplier term in Eq. (5.29) as was accomplished
in Ref. [928]. Using sector-dependent renormalization, one
achieves the real photon eigenstate to be massless as desired.

The LFWFs obtained for the massless photon are there-
fore a superposition of a bare photon and an electron–positron
pair. These LFWFs provide non-trivial Transverse Momen-
tum Distributions (TMDs) and Parton Distribution Functions
(PDFs) which are, in principle, experimentally measurable.
Ref [935] provides BLFQ results for TMDs and PDFs in
addition to comparisons with results from perturbation the-
ory showing reasonable agreement is obtained as expected.

5.3.4 BLFQ for QCD with effective interactions

The high-precision results from the BLFQ treatment of
QED problems (Sect. 5.3.3) provide an avenue to treat the
one-gluon-exchange interaction between fermions in QCD
(HOGE ), which is the dominant short-distance physics for
hadrons. The confining interaction from Light-Front Holog-
raphy (Sect. 5.4), supplemented by a convenient form for
confinement in the longitudinal direction, form the long-
distance part of the physics (Hcon). The short distance and
long distance terms then lead to the total LF effective inter-
action, Hint = Hcon + HOGE . Similar to the nuclear Shell
Model, the solvable part of the Hamiltonian can be cho-
sen to be the kinetic energy plus the confining interaction,
H0 = Hkin + Hcon , to implement LFH, augmented with
longitudinal confinement, in the zeroth order.

The first application was to compute the spectra and wave
functions of heavy quarkonia [930,942]. Figure 88 shows the
charmonium and bottomonium spectra obtained from BLFQ.
Two parameters, the quark mass and the confining strength,
were tuned to fit the available experimental measurements,
resulting an r.m.s. deviation of the masses about 40 MeV in
each system.

The obtained LFWFs were used to evaluate a wide range
of observables, including the decay constants [930,942],
light-cone distribution amplitudes [930], form factors [943],
radiative transitions [936,938,944], semi-leptonic transitions
[945], parton distributions [939] and GPDs [943]. Figure 89
shows the BLFQ results of the charmonium dilepton (for
vector mesons, e.g. J/ψ) or diphoton (for the rest) widths in
combination with the masses [936], and compared with the
available experiments as well as other theoretical approaches
whenever available. Figure 90 shows the diphoton transi-
tion form factor of ηc from BLFQ, and compared with the
BABAR measurement. The M1 widths of the radiative tran-

Fig. 88 Charmonium (upper panel) and bottomonium (lower panel)
spectra obtained from BLFQ [930], CST [861] and DSE/BSE [931]
and compared with the PDG data [616]. See also Sect. 5.2. The vertical
axis is the hadron mass in GeV. The horizontal axis is the quantum
numbers J PC , where J is the total spin, P , C are the parity and charge
conjugation, respectively

Fig. 89 The BLFQ predictions of the charmonium dilepton (for the
vectors) or diphoton (for the rest) widths in combination with the mass
spectrum. The experimental data as compiled by the PDG are shown in
stars. Lattice and DSE/BSE predictions are shown for comparison (see
Ref. [936] and the references therein)
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Fig. 90 The singly-virtual two-photon transition form factors of ηc
from BLFQ as compared with the BABAR measurement [937] and
the predictions from DSE/BSE. The BLFQ/DA result is obtained from
pQCD predictions with LCDA obtained from the BLFQ light-front wave
functions. The TFF at Q2 = 0 is extracted from the diphoton width.
See Ref. [936] and the references therein

sitions across the heavy quarkonium systems are shown in
Fig. 91, and compared with the PDG values. The PDF of the
hadron at the initial scale μ0 can be obtained by integrating
out the transverse momentum. The PDFs of ηc obtained from
BLFQ are shown in Fig. 92.

Applications to heavy-light quarkonia have also been
achieved [945–948]. Here, the bottomonia and charmonia
results were used to determine the quark masses and the
confining strength was calculated using the relationship of
heavy-quark effective theory as the r.m.s. of the strengths
from the corresponding pure flavor systems. This led to
successful applications to the spectra, decay constants and
other properties of mixed flavor heavy quarkonia without
adjustable parameters.

A major step forward was to apply BLFQ with effec-
tive interactions to light mesons [949–952]. In addition to
the confining interactions as well as the one-gluon-exchange
interaction, a Nambu–Jona–Lasinio (NJL) interaction was
incorporated to generate the well-known ρ-π splitting [949].
The obtained LFWFs were used to investigate the partonic
structures of the pion. The pion PDF from BLFQ with the
effective interactions including the NJL interaction is shown
in the top panel of Fig. 93 where the PDF is compared with
the PDF from BLFQ calculations that include one dynamical
gluon (see Sect. 5.3.5).

More recently, the BLFQ formalism has been success-
fully applied to solving for the structure of the nucleon
[941,954,955] as well as Λ, Λc, and their isospin triplet
baryons, i.e, Σ0, Σ+, Σ− and Σ0

c , Σ+
c , Σ++

c [956]. The
investigated observables include the electromagnetic and
axial form factors, transverse densities, PDFs, GPDs, radii,
axial and tensor charges of the baryons. The electromag-
netic form factors of the nucleons are compared with the
experimental data as well as other approaches in Fig. 250 in
Sect. 10.1. Overall, the theoretical predictions are in good

agreement with the experimental measurement for the pro-
ton, while the neutron results somewhat deviate from exper-
imental data. The neutron’s charge form factor falls well
below the data at low Q2, where both experimental and the-
oretical uncertainties are large. The magnetic moment of
the nucleon is related to the nucleon magnetic form fac-
tor at Q2 = 0. We obtained the magnetic moment of the
nucleon close to the recent lattice QCD results as shown
in Table 4. From the electromagnetic form factors, one can
also compute the electromagnetic radii of the nucleon. We
summarize our predictions in Table 4. These results are in
reasonable agreement with experiment (see Sect. 10.1). Fig-
ure 94 shows the nucleon axial form factor (see Sect. 10
for details), GA = Gu

A − Gd
A as a function of Q2, while

the contributions from up and down quarks to GA(Q2) are
also displayed. Our results are compared with the available
data from (anti)neutrino scattering off protons or nuclei and
charged pion electroproduction experiments and the lattice
QCD simulations. Considering the experimental uncertain-
ties and our treatment of the BLFQ uncertainties, we found
good agreement with experiment.

At Q2 = 0, the axial form factor is identified as the axial
charge, gA = GA(0). Our prediction, presented in Table 4,
is somewhat higher than the extracted data. This discrep-
ancy suggests the need to incorporate higher Fock sectors,
which have a significant effect on the quark contribution to
the nucleon spin. The corresponding axial radius rA is in
excellent agreement with the extracted data from the analy-
sis of neutrino-nucleon scattering experiments [619,957].

At leading twist, the complete spin structure of the nucleon
is explained in terms of three independent PDFs, namely, the
unpolarized, the helicity, and the transversity. The obtained
LFWFs were also used to evaluate these leading twist quark
PDFs. Figure 95 (pink bands) shows the unpolarized PDFs
of the valence quarks at μ2 = 10 GeV2 for valence-only
space results [941] compared with the global fits. The error
bands in our PDFs are due to the 10% uncertainties in the
initial scale μ2

0 = 0.195 ± 0.020 and the coupling constant
αs . Our unpolarized valence PDFs for both the up and the
down quarks agree well with the global fits. According to
the Drell–Yan–West relation [958,959], at large scale the
valence quark distributions fall off at large x as (1 − x)p,
where p denotes the number of valence quarks and for the
nucleon p = 3. In our BLFQ approach, we observed that the
up quark unpolarized PDF falls off at large x as (1− x)2.99,
whereas for the down quark the PDF goes as (1 − x)3.24.
These are in accord with the Drell–Yan–West relation and
favour the perturbative QCD prediction [960].

The helicity PDFs are displayed in Fig. 96 (upper panel:
pink bands), at the scale μ2 = 3 GeV2, for the up and down
quarks in the proton. Our BLFQ predictions are compared
with the measured data from COMPASS [961]. We found
that our down quark helicity PDF agrees reasonably well
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Fig. 91 M1 transition form factor at Q2 = 0 for charmonia and bottomonia obtained from BLFQ and compared with several theoretical predictions
as well as the experimental data (see Ref. [938] and the references therein)

Fig. 92 The PDFs of ηc(1S) obtained from BLFQ [939]. The bands
represent the range of the distributions for the initial scales μ0 = mq
to 2μh . The lines with different color correspond to the different final
scales: μ1 = 20 GeV (blue), μ2 = 80 GeV (green), and μ3 = 1500
GeV (red). The solid, thick long-dashed, dashed, dashed-dot, and dashed
double-dot lines represent the x-PDFs of the valence quark, gluon, sea
quark (u/d/s/c), sea quark (b), and sea quark (t), respectively

with the experimental data from COMPASS [961]. For the up
quark, the g1(x) solved in the valence-only space is however
overestimated at low x , whereas it tends to agree with the
data above x ∼ 0.25 regime.

The obtained LFWFs were also employed to compute the
valence quark GPDs for zero skewness [941] and to study
quark angular momentum densities inside the proton [963].
The helicity non-flip unpolarized GPD in impact parameter
space, Hq(x, b⊥), can be interpreted as the number density
of quarks with longitudinal momentum fraction x at a given
transverse distance b⊥ in the nucleon [964]. One can then
define the x dependent squared radius of the quark density
in the transverse plane as [962]:

Fig. 93 The PDFs of the pion from BLFQ including one dynamical
gluon labeled as “This work” [888]. Upper panel: the black lines are the
BLFQ results evolved from the initial scale (0.34± 0.03 GeV2) using
the NNLO DGLAP equations to the experimental scale of 16 GeV2.
The red lines correspond to BLFQ-NJL predictions [940]. Results are
compared with the original analysis of the FNAL-E615 experiment data
and with its reanalysis (E615 Mod-data). Lower panel: the BLFQ result
for the pion gluon PDF atμ2 = 4 GeV2 is compared with the global fits,
JAM and xFitter. See Ref. [888] and the references therein for details

〈b2⊥〉q(x) =
∫
d2 �b⊥b2⊥Hq(x, b⊥)
∫
d2 �b⊥Hq(x, b⊥)

. (5.32)

Figure 97 shows the x-dependent squared radius of the pro-
ton, 〈b2⊥〉(x) = 2eu〈b2⊥〉u(x)+ed〈b2⊥〉d(x) and compares the
BLFQ prediction with the available extracted data within the
range 0.05 � x � 0.2 from the DVCS process [962]. As
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Table 4 The electromagnetic properties (magnetic moments in units of
nuclear magnetons and radii in units of fm), axial charge, axial radius,
tensor charge, and the first moment of transversity PDFs. The BLFQ
results are compared with the data extracted from experiments and the
lattice QCD simulations (see Ref. [941] and the references therein)

Quantity BLFQ Experiments Lattice

μp 2.44(3) 2.79 2.43(9)

μn −1.40(3) −1.91 −1.54(6)

rp
E 0.802(40) 0.833(10) 0.742(13)

rp
M 0.834(29) 0.851(26) 0.710(26)

(rn
E)

2 −0.033(198) −0.116(2) −0.074(16)

rn
E 0.861(20) 0.864(9) 0.716(29)

guA 1.16(4) 0.82(7) 0.830(26)

gdA −0.248(27) −0.45(7) −0.386(16)

gu−dA 1.41(6) 1.2723(23) 1.237(74)

rA 0.680(70) 0.667(12) 0.512(34)

guT 0.94(15) 0.39(15) 0.784(28)

gdT −0.20(4) −0.25(20) −0.204(11)

〈x〉u−dT 0.229(48) − 0.203(24)

can be seen from Fig. 97, the BLFQ prediction for 〈b2⊥〉(x)
is consistent with the extracted data. We also evaluated the
proton’s transverse squared radius [962]

〈b2⊥〉 =
∑

q

eq

∫ 1

0
dx f q(x) 〈b2⊥〉q(x). (5.33)

In our BLFQ approach, we obtained the squared radius of the
proton, 〈b2⊥〉 = 0.40 ± 0.04 fm2, close to the experimental
data [962]: 〈b2⊥〉exp = 0.43± 0.01 fm2.

BLFQ has been recently applied to investigate the all-
charm tetraquark system [965]. The results suggest that the
lowest two-charm-two-anticharm state is not a tightly bound
tetraquark. In particular, the lowest tetraquark mass extrapo-
lated to the continuum limit in longitudinal resolution K lies
above the extrapolated threshold for two separated mesons.

5.3.5 BLFQ beyond the valence Fock sector

In this section, we review more recent applications of BLFQ
with the inclusion of dynamical gauge degrees of freedom: to
positronium at strong coupling (α = 0.3) with one dynamical
photon earlier in DLCQ [966] and now in BLFQ [967,968];
to mesons with one dynamical gluon [888] and to the proton
with one dynamical gluon [953].

For the BLFQ application to QED, the positronium sys-
tem with one dynamical photon presents valuable challenges
with respect to non-perturbative renormalization [967–969].
The dynamics of the single fermion system must first be
obtained and then embedded in the positronium system with
consistent counting of the basis space quanta. That is, within

Fig. 94 The axial form factors GA = Gu
A − Gd

A and Gu
A, Gd

A as the
function of Q2 from BLFQ. The blue band (GA), pink band (Gu

A), and
orange band (Gd

A) are the BLFQ results, which are compared with the
experimental measurements as well as the lattice results. The black line
represents the dipole fit of the experimental data. See Ref. [941] and
the references therein

Fig. 95 The unpolarized valence quark and gluon PDFs of the proton.
The BLFQ results (blue bands: obtained with one dynamical gluon; pink
bands: obtained from a light-front effective Hamiltonian based on only
a valence Fock representation [941]) are compared with the NNPDF3.1
and MMHT global fits. (The inset) the ratio of the valence quark PDFs is
compared with the extracted data from JLab MARATHON experiment.
See Ref. [953] and the references therein

a given Fock sector of positronium and within a given con-
figuration, the distribution of quanta for that configuration
dictates the renormalized mass of the fermion to be applied
and the basis space in which that mass was determined. With
this dynamical approach, the leading self-energy divergence
is taken into account which opens a path to proceed to larger
basis spaces.

Going beyond the leading Fock component for QCD,
BLFQ has been successfully employed to solve the unfla-
vored light mesons and nucleon with one dynamical gluon
[888,953]. In particular, we adopted an effective light-front
Hamiltonian and solved for their mass eigenvalues and eigen-
states at the scales suitable for low-resolution probes. Our
Hamiltonian incorporates light-front QCD interactions [900]
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Fig. 96 Upper panel: the helicity PDFs for the valence quarks and
the gluon in the proton. We compare BLFQ predictions (blue bands:
obtained with one dynamical gluon [953]; pink bands: obtained from a
light-front effective Hamiltonian based on only a valence Fock repre-
sentation [941]) with data from COMPASS Collaboration [961]. Lower
panel: the gluon helicity PDF in the proton. We compare the BLFQ
prediction (blue bands) with global analyses by JAM (gray band) and
NNPDFpol1.1 (magenta band). The inset shows the gluon helicity PDF
on a linear scale. See Ref. [953] and the reference therein

Fig. 97 x-dependence of 〈b2⊥〉 for quarks in the proton from BLFQ
[941]. The line corresponds to the BLFQ predictions and the band indi-
cates its uncertainty. The data points are taken from Ref. [962]

relevant to constituent |qq̄〉 and |qq̄g〉 Fock sectors of the
mesons and |qqq〉 and |qqqg〉 Fock sectors of the nucleon
with a complementary 3D confinement [942]. By solving
this Hamiltonian in the leading two Fock components and

fitting the constituent parton masses and coupling constants
as the model parameters [888], we obtained a good quality
description of light meson mass spectroscopy[888].

We computed the pion electromagnetic form factor and the
PDFs from our Hamiltonian’s LFWFs. The BLFQ prediction
of the electromagnetic form factor of the charged pion is
compared with the experimental data in Fig. 81 in Sect. 5.2.
Figure 93 shows our results for the pion PDFs and compares
the valence quark distribution after QCD evolution with the
data from the E615 experiment as well as the reanalysis of
the E615 experiment. The pion PDFs previously obtained in
BLFQ-NJL model [940,949,951] based on a valence Fock
representation have also been included for comparison. The
error bands in our evolved PDFs are manifested from an
adopted 10% uncertainty in our initial scale, μ2

0 = 0.34 ±
0.03 GeV2, which we determined by requiring the result after
evolution to generate the total first moments of the valence
quark and the valence antiquark distributions from the global
QCD analysis, 〈x〉 valence = 0.48 ± 0.01 at μ2 = 5 GeV2

[970]. We found a good agreement between our prediction
for the pion valence quark PDF and the reanalyzed E615 data,
while the BLFQ-NJL model favours the original E615 data.

The lower panel of Fig. 93 shows the gluon PDF in the
pion. Including one dynamical gluon, the gluon density in the
pion significantly increases compared to that in the BLFQ-
NJL model as well as to the global fits [971]. The BLFQ-NJL
model is based on the pion valence Fock component and glu-
ons are produced solely from the scale evolution. However,
the model, which includes a dynamical gluon at the initial
scale, results in a larger gluon PDF at large-x (> 0.2) after
scale evolution.

We produced the unpolarized and polarized valence quark
and gluon distributions in the proton using the resulting
LFWFs for the proton with one dynamical gluon. We evolved
our initial PDFs from the model scale, μ2

0 = 0.23 ∼ 0.25
GeV2, to the relevant experimental scales. The blue bands in
Figures 95 and 96 show our results for the proton unpolar-
ized and polarized PDFs, respectively. We obtained a good
consistency between our prediction for the valence quark
PDFs and the global fits. The ratio dv(x)/uv(x) reason-
ably agrees with the extracted data from the MARATHON
experiment at JLab [972]. At the endpoint, we predicted that
limx→1 dv/uv = 0.225± 0.025.

We found that the down quark unpolarized PDF falls off
at large x as (1 − x)3.5±0.1, whereas for the up quark PDF
exhibits (1− x)3.2±0.1. These findings support the perturba-
tive QCD prediction [960]. We observed that the gluon PDF
is suppressed at small-x and shifts towards the global fits
[664,973] with the addition of a dynamical gluon, whereas
the PDF for x > 0.05 agrees with the global fits.

Our helicity PDFs for both the up and down quarks
(Fig. 96: upper panel) are reasonably consistent with the
experimental data from COMPASS [961]. We noticed that
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the up quark polarized PDF improves significantly at small-
x region with the treatment for the nucleon with dynamical
gluon. We observed a fair agreement between our prediction
for the gluon helicity PDF (Fig. 96: lower panel) and the
global analyses by the JAM [974] and the NNPDF Collab-
orations [975]. Note that there still remain huge uncertain-
ties both in the large-x region and especially in the small-x
region, where even the sign is uncertain. [976]. The partonic
spin contributions to the proton spin are given by the first
moment of the polarized PDFs. We found that the gluon car-
ries 26% of the proton spin [953], which is likely to increase
when more dynamical gluons are included.

5.3.6 Full BLFQ

The applications of BLFQ to hadron structures demonstrated
so far have adopted explicit Fock sector truncations. The
incorporation of a dynamical gauge boson (Sect. 5.3.5) has
shown promising improvements in comparison with valence
Fock sector only. A major next step is the full BLFQ [922], in
which the Hamiltonians are solved non-perturbatively with
basis regulators only and without additional Fock space trun-
cation. The elimination of the additional Fock space trun-
cation positions BLFQ on the path to a genuine ab initio
approach to QCD. Initial applications which qualify as full
BLFQ include solving scalar 1+1 D field theories without
Fock space truncation [977].

The full BLFQ is posed as a quantum many-body problem
while the number of partons is not fixed. The single-particle
harmonic oscillator basis with the longitudinal discretized
momentum basis is the preferred choice of basis, together
with the Nmax-K regularization,
∑

i

[
2ni + |mi | + 1] ≤ Nmax,

∑

i

p+i =
2πK

L
.

(5.34)

As such, all kinematical symmetries of the LFQCD Hamil-
tonian, including the the factorization of the center-of-mass
motion, are preserved in the many-body Hilbert space. This
basis corresponds to a pair of soft IR and UV resolutions and
a collinear resolution,

b2/(Nmax − 1) �
∑

i

k2
i⊥
xi

� b2(Nmax − 1), (5.35)

Δx � K−1. (5.36)

Here, b = √
P+Ω . P+ is the longitudinal momentum of

the bound state. Ω is the scale parameter of the transverse
harmonic oscillator functions. Note that, if zero modes are
omitted as is conventional, the Nmax-K regularization ren-

ders the number of partons finite, and no further Fock sector
truncation is needed.

A fundamental challenge of the full BLFQ is the expo-
nential increase of the dimensionality of the Hilbert space,
dim H = NdN , (N = max{Nmax, K }), a property shared
by all strong coupling non-perturbative quantum many-body
problems. Nevertheless, meaningful results may be achiev-
able with continuing advances in high-performance comput-
ers at and beyond exascale (1018 floating point operations per
second). On the other hand, future quantum computers offer
the promise to provide supremacy over even the best high-
performance computers, in particular for non-perturbative
quantum many-body problems such as posed by full BLFQ
[978].

5.3.7 BLFQ with chiral symmetry breaking

Due to the light quark mass, m{u,d} � Λ
qcd

, chiral sym-
metry plays an important role on the light meson spectrum
and structures. In particular, the pion is the Goldstone boson
of the spontaneously broken chiral symmetry. Formally, chi-
ral symmetry implies a partially conserved axial-vector cur-
rent (PCAC). In BSE, this relation leads to a set of rela-
tions between the pion Bethe–Salpeter amplitudes and the
quark self-energy (see Sect. 5.2). Recently, it was revealed
that PCAC also leads to a chiral sum rule for the pion LFWFs
[979].

It was long pointed out that chiral symmetry breaking in
LFQCD is manifested in a different way from the instant
form (see Ref. [980] for a recent review). In the instant form,
chiral symmetry breaking is due to the condensate of quark–
antiquark, viz. 〈q̄q〉 �= 0. The light-front vacuum is trivial
due to the positivity of the longitudinal momenta. Therefore,
the vacuum condensate on the light front can only happen
through the zero modes. Indeed, the wee parton condensate is
long conjectured to be the mechanism for symmetry breaking
on the light front, which is supported by 1+1D theories and
has shown to be a useful starting point for BLFQ applications
[981].

On the other hand, the axial charge on the light front
annihilates the light-front vacuum, Q5|0〉 = 0, which sug-
gests that the chiral condensate should be encoded within the
hadron LFWFs [982]. One of the traces of the chiral symme-
try breaking in the pion LFWFs is the chiral sum rule [979].
Taking advantage of light-front holography, this sum rule has
been shown to be also consistent with the chiral symmetry
breaking in AdS/QCD.

5.3.8 Nonperturbative reactions in BLFQ

One major advantage of the Hamiltonian formalism of quan-
tum field theory is that it allows for tracking time evolution
of quantum field configurations in real time.
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Fig. 98 The evolution of the transverse density of a quark within a
classical color field of a heavy nucleus at different light-front time x+.
The four “snapshots” are from Ref. [985]

As an extension of BLFQ, the time-dependent Basis Light-
front Quantization (tBLFQ) has been developed as a time-
dependent nonperturbative approach to quantum field the-
ory [983]. In tBLFQ the light-front Schrödinger equation is
solved to simulate the time evolution of quantum field con-
figurations:

i
∂

∂x+
|ψ; x+〉 = 1

2
P−(x+)|ψ; x+〉, (5.37)

where |ψ; x+〉 represents the quantum field system under
consideration and P−(x+) is the light-front Hamiltonian,
which includes the interactions among the fields under con-
sideration. The tBLFQ approach is suitable for studying par-
ticle evolution in a strong and possibly time-dependent back-
ground field. The tBLFQ approach motivated a nonpertur-
bative approach simulating nuclear reactions in low energy
nuclear physics, named time-dependent Basis Function (tBF)
[984].

One of the major goals of tBLFQ is to understand the non-
perturbative dynamics in QCD, as in hadron scattering. The
investigations of quark scattering with a nucleus constitute a
first step toward this goal. In Ref. [985], tBLFQ is employed
to simulate the scattering of an ultrarelativistic quark off a
heavy nucleus at high energies. The color glass condensate,
a classical effective theory of QCD, is adopted as a model for
the color field of the heavy nucleus. The results can signif-
icantly reduce the theoretical uncertainties in the small p⊥
region of the differential cross section which has important
implications for the phenomenology of the hadron-nucleus
and deep inelastic scattering at high energies. One important
feature of tBLFQ is that it allows one to take “snapshots” of
the system at intermediate times of the evolution, which pro-
vide physical insights into the nonperturbative mechanism
in time-dependent processes. For example, Fig. 98 shows
the evolution of the probability distribution of a quark in the
transverse direction at different light-front times x+. In Ref.
[987] a calculation is performed in an extended Fock space

where one dynamical gluon is included, which paves the way
for studying partons’ radiational energy loss in nuclear matter
[988].

In addition to the applications in QCD, tBLFQ has also
been employed to study various nonperturbative processes in
strong field QED [983,989–992].

The tBLFQ approach can be further improved in three
directions: (i) increase in the level of complexity and real-
ism of the background field: (ii) expansion to reaction pro-
cesses of a wider class; (iii) the expansion of the Fock space
in the description of quantum field configurations. While
this can lead to more accurate simulation of dynamical pro-
cesses, it will dramatically increase the required computa-
tional resources. Therefore, it is desirable to explore numeri-
cal algorithms for tBLFQ on next-generation advanced com-
putational platforms.

5.3.9 Comparisons between BLFQ and BSE

The similarities and differences of the light-front and the
BSE (see Sect. 5.2) approaches motivate a direct compari-
son of the amplitudes obtained from these two approaches
[862]. Figure 88 shows the comparison of quarkonia spectra
obtained from BLFQ and CST. In both approaches, the model
parameters were fixed by fitting to the experimentally mea-
sured quarkonia masses. Then, the obtained wave functions
were used to compute physical observables. Figure 99 com-
pares the axial-vector LFWFs obtained from BLFQ and CST.
The Brodsky–Huang–Lepage prescription [986] was used to
convert the CST amplitude to the LFWFs [862]. Qualita-
tively, the wavefunctions are similar. However, some spin
components show different characteristics due to the differ-
ent implementation of discrete symmetries, which can be
discerned in high-energy exclusive processes.

5.4 AdS/QCD and light-front holography

Stanley J. Brodsky, Guy F. de Téramond, and Hans Gün-
ter Dosch

5.4.1 Introduction

In spite of the important progress of Euclidean lattice QCD
[97] and other nonperturbative approaches, a basic under-
standing of fundamental features of hadron physics from first
principles, such as the mechanism of color confinement and
the origin of the hadron mass scale, as well as general fea-
tures of hadron structure, spectroscopy and dynamics, have
remained among the most important unsolved challenges of
the last 50 years in particle physics. Furthermore, other essen-
tial properties of the strong interactions, which were mani-
fest in dual models and developed before QCD, are also not
explicit properties of the QCD Lagrangian.
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Fig. 99 Comparison of selected LFWFs of hb obtained from BLFQ
and CST [862]. The latter were converted from the BSA with the
Brodsky–Huang–Lepage prescription [986]. The non-relativistic dom-
inant spin components from both approaches (top panels) are qualita-
tively the same. However, subdominant LFWFs may appear dramat-
ically different, some of which are in leading twist (bottom panels).
This can be tested in high-energy exclusive processes. The discrepancy
stems from the different implementation of the discrete symmetries on
the light cone in BLFQ and CST

Recent theoretical developments for understanding fea-
tures of hadronic physics are based on AdS/CFT – the corre-
spondence between classical gravity in a higher-dimensional
anti-de Sitter (AdS) space and conformal field theories
(CFT) in physical space-time [993–995]. AdS/CFT has pro-
vided a semiclassical approximation for strongly-coupled
quantum field theories, giving physical insights into non-
perturbative dynamics. In practice, the AdS/CFT dual-
ity provides an effective weakly coupled description in a
(d + 1)-dimensional AdSd+1 space in terms of a flat d-
dimensional superconformal, strongly coupled quantum field
theory defined on the AdS asymptotic boundary, the physi-
cal four-dimensional Minkowski spacetime, where boundary
conditions are imposed [996]. This is illustrated in Fig. 100

Fig. 100 This figure attempts to show how different values of the AdS
holographic coordinate z correspond to different scales at which the
proton is examined. Events at short distances in the ultraviolet happen
near the four-dimensional AdS boundary (large circumference). The
red inner sphere represents large distance infrared events where AdS is
modified to model confinement. The green cone represents the warping
of AdS space and is due to its negative curvature. A proton (blue ball
with seeds) evolves from a small size near the ultraviolet boundary
to larger sizes as it propagates towards the infrared region of AdS as
perceived by an observer in physical Minkowski space

for d = 4, where the asymptotic surface of the 5-dimensional
AdS5 space is the physical four-dimensional Minkowski
spacetime.

Anti-de Sitter AdSd+1 is the maximally symmetric d + 1
space with negative constant curvature and a d-dimensional
flat spacetime boundary. In Poincaré coordinates xM =(
x0, x1, . . . , xd−1, z

)
, where the asymptotic border of AdS

space is given by z = 0. The line element is

ds2 = gMNdx
MdxN

= R2

z2

(
ημνdx

μdxν − dz2
)
, (5.38)

where ημν is the usual Minkowski metric in d dimensions,
and R is the AdS radius. The group of transformations leaving
the AdSd+1 metric invariant, the isometry group SO(2, d),
has dimension (d + 1)(d + 2)/2. Five-dimensional anti-
de Sitter space AdS5 has thus 15 isometries, which induce
in the Minkowski-space boundary the symmetry under the
conformal group with 15 generators in four dimensions: 6
Lorentz transformations plus 4 spacetime translations plus 4
special conformal transformations plus 1 dilatation [997].
This conformal symmetry implies that there can be no
scale in the boundary theory and therefore no discrete spec-
trum.

The relation between the dilatation symmetry and the sym-
metries in AdS5 can be seen directly from the AdS metric
since (5.38) is invariant under a dilatation of all coordinates:
A dilatation of the Minkowski coordinates xμ → eσ xμ

is compensated by a dilatation of the holographic variable
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z → eσ z. Therefore, the variable z acts like a scaling vari-
able in Minkowski space: different values of z correspond
to different energy scales at which a measurement is made.
As a result, short spacetime intervals map to the boundary
in AdS space-time near z = 0. This corresponds to the
ultraviolet (UV) region of AdS space. On the other hand,
a large four-dimensional object of confinement dimensions
1/Λ2

QCD maps to the large infrared (IR) region of AdS space
z ∼ 1/ΛQCD. Thus, in order to incorporate confinement in
the gravity dual the conformal invariance must be broken by
modifying AdS space in the large z IR region. For example,
a simple way to obtain confinement and discrete normaliz-
able modes (Fig. 100) is to introduce a sharp cut-off at the IR
border z0 ∼ 1/ΛQCD , as in the “hard-wall” model of Ref.
[998].

In general, one can deform the original AdS background
geometry, giving rise to a less symmetric gravity dual. This
approach provides useful tools for constructing dual grav-
ity models in higher dimensions which incorporates con-
finement and basic QCD properties in physical spacetime.
The resulting gauge/gravity duality is broadly known as
the AdS/QCD correspondence, or simply holographic QCD,
which has become an extensive field of research. The extent
to which the full theory of QCD can be described in such
a framework remains unclear. It has become clear, how-
ever, that holographic models motivated by the AdS/CFT
correspondence can capture essential features of QCD and
may give important insights into how QCD works. Different
models can be derived via a top-down approach from brane
configurations in string theory, as well as from more phe-
nomenological bottom-up models, which are not constrained
by string theory, and are therefore more flexible for incorpo-
rating key aspects of QCD. The best known example of the
first category is the Witten–Sakai–Sugimoto model [999],
which contains vector mesons and pions in its spectrum aris-
ing from the breaking of chiral symmetry. Conversely, in
the bottom-up hard-wall model of Refs. [1000,1001], the
global SU (2)× SU (2) chiral symmetry of QCD becomes a
gauge invariant symmetry on the gravity side. The AdS/QCD
model of Refs. [1000,1001] has also been extended by
using the “soft-wall” model introduced in Ref. [1002] in
order to reproduce the observed linearity of Regge trajec-
tories.

A third approach to AdS/QCD, holographic light-front
QCD (HLFQCD) [1003], is based on the holographic embed-
ding of Dirac’s relativistic front form of dynamics [902] into
AdS space. In the front form, the initial surface is the tangent
plane to the light cone x0+ x3 = 0, the null plane, thus with-
out reference to a specific Lorentz frame, in contrast with the
usual instant form where quantization is defined at x0 = 0.
This precise mapping between semiclassical LF Hamiltonian
equations in QCD and wave equations in AdS space, [1004]
leads to relativistic wave equations in physical space-time

(similar to the Schrödinger or Dirac wave equations in atomic
physics) and provides an effective computational framework
of hadron structure and dynamics [1003].37

A remarkable property of HLFQCD is the embodiment
of a superconformal algebraic structure which not only
introduces a mass scale within the algebra, but also deter-
mines the interaction completely [1010–1015].38 Further
extensions of HLFQCD provide nontrivial interconnections
between the dynamics of form factors and quark and gluon
distributions [1019–1021] with pre-QCD nonperturbative
approaches such as Regge theory and the Veneziano model.

In this section we give an overview of relevant aspects
of the holographic embedding of QCD quantized in the
light front, with an emphasis on the underlying supercon-
formal structure for hadron spectroscopy and hadron dual-
ity for amplitude dynamics. Introductory reviews are given
in Refs. [1003,1022–1024]. Other reviews describing dis-
tinct approaches and aspects of holographic QCD in the
context of the gauge/gravity correspondence in addition to
Refs. [996,999], are given in Refs. [1025–1027] and in the
book [1028], with applications to other topics such as holo-
graphic renormalization group flows, QCD at finite temper-
ature and density, hydrodynamics and strongly coupled con-
densed matter systems.39

5.4.2 Semiclassical approximation to light-front QCD

A semiclassical approximation to QCD has been obtained
using light-front (LF) physics, where the quantization surface
is the null plane, x+ = x0 + x3 = 0 [902]. Evolution in LF
time x+ is given by the Hamiltonian equation [900]

i
∂

∂x+
|ψ〉 = P−|ψ〉, P−|ψ〉 = P2⊥ + M2

P+
|ψ〉, (5.39)

37 The origins of the light-front holographic approach can be traced
back to the original article of Polchinski and Strassler [998], where
the exclusive hard-scattering counting rules [153,1005], a property of
hadrons in physical spacetime, can be derived from the warped geometry
of five-dimensional AdS5 space. Indeed, one can show that a precise
mapping between the hadron form factors in AdS space [1006] and
physical spacetime [958,959] can be carried out for an arbitrary num-
ber of quark constituents [1007–1009]. The key holographic feature is
the identification of the invariant transverse impact variable ζ for the
n-parton bound state in physical 3+1 spacetime with the holographic
variable z, the fifth dimension of AdS.
38 The idea to apply an effective supersymmetry to hadron physics is
certainly not new [1016–1018], but failed to account for the special
role of the pion. In contrast, in the HLFQCD approach, the zero-energy
eigenmode of the superconformal quantum mechanical equations is
identified with the lightest meson which has no baryonic supersymmet-
ric partner.
39 Hadron models from effective string configurations in holographic
5-dimensional AdS backgrounds [1029] are useful to describe multiple
quark configurations including heavy quarks. See Refs. [1030,1031]
and references therein.
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for a hadron with 4-momentum P = (P+, P−,P⊥), P± =
P0 ± P3, where P− is a dynamical generator and P+ and
P⊥ are kinematical. The simple structure of the LF vac-
uum allows a quantum-mechanical probabilistic interpreta-
tion of hadron states in terms of the eigenfunctions of the LF
Hamiltonian equation (5.39) in a constituent particle basis,
|ψ〉 =∑

n ψn|n〉, similar to usual Schrödinger equation. The
LF wave functions (LFWFs), ψn , underlie the physical prop-
erties of hadrons in terms of their quark and gluon degrees of
freedom. For a qq̄ bound state we factor out the longitudinal
X (x) and orbital ei Lθ dependence from ψ ,

ψ(x, ζ, θ) = ei Lθ X (x)
φ(ζ )√

2πζ
, (5.40)

where ζ 2 = x(1 − x)b2⊥ is the invariant transverse sep-
aration between two quarks, with b⊥, the relative impact
variable, conjugate to the relative transverse momentum
k⊥ with longitudinal momentum fraction x . In the ultra-
relativistic zero-quark mass limit the invariant LF Hamil-
tonian PμPμ|ψ〉 = M2|ψ〉, with P2 = P+P−− P2⊥ can be
systematically reduced to the wave equation [1004]:

(

− d2

dζ 2 −
1− 4L2

4ζ 2 +U (ζ )

)

φ(ζ ) = M2φ(ζ ), (5.41)

where the effective potential U comprises all interactions,
including those from higher Fock states. The critical value
of the LF orbital angular momentum L = 0 corresponds
to the lowest possible solution. The LF equation (5.41) is
relativistic and frame-independent; It has a similar structure
to wave equations in AdS provided that one identifies ζ = z,
the holographic variable [1004].

5.4.3 Higher integer-spin wave equations in AdS

We start with the AdS action for a tensor-J field ΦJ =
ΦN1...NJ in the presence of a dilaton profile ϕ(z) responsible
for the confinement dynamics

S =
∫

dd x dz
√
g eϕ(z)

(
DMΦJ D

MΦJ − μ2Φ2
J

)
, (5.42)

where g is the determinant of the metric tensor gMN , μ is the
AdS mass and DM is the covariant derivative which includes
the affine connection.40,41 The variation of the AdS action

40 The affine connection, the vielbein and the spin connection are
important elements in curved spaces, particularly if higher spins are
involved. A brief introduction, useful for actual computations in AdS
space, is given in Appendix A of Ref. [1003].
41 In the holographic approach the gluon field emerges as a constituent
of the spin-2 metric field gMN in AdS, which is dual to the Pomeron in
the 4-dimensional physical space (see Sect. 5.4.15).

leads to the wave equation
[

− zd−1−2J

eϕ(z)
∂z

( eϕ(z)

zd−1−2J ∂z

)
+ (μ R)2

z2

]

ΦJ (z)

= M2ΦJ (z), (5.43)

after a redefinition of the AdS mass μ, plus kinematical con-
straints to eliminate lower spin from the symmetric tensor
ΦN1...NJ [1032]. By substituting

ΦJ (z) = z(d−1)/2−J e−ϕ(z)/2 φJ (z) (5.44)

in (5.43), we find the semiclassical light-front wave equa-
tion (5.41) with

UJ (ζ ) = 1

2
ϕ′′(ζ )+ 1

4
ϕ′(ζ )2 + 2J − d + 1

2ζ
ϕ′(ζ ), (5.45)

as long as ζ = z. The precise mapping allows us to write
the LF confinement potential U in terms of the dilaton pro-
file which modifies the IR region of AdS space to incorpo-
rate confinement [1003], while keeping the theory confor-
mal invariant in the ultraviolet boundary of AdS, namely
ϕ(z) → 0 for z → 0. The separation of kinematic and
dynamic components allows us to determine the mass func-
tion in the AdS action in terms of physical kinematic quan-
tities with the AdS mass-radius (μR)2 = L2 − (d/2 − J )2

and d, the number of transverse coordinates [1004,1032],
consistent with the AdS stability bound [1033].

5.4.4 Higher half-integer-spin wave equations in AdS

A similar derivation follows from the Rarita–Schwinger
action for a spinor field ΨJ ≡ ΨN1...NJ−1/2 in AdS [1032]
for half-integral spin J . In this case, however, the dilaton
term does not lead to an interaction [1034], and an effective
Yukawa-type coupling to a potential V in the action has to
be introduced instead [1035–1037]:

S =
∫

dd x dz
√
g Ψ̄J

(
iΓ AeMA DM − μ+ z

R
V (z)

)
ΨJ ,

(5.46)

where eMA is the vielbein and the covariant derivative DM

on a spinor field includes the affine connection and the spin
connection. The tangent space Dirac matrices obey the usual
anticommutation relations {Γ A, Γ B} = 2ηAB . The variation
of the AdS action leads to a system of linear differential
equations which is equivalent to the second order equations
[1032]

(

− d2

dζ 2 −
1− 4L2

4ζ 2 +U+(ζ )
)

ψ+= M2ψ+,

(5.47)
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(

− d2

dζ 2 −
1− 4(L + 1)2

4ζ 2 +U−(ζ )
)

ψ− = M2ψ−,

(5.48)

with ζ = z, |μR| = L + 1/2 and equal probability∫
dζ ψ2+(ζ )2 = ∫

dζ ψ2−(ζ ). The semiclassical LF wave
equations for ψ+ and ψ− correspond to LF orbital angular
momentum L and L + 1 with

U±(ζ ) = V 2(ζ )± V ′(ζ )+ 1+ 2L

ζ
V (ζ ), (5.49)

a J -independent potential, in agreement with the observed
degeneracy in the baryon spectrum.

5.4.5 Superconformal algebraic structure and emergence
of a mass scale

Embedding light-front physics in a higher dimension gravity
theory leads to important insights into the nonperturbative
structure of bound state equations in QCD for arbitrary spin,
but it does not answer the question of how the effective con-
finement dynamics is actually determined, and how it can be
related to the symmetries of QCD itself. An important clue,
however, comes from the realization that the potential V (ζ )

in Eq. (5.49) plays the role of the superpotential in super-
symmetric (SUSY) quantum mechanics (QM) [1038].

Supersymmetric QM is based on a graded Lie algebra
consisting of two anticommuting supercharges Q and Q†,
{Q, Q} = {Q†, Q†} = 0, which commute with the Hamil-
tonian H = 1

2 {Q, Q†}, [Q, H ] = [Q†, H ] = 0. If the state
|E〉 is an eigenstate with energy E , H |E〉 = E |E〉, then, it
follows from the commutation relations that the state Q†|E〉
is degenerate with the state |E〉 for E �= 0, but for E = 0
we have Q†|E = 0〉 = 0, namely the zero mode has no
supersymmetric partner [1038]; a key result for deriving the
supermultiplet structure and the pattern of the hadron spec-
trum.

Following Ref. [1011] we consider the scale-deformed
supercharge operator Rλ = Q + λS, with K = 1

2 {S, S†}
the generator of special conformal transformations. The gen-
erator Rλ is also nilpotent, {Rλ, Rλ} = {R†

λ, R
†
λ} = 0,

and gives rise to a new scale-dependent Hamiltonian G,
G = 1

2 {Rλ, R
†
λ}, which also closes under the graded alge-

bra, [Rλ,G] = [R†
λ,G] = 0. The new supercharge Rλ has

the matrix representation

Rλ =
(

0 rλ
0 0

)

, R†
λ =

(
0 0
r†
λ 0

)

, (5.50)

with rλ = −∂x+ f
x +λx, r†

λ = ∂x+ f
x +λx . The parameter f

is dimensionless and λ has the dimension of [M2], and thus, a
mass scale is introduced in the Hamiltonian without leaving

the conformal group. The Hamiltonian equation G|E〉 =
E |E〉 leads to the wave equations

[

− d2

dx2 −
1− 4( f + 1

2 )
2

4x2 + λ2 x2 + 2λ
(
f − 1

2

)
]

φ+

= Eφ+, (5.51)
[

− d2

dx2 −
1− 4( f − 1

2 )
2

4x2 + λ2 x2 + 2λ
(
f + 1

2

)
]

φ−

= Eφ−, (5.52)

which have the same structure as the Euler–Lagrange equa-
tions obtained from the AdS/CFT correspondence, but here,
the form of the LF confinement potential, λ2x2, as well as
the constant terms in the potential are completely fixed by
the superconformal symmetry [1014,1015].

5.4.6 Light-front mapping and baryons

Upon mapping (5.51) and (5.52) to the semiclassical LF
wave equations (5.47) and (5.48) using the substitutions x #→
ζ, E #→ M2, f #→ L + 1

2 , φ+ #→ ψ− and φ− #→ ψ+, we
find

U+ = λ2ζ 2 + 2λ(L + 1), (5.53)

U− = λ2ζ 2 + 2λL , (5.54)

for the confinement potential for baryons [1014]. The solu-
tion of the LF wave equations for this potential gives the
eigenfunctions

ψ+(ζ ) ∼ ζ
1
2+Le−λζ 2/2LL

n (λζ
2) (5.55)

ψ−(ζ ) ∼ ζ
3
2+Le−λζ 2/2LL+1

n (λζ 2) (5.56)

with eigenvalues M2 = 4λ(n + L + 1). The polynomials
LL
n (x) are associated Laguerre polynomials, where the radial

quantum number n counts the number of nodes in the wave
function. We compare in Fig. 101 the model predictions with
the measured values for the positive parity nucleons [513]
for
√
λ = 0.485 GeV.

5.4.7 Superconformal meson–baryon symmetry

Superconformal quantum mechanics also leads to a con-
nection between mesons and baryons [1015] underlying the
SU (3)C representation properties, since a diquark cluster can
be in the same color representation as an antiquark, namely
3̄ ∈ 3× 3. The specific connection follows from the substi-
tution x #→ ζ, E #→ M2, λ #→ λB = λM , f #→ LM− 1

2 =
LB + 1

2 , φ+ #→ φM and φ2 #→ φB in the superconformal
equations (5.51) and (5.52). We find the LF meson (M) –
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Fig. 101 Model predictions for the orbital and radial positive-parity
nucleons (up) and positive and negative parity Δ families (down) com-
pared with the data from Ref. [513]. The values of

√
λ are

√
λ = 0.485

GeV for nucleons and
√
λ = 0.498 GeV for the deltas

baryon (B) bound-state equations

(

− d2

dζ 2 −
1− 4L2

M

4ζ 2 +UM

)

φM = M2 φM , (5.57)

(

− d2

dζ 2 −
1− 4L2

B

4ζ 2 +UB

)

φB = M2 φB, (5.58)

with the confinement potentials

UM = λ2
M ζ 2 + 2λM (LM − 1), (5.59)

UB = λ2
B ζ 2 + 2λB(LB + 1). (5.60)

The superconformal structure imposes the condition λ =
λM = λB and the remarkable relation LM = LB + 1, where
LM is the LF angular momentum between the quark and

antiquark in the meson, and LB between the active quark and
spectator cluster in the baryon. Likewise, the equality of the
Regge slopes embodies the equivalence of the 3C − 3̄C color
interaction in the qq̄ meson with the 3C − 3̄C interaction
between the quark and diquark cluster in the baryon. The
mass spectrum from (5.57) and (5.58) is

M2
M = 4λ(n + LM ) and M2

B = 4λ(n + LB + 1). (5.61)

The pion has a special role as the unique state of zero mass
and, since LM = 0, it does not have a baryon partner.

AdS space is effectively modified in the IR by the dilaton
profile in Eq. (5.42), while retaining conformal invariance
in the UV (near the boundary of AdS space): It leads to the
effective confinement potential U (z) in Eq. (5.45). The dila-
ton profile can be determined from the superconformal alge-
bra by integrating Eq. (5.45) for the effective potential (5.59).
We obtain ϕ(z) = λz2. The dilaton is uniquely determined,
provided that it depends only on the modification of AdS
space [1039].

5.4.8 Spin interaction and diquark clusters

Embedding the LF bound-state equations in AdS space
allows us to extend the superconformal Hamiltonian to
include the spin–spin interaction, a problem not defined in the
chiral limit by standard procedures. Since the dilaton profile
ϕ(z) = λz2 is valid for arbitrary J , it leads to the additional
term 2λS in the LF Hamiltonian for mesons and baryons,
G = 1

2 {Rλ, R
†
λ} + 2λS, which maintains the meson–baryon

supersymmetry [1040]. The spin S = 0, 1, is the total inter-
nal spin of the meson, or the spin of the diquark cluster of
the baryon partner. The effect of the spin term is an overall
shift of the quadratic mass,

M2
M = 4λ(n + LM )+ 2λS, (5.62)

M2
B = 4λ(n + LB + 1)+ 2λS, (5.63)

as depicted in Fig. 102 for the spectra of the ρ mesons and
Δ baryons by shifting one unit the value of LB [1015]. This
shift leads to a degeneracy of meson and baryons states, a
property known as the MacDowell symmetry [1041,1042].

For the Δ baryons the total internal spin S is related to the
diquark cluster spin S by S = S + 1

2 (−1)L , and therefore,
positive and negative Δ baryons have the same diquark spin,
S = 1. As a result, all the Δ baryons lie, for a given n, on
the same Regge trajectory, as shown in Fig. 101. Plus parity
nucleons are assigned S = 0 and are well described by the
holographic model as shown in Fig. 101. For negative parity
nucleons both S = 0 and S = 1 are possible, but their
precise comparison with data is not as successful as for the
Δ baryons and positive parity nucleons.
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Fig. 102 Supersymmetric vector meson and Δ partners from Ref.
[1015]. The experimental values of M2 from Ref. [513] are plotted vs
LM = LB+1 for

√
λ � 0.5 GeV. Theρ andω mesons have no baryonic

partner, since it would imply a negative value of LB

5.4.9 Inclusion of quark masses and longitudinal dynamics

Finite quark masses break conformal invariance and pose a
special challenge for all AdS/CFT approaches since the dual
quantum field theory is inherently conformal. In the usual
formulation of bottom-up holographic models one identi-
fies quark mass and chiral condensates as coefficients of a
scalar background field X0(z) in AdS space [1000,1001]. A
heuristic way to take into account the occurrence of quark
mass terms, is to include the quark mass dependence in the
invariant mass squared which controls the off-shell depen-
dence of the LF wave function [1003,1043]. This substitu-
tion leads, upon exponentiation, to a natural factorization
of the transverse, φ(ζ ), and the longitudinal, χ(x), wave
functions in (5.40), where χ(x) = x−1/2(1 − x)−1/2X (x).
For hadrons with quark masses mi , one finds for the longi-
tudinal wave functions and the quadratic mass corrections
[1003,1040,1043]

χIM(x) = N exp
(
− 1

2λ

∑

i

m2
i

xi

)
, (5.64)

ΔM2 =
∫

dx δ
(∑

i

xi − 1
)∑

i

m2
i

xi
χ2

IM(x), (5.65)

where N is a normalization factor and (IM) refers to the
invariant mass LFWF.

The effective quark masses can be obtained by com-
paring the holographic results with the observed pseu-
doscalar masses. One obtains mq = 0.046 GeV for the
light quark mass and ms = 0.350 GeV for the strange
mass, with values between the Lagrangian and the con-
stituent masses [1003,1040,1043]. The analysis has been
consistently applied to the radial and orbital excitation spec-
tra of the light meson and baryon families, giving the value√
λ = 0.523 ± 0.024 GeV [1040]. The comparison of the

Fig. 103 The K ∗ and Σ∗ trajectories from supersymmetric HLFQCD
in Ref. [1044] with

√
λ = 0.51 GeV. The error bars are smaller that the

symbols in the figure and were not included

predicted K ∗ and Σ∗ trajectories with experiment shown in
Fig. 103 is a clear example of the validity of the supersymmet-
ric meson–baryon connection including light quark masses.
Starting with Ref. [1045], the application of the light-front
holographic wave functions to diffraction physics has also
been successful.

For heavy quarks the mass breaking effects are large. The
underlying hadronic supersymmetry, however, is still com-
patible with the holographic approach and gives remarkable
connections across the entire spectrum of light and heavy-
light hadrons [1039,1044]. In particular, the lowest mass
meson of every family has no baryon partner, conforming to
the SUSY mechanism. Compatibility with heavy quark sym-
metry [1039,1044,1046–1050] predicts a dependence of the
holographic mass scale λ on the quark mass.42

The extension of the LF holographic framework to incor-
porate longitudinal dynamics and chiral symmetry break-
ing, inspired in the original work of ’t Hooft [1053], has
recently attracted much interest [942,981,1051,1054–1064];
however, in contrast with the transverse dynamics, the longi-
tudinal confinement potential is not uniquely determined by
the symmetries of the model.

5.4.10 Completing the supersymmetric hadron multiplet

Besides mesons and baryons, the supersymmetric multiplet
Φ = {φM , φ+B , φ

−
B , φT } contains a further bosonic partner,

a tetraquark, which, follows from the action of the SUSY
operator R†

λ (5.50) on the negative-chirality component of a
baryon [1040], as illustrated in Fig. 104. A clear example is
the SUSY positive parity J P multiplet 2+, 3

2
+
, 1+ of states

f2(1270), Δ(1232), a1(1260) where the a1 is interpreted as
a tetraquark.

Unfortunately, it is difficult to disentangle conventional
hadronic quark states from exotic ones and, therefore, no
clear-cut identification of tetraquarks for light hadrons, or

42 For a relation with linear confinement see Refs. [1051,1052].

123



Eur. Phys. J. C          (2023) 83:1125 Page 139 of 636  1125 

Fig. 104 The meson–baryon–tetraquark supersymmetric 4-plet
{φM , φ+B , φ

−
B , φT } follows from the two step action of the supercharge

operator R†
λ (5.50): 3̄ → 3× 3 on the pion, followed by 3 → 3̄× 3̄ on

the negative chirality component of the nucleon

Table 5 Predicted masses for double heavy bosons from Ref. [1050].
Exotics which are predicted to be stable under strong interactions are
marked by (!)

Quark content J P Predicted
mass
[MeV]

Strong decay Threshold
[MeV]

cqcq 0+ 3660 ηcππ 3270

ccqq(!) 1+ 3870 D∗D 3880

bqbq 0+ 10020 ηbππ 9680

bbqq(!) 1+ 10230 B∗B 10800

bcqq(!) 0+ 6810 BD 7150

hadrons with hidden charm or beauty, is possible [1040,
1049,1065]. The situation is, however, more favorable for
tetraquarks with open charm and beauty which may be sta-
ble under strong interactions and therefore easily identified
[1066]. In Table 5, the computed masses from Ref. [1050]
are presented. Our prediction [1050] for a doubly charmed
stable boson Tcc with a mass of 3870 MeV (second row) has
been observed at LHCb a year later at 3875 MeV [1067], and
it is a member of the positive parity J P multiplet 2+, 3

2
+
, 1+

of states χc2(3565), Ξcc(3770), Tcc(3875). The occurrence
of stable doubly beautiful tetraquarks and those with charm
and beauty is well established, see also Ref. [1066].

5.4.11 Holographic QCD and Veneziano amplitudes

The hadronic mass spectrum (5.61), which follows from the
scale deformed superconformal equations (5.51) and (5.52),
shows remarkable features which were essential ingredients
to the pre-QCD physics of strong interactions. Starting from
the S-matrix, Chew and Frautschi [1068] proposed to extend
the concept of Regge trajectories [1069], α(t) = α0 + α′t ,
also to positive t-values. It led to a quadratic mass spec-
tra, linear in the angular momentum, just as the spectra of

Eq. (5.61). The analogy goes further: Veneziano [7] con-
structed a hadronic scattering amplitude

A(s, t) ∼ B(1− α(s), 1− α(t)), (5.66)

based on Euler’s Beta function B(u, v) = Γ (u)Γ (v)
Γ (u+v)

, which
incorporates the duality in strong interactions [1070] and lin-
ear Regge trajectories. It is easy to see that this amplitude
leads to particle poles at masses exactly matching Eq. (5.61),
if one identifies the slope of the trajectory with the scale λ:
α′ = 1/4λ. In fact, from the analytic structure of the Beta
function, particle poles appear at each value where α(t) is a
negative integer. This leads to “Regge-daughter trajectories”,
which are identified with the radial excitations numbered by
the integer n in (5.61). But there is an important difference in
the theoretical foundation: in the Veneziano approach, linear
trajectories were assumed to exist, whereas here they are a
consequence of the model, especially of the superconformal
model, where the Regge intercept α0 is also determined, and
expressed in terms of quark masses.

5.4.12 Electromagnetic form factors in holographic QCD

Holographic QCD incorporates important elements for the
study of hadronic form factors, such as the connection
between the twist of the hadron to the fall-off of its current
matrix elements for large Q2, and important aspects of vector
meson dominance which are relevant at lower energies. The
expression for the electromagnetic (EM) form factor (FF) in
AdS space has been given by Polchinski and Strassler [1006]

F(Q2) =
∫

dz

z3 V (Q2, z)Φ2(z), (5.67)

in their influential article describing deep inelastic scattering
(DIS) using the gauge/gravity correspondence.43 It is writ-
ten as the overlap of a normalizable mode Φ(z), represent-
ing a bound-state wave function in AdS for the initial and
final states, with a non-normalizable solution V (Q2, z) of
the wave equation (5.43) for a spin one conserved current in
AdS, with μ = 0 and M2 → −Q2. The bulk-to boundary
propagator, V (Q2, z) carries momentum Q2 = −t > 0 from
the external EM current. A precise mapping can be carried
out to physical spacetime provided that the invariant trans-
verse impact variable ζ for an arbitrary number of quarks is
identified with the holographic variable z [1007].

For the soft-wall model (SWM) of Ref. [1002] Φτ (z) ∼
zτ e−λz2/2, and V (Q2, z) is given in terms of the Tricomi
function, V (Q2, z) ∼ U (Q2/4λ, 0, λz2). It corresponds to
a conserved vector current with vanishing mass μ = 0 in

43 For recent DIS studies examining various holographic QCD models
see Ref. [1071] and references therein.
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AdS. The result for the FF [1003] can be brought into the
form of an Euler Beta function

FSWM
τ (t) ∼ B(τ − 1, 1− t/4λ). (5.68)

It generates a series of poles located at M2
n = 4λ(n + 1),

and thus to the Regge intercept α0 = 0 [1072]. Therefore,
one has to perform a pole shift [1003,1019,1020,1073] in the
expression (5.68) in order to bring the analytical structure of
the FF in accordance with the spectra predicted by HLFQCD,
which is in perfect agreement with observations. This shift
leads to [1019]

FHLF
τ (t) ∼ B

(
τ − 1, 1/2− t/4λ

)
, (5.69)

for the EM form factors in HLFQCD.

5.4.13 Form factors in dual models and holographic QCD

In a model extending the duality concept incorporated in
Eq. (5.66) to reactions involving external currents, Ademollo
and Del Giudice [1074], and Landshoff and Polkinghorne
[1075], proposed a a Veneziano-like amplitude

Fγ (t) ∼ B
(
γ, 1− αρ(t)

)
, (5.70)

in order to describe the electromagnetic FF; here αρ(t) is the
Regge trajectory of the ρ meson which couples to the quark
current in the hadron, and the parameter γ controls the rate
of decrease of the FF. In fact, from Stirling’s formula we
find the asymptotic behavior Fγ (Q2) ∼ (

1/Q2
)γ

for large
Q2 = −t .

In LF QCD the parameter γ has a well defined interpreta-
tion. To see this, we compare the asymptotic expression for
Fγ (Q2) with the result from hard scattering counting rules at

large Q2 [153], Fτ (Q2) ∼ (
1/Q2

)τ−1
, where the twist τ is

the number of constituents N in a given Fock component of
the hadron. Thus, one has to choose in Eq. (5.70) γ = τ −1,
in order to incorporate the scaling counting rule. This brings
us to our final result for the analytical expression of the elec-
tromagnetic FF in the extended duality model [1019]

Fτ (t) = 1

Nτ

B (τ − 1, 1− α(t)) , (5.71)

with Nτ = B(τ − 1, 1 − α(0)), a remarkable expression
which incorporates, at tree level, both the nonperturbative
pole structure of the form factor and the hard scattering
behavior.

For τ = N , the number of constituents, the FF (5.71) is
an N − 1 product of poles located at [1003]

−Q2 = t = M2
n =

1

α′
(
n + 1− α(0)

)
> 0. (5.72)

It generates the radial excitation spectrum of the exchanged
vector mesons in the t-channel. For example, the ρ trajec-
tory has Regge intercept α0 = 1/2 and slope α′ ≡ 1/4λ,
with λ � (0.5 GeV)2. Thus M2

n = 4λ(n + 1
2 ), correspond-

ing to the ρ vector meson and its radial excitations for n =
0, 1, 2, . . . , τ−2 in agreement with Eq. (5.62). In general, the
hadron wave function is a superposition of an infinite num-
ber of Fock components, and thus the full form factor should
be written as a superposition F(Q2) =∑

τ Cτ Fτ (Q2), with∑
τ Cτ = 1, if all possible states are included. In practice,

one expects a rapid convergence in the number of poles, with
a dominant contribution from the ρ vector meson plus con-
tributions from the higher resonances ρ′, ρ′′, …, etc.

As a simple example, consider the valence contribution to
the nucleon EM (spin non-flip) Dirac form factors by writing
the flavor FFs as

Fu(t) =
(

2− r

3

)
F3(t)+ r

3
F4(t), (5.73)

Fd(t) =
(

1− 2r

3

)

F3(t)+ 2r

3
F4(t), (5.74)

where Fτ (Q2) is given by (5.71). The holographic constraint
of equal probability for nucleon states with LF orbital angu-
lar momentum L and L+1 (Sect. 5.4.4) determines the value
r = 3/2, since the probability of the total quark spin along
the plus z-direction for L = 0 (twist 3) should be identi-
cal to the probability of having total quark spin along the
minus z-direction for L = 1. Actually, the values found in
the recent analysis in Ref. [1020] deviate by 10 ∼ 15 %
for the u-flavor FF and remain almost identical for the d
quark in the valence approximation. This leads to the results
show in Fig. 105 for the nucleon isospin FF combination,
F I=0,1 = Fp(t)± Fn(t), where we compare the model pre-
dictions with the analysis of Ye et al. [1076]. Detailed studies
show the importance of higher (large distance meson cloud)
Fock components for the spin-flip Pauli FF [1073].

5.4.14 Quark distribution functions and the
exclusive–inclusive connection

The mathematical structure of the Veneziano-type FFs (5.71),
not only incorporates the hard scattering amplitude’s depen-
dence on twist, but it also gives important insights into the
structure of the parton distributions since it becomes pos-
sible to include the Regge behavior at small values of x ,
as well as the exclusive–inclusive connection [958,1078] at
large values of the longitudinal momentum x [1019]. In fact,
the relation between the behavior of the structure function
near x = 1 with the falloff of the FF at large t , described in the
article of Landshoff and Polkinghorne [1075], is very close
to the Drell–Yan “exclusive–inclusive” connection, also for-
mulated in 1970 [958].
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Fig. 105 The LFHQCD prediction for the I = 0, 1 isospin com-
binations of nucleon factors from Ref. [1020] is compared with the
z-expansion data analysis of Ye et al. [1076] (grey band): (blue line)
valence contribution only, (red line) including uū and dd̄ pairs. The
inset from Ref. [1077] represents the ρ Regge trajectory in Eq. (5.71)
for
√
λ = 0.534 GeV and αρ(0) = 0.483

Using the integral representation of the Beta function, the
FF (5.71) can be expressed in a reparametrization invariant
form

Fτ (t) = 1

Nτ

∫ 1

0
dx w′(x)w(x)−α(t) [1− w(x)]τ−2 .

(5.75)

The trajectory α(t) of the vector current can be com-
puted within the superconformal LF holographic frame-
work, and the intercept, α(0), incorporates the quark masses
[1014,1015]. The functionw(x) is a flavor-independent func-
tion with w(0) = 0, w(1) = 1 and w′(x) ≥ 0.

The flavor FF can be written in terms of its generalized par-
ton distribution (GPD) [1079–1081], Hq(x, t) ≡ Hq(x, ξ =
0, t), at zero skewness, ξ ,

Fq(t) =
∫ 1

0
dx Hq(x, t)

=
∫ 1

0
dx q(x) exp [t f (x)] , (5.76)

with the profile function, f (x), and the particle distribution
function (PDF), qτ (x), both determined by w(x):

f (x) = 1

4λ
log

( 1

w(x)

)
, (5.77)

qτ (x) = 1

Nτ

w′(x)w(x)−α(0)[1− w(x)]τ−2, (5.78)

with α′ = 1/4λ. Boundary conditions follow from the Regge
behavior at x → 0, w(x) ∼ x , and at x → 1 from

Fig. 106 Comparison for xq(x) in HLFQCD with global fits from
[1019]. Up: proton valence approximation (red band). Data analysis
from MMHT2014 (blue bands) [973], CT14 [1082] (cyan bands), and
NNPDF3.0 (grey bands) [1083]. Down: pion results (red and light blue
bands). NLO global fits from [1084,1085] (gray band and green curve)
and the LO data extraction [1086]. HLFQCD results are evolved from
the initial scale μ0 � 1 GeV at NLO and NNLO

the exclusive–inclusive counting rule [958,1078], qτ (x) ∼
(1− x)2τ−3, which fixes w′(1) = 0. A simple ansatz for
w(x), w(x) = x1−x exp(−a(1− x)2), fulfills all conditions
mentioned above. The flavor independent parameter a has
the value a � 0.5 [1019].

Using the expression (5.76) at t = 0 and Eqs. (5.73–
5.74), we obtain for the unpolarized quark distributions in
the valence approximation

uv(x) =
(

2− r

3

)
q3(x)+ r

3
q4(x), (5.79)

dv(x) =
(

1− 2r

3

)

q3(x)+ 2r

3
q4(x), (5.80)

with normalization
∫
dx uv(x) = 2 and

∫
dx dv(x) = 1. The

PDF qτ (x) is given by (5.78) and r = 3/2. Our PDF results
for the nucleon, Eqs. (5.79–5.80), and for the pion [1019],
are compared with the global data analysis in Fig. 106. If
the reparametrization function w(x) is fixed by the nucleon
PDFs, then the pion PDF is a prediction. pQCD evolution is
performed from an initial scale determined fromμ0 � 1 GeV
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Fig. 107 HLFQCD predictions from Ref. [1020] for the quark helicity
asymmetry ratio Δq+/q+, q+ = q + q̄, are compared with existing
data. The blue band is the valence contribution, the red band includes
qq̄ components and the dashed green band also includes the intrinsic
sea contribution

from the soft-hard matching procedure described in Ref.
[1087]. Our result for the pion PDF in Fig. 106 is in good
agreement with the data analysis in Ref. [1084] and consis-
tent with the nucleon global fit through the GPD universality
introduced in [1019]. It leads to a 1 − x falloff, in contrast
with the (1 − x)2 pQCD result at large-x [1085,1088], an
issue much debated recently [837,1089,1090].

An analysis of the polarized quark distribution in the
proton has been performed in Ref. [1020], assuming the
Veneziano-type FF (5.71), with the separation of chiralities
from the axial current. The model predictions for the ratio
of polarized to unpolarized quark distribution functions is
compared with available data in Fig. 107.

Another application of the LF holographic ideas is the
computation of the intrinsic charm-anticharm asymmetry in
the proton [1091], c(x)− c̄(x) =∑

τ cτ
(
qτ (x)− qτ+1(x)

)
,

with
∫ 1

0 dx[c(x)−c̄(x)] = 0. The normalization of the charm
form factor was computed using lattice QCD [1091], and the
J/ψ trajectory in the GPDs from HLFQCD and heavy quark
effective theory [1049]. A similar procedure was used to
determine the intrinsic strange–antistrange asymmetry in the
proton with the Regge trajectory in the holographic expres-
sions corresponding to the φ meson current [1077], and most
recently to study color transparency in nuclei [1092] (see
Sect. 5.9), and to model the EMC effect in various nuclei
[1093].

5.4.15 Gravitational form factors, gluon distributions and
the Pomeron trajectory

Gravitational form factors (GFFs) are the hadronic matrix
elements of the energy momentum tensor (EMT) and
describe the coupling of a hadron to the graviton, thus pro-
viding key information on the dynamics of quarks and glu-
ons within hadrons. In holographic QCD Pomeron exchange

is identified as the graviton of the dual AdS theory [1094–
1099]. The Pomeron couples as a rank-two tensor to hadrons
and interacts strongly with gluons. Since we are interested
in obtaining the intrinsic gluon distribution in the nucleon,
we use the soft Pomeron of Donnachie and Landshoff [1100]
with the Regge trajectory αP (t) = αP (0)+ α′P t , with inter-
cept αP (0) � 1.08 and slope α′P � 0.25 GeV−2 [513].

To actually compute the GFF one considers the pertur-
bation of the gravity action by an arbitrary external source
at the AdS asymptotic boundary which propagates inside
AdS space and couples to the EMT [1009,1101]. In analogy
to the EM FF (5.67), the spin non-flip GFF A(t) is written
as the overlap of a normalizable mode Φ(z), representing a
bound-state wave function, with a non-normalizable mode
H(Q2, z), the bulk-to-boundary propagator, corresponding
to the gravitational current in AdS. We obtain [1009,1101]

A(t) =
∫

dz

z3 H(Q2, z)Φ2(z). (5.81)

For the soft-wall profile introduced in Ref. [1002], the
propagator in AdS, H(Q2, z), is also given by a Tricomi
function [1003,1101], H(Q2, z) ∼ U

(
Q2/4λg,−1, λgz2

)
.

The effective physical scale λg is the scale of the Pomeron,
λg = 1/4α′P � 1 GeV2, which couples to the constituent

gluon over a distance
√
α′P ∼ 1/

√
4λg , described by the

wave function Φ
g
τ (z) ∼ zτ e−λgz2/2. Our final result is [1021]

Ag
τ (Q

2) = 1

Nτ

B
(
τ − 1, 2− αP (Q

2)
)
, (5.82)

with Nτ = B (τ − 1, 2− αP (0)). As for the EM FF, in writ-
ing (5.82) we have also shifted the Pomeron intercept to its
physical value αP (0) ≈ 1, since the holographic result (5.81)
leads to a zero intercept. For integer twist, the GFF (5.82) is
expressed as a product of τ − 1 timelike poles located at

−Q2 = M2
n =

1

α′P
(n + 2− αP (0)) , (5.83)

the radial excitation spectrum of the spin-two Pomeron. The
lowest state in this trajectory, the 2++, has the mass M �
1.92 GeV, compared with the lattice results M � (2.15−2.4)
GeV [513].44 We notice that Eq. (5.82) is the Veneziano
amplitude of the FF for a spin-two current [1074,1075].

The lowest twist contributions to the GFF corresponds to
the τ = 4 Fock state |uudg〉 in the proton and the τ = 3 com-
ponent |ud̄g〉 in the pion, both containing an intrinsic gluon.
The results for Ag(t) are compared in Fig. 108 with recent

44 There exist many computations of glueballs in top-down holographic
models, see for example, [1102]; and also in bottom-up models starting
from [1103]. For a recent computation, see for example [1104], and
references therein.
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Fig. 108 Gluon gravitational form factor Ag(Q2) of the proton (blue)
and the pion (red) in comparison with lattice QCD computations [1105,
1106]. The value Ag(0) corresponds to the momentum fraction carried
by gluons at the scale μ = 2 GeV. The bands indicate the uncertainty
of λg by ±5% and the normalization from the momentum sum rule

lattice computations. We find for the gluon mass squared
radius 〈r2

g 〉p = 2.93/λg = (0.34 fm)2 for the proton and
〈r2

g 〉π = 2.41/λg = (0.31 fm)2 for the pion. The model
predictions in Fig. 108 have no free parameters [1021].

The intrinsic gluon distributions in the proton and the pion
can be determined from the gravitational form factor (5.82)
following the same procedure used in Sect. 5.4.14. The results
are given in [1021] and agree very well with the data analysis
from [663,664,971,1107,1108]. The model uncertainties for
large x-values are smaller than those from the phenomeno-
logical analysis.

By using the gauge/gravity duality a simultaneous descrip-
tion of the BFKL hard Pomeron [159,236,1109] and the soft
Regge domain has been proposed in Ref. [1094]. This model,
however, did not solve the problem of the large difference
of intercept values between both Pomerons. Using the scale
dependence of the gluon distribution functions, our results
give strong support to a single Pomeron with a scale depen-
dent intercept [1110], which was proposed in Ref. [1111] in
order to explain the diffractive scattering data at LHC ener-
gies [1112,1113].

5.4.16 Summary

Holographic light front QCD is a nonperturbative analytic
approach to hadron physics. It originates from the precise
mapping of light front expressions of form factors in AdS
space for an arbitrary number of partons [1007]. The holo-
graphic embedding in AdS also leads to semiclassical rela-
tivistic wave equations, similar to the Schrödinger equation
in atomic physics, for arbitrary integer or half-integer spin
[1004,1032]. The model embodies an underlying supercon-
formal algebraic structure from SU (3)C color symmetry: It

is responsible for the introduction of a mass scale within the
superconformal group, and determines the effective confine-
ment potential–It is not supersymmetric QCD, a theory which
includes squarks and gluinos, but an effective hadronic super-
symmetry. There is a zero eigenmode which is identified with
the pion: It is massless in the chiral limit. The new framework
leads to relations between the Regge trajectories of mesons,
baryons, and tetraquarks. It also incorporates features of pre
QCD, such as Veneziano model and Regge theory. Further
extensions incorporate the exclusive–inclusive connection in
QCD and provide nontrivial relations between hadron form
factors and quark and gluon distributions. Measurements of
the strong coupling in the nonperturbative domain [1114] are
remarkably consistent with the predicted form in holographic
QCD [177], a relevant issue in QCD which is discussed in
the next Sect. 5.5. Holographic light front QCD has led to
significant advances in understanding hadron phenomena by
incorporating emerging QCD properties in an effective com-
putational framework of hadron structure.

5.5 The nonperturbative strong coupling

Alexandre Deur
The perturbative framework of QCD (pQCD) has been
remarkably successful in describing the interactions between
the fundamental constituents of hadrons in high energy
experiments, thus establishing QCD as the theory of the
strong force at small distances [300]. Most of nature’s strong
force phenomena, however, are governed by large-distance,
nonperturbative physics [783,1115–1119] where the meth-
ods of pQCD are not applicable. The Landau pole at low-
energies in the running of the QCD coupling is an example
of the expected failure of perturbation theory as the cou-
pling increases. A nonperturbative treatment is necessary and
allows us to define renormalization scheme dependent cou-
pling constants.

Studying αs(μ) at low energy has been challenging: not
only do nonperturbative calculations represent a difficult
problem to solve, but more generally, we only know in the
pQCD framework how to relate the αs calculated in different
schemes. Worst, there is no obvious prescription of how to
define the coupling. One reason why a variety of definitions
is possible is that αs(μ) need not be an observable. In fact, in
most approaches – including the standard pQCD treatment
– it is not an observable. For example α

pQCD
s depends on the

choice of renormalization scheme, generally taken to be MS.
Such arbitrary dependence on a human convention shows that
αs(μ) is not an observable. In addition, the quark–gluon,
3-gluon, 4-gluon or ghost-gluon vertices may have differ-
ent couplings,45 i.e., several couplings, with distinct magni-

45 When needed, we will use superscripts to qualify the coupling. For

examples, αpQCD,MS
s is the perturbative coupling in the MS scheme, or
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tudes as well as differing μ-dependence, may be necessary
to characterize QCD. This happens because the Slavnov–
Taylor Identities (STI) [1120,1121], the QCD equivalent
of QED’s Ward-Takahashi relation [1122,1123], may not
hold under certain choices of gauges and renormalization
schemes, such as the MOM scheme. With the oft-used MS
scheme, the STI hold, viz,

α
qg,MS
s = α

3g,MS
s = α

4g,MS
s = α

gh,MS
s

but MS is not practical for nonperturbative methods such as
Lattice QCD and in the nonperturbative domain, the differ-
ence between

α
qg,MOM
s , α

3g,MOM
s , α

4g,MOM
s , α

gh,MOM
s

is conspicuous. A wholly different approach is to define
αs(μ) to be an observable [165], in analogy with the observ-
able QED coupling α [1124], but while this circumvents the
issues of breaking the STI and of scheme and gauge depen-
dence, the prescription is rarely used in pQCD.

Many definitions of αs have been considered, resulting
in a range of values of αs(μ � Λs) from 0 to ∞, generat-
ing much confusion. Adding to this is the fact that, unlike the
high-energy domain where pQCD rules, there is no obviously
superior method to study the nonperturbative behavior of
αs(μ). This is, of course, due to the challenge of solving QCD
nonperturbatively. All major non-perturbative approaches,
See Sects. 4, 5.2, 5.4 have been used (with the conspicu-
ous exception of chiral effective field theory, Sect. 6.2, since
its hadronic degrees of freedom do not couple with αs) as
well as many models. These methods using different type
of approximations, and the models being not directly based
on QCD’s Lagrangian or its symmetries, results have often
differed. Yet a number of studies have converged toward a
fruitful definition of αs(μ) which allows us to account for
low energy phenomenology [1125,1126]. Before describing
it, we will first recall in broad brushstrokes the history of
this endeavor, referring only to pioneering attempts and not
the important body of subsequent works that clarified and
refined these attempts.

Soon after the advent of QCD, it was realized that αs(μ)

may display a plateau when μ→ 0 (it is said to freeze at low
μ) [1127–1129], viz, the β function of QCD, Eq. (1.21) may
obey β(μ → 0) → 0. The actual freezing value αs(0) was
debated and ranged from typically 0.5 to 5 [1125]. A pioneer-
ing and influential work in this context is due to Cornwall
[1130] who used the Dyson–Schwinger equations (DSE),
the gluon self-energy and initiated a method (the Pinch tech-
nique, PT) that allows to obtain gauge-independent results.
The ensuing coupling α

gse,PT
s displays a freezing behavior

α
qg,MOM
s , α3g,MOM

s , α4g,MOM
s and α

gh,MOM
s are the couplings for the

quark–gluon, 3-gluon, 4-gluon or ghost-gluon vertices, respectively,
computed in the MOM scheme.

in qualitative agreement with quark models (e.g., Ref. [770]
and Sect. 5.1) and quarkonium spectrum models, e.g., Ref.
[99].

A freezing of αs(μ) was by no mean the only proposal:
others reasoned that it should diverge as 1/μ2 [1131], that it
should monotonically increase with 1/μ, but without diverg-
ing [1132], or that it should vanish as μ → 0 [172,1133].
In all these cases, β(μ → 0) �= 0. As we alluded to, multi-
ple reasons caused these widely varying expectations [1125]:
differences in the basic definition of αs(μ); choice of vertex
used to compute it; calculation artifacts from approximations
(e.g., discretization in lattice QCD or truncation prescription
for the DSE and other functional methods); choice of gauge
and renormalization scheme;46 or the existence of multiple
solutions to the QCD equations providing αs(μ) without
a decisive argument on which one is realized in nature. A
prominent example is the decoupling [1133] and the scaling
[1137] solutions that yield a vanishing or a freezingα

gh,MOM
s ,

respectively. Functional methods and lattice QCD have pro-
duced both solutions, albeit well-controlled lattice calcula-
tions appear to yield only the decoupling solution. In these
calculations α

gh
s , called the Taylor coupling [1120], is most

often used because it is the simplest coupling that can be
computed from QCD correlation functions.

It is generally believed, after much discussion, that the
decoupling solution is the one realized in nature, which sim-
ply means that in the particular gauges where ghost fields
appear, the gluon and ghost fields decouple at low μ. This
is an important finding regarding the behavior of gluons
and ghosts but it does not directly illuminate the strength
of the strong force at low energy. Besides using correlation
functions, other prevalent approaches to define αs(μ) are
effective charges [165] and analytic approaches [179,1132]
– both methods promote αs(μ) to an observable quantity – or
direct use of phenomenology, for example, using constituent
quark models, the QQ potential or the hadronic spectrum
[99,770,1131,1138–1141]. Like the DSE, that must choose
a truncation prescription, or like lattice QCD with space-
time discretization, other methods also use approximations

46 Methods which optimize the perturbative series by removing renor-
malization scale ambiguities have rendered this issue negligible. A first-
principle method, the BLM procedure [1134], follows by observing that
in QED, only the vacuum polarization contributions to the photon prop-
agator cause the coupling to run. Analogously for any pQCD series for
an observable, the BLM method absorbs all β-terms in the pQCD series
into the QCD running coupling; the resulting series coefficients match
the corresponding “conformal” series with β = 0. The resulting scale-
fixed series is free of the renormalon divergence (Sects. 2.3.7 and 5.7.5)
and are scheme invariant. The different Q2 scales for αs that appear
at each order of the series characterize the virtuality of the propaga-
tors in the amplitude, as in QED. In fact, the BLM method reduces to
Gell-Mann-Low scale setting in the Abelian limit NC → 0. An anal-
ogous procedure applies to the running quark mass. The BLM method
is systematically extended to NLO using the Principle of Maximum
Conformality [1135]. See reviews [1087,1126,1136].
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or/and include model-dependencies. While the systematic
effects arising from the approximations or modeling are typ-
ically not well controlled, the spread of results arising from
methods with very distinct approximations allows for a better
understanding of the methods’ uncertainties.

After many studies and developments, of which the afore-
said narrative is too a laconic cartoon, a coupling was iden-
tified and computed using a formalism guarantying that the
STI hold in the nonperturbative domain [1142]. Therefore,
QCD is here characterized by a single coupling, independent
of the choice of vertex or process used to define it (process-
independent, PI). In addition, the Pinch technique [1130] is
used to guaranty gauge-independence. The calculation, using
either the DSE or lattice QCD results on correlation func-
tions, yields a coupling α

PI,Pinch
s in agreement with the phe-

nomenological coupling [1114,1144,1145] derived from the
Bjorken sum rule [23] using the effective charge (EC) method
[165], αEC,g1

s , and with α
AdS/QCD
s obtained using AdS/QCD

[177,1087,1126], See Sect. 5.4.
The latter is derived starting from the observation that

for strongly coupled systems with a gravity dual, the radial
direction z in the bulk can be associated with the energy
scale of the boundary theory [1148]: Large values of μ cor-
respond to small values of z near the high-momentum con-
formal boundary of AdS, μ ∼ 1/z. Conversely, large-z dis-
tances in the low-momentum region of AdS correspond to
low energy scales in the physical theory. The dilaton factor
exp(ϕ(z)) is a measure of the departure from conformality at
the asymptotic AdS boundary, z → 0, and should grow for
large values of z, signaling confinement: It acts as an effective
coupling in AdS space. We can use the procedure introduced
in [177] to obtain the μ dependence of α

AdS/QCD
s from the

Hankel transform of the dilaton factor [177]

α
AdS/QCD
s (μ) ∼

∫ ∞

0
zdz J0(zμ)e−λz2 ∼ e−μ2/4λ, (5.84)

where the overall normalization is not provided within
AdS/QCD. The freezing value of the effective coupling
α

EC,g1
s (0) = π is used. The dilaton profile λz2 is deter-

mined by the superconformal structure (Sect. 5.4.7). The
transition between the predicted Gaussian form (5.84) and
the log behavior expected from pQCD is determined from
the matching of the perturbative and nonperturbative cou-
plings and their derivatives for

√
λ = 0.534 GeV. The spe-

cific matching allows us to determine the perturbative QCD
scaleΛ in terms of the hadronic mass scale

√
λ [1149] for any

choice of renormalization scheme, including the MS scheme
[1087].

The couplings α
AdS/QCD
s , αPI,Pinch

s and α
EC,g1
s are shown

in Fig. 109. When compared in the same renormalization
scheme, they agree reasonably well with earlier determina-
tions, such as α

gse,PT
s or that of the Godfrey–Isgur quark

Fig. 109 Nonperturbative strong couplings calculated with the holo-
graphic QCD framework (αAdS/QCD

s , red line) [177], and Dyson–
Schwinger formalism using the lattice determinations of correlations
functions (αPI,Pinch

s , magenta band) [1142,1143]. The experimental
extractions of αEC,g1

s [1114,1144,1145] following the effective charge
definition [165] are shown by the symbols. The green band and the
dashed line is α

EC,g1
s deduced from the Bjorken [23] and Gerasimov–

Drell–Hearn [1146,1147] sum rules, respectively

model [770], see Sect. 5.1 and Refs. [1087,1125]. The cou-
plings in Fig. 109 are in close agreement and have been
used in the derivation of many crucial nonperturbative quan-
tities, including the QCD scale ΛMS

s [1150], as well as elas-
tic and transition form factors [1151–1153], parton distribu-
tions (including generalized ones) [836,1019,1154–1157],
the hadron mass spectrum [1149,1158], or the pion decay
constant [1158].

In summary, several definitions of the strong coupling in
the nonperturbative domain are possible. Most are scheme
and gauge dependent. They tend to vanish as μ → 0 in a
non-freezing behavior, viz the QCD β-function itself does
not vanish. This informs us on how quark, gluon and ghost
fields interact at low energy in the chosen scheme, but does
not directly provide a universal parameter reflecting QCD’s
strength. In contrast, a set of calculations [177,1142] and phe-
nomenological extractions [1114,1144,1145] based on the
effective charge prescription [165], following that of QED
[1124], provide observable couplings that agree which each
other. The consistency of these various approaches in deter-
mining a single coupling

α
SE,g1
s � α

AdS/QCD
s � αPI,Pinch

s

and its success in computing a wide range of nonpertur-
bative quantities suggest that a compelling candidate for a
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canonical nonperturbative QCD coupling has been identi-
fied. It freezes at low energy, a satisfactory behavior since
in the nonperturbative domain, the coupling should be finite
and non-vanishing, determined by the physics of color con-
finement, and its scale parameter should be set by a typical
hadronic mass, e.g., that of the nucleon. An infrared fixed
point is in fact a natural consequence of color confinement:
since the propagators of the colored fields have a maximum
wavelength, all loop integrals in the computation of the gluon
self-energy should decouple at Q2 → 0 [1159].

5.6 The ’t Hooft model and large N QCD

Tom Cohen
In 1973 the QCD Lagrangian was first written down [55]. In
the same year, the one-loop function was calculated [53,54,
1160,1161] indicating that that the theory was asymptotically
free, but also implying that the coupling constant grew at low
momenta. This meant that perturbation theory in the coupling
à la QED is inapplicable for low momentum observables such
hadron masses, charge radii and the like. The following year
’t Hooft [1162] proposed an entirely new expansion for the
theory – an expansion in 1/Nc where Nc is the number of
colors – which, it was hoped, would allow for a systematic
computation of these observables.

While the dream of using the 1/Nc expansion to com-
pute these quantities directly for QCD in 3+1 dimensions
has been elusive, the 1/Nc expansion and the associated large
Nc limit have played a significant role during the past half
century in at least three ways: they have provided a tool for
the theoretical exploration of models beyond QCD, includ-
ing most famously, the AdS/CFT connection [993,996] for
N = 4 super Yang–Mills; they have provided a qualita-
tive and occasionally semi-quantitative tool to understand a
significant amount of phenomenology (for example in Ref.
[1163]); and, they have provided an organizing principle for
deciding which terms should be large in phenomenological
models or effective field theory treatments (for example in
Ref. [1164]).

The underlying idea of the 1/Nc expansion is that three is
sufficiently large so that a multicolored world with arbitrarily
many colors is sufficiently close to the physical world – at
least for some observables of interest – that the Nc → ∞
world is a good starting point for an expansion and that sys-
tematic 1/Nc corrections are controllable. This section will
provide an elementary introduction to the large Nc limit and
1/Nc expansion with an emphasis on the underlying foun-
dational ideas of the subject. An excellent review of these
foundational ideas can be found in Sidney Coleman’s Erice
lectures [1165]; a more modern review of the large Nc limit
and 1/Nc expansion for field theories with an emphasis on
lattice results can be found in Ref. [1166], while a review of
large Nc baryon spectroscopy can be found in Ref. [1167].

5.6.1 Large Nc scaling

The keys to ’t Hooft’s analysis [1162] are two related insights.
The first is that a smooth large Nc limit depends on the QCD
coupling, g, scaling with Nc as

g2 = λ/Nc (5.85)

where λ is independent of Nc. Superficially, this might seem
like a weak coupling limit that justifies standard perturbation
theory. However, it does not: color factors in loops grow with
Nc and can compensate for the small coupling. The second
key insight was related to the color factors in loops. ’t Hooft
developed a clever double line notation for gluons that allows
one to easily analyze the scaling behavior of Feynman dia-
grams. The notation exploits the fact that gluons are in the
adjoint representation: they are associated with color matri-
ces with two indices, one carrying a fundamental color and
the other an anti-fundamental color. Thus if one ignores the
fact that the matrices are traceless (a 1/N 2

c effect), the color
carried by a gluon propagator is identical to that of a quark
line side-by side with an anti-quark line. For the purposes of
counting color factors at leading order in 1/Nc – and for that
purpose only – it is legitimate to replace gluon propagators
in Feynman diagrams with parallel quark–antiquark lines.
A closed loop of fundamental or antifundamental color in a
diagram corresponds to one factor of Nc since there are Nc

fundamental colors.
Armed with this, it is straightforward to deduce the fol-

lowing asymptotic scaling behavior for connected diagrams
with no external lines:

– Planar connected diagrams of gluons (diagrams in which,
except at vertices gluon lines, do not cross when written
in a plane ) with no external lines grow asymptotically
with Nc as N 2

c .
– A diagram containing a non-planar gluon line reduces the

asymptotic Nc scaling of a planar diagram by a factor of
N−2
c . Multiple non-planar gluons reduce the Nc counting

by a factor of at least N−2
c per non-planar gluon.

– A planar diagram that contains quark loops that form the
boundary of the diagram, reduces the asymptotic Nc scal-
ing by a factor of N−1

c per quark loop relative to a purely
gluonic diagram. Quark loops that cannot be written in
this form reduce the Nc scaling by larger amounts.

Note that planar diagrams containing gluons can still be
very complicated and can contain arbitrarily many gluon
propagators. The fact that planar diagrams of gluons gener-
ically scale as N 2

c can be understood in the following way:
a closed loop consisting of a single gluon line scales as N 2

c :
in double line form, it has two loops. Any planar diagram
of gluons can be constructed starting from this single gluon
loop: simply add planar gluons to it one-by-one until one
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has the diagram of interest. It is easy to see that any planar
gluon added to a previous planar diagram in this construction
adds one additional color loop (for a factor of Nc) but also
two factors of the coupling constant g at the vertices where
the new gluons couple to the old diagram; since g2 ∼ 1/Nc

this cancels the additional color loop factor preserving the
asymptotic scaling as N 2

c . By inductive reasoning, it is clear
that all diagrams of this class diagrams scale asymptotically
as N 2

c .
The fact that adding a non-planar diagram reduces the

scaling by a factor of N−2
c can be understood in a similar

way. If one starts with a planar diagram of gluons and adds
a non-planar gluon to it, the number of color loop factors
decreases by one for a suppression factor of 1/Nc while two
additional factors of g must be added for another factor of
1/Nc. Thus for example a diagram with a single non-planar
gluon will scale asymptotically as N 0

c .
Similarly the scaling of diagrams containing quark loops

that form the boundary of the diagram can be understood by
noting that such diagrams can always be obtained starting
from a planar diagram of gluons and then inserting a quark
loop into a gluon propagator. Doing so does not change the
number of color loop factors but adds two coupling coupling
constants for each quark loop which together scale as N−1

c
per quark loop.

The scaling rules for diagrams allow one to deduce the
asymptotic scaling for the properties of glueballs and mesons
[1162,1168]. This can be done via the study of correlators
of local gauge-invariant operators, J , that carry the quantum
numbers of the glueballs or mesons of interest. For concrete-
ness, consider J to be a quark bilinear such as J = qq for the
case of mesons (where for simplicity spin and flavor will be
neglected in the discussion as they do not affect the Nc scal-
ing) and an operator such as J = Fa

μνF
a μν for the case of

glueballs. The correlator can be obtained by inserting these
operators into closed loop diagrams. Doing so does not alter
the leading Nc scaling of the diagram. Thus if one is study-
ing correlators carrying glueball quantum numbers, then the
leading diagrams scale as N 2

c ; similarly if one is studying a
correlator carrying meson quantum numbers, then one needs
to have a quark loop in the diagram and the leading diagram
scales as Nc.

Consider the two-point correlation function:

ΠJ (q
2) = −i

∫
d4xe−iqμxμ 〈T (J (x)J (0))〉

=
∫

ds
ρ(s)

q2 − s + iε

(5.86)

where up to an overall factor ρ(s), the spectral density, is
given by the imaginary part of the correlator. It scales with
Nc in the same way as the correlator. The contributions to the
spectral density from a given diagram can be extracted from
its imaginary part. Moreover, cutting a diagram at various

points between the sources reveals the gluon and quark con-
tributions to the imaginary part, which by construction will
form color singlet combinations. Using the double line nota-
tion, it is easy to see that no matter where the diagrams are
cut between the sources, at leading order in 1/Nc all of the
quark and gluons indices contract into a single color singlet
combination – i.e. one that cannot be broken into multiple
color singlet combinations.

If additionally one assumes confinement in the most basic
sense that all asymptotic states are color singlets, this means
that at leading order in the 1/Nc expansion, the operator J
creates single hadron states. By matching the Nc counting
of the leading diagram to the propagation of a single hadron
one sees that

〈meson|Jmeson|vac〉 ∼ Nc

〈glueball|Jglueball|vac〉 ∼ N 2
c

(5.87)

With this one can deduce numerous properties [1162,
1168] of QCD as a theory of hadrons by matching correlators
at the quark–gluon level to descriptions at the hadronic level.
One finds:

– The masses of mesons and glueballs become independent
of Nc as Nc →∞.

– Mesons and glueballs become stable as Nc →∞.
– The physics of mesons and glueballs can be described

by an effective tree-level theory with vertices that scale

at leading order as N
2−ng− 1

2 nm
c , where nm and ng are the

number of meson lines and gluon lines respectively at the
vertex. This implies that

1. Interactions between these hadrons are weak.
2. Meson decay amplitudes scale asymptotically as

N−1/2
c and their widths as N−1

c . Glueball decay
amplitudes scale as N−1

c and their widths as N−2
c

3. Meson–meson scattering amplitudes scale as 1/Nc.
Glueball-glueball scattering amplitudes scale as
1/N 2

c , while meson–glueball scattering amplitudes
scales as 1/Nc.

4. In decays of hadrons into mesons, when all else is
equal, processes with fewer mesons as decay products
are favored by powers of Nc. Thus for example the
partial decay width of a meson into a ρ-meson and
a pion scales as 1/Nc while the rate into three pions
directly scales as 1/N 2

c .

– There are an infinite number of distinct mesons for each
quantum number. This can be seen by matching the corre-
lator to one at large space-like q2 which can be computed
perturbatively [1168].

– Quantum number exotic hybrid mesons (states whose
quantum numbers cannot be obtained as a quark–
antiquark state in a simple quark model but require at
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least one additional gluon) behave like ordinary mesons
in Nc scaling [1169]. At large Nc they are narrow, there
are an infinite number of them for any quantum num-
ber and their interactions with each other and with other
mesons and glueballs scale according to the same rules
as ordinary mesons.

– The OZI rule [18,1170,1171] becomes exact in the large
Nc limit.
This implies glueball-meson mixing is suppressed.

– Tetraquark states do not exist at large Nc [1168,1172].

These properties can be viewed as predictions of QCD:
they specify which quantities are dominant assuming that
the large Nc world is a reasonable proxy for our world. But,
at best they make qualitative predictions since the coeffi-
cients multiplying the leading terms in the expansion are not
specified by this analysis. Moreover in the physical world
Nc is only three so one might expect that assuming domi-
nance of the leading-order predictions of the 1/Nc expansion
would at best be a crude description of the phenomenology.
In addition, the extent to which the phenomenology is quali-
tatively described by the leading-order behavior depends on
the observable in question.

In the meson sector the large Nc world might well be
considered as a crude but recognizable caricature of much
of the observed Nc = 3 phenomenology, at least for meson
constructed from light quarks. There are numerous mesons
that are comparatively narrow – with widths much smaller
than masses. There are often several identified mesons in a
single spin-isospin-parity channels; presumably the number
of identifiable meson would increase if Nc were made larger.
The OZI rule is typically well satisfied phenomenologically;
indeed it was proposed based on phenomenological grounds
before the formulation of QCD [18,1170,1171].

While many qualitative aspects aspects of meson physics
can be deduced from the behavior of the theory at large Nc,
there are observables in the meson sector for which sublead-
ing effects are sufficiently large that the leading behavior in
a 1/Nc expansion does not describe the physical world even
qualitatively. For example, the would-be nonet of pseduo-
Goldstone bosons; a nonet would exist if the OZI-rule held
– as it does at large Nc. However experimentally there is
an octet split from a much heavier η′ meson. Of course
this splitting is related to topology and the axial anomaly
citetHooft:1986ooh, but in a large Nc world these effects
would be suppressed by an overall factor of N−2

c [1173].
The fact that in the physical world the splitting is large shows
that the large Nc world is quite different from ours for this
observable .

In fact, there are large classes of observables for which
the the large Nc world appears to be quite different from
the Nc = 3 world. At large Nc there should be a very large
number of species of narrow glueballs that are weakly mixed

with mesons. However, in the physical of world of Nc = 3
there are comparatively few glueball candidates [616] and the
evidence for such states is typically somewhat murky, either
because the evidence of the resonance is weak or because of
mixing with ordinary mesons makes their “glueball” status
unclear. Indeed, the identification of a resonance as a glueball
may depend on there being an “extra” isoscalar state com-
pared to what one expects from a naive quark model. Nev-
ertheless, large Nc analysis of glueballs is of value at a the-
oretical level and to a limited extent also acts to inform phe-
nomenology: by providing a regime in which narrow, weakly
mixed glueballs must exist, minimally it demonstrates that
there is nothing in the basic structure of gauge theories con-
taining both light quark and gluon degrees of freedom that
forbids the existence of glueball states.

In a a similar way, the spectrum of quantum number exotic
hybrid mesons in nature look quite different than in a large
Nc world: there are few candidates for such hadrons carrying
light quarks quantum numbers [616]. Moreover, the evidence
for those candidates is also typically murky due to inconclu-
sive evidence for a resonance. Again the large Nc analysis
demonstrates that there is nothing in the basic structure of
gauge theories forbidding hybrid mesons. Large Nc also pre-
dicts that there should not be resonances in tetraquark chan-
nels. However, a clear signal for a quantum number exotic
tetraquark has recently been found [1067]. As it happens this
state is associated with heavy quarks – it is a doubly charmed
state – and it is easy to see that heavy quark limit and the large
Nc limits are not expected to commute for these channels. If
one increased Nc while keeping the quark masses fixed, it is
expected that this state would disappear.

5.6.2 The ’t Hooft model

The Nc scaling rules presented above can be thought of as
predictions about the physical world, but only in a qualita-
tive sense – and they fail, even qualitatively, for many observ-
ables. Initially it was hoped that the 1/Nc expansion could be
used as the basis of a quantitative treatment that was largely
analytic at low order, in much the same as a expansion in α

provided a quantitative treatment of QED. However, for QCD
in 3+1 dimensions this has not worked out: even at lowest
order in the expansion, the theory has proved to be intractable.
Interestingly, however, QCD in 1+1 dimension, the so-called
’t Hooft model [1053] was solved (initially for one flavor) at
leading order in the expansion in the early 1970s.

Note that the large Nc scaling arguments given above did
not depend on QCD being in 3+1 dimensions; they should
hold in 1+1 dimension as well. Thus, one can use the explicit
solutions of the ’t Hooft model as a way to check the self-
consistency of these rules.

The ’t Hooft model has a critical property in common with
QCD – confinement. It is useful to recall, however, that the
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mechanism of confinement in 1+1 dimensions is very differ-
ent than in 3+1 dimensions. It occurs for a rather trivial reason
– electric flux lines cannot spread out and thus even electrody-
namics is confining in 1+1 dimension. The physics of gauge
fields in 1+1 dimensions is also very simple: the field strength
tensor, Fμν , has an electric component E = F01 = −F10 but
no magnetic component. Thus in 1+1 dimensional QED, the
gauge field is not associated with a propagating photon; the
Euler–Lagrange equation for the gauge field is not dynam-
ical, but simply an equation of constraint fixing the electric
field from the charge density j0 = ψγ0ψ . This is because the
Gauss law (plus some conditions at infinity) fully determines
the electric field. Something completely analogous occurs in
the ’t Hooft model.

While the color electric field in QCD in 1+1 dimension
can be fixed given the color charge density of the quarks, the
gauge field, Aμ, itself depends on making a gauge choice.
Certain gauges, such as the axial gauge of A1 = 0 or the
light-cone gauge have a particular useful property: they auto-
matically suppress gluon–gluon couplings. In the axial gauge
this is clear since all of the nonlinear terms involve products
of A1 and A0. Gluon–gluon couplings vanish in the light-
cone gauge for similar reasons. Since it is these non-linear
couplings that make QCD complicated, QCD in 1+1 dimen-
sions greatly simplifies.

The ’t Hooft model simplifies further at leading order in
the 1/Nc expansion. The leading diagrams for the jμ cor-
relator (which carries meson quantum numbers) are planar
with a single quark loop bounding the diagram. This means
that no gluon lines can either cross (due to the large Nc con-
straint ) nor interact (due to the lack of gluon–gluon inter-
actions. Accordingly the correlator is given by the so-called
rainbow-ladder approximation: each quark propagator has
a self-energy given by the sum of rainbow diagrams, while
the interactions between quark lines is the the sum of ladder
diagrams. The sum of these diagrams can be reduced analyt-
ically to integral equation between spinor-valued objects.

These simplify further into simple integral equations if
one uses the light-cone gauge, which is based on light-cone
coordinates:

x± = x0 ± x1

√
2

(5.88)

and has a metric given by g+− = g−+ = 1 and g++ =
g−− = 0. The light cone gauge condition is

A− = A+ = 0 ; (5.89)

among other things it has the virtue of being Lorentz invari-
ant.

At leading order in large Nc the spectral function for
this correlator is expected to be saturated by arbitrarily nar-
row meson states. Since the explicit form of the correlator
is calculable, one can develop a light-cone Bethe–Salpeter

type eigenvalue equation for μ2 the meson mass, and ψ(K ),
the light-cone Bethe–Salpeter amplitude for the meson. It is
given in terms of a light-cone momentum, K appropriately
scaled so that ψ(K ) vanishes at K = 0 and K = 1 and ψ(K )

is only defined for 0 ≤ K ≤ 1. It is given by the following
integral equation

μ2
nψn(K ) = m2 − g2

π

K (1− K )
ψn(K )

− g2

π

∫ 1

0
dK ′ P

(K − K ′)2 ψn(K
′)

(5.90)

where P indicates principal value, μn is the meson mass for
the nth meson, ψn(K ) is the Bethe–Salpeter amplitude for
that state, m is the quark mass and g is the coupling constant
(which has dimensions of mass in 1+1 dimensions).

While there is no analytic solution to this integral eigen-
value equation, it can easily be solved numerically to give the
meson spectrum for the model. Note that Nc is not present in
this expression showing self-consistently that meson masses
are independent of Nc at large Nc as deduced from general
scaling rules.

The fact that ψ(K ) vanishes at the K = 0 and K = 1
implies that the spectrum will be discrete – there are no solu-
tions corresponding to two free quarks; the model correctly
incorporates confinement. It is easy to show that for all val-
ues of m and g, μ2 is real. This shows self-consistently that
mesons are stable at large Nc and verifies the general analysis
discussed above. Moreover it can be shown that μ2 is always
positive, showing that no matter how large the coupling, g,
there are no tachyonic states that would signal an instability.

For asymptotically large values of n, it is easy to find the
eigenvectors and Bethe–Salpeter amplitudes:

μn = g2πn, ψ(K ) = sin(nπK ). (5.91)

This asymptomatic form shows that solutions exist for arbi-
trarily high n, indicating the self-consistency of the large Nc

analysis, which predicted that there are an infinite number of
mesons at large Nc.

The limit of zero quark mass in the ’t Hooft model at large
Nc is interesting as it provides an opportunity to study chiral
symmetry and its spontaneous breaking [1174]. The regime
in which chiral symmetry breaking takes place requires that
care be taken in the ordering of limits. One must take the limit
of Nc → ∞ (with the ’t Hooft coupling, g2Nc, held fixed),
prior to the m → 0 limit. This limiting procedure insures
that the ratio g

m goes to zero in the combined limit. In this
limit, it can be shown [1174], that chiral condensate is given
by

〈qq〉 = −Nc

√
g2Nc

12π
. (5.92)
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Thus the ’t Hooft model provides a simple illustration of how
chiral symmetry breaking can work in a gauge theory.

However, the nature of spontaneous chiral symmetry
breaking in the ’t Hooft model is rather subtle. Note that
the spontaneous breaking of chiral symmetry is a violation
of Coleman’s theorem [1175] which rules out spontaneous
symmetry breaking of a continuous symmetry for theories in
1+1 dimensions. Thus, spontaneous chiral symmetry break-
ing seems paradoxical.

The resolution of the paradox was provided by Witten
[1176] in his analysis of an analogous problem: spontaneous
chiral symmetry breaking in the Thirring model at large Nc. It
turns out that that the spontaneous chiral symmetry breaking
is an artifact of working at infinitely large Nc from the outset;
it is absent for any finite Nc, no matter how large. Thus, as the
large Nc limit is approached the condensate is always strictly
zero and there are no Goldstone bosons. However, the theory
is in a Berezinski–Kosterlitz–Thouless phase [1177,1178]
in which the symmetry is “almost broken” and correlation
functions of qq behave in a nontrivial way. For space-like
separations

〈T [qq(x, t)qq(0, 0)]〉 ∼ (x2 − t2)
const
Nc . (5.93)

One sees that for any finite Nc correlation functions qq fall
off at large distance and thus do not saturate as they would
if a condensate had formed. However, they also do not fall
off exponentially as they would if qq created massive parti-
cles. Instead, there are long-range correlations: the correla-
tion functions fall as a power law with distance. Moreover,
the power depends on Nc in such a way that it goes to zero at
infinite Nc. Thus if one takes Nc to be infinite at the outset,
the systems acts as though spontaneous symmetry breaking
had occurred.

The large Nc properties of glueballs deduced earlier can-
not be checked in the ’t Hooft model for a very simple reason:
in 1+1 dimension there are no glueballs.

5.6.3 Baryons

Of course mesons, glueballs and hybrids are not the only
hadrons, there are also baryons. Unfortunately, the direct
study of correlation functions via diagrammatic methods as
was done for meson and glueballs does not work for baryons.
This is for an obvious reason: a baryon contains (at least) Nc

quarks so that the number of quark lines in diagrams must
grow with Nc. Among other things, this destroys the domi-
nance of planar diagrams.

Witten argued that one can deduce the correct scaling
behavior of large Nc baryons by first considering the case
in which all of the quarks are heavy (with masses much
larger than the QCD scale) [1168]. In that situation, quark–
antiquark pairs are suppressed and the propagation of quarks

is non-relativistic. At the most trivial level, it ought to be
apparent that in this regime Mbaryon ≈ NcMQ where MQ is
the mass of a heavy quark: the dominant term in the mass of
a nonrelativistic system is the mass of the constituents and
the baryon contains Nc quarks. Thus the mass of the baryon
scaling of the baryon mass with Nc is

Mbaryon ∼ Nc . (5.94)

Of course this result is from the leading term in a com-
bined expansion built around the heavy quark and large Nc

limits with the heavy quark limit taken first; one might worry
that the limits do not commute for the baryon mass. How-
ever, it is straightforward to see that subleading terms in a
1/MQ expansion of the baryon mass also have a leading-
order term in the Nc expansion that scales like Nc. This
suggests that this scaling could be general and hold inde-
pendently of the quark mass. To see how this comes about,
recall that in a heavy quark expansion for the baryon mass, the
leading term – the direct quark mass contribution – is essen-
tially not dynamical; the dominant subleading terms overall
are the leading dynamical ones. The effective heavy quark
lagrangian includes a nonrelativistic kinetic energy for the
quarks and a color-Coulomb interaction between them. Wit-
ten [1168] demonstrated that at large Nc, the Hartree mean-
field approximation to the non-relativistic color Coulomb
problem becomes exact. In the Hartree approximation, cor-
relations are neglected and each quark sits in an effective 1-
body potential derived from interactions with the other Nc−1
quarks (which sit in the ground state of the same potential).

Since the color-Coulomb interaction between two quarks
has two factors of the coupling constant g, it scales as 1/Nc.
The mean-field Hamiltonian between one quark and the
remainder has that quark interacting with Nc − 1 quarks
and interactions add coherently. Thus, the mean-field Hamil-
tonian scales as (Nc − 1)/Nc and at asymptotically large
Nc becomes independent of Nc. The one-body equation for
a single quark is then independent of Nc at large Nc and
the quark’s ground state wave function is also independent
of Nc. This means that the spatial extent of the Hartree
potential is itself independent of Nc. The contribution of the
kinetic energy to the mass scales as is Nc since there are
Nc quarks. The potential energy contributes 1

2 Nc〈VHartree〉,
where 〈VHartree〉 is the expectation value of the mean-field
potential for a single quark; the factor of 1

2 is because the
interaction energy in a pair of quarks is split between them.
Thus the direct quark mass term, the kinetic energy term and
interaction term all scale linearly with Nc, strongly suggest-
ing that Mbaryon ∼ Nc independent of the quark mass.

Moreover there is a very powerful argument from Witten
[1168] that the results deduced from this mean-field behav-
ior should persist when the quarks are light. Formally one
would need to start with a relativistic many-body equation
for bound states – a type of Bethe–Salpeter equation gener-
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alized to many particles – and show that the analog of the
Hartree approximation becomes exact in the large Nc limit.
While that would be technically quite complicated, it seems
apparent that all of the scaling from the Hartree approxima-
tion for heavy quarks should go through provided that irre-
ducible n-body interactions between quarks scales as Nn−1

c .
If this is true it is easy to see that the analog of the Hartree
potential will be independent of Nc: at asymptotically large
Nc: there are Nc 2-body interactions that each scale as 1/Nc,
N 2
c three-body interactions that each scale as 1/N 2

c , N 3
c four

body-interactions that each scale as 1/N 3
c and so forth. Each

of these has a net contribution that is independent of Nc indi-
cating that this generalized mean-field interaction for a single
quark is independent of Nc. Moreover demonstrating that n-
body interactions between quarks scales as Nn−1

c is straight-
forward using diagrammatic arguments similar to those used
for the glueball and meson sectors.

Using this Hartree picture it is possible to deduce [1168]
the asymptotic scaling of numerous baryon properties:

– Ground state baryon masses scale asymptotically as Nc.
– The size of ground state baryons generically is indepen-

dent of Nc. Explicitly this means that form factors of
external currents for baryons (such as electric factors)
generically scale as N 0

c f (q2/N 0
c ); for q2 of order N 0

c
the form factor is independent of Nc. This in turn means
the moments of distributions (which are related to deriva-
tives of form factors) such as 〈r2〉, 〈r4〉 are independent
of Nc at large Nc.

– Generic couplings between a ground state baryon and n
mesons scale as N 1−n/2

c . Among other things this means
that

1. Meson–baryon couplings scale generically as N 1/2
c .

2. Meson–baryon scattering amplitudes are generically
independent of Nc for large Nc

– Couplings between a meson, a ground state baryon and
an excited baryon are generically independent of Nc and
excited baryons have widths that are independent of Nc.
Unlike in the glueball and meson sectors, these states are
not narrow at large Nc, nor can you can conclude that
there an infinite number of them.

Witten observed [1168] an interesting pattern to the scal-
ing properties for baryons given above. They scale asymptot-
ically with 1/Nc in the same way as analogous properties of
solitons scale a with coupling constants squared. This insight
lead to a renaissance of interest [1179–1181] in the Skyrme
model [1182] as a model for baryons.

The scaling laws given above are generic. Spin and fla-
vor considerations may act to suppress certain couplings
below these generic results. Moreover, for the case of two or
more degenerate flavors, the notion of “ground state baryon”

becomes a bit involved. Both of these issues are related to
an emergent spin-flavor symmetry – a symmetry that is not
manifest in the QCD lagrangian but emerges at large Nc. In
general, this symmetry is a contracted SU (2N f )where N f is
the number of degenerate light flavors – it reduces to SU (4)
if one considers the up and down quarks to be effectively
degenerate and the strange quark much heavier.

An initial hint that a new symmetry beyond mere isospin
symmetry was emergent at large Nc could be seen in the 2-
flavor Skyrme model [1179], treated classically (with requan-
tized collective coordinates to restore broken symmetries).
This treatment corresponds to leading order in the 1/Nc

expansion. It was found that rather than having the nucleon
as the sole ground state, one had a tower of states with I = J
(the first two being the nucleon (I = 1

2 , J = 1
2 ) and the Δ

(I = 3
2 , J = 3

2 ) with the levels in the tower degenerate at
leading order in 1/Nc [1179]; the splittings can be shown to
be O(N−1

c ). Moreover, it was found that the ratios of the val-
ues of certain observables held independently of the param-
eters of the model or even the precise form of the Skyrme
Lagrangian [1183]. It was realized that this behavior was not
a property of Skyrme models per se but rather reflected an
underlying symmetry of baryons [1184–1186].

The symmetry can be seen to be required for the con-
sistency [1185] of large Nc scaling provided that the pion–
nucleon coupling scales with Nc generically – i.e. as N 1/2

c .
With this scaling, the Born approximation for pion–nucleon
nucleon would scale linearly with Nc. However, unitarity
constrains the scattering amplitudes to scale no faster than
N 0
c . Clearly, something must cancel the Born amplitude in

any channel where the meson–baryon coupling scales gener-
ically. In the case of scalar-isoscalar mesons, it is easy to
show that the heavy mass of the baryon at large Nc implies
that at leading order, the contribution of the cross-Born dia-
gram cancels the contribution of the Born diagram. However,
pions are derivatively coupled and hence couple to the spin
of the nucleon and are isovectors so they also couple to
the isospin. The various components of spin do not com-
mute with each other and similarly with the various com-
ponents of isospin and, as a result, the cancellation between
the Born and cross-Born contributions to π − N scattering
appears to be spoiled. However, the cancellation between
the Born and cross-Born contributions at the level of pion–
nucleon scattering will be restored provided that the Δ is
treated as being degenerate (at this order) with the nucleon
and the ratio of gπNΔ (the transition coupling between the
pion the nucleon and the Δ ) is taken to be a prescribed
number times gπNN [1185]. Applying the same logic to the
process π + N → π +Δ, requires gπΔΔ to be a fixed mul-
tiple of gπNΔ. At this order in 1/Nc, the Δ and the nucleon
are degenerate and the Δ should be treated as stable. Thus
one can legitimately consider π − Δ scattering. Applying
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the same logic, one deduces the existence of a degenerate
I = 5

2 , J = 5
2 baryon and so forth generating a tower of

states that become degenerate at large Nc. Presumably the
the nucleon and Δ correspond approximately to the observed
states in the N = 3 world, while the I = 5

2 , J = 5
2 is a large

Nc artifact.
It is possible to show that the structure described above

is encoded in a contracted SU (4) Lie algebra for two-flavor
QCD. The fixed ratio of the coupling constants are given
by the Clebsch–Gordan coefficients of the group. The same
logic that gives rise to the contracted SU (4) symmetry, gives
a contracted SU (6) for 3-flavor QCD to the extent that one
can approximate the strange quark as being nearly degen-
erate with the up and down quarks [1186]. Moreover, it
is possible to show that for certain observables the lead-
ing corrections to the the contracted SU (2N f ) symmetry
is of order 1/N 2

c rather than 1/Nc [1187]. This fact allows
one to make some semi-quantitative predictions based on
the emergent symmetry encoded in the large Nc limit for
baryons. A good example of this are the mass relations of
Ref. [1163].

5.6.4 Nucleon–nucleon interactions and nuclear physics

The study of nucleon–nucleon interactions is complicated
for kinematical reasons associated with the large nucleon
mass. There are two kinematic regimes of interest: one in
which the momentum transfers are independent of Nc and
the other in which the momentum transfers are of order
Nc – i.e. in which the velocities are independent of Nc.
Physical observables associated with nucleon–nucleon scat-
tering do not have a smooth large Nc in the regime in
which momentum transfers are of order N 0

c , but an analy-
sis based on a time-dependent Hartree picture suggests that
some scattering observables will have smooth large Nc lim-
its [1168] in the regime of momentum transfers of order
Nc. These observables do not include many standard scat-
tering observables such as phase shifts; the ones that have
smooth limits appear to be those in which one follows the
bulk flow of quantities of interest [1188]. Presumably the
total cross-section also has a smooth limit [1189]. There is
some predictive power for the spin and flavor dependence of
such observables owing to the contracted SU (4) symmetry
[1188,1189].

In the regime in which momentum transfers are of order
unity – the regime of relevance to nuclear structure – the
logic of Ref. [1168] implies that the nucleon–nucleon inter-
action strength is of order Nc, which is formally of the same
order as the nucleon mass, while its range is independent
of Nc. This implies that nuclear matter would be crystalline
at large Nc, with nucleons constrained to be near the min-
imum of the potential from other nucleons. This is radi-
cally different from what is seen nature, suggesting that a

1/Nc expansion around the large Nc limit is not a useful
approach to nuclear structure. Interestingly, however, if one
focuses solely on the spin-flavor structure of the nucleon–
nucleon potential – a quantity that is not directly physi-
cal – there is a hierarchy in the strength of various spin-
flavor contributions. This hierarchy is qualitatively similar
to what one would obtain from the contracted SU (4) spin-
flavor symmetry of large Nc QCD [1190,1191]. This behav-
ior is consistent with what one would expect if the nucleon–
nucleon force was described via meson exchanges, as has
been typically done in nuclear physics. Since the overall
potential strength at the one-meson exchange level is large
in some channels, consistency requires subtle cancellations
when multiple-meson exchange are included. Such cancella-
tions naturally occur due to the contracted SU (4) symmetry
[1192].

5.6.5 Other large Nc limits

The large Nc limit of QCD is an extrapolation from our world
at Nc = 3 to a large Nc world. However, that extrapolation is
not unique. The standard approach discussed above involves
keeping the number of flavors fixed while letting Nc go to
infinity. However, there is an alternative, the Venziano limit
[1193] in which the ratio of the number of colors to the num-
ber of flavors is held fixed as Nc →∞. The large Nc world
for these two limits are quite different.

There is yet another large Nc limit that exploits the
fact that at Nc = 3, the representation for fundamental
color and for the antisymmetric combination of two anti-
fundamental colors are identical (i.e. r is indistinguishable
from

(
gb − bg

)
/
√

2). However quarks with fundamental
color and with two-index antisymmetric color extrapolate
to large Nc quite differently – there are Nc distinct quark
colors for the former and Nc(Nc − 1)/2 ∼ N 2

c for the lat-
ter.

The large Nc limit based on quarks in the two-index anti-
symmetric representation, denoted QCD(AS), has remark-
able formal connections to supersymmetric QCD [1194–
1196]. Phenomenologically, QCD(AS) has scaling of meson
properties with Nc similar to those of glueballs; one impor-
tant difference between QCD(AS) at large Nc and the con-
ventional large Nc limit is that in QCD(AS) quantum num-
ber exotic tetraquarks are not forbidden; indeed, they are
required [1197]. The description of baryons for QCD(AS) is
in analogy to Witten’s but a somewhat new type of analy-
sis is required [1198]. Formally, the predictions for baryon
spectroscopy are distinct in QCD(AS) and QCD with quarks
in the fundamental representation [1199], but phenomeno-
logical predictions for both expansions work to the order
expected in describing real world data.
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5.7 OPE-based sum rules

SVZ sum rules, 1
MQ

expansion and all that
Mikhail Shifman

5.7.1 Preamble

Rewind to autumn of 1971. I am a student at ITEP in Moscow,
working on my Masters degree. The famous paper of Gerhard
’t Hooft [52] was published in Nuclear Physics in October,
but neither myself nor anybody else in ITEP immediately
noticed this ground-breaking publication. At that time I did
not even know what Yang–Mills theories meant. Now, when I
think of the inception of QCD, the memories of this paper and
its sequel [51] (issued in December of 1971) always come to
my mind. For me, psychologically this was the beginning of
the QCD era.

To give an idea of the scientific atmosphere at that time
(1972) I looked through the Proceedings of the 1972 Interna-
tional Conference On High-Energy Physics [1200]. Theoret-
ical talks were devoted to dual models (a precursor to string
theory), deep inelastic scattering and Bjorken scaling, current
algebra, e+e− → hadrons, etc. In three talks – by Zumino,
Bjorken and Ben Lee – the Weinberg-Salam model (a pre-
cursor to the present-day Standard Model) was reviewed.47

Ben Lee was the only person to refer to ’t Hooft’s publica-
tions [51,52]. The last talk of the conference summarizing
its major topics was delivered by Murray Gell-Mann. In this
talk Gell-Mann discusses, in particular, whether quarks are
physical objects or abstract mathematical constructs. Most
interesting for us is his analysis of the π0 → 2γ decay.
Gell-Mann notes that if quarks are fermions then the theo-
retically predicted amplitude is a factor of 3 lower than the
corresponding experimental result, but makes no statement
of the inevitability of the quark color.48

In October 1972 I was accepted to the ITEP graduate
school. My first paper on deep inelastic scattering in the
Weinberg-Salam model was completed in early 1973; simul-
taneously, I started studying Yang–Mills theories (in particu-
lar, the Faddeev–Popov quantization [1201]49) in earnest. At
the same time, somewhere far away, behind the Iron Curtain,

47 There is a curious anecdote I heard later: In December 1979, after the
Glashow–Weinberg–Salam Nobel Prize ceremony, a program was aired
on Swedish radio. At some point, Weinberg quoted a phrase from the
Bible. Salam remarked that it exists in the Quran too, to which Weinberg
reacted: “Yes, but we published it earlier!”
48 For me personally the following remark in his talk was a good les-
son for the rest of my career: “Last year the rate of K 0

L → μ+μ−
decay was reported to be lower than allowed by unitarity unless fantastic
hypotheses are concocted. Now the matter has become experimentally
controversial.” Alas…concocting fantastic hypotheses was the core of
my Masters thesis.
49 A longer and more comprehensible version appeared in Russian as
Kiev preprint ITP 67-36. In the beginning of the 1970s, it was translated

Callan and Gross searched for a theory with an ultraviolet
fixed point at zero. In July of 1973 Coleman and Gross sub-
mitted to PRL a paper asserting that “no renormalizable field
theory that consisted of theories with arbitrary Yukawa, scalar
or Abelian gauge interactions could be asymptotically free”
[1202]. Damn Iron Curtain! If Gross asked anyone from the
ITEP Theory Department he would have obtained the answer
right away. The above theorem was known to the ITEP the-
orists from the Landau time. For brevity I will refer to it as
the Landau theorem, although it was established by his stu-
dents rather than Landau himself. The general reason why
this theorem holds was also known – the Källen–Lehman
(KL) representation of the polarization operator plus unitar-
ity.

An explanatory remark concerning the Landau theorem
might be helpful here. For asymptotic freedom to take place
the first coefficient of the β function must be negative. The
sign of the one-loop graphs which determine the coupling
constant renormalization is in one-to-one correspondence
with the sign of their imaginary parts (this is due to the disper-
sion KL representation for these graphs). Unitarity implies
the positivity of the imaginary parts which inevitably leads
to the positive first coefficients in the β functions in renor-
malizable four-dimensional field theories based on arbitrary
Yukawa, scalar or Abelian gauge interactions. This situa-
tion is that of the Landau zero charge in the infrared rather
than asymptotic freedom. In Yang–Mills theories in physi-
cal ghost-free gauges some graphs have no imaginary parts
which paves the way to asymptotic freedom (see e.g. [1203]).

In fact, it is quite incomprehensible why asymptotic free-
dom had not been discovered at ITEP after ’t Hooft’s 1971
publication. In Ref. [1203] the reader can find a narrative
about this historical curiosity.

May 1973 should be viewed as the discovery of asymptotic
freedom [53,54]. That’s when the breakthrough papers of
Gross, Wilczek and Politzer were submitted – simultaneously
– to PRL. David Gross recollects [1202]:

We completed the calculation in a spurt of activ-
ity. At one point a sign error in one term convinced
us that [Yang–Mills] theory was, as expected, non-
asymptotically free. As I sat down to put it together and
to write up our results, I caught the error. At almost the
same time Politzer finished his calculation andwe com-
pared, through Sidney, our results. The agreement was
satisfying.

It took a few extra months for QCD to take off as the the-
ory of strong interactions. The events of the summer of 1973
that led to the birth of QCD are described by H. Leutwyler

Footnote 49 Continued
in English by B. Lee (NAL-THY-57, 1972). Apparently, in [52], [51] ’t
Hooft used the short version while I could use the longer one.
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in Sect. 1.1 of this Volume. To my mind, the final accep-
tance came with the November Revolution of 1974 – the
discovery of J/ψ and its theoretical interpretation as ortho-
charmonium.50 In the fall of 1973 we submitted a paper
[1205] explaining why the Landau theorem in four dimen-
sions fails only in Yang–Mills theory.

QCD and its relatives are special because QCD is the
theory of nature. QCD is strongly coupled in the infrared
domain where it is impossible to treat it quasiclassically –
perturbation theory fails even qualitatively. It does not cap-
ture the drastic rearrangement of the vacuum structure related
to confinement. The Lagrangian is defined at short distances
in terms of gluons and quarks, while at large distances of
the order of � Λ−1

QCD (where ΛQCD is the dynamical scale
of QCD, which I will refer to as Λ below) we deal with
hadrons, e.g. pions, ρ mesons, protons, etc. Certainly, the lat-
ter are connected with quarks and gluons in a divine way, but
this connection is highly nonlinear and non-local; even now,
50 years later, the full analytic solution of QCD is absent.

Non-perturbative methods were desperately needed.

5.7.2 Inception of non-perturbative methods

Four years before QCD Ken Wilson published a break-
through paper [30] on the operator product expansion (OPE)
whose pivotal role in the subsequent development of HEP
theory was not fully appreciated until much later. What is now
usually referred to as Wilsonian renormalization group (RG),
or Wilsonian RG flow, grew from this paper. The Wilsonian
paradigm of separation of scales in quantum theory was espe-
cially suitable for asymptotically free theories. Wilson’s for-
mulation makes no reference to perturbation theory, it has
a general nature and is applicable in the non-perturbative
regime too. The focus of Wilson’s work was on statistical
physics, where the program is also known as the block-spin
approach. Starting from microscopic degrees of freedom at
the shortest distances a, one “roughens” them, step by step,
by constructing a sequence of effective (composite) degrees
of freedom at distances 2a, 4a, 8a, and so on. At each given
step i one constructs an effective Hamiltonian, which fully
accounts for dynamics at distances shorter than ai in the coef-
ficient functions.

QCD required a number of specifications and adjustments.
Indeed, the UV fixed point in QCD is at αs = 0; hence,
the approach to this fixed point at short distances is very
slow, logarithmic rather than power-like, characteristic for
the αs �= 0 fixed point. In fact, it is not the critical regime at
the UV fixed point per se we are interested in but rather the

50 I should also mention a highly motivating argument due to S. Wein-
berg who proved [1204] that (in the absence of the U(1) current gluon
anomaly) mη′ ≤

√
3mπ . This argument seemingly was discussed dur-

ing ICHEP 74 in July 1974.

Fig. 110 The penguin
mechanism in flavor-changing
decays. Any of three heavy
quarks c, b or t can appear in the
loop

regime of approach to this critical point. Moreover, it was
not realized that (in addition to the dynamical scale Λ) the
heavy quarks provide an extra scale – the heavy quark mass
mQ – which must be included in OPE where necessary.

Surprisingly, in high-energy physics of the 1970s the
framework of OPE was narrowed down to a very limited
setting. On the theoretical side, it was discussed almost exclu-
sively in perturbation theory. On the practical side, its appli-
cations were mostly narrowed down to deep inelastic scat-
tering, where it was customary to work in the leading-twist
approximation.

The fact that the UV fixed point is at zero makes OPE
both more simple and more complicated than in the general
case. On one hand, the anomalous dimensions of all com-
posite local operators which might be relevant in the given
problem scale only logarithmically. On the other hand, slow
(logarithmic) fall off of “tails” instead of desired power-like
makes analytic separation of scales technically difficult.

I believe that we – Arkady Vainshtein, Valentin Zakharov
and myself – were the first to start constructing a QCD version
of OPE. The first step in this direction was undertaken in 1974
in the problem of strangeness-changing weak decays [1206,
1207] (currently known as the penguin mechanism in flavor-
changing decays). A mystery of ΔI = 1

2 enhancement in K
decays had been known for years (for a review see [1208]
and Sect. 13.3). A suggestion of how one could apply OPE
to solve this puzzle was already present in Wilson’s paper
[30]. Wilson naturally lacked particular details of QCD. The
first attempt to implement Wilson’s idea in QCD was made in
[1209,1210]. Although these papers were inspirational, they
missed the issue of a “new” OPE needed for QCD realities.
Seemingly, we were the first to address this challenge, more
exactly two of its features: mixed quark–gluon operators (in
[1206,1207] we introduced

Openg = s̄Lγμ
(
DνG

μν
)
dL

which is purely ΔI = 1
2 ) and coefficients logarithmically

depending on the charmed (i.e. heavy at that time) quark
mass. Currently, c, b, t quark masses appear in the pen-
guin operators (illustrated in Fig. 110), the latter two being
genuinely heavy. Through equations of motion the oper-
ator Openg reduces to a four-quark operator but its chi-
ral structure is different from conventional, namely, it con-
tains both left-handed and right-handed quark fields since
DνGμν ∼∑

q q̄γ
μq. Combined with another revolutionary

123



Eur. Phys. J. C          (2023) 83:1125 Page 155 of 636  1125 

Table 6 The lowest-dimension
operators in OPE. Γ is a generic
notation for combinations of the
Dirac γ matrices

Normal dim 3 4 5 6 6

Operator Oq = q̄q OG = G2
μν OqG = q̄σμνGμνq O4q = (q̄Γ q)2 O3G = GGG

finding of QCD, the extraordinary smallness of the u and d
quark masses, mu,d ∼ 5 MeV (see Sect. 1.1.15), the mixed
chiral structure of the emerging four-fermion operator pro-
vides the desired enhancement of the ΔI = 1

2 amplitude. It
took us over 2 years to fight a succession of referees for pub-
lication of Ref. [1207]. One after another, they would repeat
that mixed-chirality four-fermion operator in the considered
theory was complete nonsense. Currently, the penguin mech-
anism in flavor changing weak transitions is a basic theoretic
element for a large variety of such decays. As Vainshtein put
it [1208], “Penguins spread out but have not yet landed.”

Systematic studies of Wilsonian OPE in QCD can be
traced back to the summer of 1977 – that is when the gluon
condensate OG (see Table 6) was first introduced [1211].
Vacuum expectation values of other gluon and quark oper-
ators were introduced in Ref. [145], which allowed one to
analyze a large number of vacuum two- and three-point
functions, with quite nontrivial results for masses, coupling
constants, magnetic moments and other static characteris-
tics of practically all low-lying hadronic states of mesons
and baryons. A consistent Wilsonian approach requires an
auxiliary normalization point μ which plays the role of a
regulating parameter separating hard contributions included
in the coefficient functions and soft contributions residing
in local operators occurring in the expansion. The degree of
locality is regulated by the same parameter. “Hard” versus
“soft” means coming from the distances shorter than μ−1 in
the former case and larger than μ−1 in the latter.

After setting the foundation of OPE in QCD [145] we
were repeatedly returning to elaboration of various issues,
in particular, in the following works: [1212], [1213], and
[1214].

5.7.3 SVZ sum rules. Concepts

The 1998 review [1213] summarizes for the reader founda-
tions of the Shifman–Vainshtein–Zakharov (SVZ) sum rules
in a pedagogical manner. At short distances QCD is the the-
ory of quarks and gluons. Yang–Mills theory of gluons con-
fines. This means that if you have a heavy probe quark and
an antiquark at a large separation, a flux tube with a constant
tension develops between them, preventing their “individ-
ual” existence. In the absence of the probe quarks, the flux
tube can form closed contours interpreted as glueballs. This
phenomenon is also referred to in the literature as the area
law or the dual Meißner effect. Until 1994 the above picture
was the statement of faith. In 1994 Seiberg and Witten found

an analytic proof [1215,1216] of the dual Meißner effect in
N = 2 super-Yang–Mills.51 The Seiberg-Witten solution
does not apply to QCD, rather to its distant relative. The real
world QCD, with quarks, in fact has no area law (the gen-
uine confinement is absent) since the flux tubes break through
the quark–antiquark pair creation. Moreover, light quarks are
condensed, leading to a spontaneous breaking of chiral sym-
metry, a phenomenon shaping the properties of the low-lying
hadronic states, both mesonic and baryonic. The need to ana-
lytically understand these properties from first principles led
us to the development of the SVZ method.

The quarks comprising the low-lying hadronic states, e.g.
classical mesons or baryons, are not that far from each other,
on average. The distance between them is of order of Λ−1.
Under these circumstances, the string-like chromoelectric
flux tubes, connecting well-separated color charges, do not
develop and details of their structure are not relevant. Further-
more, the valence quark pair injected in the vacuum – or three
quarks in the case of baryons – perturb it only slightly. Then
we do not need the full machinery of the QCD strings52 to
approximately describe the properties of the low-lying states.
Their basic parameters depend on how the valence quarks of
which they are built interact with typical vacuum field fluc-
tuations.

We endowed the QCD vacuum with various condensates –
approximately a half-dozen of them – in the hope that this set
would be sufficient to describe a huge variety of the low-lying
hadrons, mesons and baryons. The original set included 53

the gluon condensate G2
μν , the quark condensate q̄q, the

mixed condensate q̄σμνGμνq, various four-quark conden-
sates q̄Γ qq̄Γ q, and a few others (see Table 6). Later this
set had to be expanded to address such problems as, say, the
magnetic moments of baryons.

Our task was to determine the regularities and parameters
of the classical mesons and baryons from a limited set of the
vacuum condensates. Figure 111 graphically demonstrates
the SVZ concept. On the theoretical side, an appropriate n-
point function is calculated as an operator product expansion
truncated at a certain order. In most problems only conden-
sates up to dimension 6 (Table 6) are retained. In the “exper-
imental” part the lowest-lying meson (or baryon) is singled

51 More exactly, confinement through the flux tube formation was
proven in the low-energy limit of this theory upon adding a small defor-
mation term breaking N = 2 down to N = 1.
52 Still unknown.
53 A meticulous writer would have used the notation

〈
G2

μν

〉
, etc. but I

will omit bra and ket symbols where there is no menace of confusion.
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Fig. 111 A two-point correlation function in the QCD vacuum. The
left side is the OPE sum with a finite number of the lowest-dimension
operators ordered according to their normal dimensions. The right side
is the sum over mesons with the appropriate quantum numbers. The
ground state in the given channel is singled out. The excited states are
accounted for in the quasiclassical approximation. We define a positive
variable Q2 = −q2 and a sliding μ2 parameter used as a separation
parameter in OPE. For better convergence a Borel transformation is
applied as explained below

out, while all higher states are represented in the quasiclassi-
cal approximation. Above an effective “threshold” s0, where
the spectral density becomes smooth, we apply quark–hadron
duality to replace it by a perturbative spectral density. Then
the parameter s0 is fitted along with the parameters of the
lowest lying state – its mass and residue.

Acting in this way, one can determine the parameters
f0 and m0 defined in Fig. 111 and their analogs in other
problems. Of course, without invoking the entire infinite set
of condensates one can only expect to obtain the hadronic
parameters in an admittedly approximate manner.

5.7.4 Borelization

Analyzing the sum rules displayed in Fig. 111 we realized
that their predictive power was limited – summation on both
sides of the equation does not converge fast enough. On the
right-hand side the contribution of high excitations is too
large – the lowest lying states are “screened” – because the
weight factors fall off rather slowly. Likewise, to achieve
reasonable accuracy on the left-hand side one would need
to add operators other than those collected in Table 6. At
that time we knew next to nothing about higher-dimension
operators, of dimension � 7. The Borel transform came to
the rescue.

The Borel transformation is a device well-known in math-
ematics. If one has a function f (x) expandable in the Taylor
series, f (x) = x

∑
n anx

n with the coefficients an which
do not fall off sufficiently fast, one can instead introduce its
Borel transform

B f = x
∑

n

an
n! x

n (5.95)

and then, if needed, reconstruct f .54

54 The Borel transform is closely related to the Laplace transform.

Fig. 112 Graph showing four loops renormalizing a gluon line (rep-
resented by the dotted line). A renormalon is the sum over n of such
diagrams with n loops

If we apply this procedure to the sum rule in Fig. 111 we
obtain for a given hadronic state i

B
f 2
i

m2
i + Q2

= B
f 2
i

Q2

∑

n

(−1)n
[m2

i

Q2

]n

→ f 2
i

Q2

∑

n

(−1)n

n!
[m2

i

Q2

]n

= f 2
i

Q2 exp

(

−m2
i

Q2

)

→ f 2
i

M2 exp

(

− m2
i

M2

)

(5.96)

where, in the final step (for historical reasons), I replaced Q2

by a Borel parameter M2. If M2 can be chosen sufficiently
small, higher excitations are exponentially suppressed.

Simultaneously, we improve the convergence of OPE on
the left-hand side by applying the same operator B. If the
operator 〈On〉 has dimension 2dn , then the Borell transfor-
mation of the left hand side yields

B
∑

n

1

(Q2)dn
〈On〉 →

∑

n

1

(dn − 1)!
1

(M2)dn
〈On〉, (5.97)

where I have again replaced Q2 by the Borel parameter M2.
Since the expansion (5.97) goes in inverse powers of M2,
it is necessary to keep M2 large enough. The two require-
ments on M2 seem contradictory. However, for all “typical”
resonances, such as say ρ mesons, they can be met simul-
taneously [145,1217,1218] in a certain “window.” The only
exception is the J P = 0± channel. There are special reasons
why 0± mesons are exceptional, see [1219].

5.7.5 Practical version of OPE

At the early stages of the SVZ program the QCD practi-
tioners often did not fully understood the concept of scale
separation in the Wilsonian OPE. It was generally believed
that the coefficients are fully determined by perturbation the-
ory while non-perturbative effects appear only in the OPE
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operators.55 This belief led to inconsistencies which revealed
themselves e.g. in the issue of renormalons (see below). A
set of graphs represented by renormalons is constructed from
a single gluon exchange by inserting any number of loops in
the gluon line like beads in a necklace (Ref. [1220]). Being
treated formally this contribution, shown in Fig. 112, diverges
factorially at high orders. I vividly remember that after the
first seminar on SVZ in 1978 Eugene Bogomol’nyi asked
me each time we met: “Look, how can you speak of power
corrections in the n-point functions at large Q2 if even the
perturbative expansion (i.e. the expansion in 1/ log(Q2/Λ2))
is not well defined? Isn’t it inconsistent?” I must admit that
at that time my answer to Eugene was somewhat evasive.

The basic principle of Wilson’s OPE – the scale separa-
tion principle – is “soft versus hard” rather than “perturba-
tive versus non-perturbative.” Being defined in this way the
condensates are explicitly μ dependent. All physical quan-
tities are certainly μ independent; the normalization point
dependence of the condensates is compensated by that of the
coefficient functions – see Fig. 111.

The problem of renormalons disappears once we intro-
duce the normalization point μ. With μ � Λ, there is no
factorial divergence in high orders of perturbations theory.
Renormalons conspire with the gluon condensates to pro-
duce, taken together, a well-defined OPE. The modern con-
struction goes under the name of the “renormalon conspir-
acy”; it is explained in detail in my review [1214]. I hasten
to add, though, that the renormalons acquire a life of their
own in those cases in which OPE does not exist. Qualita-
tively, they can shed light on scaling dimensions of non-
perturbative effects. The most clear-cut example of this type
is the so-called “pole mass of the heavy quarks” [1221,1222]
and its relation to a theoretically well-defined mass parameter
[1223].

In some two-dimensional solvable models exact OPE can
be constructed which explicitly demonstrates the μ depen-
dence of both the coefficient functions and the condensates
in the Wilsonian paradigm and its cancellation in the phys-
ical quantities (for a recent study see e.g. [1224]). Needless
to say, if QCD was exactly solved we would have no need in
the SVZ sum rules.

We had to settle for a reasonable compromise, known as
the practical version of OPE. In the practical version we
calculate the coefficient functions perturbatively keeping a
limited number of loop corrections. The condensate series is
truncated too. The condensates are not calculated from first
principles; rather a limited set is determined from indepen-
dent data.

The practical version is useful in applications only pro-
vided μ2 can be made small enough to ensure that the “per-

55 Unfortunately, this misconception lasted through the 1980s and was
visible in the literature even in the 1990s and later.

turbative” contributions to the condensates are much smaller
than their genuine (mostly non-perturbative) values. At the
same time,αs(μ2)/π must be small enough for the expansion
in the coefficients to make sense. The existence of such “μ2

window” is not granted a priori and is a very fortunate feature
of QCD. We did observe this feature empirically in almost
all low-lying hadrons [1225,1226].56 At the same time, we
identified certain exceptional channels revealing unforeseen
nuances in hadronic physics [1219].

5.7.6 Implementation of the idea and results

After the strategic idea of quark and gluon interaction with the
vacuum medium became clear we delved into the uncharted
waters of microscopic hadronic physics. Remember, in 1977
nobody could imagine that basic hadronic parameters for
at least some hadrons could be analytically calculated, at
least approximately. As a show-case example we chose the
most typical mesons, ρ and φ, to calculate their couplings to
the electromagnetic current and masses. The agreement of
our results with experiment was better than we could a pri-
ori expect. At first we were discouraged by a “wrong” sign
of the gluon condensate term in the theoretical part of the
appropriate SVZ sum rule. We suddenly understood that this
sign could be compensated by the four-quark condensate –
a real breakthrough. In November of 1977 we published a
short letter [1211] which still missed a number of elements
(e.g. Borelization) developed and incorporated later, one by
one. We worked at a feverish pace for the entire academic
year, accumulating a large number of results for the hadronic
parameters. All low-lying meson resonances built from the
u, d, s quarks and gluons were studied and their static prop-
erties determined from SVZ: masses, coupling constants,
charge radii, ρ–ω mixing, and so on, with unprecedented
success. In summer of 1978, inspired by our progress, we
prepared a number of preprints (I think, eight of them simul-
taneously57) and submitted to ICHEP-78 in Tokyo. Clearly
none of us were allowed to travel to Tokyo to present our
results.

I cannot help mentioning an incident that occurred in the
spring of 1978 when we were mostly done with this work. The
episode may have been funny were it not so nerve-wracking.
When we decided that the calculational stage of the work was
over, I collected all my drafts (hundreds of sheets of paper
with derivations and math expressions), I organized them in
proper order, selected all expressions we might have needed
for the final draft of the paper and the future work, meticu-

56 Theoretical understanding of the roots of this phenomenon remains
unclear. Seemingly, it has no known analogues in two-dimensional mod-
els.
57 In the journal publication they were combined in three articles occu-
pying the whole issue of Nucl. Phys. B147, N o5, 1979.
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lously rewrote them in a voluminous notebook (remember,
we had no access to photocopying machines), destroyed the
original drafts, put the notebook in my briefcase and went
home. It was about midnight, and I was so exhausted that I
fell asleep while on the metro train. A loud voice announc-
ing my stop awoke me, and I jumped out of the train, leav-
ing the briefcase were it was, on the seat. By the time I
realized what had happened the train was gone, and gone
with it forever my calculations …I have never recovered my
briefcase with the precious notebook…After a few agoniz-
ing days it became clear that the necessary formulas and
expressions had to be recovered anew. Fortunately, Vain-
shtein and Zakharov had kept many of their own deriva-
tions. Vainshtein never throws away anything as a matter of
principle. Therefore, the problem was to dig out “informa-
tive” sheets of paper from the “noise” (this was hindered
by the fact that Vainshtein was in Novosibirsk while we
were in Moscow). Part of my drafts survived in the drawers
of a huge desk that I had inherited from V. Sudakov. Bet-
ter still, many crucial calculations were discussed so many
times by us, over and over again, that I remembered them
by heart. Nevertheless, I think it took a couple of uneasy
weeks to reconstruct in full the contents of the lost note-
book.

The SVZ method was further developed by many follow-
ers (e.g. the so-called light-cone sum rules for form-factors),
see [1227] and [1228]. A broad picture of the hadronic world
was obtained by the 1980s and later [1229]. Today the pio-
neering SVZ paper is cited 6000+ times. Until 1990s, when
lattice QCD based on numeric calculations, started approach-
ing its maturity, the SVZ method was the main tool for ana-
lyzing static hadronic properties.

5.7.7 Reliability and predictive power

The SVZ method is admittedly approximate. Yet, it is not a
model in the sense that it cannot be arbitrarily bent to accom-
modate “wrong” data. It is instructive to narrate here the story
of an alleged discovery of an alleged “paracharmonium”
referred to as X (2.83) in January of 1977 [1230]. It was
widely believed then that X (2.83) was the 0− ground sate of
c̄c quarks,ηc. If this was the case the mass difference between
J/ψ and ηc would be close to 270 MeV. Shortly after, the
interpretation of X (2.83) as ηc was categorically ruled out
by the SVZ analysis [1231] which predicted that the above
mass difference must be 100 ± 30 MeV. Two years later, a
new experiment [1232] negated the existence of the X (2.83)
state. In the very same experiment the genuine paracharmo-
nium was observed at 2.98±0.01 GeV, in perfect agreement
with [1231]. For us this was a triumph and a lesson – if one
believes in a theory one should stand for it!

5.7.8 OPE-based construction of heavy quark mass
expansion

In the 1980s and early 1990s OPE was generalized to cover
theoretical studies of mixed heavy-light hadrons, i.e. those
built from light, q, and heavy, Q, flavors. In the 1990s those
who used 1/mQ expansion in theoretical analysis of Qq̄
and Qqq systems numbered in the hundreds. A large range
of practical physics problem related to Qq̄ and Qqq sys-
tems were solved. Lattice analyses of such systems even now
remain hindered, and in many instances the 1/mQ expansion
remains the only reliable theoretical method.

As I have mentioned in the second paragraph of Sect. 5.7.2,
heavy quarks in QCD introduce an extra scale, mQ . To qual-
ify as a heavy quark Q the corresponding mass termmQ must
be much larger than ΛQCD. The charmed quark c can be con-
sidered as heavy only with some reservations while b and
t are bona fide heavy quarks. The hadrons composed from
one heavy quark Q, a light antiquark q̄ , or a “diquark” qq,
plus a gluon cloud (which also contains light quark–antiquark
pairs) – let us call them HQ – can be treated in the framework
of OPE. The role of the cloud is, of course, to keep all the
above objects together, in a colorless bound state. The light
component of HQ , its light cloud, has a complicated struc-
ture; the soft modes of the light fields are strongly coupled and
strongly fluctuate. Basically, the only fact which we know for
sure is that the light cloud is indeed light; typical excitation
frequencies are of order ofΛ. One can try to visualize the light
cloud as a soft medium.58 The heavy quark Q is then sub-
merged in this medium. The latter circumstance allows one
to develop a formalism similar to SVZ in which the soft QCD
vacuum medium is replaced by that of the light cloud. As a
result, an OPE-based expansion in powers of 1/mQ emerges
(see Fig. 113). When heavy quarks are in soft medium the
heavy quark–antiquark pair creation does not occur and the
field-theoretic description of the heavy quark becomes redun-
dant. A large “mechanical” part in the x dependence of Q(x)
can be a priori isolated, Q(x) = exp(−imQt)Q̃(x). The
reduced bispinor field Q̃(x) describes a residual heavy quark
motion inside the soft cloud; the heavy quark mass appears
only in the form of powers of 1/mQ (first noted in 1982).

Comprehensive reviews on the OPE-based heavy quark
theory exist [711,1223,1235,1236]. There the reader will
find exhaustive lists of references to original publications.
Therefore, in my presentation below I will be brief, with a
focus on a historical aspect, as I remember it, and limit myself
to a few selected references.

In the early 1980s abundant data on the meson and baryon
HQ states started to appear. Theoretical understanding of the
total decay rates beyond the free-quark calculations became a

58 Hard gluons do play a role too. They have to be taken into account
in the coefficient functions as will be mentioned In Sect. 5.7.10.
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Fig. 113 1/mQ expansion for a HQ weak inclusive decay rate (see Eq.
(5.99)). Depicted are two operators, the leading Q̄Q and a subleading
(Q̄q3)(q̄3Q). Both are sandwiched between the heavy hadron states
〈HQ | and |HQ〉 and the decay rate is determined by the imaginary part.
The grey area depicts the soft quark–gluon cloud. Adapted from Refs.
[1233,1234]

major goal. This challenge paved the way to the beginning of
the 1/mQ expansion in HQ hadron physics in the mid 1980s.
The decay rate into an inclusive final state f can be written in
terms of the imaginary part of a forward scattering operator
(the so-called transition operator) evaluated to second order
in the weak interactions [1233,1234],

ImT̂ (Q→ f→Q)= Im
∫

d4x i T
(
LW (x)L†

W (0)
)

(5.98)

where T denotes the time ordered product and LW is the
relevant weak Lagrangian at the normalization point μ ∼
mQ . The factor exp(−imQt) mentioned above is implicit in
Eq. (5.98). Descending to μ � mQ one arrives at the OPE
expansion

Γ (HQ → f ) = G2
F |VCKM|2m5

Q

∑

i

c̃( f )i (μ)
〈HQ |Oi |HQ〉μ

2MHQ

∝
[

c( f )3 (μ)
〈HQ |Q̄Q|HQ〉(μ)

2MHQ

+c( f )5 (μ)m−2
Q

〈HQ |Q̄ i
2σGQ|HQ〉(μ)

2MHQ

+
∑

i

c( f )6,i (μ)m−3
Q
〈HQ |(Q̄Γi q)(q̄Γi Q)|HQ〉(μ)

2MHQ

+O(1/m4
Q)+ · · ·

]
, (5.99)

where Γi represent various combinations of the Dirac γ

matrices, see also Table 6. In SVZ we dealt with the vac-
uum expectation values of relevant operators while in the
heavy quark physics the relevant operators are sandwiched
between HQ states.

5.7.9 Applications

The expansion (5.99) allowed us to obtain [1233,1234] the
first quantitative predictions for the hierarchies of the life-
times of Qq̄ mesons and Qqq baryons (Q was either c or
b quark) in the mid-1980s – another spectacular success of

the OPE-based methods. The dramatic story of ηc narrated
in Sect. 5.7.7 repeated itself. With the advancement of exper-
iment in the late 1990s, a drastic disagreement was allegedly
detected in the ratio τ(Λb)/τ(Bd)exp = 0.77 ± 0.05 com-
pared to the theoretical prediction

τ(Λb)/τ(Bd)theor = 0.9± 0.03

(e.g. [1223]). In the 2010s the Λb lifetime was remeasured
shifting the above experimental ratio up to 0.93±0.05. Hur-
rah!

In the mid-1980s, at the time of the initial theoretical stud-
ies of the Hc and Hb lifetime hierarchies [1233,1234], next
to nothing was known about heavy baryons. Since then enor-
mous efforts were invested in improving theoretical accu-
racy both in mesons and baryons in particular by includ-
ing higher-dimension operators in the inverse heavy quark
mass expansion and higher-order αs terms in the OPE coef-
ficients. The status of the Inverse Heavy Quark Mass Expan-
sion (IHQME) for HQ lifetimes as of 2014 was presented
in the review [1237]. The advances reported there and in
more recent years cover more precise determination of the
matrix elements of four-quark operators via HQET sum rules
[1238], calculations of the higherαs corrections, in particular,
α3
s corrections to the semileptonic b quark decay [1239], the

first determination of the Darwin coefficient for non-leptonic
decays [1240,1241], etc. Comparison with the current set of
data on τ(Hc) can be found in [1242]. In this context I should
also mention an impressive publication [1243] (see also refer-
ences therein) which, in addition to a comprehensive review
of the OPE-based analysis of the Hc lifetimes, acquaints the
reader with a dramatic story of the singly charmed baryon
hierarchy. Indeed, according to PDG-2018 the lifetime ofΩ0

c
is 69±12 fs while PDG-2020 yields τ(Ω0

c ) = 268±24±10
fs! The jump in the Ω0

c lifetime by a factor of 3 to 4 compared
to the previous measurements was reported by LHCb [1244–
1246].59 With these new data the observed hierarchy of life-
times changes: Ω0

c moves from the first place (the shortest
living Hc baryon) to the third. The question arises whether
the OPE-based theory can explain the current experimental
situation τ(Ξ0) < τ(Λ+c ) < τ(Ω0

c ) < τ(Ξ+). In [1243] it
is argued that the answer is “yes, it is possible” (see Fig. 5
in [1243]) provided one takes into account 1/m4

c contribu-
tions due to four-quark operators and αs corrections in the
appropriate coefficient functions.60

59 Of course, this could happen only because (presumably) statistical
and/or systematic errors in the previous measurements were grossly
underestimated. It is also curious to note that 30 years ago Blok and I
argued [1247, Secs. 4.2 and 6] that Ω0

c could be the longest living singly
charmed baryon due to its ss spin-1 diquark structure.
60 The four-quark operators introduced in [1233,1234] responsible for
the Pauli interference yield corrections O(1/m3

c ), see Eq. (5.99). The
authors of [1243] go beyond this set.

123



 1125 Page 160 of 636 Eur. Phys. J. C          (2023) 83:1125 

I should emphasize that the theoretical accuracy in the Hc

family is limited by the fact that the expansion parameter
ΛQCD/mc is not small enough. Even including sub-leading
contributions will hardly provide us with high-precision the-
oretical predictions. For Hc states IHQME at best provides
us with a semi-quantitative guide. On the other hand, in the
theory of Hb decays one expects much better precision.

5.7.10 Around 1990s and beyond

(1) Heavy quark symmetry when mQ →∞
The light-cloud interpretation as in Fig. 113 immediately
implies that at zero recoil the (appropriately normalized)
B → D formfactors reduce to unity. This is called
the “small velocity (SV) limit theorem” [1248,1249]. The
above“unification” is similar to the vector charge non-
renormalization theorem at zero momentum transfer, say, for
the ūγ μd current. The D and B masses are very far from
each other. One has to subtract the mechanical part of the
heavy quark mass in order to see that all dynamical parame-
ters are insensitive to the substitution Q1 ↔ Q2 in the limit
mQ1,2 → ∞, with the SV limit ensuing at zero recoil. Per-
haps, this is the reason why it was discovered so late. The
next step was made by Isgur and Wise who generalized this
symmetry of the zero-recoil point by virtue of the Isgur-Wise
function [1250,1251].

(2) HQET
Heavy quark effective theory which emerged in the 1990s
[704,1252] formalizes and automates a number of aspects
of the generic 1/mQ expansion. In fact, it immediately fol-
lows from the construction similar to (5.99). Simplified rules
of behavior proved to be very helpful for QCD practitioners
in the subsequent development of various applications. In
HQET the reduced field Q̃ is treated quantum-mechanically,
its non-relativistic nature is built in, and the normalization
point μ is � mQ from the very beginning.61 Applying the
Dirac equation to eliminate small (lower) components in
favor of the large components it is easy to derive the expan-
sion of L0

heavy, up to terms 1/m2
Q ,

L0
heavy = Q̄(i �D − mQ)Q

= Q̄
1+ γ0

2

(

1+ (σπ)2

8m2
Q

)[

π0 − 1

2mQ
(πσ )2 −

− 1

8m2
Q

(
−( �D �E)+ 2σ · �E × π

)
]

61 I personally prefer to consider the heavy quark expansions directly
in full QCD in the framework of the Wilson OPE bypassing the inter-
mediate stage of HQET.

×
(

1+ (σπ)2

8m2
Q

)
1+ γ0

2
Q + O

(
1

m3
Q

)

,

(5.100)

where σ denote the Pauli matrices and

(πσ )2 = π2 + σ �B,
�E and �B denote the background chromoelectric and chro-
momagnetic fields, respectively. Moreover, the operator πμ

is defined through

i DμQ(x) = e−imQvμxμ
(
mQvμ + i Dμ

)
Q̃(x)

≡ e−imQvμxμ
(
mQvμ + πμ

)
Q̃(x) (5.101)

where vμ is the heavy quark four-velocity. The set of opera-
tors presented in (5.100) plays the same basic role in 1/mQ

expansion as the set in Table 6 in SVZ sum rules.
In the remainder of this section I will briefly mention some

classic problems with heavy quarks which were successfully
solved in the given paradigm.

(3) CGG/BUV theorem
Up to order 1/m2

Q all inclusive decay widths of the HQ

mesons coincide with the parton model results for the Q
decay [1253,1254],

Γ = Γ0

(

1− μ2
π

2m2
Q

)

, μ2
π =

1

2MHQ

〈HQ |Q̄ �π2Q|HQ〉

(5.102)

where Γ0 is the parton model result. There are no corrections
O(1/mQ). This is known as the CGG/BUV theorem.

(4) Spectra and line shapes
Lepton spectra in semileptonic HQ decays were derived in
[1255]. The leading corrections arising at the 1/mQ level
were completely expressed in terms of the difference in the
mass of HQ and Q. Nontrivial effects appearing at the order
1/m2

Q were shown to affect mainly the endpoint region; they
are different for meson and baryon decays as well as for
beauty and charm decays.

The theory of the line shape in HQ decays, such as B →
Xsγ where Xs denotes the inclusive hadronic state with the s
quark, resembles that of the Mössbauer effect. It is absolutely
remarkable that for 10 years there were no attempts to treat
the spectra and line shapes along essentially the same lines
as it had been done in deep inelastic scattering (DIS) in the
1970s. Realization of this fact came only in 1994; technical
implementation of the idea was carried out in [1256,1257],
and [1258].

(5) Hard gluons
Hard-gluon contributions special for the heavy quark the-
ory result in powers of the logarithms αs log

(
mQ/μ

)
. They

determine the coefficients ci in Eq. (5.99) through the anoma-
lous dimensions of the corresponding operators. They were
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discovered in [1259,1260] and were called the hybrid loga-
rithms. In HQET they are referred to as matching logarithms.
(6) In conclusion
Concluding the heavy quark portion I should add that Kolya
Uraltsev (1957–2013), one of the major contributors in heavy
quark theory died in 2013 at the peak of his creative abilities
(see [1220]).

Concerning the OPE-based methods in QCD in general,
I would like to make an apology to the many authors whose
works have not been directly cited. The size limitations are
severe. The appropriate references are given in the review
papers listed in the text above.

Just for the record, a couple of reviews which are tangen-
tially connected to the topic of the present article are given
in Refs. [1261] and [1262].

5.7.11 Recent developments unrelated to the OPE-based
methods

Quantum field theories from the same class as QCD are
now experiencing dramatic changes and rapid advances in
a deeper understanding of anomalies. I want to mention two
crucial papers: [1263] and [1264]. The latter demonstrates
that at θ = π there is a discrete ’t Hooft anomaly involv-
ing time reversal and the center symmetry. It follows that at
θ = π the vacuum cannot be a trivial non-degenerate gapped
state.

5.8 Factorization and spin asymmetries

Jianwei Qiu

5.8.1 QCD factorization

Hadrons, such as the proton, neutron and pion, are relativis-
tic bound states of strongly interacting quarks and gluons of
QCD. Without being able to see any quark or gluon directly in
isolation, owing to the color confinement of QCD, it has been
an unprecedented intellectual challenge to explore and quan-
tify the internal structure of hadrons in terms of their con-
stituents, quarks and gluons, and the emergence of hadrons
from quarks or gluons. Actually, the QCD color interaction
is so strong at a typical hadronic scale O(1/R) with a hadron
radius R ∼ 1 fm that any scattering cross section with identi-
fied hadron(s) cannot be calculated fully in QCD perturbation
theory.

QCD factorization [242] has been developed to describe
high energy hadronic scattering with a large momentum
transfer Q � 1/R ∼ ΛQCD by taking the advantage of the
asymptotic freedom of QCD by which the color interaction
becomes weaker and calculable perturbatively at short dis-
tances. QCD factorization provides a controllable and con-

Fig. 114 a Sketch for scattering amplitude of inclusive DIS. b Leading
order contribution to inclusive DIS cross section in its cut diagram
notation

sistent way to approximate QCD contributions to good or
factorizable hadronic cross sections by demonstrating

– all process-dependent nonperturbative contributions to
these good cross sections are suppressed by powers of
ΛQCD/Q, which could be neglected if the hard scale Q
is sufficiently large,

– all factorizable nonperturbative contributions are process
independent, representing the characteristics of identified
hadron(s), and

– the process dependence of factorizable contributions is
perturbatively calculable from partonic scattering at the
short-distance.

With our ability to calculate the process-dependent short dis-
tance partonic scatterings perturbatively at the hard scale
Q, the prediction of QCD factorization follows when cross
sections with different hard scatterings but the same non-
perturbative long-distance effect of identified hadron are
compared. QCD Factorization also supplies physical con-
tent to these perturbatively uncalculable, but universal long-
distance effects of identified hadrons by matching them to
hadronic matrix elements of active quark and/or gluon oper-
ators, which could be interpreted as parton distribution or
correlation functions of the identified hadrons, and allows
them to be measured experimentally or by numerical simu-
lation.

Inclusive scattering with one identified hadron
The deeply inelastic scattering (DIS) between a lepton e of
momentum l and a hadron h of momentum p, e(l)+h(p)→
e(l ′)+ X , as shown in Fig. 114a where l ′ is scattered lepton
momentum and X represents all possible final states, is an
inclusive scattering with one identified hadron. With a large
momentum transfer,q = l−l ′ and Q ≡ √−q2 � ΛQCD, the
DIS experiment at SLAC in 1969 discovered the point-like
spin-1/2 partons/quarks inside a proton [110], which helped
the discovery and formulation of QCD.

For inclusive DIS with two characteristic scales: Q(�
ΛQCD) and ΛQCD, QCD factorization is to consistently sep-
arate QCD dynamics taking place at these two distinctive
scales by examining scattering amplitudes in terms of general
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Fig. 115 a Pinch surface for
inclusive DIS with collinear and
longitudinally polarized gluons
(curly lines) and soft gluons
(dashed lines). b Leading power
factorized contribution to
inclusive DIS with all collinear
and longitudinally polarized
gluons detached from the hard
part H and reconnected to the
gauge links

properties of Feynman diagrams in QCD perturbation theory.
This leads to a factorization formalism, which is an approxi-
mation up to corrections suppressed in powers of ΛQCD/Q.
For example, considering the leading order (LO) contribution
to the inclusive DIS, as presented in Fig. 114b in its cut dia-
gram notation, graphical contributions to the cross sections
are represented by the scattering amplitude to the left of the
final state cut (the red thin line) and the complex conjugate
amplitude to the right. The scattering σ̂LO(Q, k) between the
lepton of momentum l and a quark (or a parton) of momen-
tum k, is taking place at the hard scale Q, while the dynam-
ics describing the quark inside the hadron, J (k, p), is at the
hadronic scale 1/R ∼ ΛQCD. The validity of such perturba-
tive QCD factorization requires the suppression of quantum
interference between the dynamics taking place at these two
different momentum scales. This in turn requires that the
dominant contributions to the factorized formalism should
necessarily come from the phase space where the active par-
ton(s) linking the dynamics at two different scales are forced
onto their mass shells, and are consequently long-lived com-
pared to the time scale of the hard collision at the scale Q.
This requirement is naturally satisfied for the LO contribution
in Fig. 114b,

σLO
DIS ∝

∫
d4k

[

σ̂LO(Q, k)
1

k2 + iε
J (k, p)

1

k2 − iε

]

≈
∫

dk+

2k+
d2kT σ̂LO(Q, k̂)

×
∫

dk2 1

k2 + iε
J (k, p)

1

k2 − iε
+O

[
Λ2

QCD

Q2

]

(5.103)

where the light-quark mass was neglected, and the active
quark of momentum k is perturbatively pinched to be on-
shell, k2 ≈ k̂2 = 0 with

k̂ =
(

k+,
k2
T

2k+
, �kT

)

in the notation of light-cone coordinates, leading to a fac-
torization formalism (see Eq. (5.103)) with all perturbatively

pinched poles absorbed into the nonperturbative function of
the identified hadron.

However, beyond the LO inclusive DIS, all internal loop-
momentum integrals to any scattering amplitude are defined
by contours in complex momentum space, and it is only
at momentum configurations where some subset of loop
momenta are pinched that the contours are forced to or near
mass-shell poles that correspond to long-distance behavior.
The importance of such pinched surfaces in multidimen-
sional momentum space was identified in the Libby-Sterman
analysis [1265,1266] that categorized all loop momenta
into three groups: hard, collinear, and soft, along with the
reduced diagrams by contracting off-shell lines to points,
from which factorization formalisms can be derived. As
shown in Fig. 115a for inclusive DIS, the identified hadron
is associated with a group of collinear parton lines, and at
the leading power, one physically polarized collinear parton
plus infinite longitudinally polarized collinear gluons (curly
lines) link the identified hadron to the hard part, H , in which
all parton lines are off-shell by the hard scale Q. At the same
time, the soft gluon lines (dashed lines in Fig. 115a) can
attach to both the hard and collinear lines of the identified
hadron. Since all parton propagators in H are off-shell by Q,
a soft gluon attachment to any of these lines in H is neces-
sarily to increase the number of off-shell propagators in H ,
and effectively suppresses the hard part by an inverse power
of Q, making the contribution power suppressed. Therefore,
we do not need to consider soft contributions to the inclusive
DIS cross section at the leading power in 1/Q expansion.

The collinear and longitudinally polarized gluons have
their polarization vectors proportional to their momenta in a
covariant gauge. By applying the Ward Identity, all attach-
ments of collinear and longitudinally polarized gluons to the
hard part H can be detached and reconnected to the gauge
link pointing to the “−” light-cone direction if the identified
hadron is moving in the “+” light-cone direction [242,1267],
as sketched in Fig. 115b. After taking the leading power con-
tribution from the spinor trace of the active quark line in
Fig. 115b [1267,1268], the inclusive DIS cross section at the
leading power can be factorized as [1269–1271]
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E ′
dσDIS

eh→eX

d3l ′
(l, p; l ′) =

∑

f=q,q̄,g

∫
dx φ f/h(x, μ

2)

× E ′
dσ̂e f→eX

d3l ′
(l, k̂; l ′, μ2)+O

[
Λ2

QCD

Q2

]

(5.104)

where k̂ ≡ xp+, l ′T ∼ Q � ΛQCD, and E ′dσ̂e f→eX/d3l ′
is the short-distance part of DIS cross section on a par-
ton state of flavor f and collinear momentum fraction x
of the colliding hadron, with its long-distance contributions
to the cross section systematically absorbed into the non-
perturbative functions φ f/h(x, μ2), which are defined in
terms of hadronic matrix elements of active parton opera-
tors [1272]. For example, for an unpolarized active quark,

φq/h(x, μ
2) =

∫
dξ−

2π
eixp

+ξ−〈h(p)|ψq(0)
γ+

2

×W[0,ξ−]ψq(ξ
−)|h(p)〉, (5.105)

where W[0,ξ−] = Pexp
[
ig

∫ ξ−
0 dη−A+(η−)

]
is the gauge

link. The φ f/h(x, μ2) carries nonperturbative information of
the identified hadron, and is referred as an universal parton
distribution function (PDF) for finding a parton of flavor f
inside a colliding hadron h, carrying its momentum fraction
x , probed at a hard factorization scale μ ∼ Q. PDFs are
discussed in more detail in Sect. 10.2.

With the precise definition of φ f/h(x, μ2), the QCD fac-
torization formalism, such as the one in Eq. (5.104), pro-
vides a systematic way to calculate the short-distance par-
tonic scattering, E ′dσ̂e f→eX/d3l ′, in QCD perturbation the-
ory. By applying the factorization formalism in Eq. (5.104)
to a parton state of flavor f , |h(p)〉 → | f (p)〉, we can use
perturbation theory to calculate

E ′
dσ̂e f→eX

d3l ′

order-by-order in powers of the strong coupling constant
αs by perturbatively calculating the DIS cross section on a
parton of flavor f on the left of Eq. (5.104), and PDFs of
the same parton on the right with the collinear divergence
regularized. QCD factorization ensures that the regularized
collinear divergence of the partonic scattering cross section
on the left-hand-side of Eq. (5.104) will be exactly cancelled
by the regularized collinear divergence of the PDFs of the
same parton on the right [1267].

The inclusive DIS cross section can be physically mea-
sured in experiments and should not depend on how we
describe it in terms of QCD factorization, or the choice of
factorization scale μ. That is, we require

dσeh→eX/d logμ2 = 0,

Fig. 116 a Sketch for scattering amplitude of inclusive single hadron
production in high energy e+e− collisions. b Leading order contribution
to inclusive single hadron production in its cut diagram notation

Fig. 117 a Sketch for scattering amplitude of Drell–Yan production
of a massive lepton pair. b Leading order contribution to the Drell–Yan
cross section in its cut diagram notation

which implies evolution equations of PDFs, known as the
DGLAP equations [87,230,232,233]

dφ f/h(x, μ2)

d logμ2 =
∑

f ′

∫ 1

x

dx ′

x ′
Pf/ f ′

( x

x ′
, αs(μ

2)
)

×φ f ′/h(x
′, μ2) (5.106)

where the evolution kernels Pf/ f ′(x/x ′, αs(μ2)) are calcu-
lable in perturbative QCD when the strong coupling con-
stant αs(μ) is sufficiently small [234,235]. Although PDFs
are nonperturbative, their factorization scale dependence is a
QCD prediction, which has been confirmed to great accuracy
[663,664].

Another example of a factorizable inclusive cross section
with one identified hadron is single-inclusive hadron pro-
duction in high energy electron–positron collision, e−(l) +
e+(l ′)→ h(p)+ X with an observed hadron energy Ep �
ΛQCD, as sketched in Fig. 116a. Like the inclusive DIS in
Eq. (5.103), the active parton momentum k, in Fig. 116b,
linking the hard e+e− annihilation that produces this active
parton and describes how it hadronizes into the observed
hadron, is perturbatively pinched to its mass-shell, which is
necessary for the factorization. For the leading power contri-
bution beyond the LO in Fig. 116b, similar to inclusive DIS,
we do not need to worry about soft interactions between the
hard part and the collinear partons along the direction of
the produced hadron. By applying the Ward Identity, in the
same way as in the factorization of inclusive DIS, the attach-
ment of collinear and longitudinally polarized gluons from
the observed hadron to the hard part, H , can be detached and
reconnected to the gauge link to become a part of the non-
perturbative, but universal, fragmentation functions (FFs) of
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Fig. 118 a Sketch for the leading QCD pinch surface for Drell–Yan
production of lepton pair with collinear and longitudinally polarized
gluons in curly lines and soft gluons in dashed lines. b QCD contribu-

tion to Drell–Yan process with all collinear and longitudinally polarized
gluons detached from the hard part and reconnected to the gauge lines

the identified hadron, leading to the factorization formalism,

Ep
dσe+e−→hX

d3 p
(s, p) =

∑

f

∫
dz

z2 Dh/ f (z, μ
2)

× Ek
dσ̂e+e−→k̂ X

d3k̂
(s, k̂, μ2)+O

[
Λ2

QCD

Q2

]

(5.107)

where active parton momentum is k̂ = p/z,

√
s =

√
(l + l ′)2

is the collision energy, and Dh/ f (z, μ2) is the FF to find a
hadron h emerged from a produced parton of flavor f while
carrying the parton’s momentum fraction z [1272]. The fact
that such a physical cross section should not depend on how
we factorized implies evolution equations for the FFs, like
DGLAP for PDFs.

Extracting the universal PDFs and FFs from experimen-
tal data – exploiting the QCD factorization formalisms which
involve one identified hadron in Eqs. (5.104) and (5.107) – is a
challenging inverse problem. Although the scale dependence
of PDFs and FFs is a prediction of QCD dynamics, measure-
ments of such cross sections with one identified hadron are
not sufficient to disentangle the flavor and momentum frac-
tion dependence of all PDFs and FFs, which is necessary for
the predictive power of the QCD factorization approach to
describe high energy hadronic cross sections.

Inclusive scattering with two identified hadrons
The Drell–Yan (DY) production of lepton pairs via a vec-
tor boson in hadron–hadron collisions, A(p) + B(p′) →
V (q) + X with V (q)[= γ ∗,W/Z , H0, . . .] → l + l ′, as
sketched in Fig. 117a, is an ideal example of the study of
QCD factorization for inclusive observables with two iden-
tified hadrons [242].

Fig. 119 Sketch for factorized Drell–Yan production of a massive lep-
ton pair at the leading power with all soft gluon interactions factorized
into a multiplicative soft factor

From the LO contribution in Fig. 117b, both active par-
tons (quark or antiquark) of momentum k and k′ coming
from colliding hadrons A(p) and B(p′), respectively, are
perturbatively pinched to their mass-shell, which is neces-
sary for being able to factorize the nonperturbative hadronic
information of colliding hadrons from the hard collision to
produce the massive lepton pairs. Beyond the LO, each col-
liding hadron is associated with a group of collinear partons,
and for the leading power contribution, only one physically
polarized active parton plus infinite collinear and longitudi-
nally polarized gluons from each hadron should attach to the
hard part, H , with the remaining collinear partons forming
a (spectator) jet function, which is the same as the inclusive
scattering with one identified hadron. The key difference for
QCD factorization of inclusive scattering with two identi-
fied hadrons from that with one hadron, according to the
Libby-Sterman analysis [1265,1266], is the soft interaction
between the collinear partons of two different hadrons, as
shown by the dashed lines in Fig. 118a. Still the soft inter-
action between the collinear partons and the hard part can
be neglected when calculating the leading power contribu-
tions. However, these long-distance soft interactions between
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Fig. 120 Sample diagram responsible for soft gluon interaction to have
its momentum pinched in the Glauber region

hadrons have the potential to break the universality of the
factorizable nonperturbative contribution from each identi-
fied hadron, and invalidate the predictive power of the QCD
factorization approach for studying hadronic cross sections
with identified hadrons.

When the colliding hadrons A(p) and B(p′) are moving
in the +z and −z direction, respectively, the factorization of
collinear and longitudinally polarized gluons from the hard
part H is effectively the same as what was done for the case
of single identified hadron. Since collinear and longitudi-
nally polarized gluons have their polarization vectors pro-
portional to their momenta in a covariant gauge, by applying
the Ward Identity all collinear and longitudinally polarized
gluons from hadron A(p) can be detached from the hard part
and reconnected to the gauge link in the “−” light-cone direc-
tion, while those from hadron B(p′) can be reconnected to
the gauge link in the “+” light-cone direction, as sketched in
Fig. 118b.

In order to achieve the factorization, we need to get rid of
the soft gluon interactions, the dashed lines in Fig. 118b. If
we scale collinear parton momenta from colliding hadron A,
ki = (k+i , k−i , kTi ) ∼ (1, λ2, λ)Q with λ ∼ O(ΛQCD/Q),
we maintain k2

i ∼ O(λ2Q2) → 0 as the loop momenta
approach to the pinch surface. If we can choose soft-
gluon loop momenta to have the scaling behavior, ls ∼
(λs, λs, λs)Q, where λs ∼ λ2 (or λ) so that all components
vanish at the same rate. We then have (ki + ls)2 ∼ 2k+i l−s ∼
O(λ2/Q2). That is, in a covariant gauge we only need to
keep the “−” components of the soft gluon momenta flow-
ing into the jet of collinear partons from the colliding hadron
A. Correspondingly, the Lorentz indices connecting to the
soft gluons from the jet function J (k, p) of hadron A will be
in the “+” direction. Therefore, we can use the Ward Identity
to detach the soft gluons from the jet of collinear partons
from colliding hadron A and reconnect them into a gauge
link or an eikonal line. Applying the same reasoning with
the role of the “±” components switched, we can detach all
soft gluon interactions to the jet of collinear partons from
colliding hadron B, and to factorize all soft gluon interac-
tions with two colliding hadrons into an overall soft factor,
as shown in Fig. 119.

However, this factorization can fail if the soft gluon
momenta are trapped in the Glauber region. In this region

the “±” components of the soft gluons are small compared
to their transverse components, i.e.l±s / lTs ∼ O(λ), so that we
cannot neglect the transverse components, keeping only one
“+” or “−” components [242]. It is the soft-gluon interaction
between the spectators of two colliding hadrons that can trap
the± components of the soft gluon momenta in the Glauber
region. For example, in Fig. 120, the pair of propagators of
momenta, p−k− l and k+ l, pinches the “−” component of
l to be, l− ∝ l2T , while the pair of propagators of momenta,
p′ − k′ + l and k′ − l, pinches the “+” component of l to
be, l+ ∝ l2T , such that the soft gluon interaction between
two jets of collinear partons from the colliding hadrons is
pinched in the Glauber region; in this case the leading soft
gluon interactions could break the universality of PDFs and
the predictive power of the QCD factorization approach.

Removal of the trapped Glauber gluons might be the most
difficult part of the QCD factorization proof [242]. It was
achieved in three key steps: (1) all poles in one-half plane
cancel after summing over all final-states (no more pinched
poles), (2) all l±s -type integrations can be deformed out of the
trapped soft region, and (3) all leading-power spectator inter-
actions can be factorized and summed into an overall unitary
soft factor of gauge links (or eikonal lines) as argued above
and shown in Fig. 119. The soft factor is process independent
and made of four gauge links, along the light-cone directions
conjugated to the directions of two incoming hadrons in the
scattering amplitude, and the two in the complex conjugate
scattering amplitude, respectively. For the collinear factoriza-
tion, the soft factor = 1 due to the unitarity, and we have the
corresponding factorization formalism for inclusive Drell–
Yan production at the leading power,

dσ (DY)

A+B→ll ′+X

dQ2dy
=

∑

f f ′

∫
dx dx ′ φ f/A(x, μ) φ f ′/B(x

′, μ)

× dσ̂ f+ f ′→ll ′+X (x, x ′, μ, αs)

dQ2dy

+O
[
Λ2

QCD

Q2

]

, (5.108)

where
∑

f f ′ runs over all parton flavors including quark and
antiquark, as well as gluon.

To help separate the flavor dependence of PDFs, the
lepton–hadron semi-inclusive DIS (SIDIS), e(l) + h(p) →
e(l ′)+h′(p′)+ X , as shown in Fig. 121a, is another example
of QCD factorization with two identified hadrons. From the
LO contribution in Fig. 121b, both active partons of momen-
tum k and k′ are perturbatively pinched to their mass-shell,
leading to a potential factorization of PDF from colliding
hadron and FF of the fragmenting parton to the observed
hadron. Beyond the LO, like the Drell–Yan process, there
could be soft interactions between the jet of collinear par-
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Fig. 121 a Sketch for scattering amplitude of lepton–hadron SIDIS.
b Leading order contribution to SIDIS cross section in its cut diagram
notation

tons of the hadron h and the jet of collinear partons along the
direction of observed hadron h′.

Integrating over the transverse momentum of the observed
final-state hadron to keep the SIDIS as a process with a single
hard scale Q, and following the same factorization arguments
for inclusive Drell–Yan processes, the SIDIS cross section
can be factorized as

E ′
dσ SIDIS

eh→eh′X
d3l ′dz

(l, p; l ′, z)

=
∑

f, f ′=q,q̄,g

∫
dz′ dx Dh′/ f ′(z

′, μ2) φ f/h(x, μ
2)

×E ′
dσ̂e f→e f ′X
d3l ′dz′

(l, k̂; l ′, z′, μ2)+O
[
Λ2

QCD

Q2

]

(5.109)

where k̂ = xp, z′ = p′/k′ and z = p · p′/p · q.
Inclusive jet production in hadronic collisions: A(p) +

B(p′) → ∑
j J j (p j ) + X is another observable with two

identified hadrons although many hadrons were measured in
the final-state when jets were constructed. When final-state
jets are well-separated, the cross section for jets with large
transverse energy has the same factorized formula as that in
Eq. (5.108) except the perturbatively calculated hard part,
σ̂ f f ′→ll ′X is replaced by the corresponding short-distance
hard part, σ̂ f f ′→Jet [1273]:

dσ (Jet)
A+B→Jet+X

dpT dy
=

∑

f f ′

∫
dx dx ′ φ f/A(x, μ) φ f ′/B(x

′, μ)

×dσ̂ f+ f ′→Jet+X (x, x ′, μ, αs)

dpT dy

=
∑

f f ′

∫
dx dx ′ φ f/A(x, μ) φ f ′/B(x

′, μ)

×
[
∑

c

∫
dz

z
Jc(z, pT R, μ)

dσ̂ f+ f ′→c+X

dpcT dyc
+ σ̃ (pT , y)

]

(5.110)

where pT and y are the transverse momentum and rapid-
ity of the observed jet, respectively. Like all perturbatively
calculable hard parts of QCD factorization, the hard part for

Fig. 122 a Sketch for scattering amplitude of hadronic production of
single hadron at large transverse momentum. b Its contribution to the
cross section in the cut diagram notation

the jet production, σ̂ f f ′→Jet is process-dependent, depending
on whether the jet is produced in hadron–hadron or lepton–
hadron collisions, as well as the choice of the jet algorithms.
In Eq. (5.110), the process-dependent short-distance hard
part for the jet production was reorganized into a process-
independent jet function, Jc from a single parton of flavor
c, leaving all process-dependence into the production of this
parton, σ̂ f+ f ′→c+X and σ̃ (pT , y) which might be neglected
if logarithms of the jet production dominates [1274].

Inclusive scattering with three identified hadrons
Inclusive single hadron production at large transverse mome-
ntum pT in hadronic collisions: A(p)+B(p′)→ h(ph)+X
is a well-measured observable involving three identified
hadrons, as shown in Fig. 122. Due to the additional iden-
tified hadron in the final-state, the unitarity sum of final-
state hadrons used to prove the factorization of DY-type two-
hadron observables needs to be modified.

Luckily, because of the large pT of the observed final-state
hadron, the potentially dangerous gluon interactions between
the observed hadron and the spectators of colliding hadrons
are suppressed by the power of 1/pT , and the leading power
pQCD factorization does hold [1275],

dσAB→hX (p, p, ph)

dy dp2
T

=
∑

f, f ′,c

∫
dz

z2 dx dx ′ Dh/c(z, μ
2)

×φ f/A(x, μ
2) φ f ′/B(x

′, μ2)

× dσ̂ f f ′→cX (x, x ′, pc = ph/z)

dyc dp2
cT

.

(5.111)

With proper PDFs and FFs, the NLO pQCD calculations
for single hadron production gave an excellent description
of RHIC data [1276]. However, the same formalism consis-
tently underestimates the production rate at the fixed target
energies [1277]. It was shown that high order corrections at
the fixed target energies are very important, and the threshold
resummation significantly improves the comparison between
the theory and experimental data [1278].

QCD global analysis and predictive power
Much of the predictive power of QCD factorization for cross
sections involving identified hadron(s) relies on the univer-
sality of the PDFs and/or FFs and our ability to solve the
inverse problem to demonstrate the existence of one set of
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PDFs and FFs that are capable of describing all data of good
(e.g. factorizable) cross sections with properly calculated
short-distance partonic scattering cross sections in QCD per-
turbation theory.

The QCD global analysis is a program to test the consis-
tency of QCD factorization by fitting all existing data from
high energy scatterings with universal PDFs and/or FFs and
corresponding factorization formalisms, from which the best
set of PDFs and/or FFs will be extracted. The QCD factoriza-
tion formalism has been extremely successful in interpreting
high energy experimental data from all facilities around the
world, covering many orders in kinematic reach in both par-
ton momentum fraction x and momentum transfer of the hard
collision Q, and as large as 15 orders of magnitude in differ-
ence in the size of observed scattering cross sections, which is
a great success story of QCD and the Standard Model at high
energy. It has given us the confidence and the tools to discover
the Higgs particle in proton–proton collisions [139,140], and
to search for new physics [1279].

QCD factorization for two-scale observables
The hard probe with a single large momentum transfer
Q (� 1/R) is so localized in space that it is not very sensi-
tive to the details of confined three-dimensional (3D) internal
structure of the colliding hadron, in which a confined par-
ton should have a characteristic transverse momentum scale
〈kT 〉 ∼ 1/R � Q and an uncertainty in transverse position
〈bT 〉 ∼ R � 1/Q. Recently, new and more precise data are
becoming available for two-scale observables with a hard
scale Q to localize the collision to probe the partonic nature
of quarks and gluons along with a soft scale to be sensitive to
the dynamics taking place at O(1/R). At the same time, the-
ory has made major progresses in the development of QCD
factorization formalism for two types of two-scale observ-
ables, distinguished by their inclusive or exclusive nature,
which enables quantitative matching between the measure-
ments of such two-scale observables and the 3D internal par-
tonic structure of a colliding hadron.

For inclusive two-scale observables, one well-studied
example is the Drell–Yan production of a massive boson that
decays into a pair of measured leptons in hadron–hadron
collisions as a function of the pair’s invariant mass Q and
transverse momentum qT in the Lab frame [1280]. When
Q � qT � 1/R, the measured transverse momentum of the
pair is sensitive to the transverse momenta of the two col-
liding partons before they annihilate into the massive boson,
providing the opportunity to extract the information on the
active parton’s transverse motion at the hard collision, which
is encoded in transverse momentum dependent (TMD) PDFs
(or simply, TMDs), φ f/h(x, kT , μ2) [1280].

Like PDFs, TMDs are universal distribution functions
describing how a quark (or gluon) with a momentum frac-
tion x and transverse momentum kT interacts with a colliding

hadron of momentum p with xp ∼ μ ∼ Q � kT . Another
well-studied example is the SIDIS when the produced hadron
is almost back-to-back to the scattered lepton in the Lab
frame, or in the Breit frame, the transverse momentum of
the produced hadron phT is much smaller than the hard scale
Q [1281,1282].

A necessary condition for QCD factorization of observ-
ables with identified hadron(s) is that the active parton link-
ing the process-dependent short-distance dynamics and the
process-independent nonperturbative physics of identified
hadron(s) is perturbatively pinched to its mass-shell so that it
is long-lived compared to the time scale of the hard collision.
In this case the quantum interference between the perturba-
tively calculable hard collisions at the hard scale Q and the
process-independent part of leading nonperturbative infor-
mation of the identified hadron(s) is strongly suppressed by
the power of ΛQCD/Q. The pinch does not require the active
parton’s momentum to be collinear to the hadron momen-
tum. The necessary condition is satisfied if the active parton
momentum has a transverse component with 〈kT 〉 � Q; the
same condition that should be satisfied by the TMD factor-
ization of Drell–Yan and SIDIS process for the leading power
contribution in qT /Q or phT /Q, respectively. Although this
condition is not necessarily sufficient, the TMD factorization
for Drell–Yan process at the leading power of qT /Q → 0
was justified [1267,1280], and the same for the SIDIS at
leading power of phT /Q [1283–1285]. More discussion on
the impact of TMD factorization for the spin asymmetries
will be given in Sect. 5.8.2.

Without breaking the colliding hadron, the exclusive
observables could provide different aspects of the hadron’s
internal structure. Exclusive lepton–nucleon scattering with
a virtual photon of invariant mass Q � 1/R could pro-
vide various two-scale observables, such as the deeply virtual
Compton scattering (DVCS) [1286], where the hard scale is
Q and the soft scale is t ≡ (p− p′)2. When Q � √|t |, such
two-scale exclusive processes are dominated by the exchange
of an active qq̄ or gg pair and can be systematically treated
using the QCD factorization approach; factorized in terms
of generalized PDFs or GPDs [1287–1290]. Recently, a new
class of single diffractive hard exclusive processes (SDHEP)
was introduced [1291,1292]. This approach is not only suf-
ficiently generic to cover all known processes for extracting
GPDs, but also well-motivated for the search of new pro-
cesses for the study of GPDs. It was demonstrated that many
of those new processes can be factorized in terms of GPDs
and could provide better sensitivity to the parton momentum
fraction x dependence of GPDs.

5.8.2 Spin asymmetries

A measured cross section is always a positive and classi-
cal probability even though its underlying dynamics could
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be sensitive to quantum effects. On the other hand, a spin
asymmetry, defined to be proportional to a difference of two
cross sections with one (or more) spin vector(s) flipped, can
probe QCD dynamics that a spin-averaged cross section is
not sensitive to, and provide a better chance to explore the
dynamics of quantum effects. It also provides opportunities
to explore the origin of proton spin by carrying out scattering
experiments with polarized protons.

Quark and gluon contributions to proton spin
The leading power collinear factorization formalisms can
also apply to asymmetries of cross sections between two lon-
gitudinally polarized particles [1267]. Instead of measuring
nonperturbative PDFs of a hadron, the double longitudinal
spin asymmetry

ALL ≡ Δσ

σ
= σ(++)− σ(+,−)

σ (+,+)+ σ(+,−)
, (5.112)

where± indicates the helicity of the active parton compared
to the longitudinal spin direction of the colliding particle,
is sensitive to the active parton’s helicity distribution inside
a polarized colliding hadron. The double longitudinal spin-
dependent cross sections, Δσ is given by the same factoriza-
tion formalisms introduced in the Sect. 5.8.1 with the spin-
averaged collinear PDFs replaced by corresponding helicity
distributions,

φ f/h(x, μ
2)→ Δφ f/h(x, μ

2)

= 1

2

[

φ+/+(x, μ2)− φ−/+(x, μ2)

]

.

The same leading power collinear factorization for-
malisms introduced in the Sect. 5.8.1 can also apply to parity
violating single longitudinal spin asymmetries of cross sec-
tions between one unpolarized and one longitudinally polar-
ized particles,

AL ≡ σ(+)− σ(−)

σ (+)+ σ(−)
. (5.113)

The single longitudinal spin-dependent cross section, Δσ =
σ(+) − σ(−) with spin direction of the polarized parton
flipped is also given by the same factorization formalisms
by replacing one of the spin-averaged collinear PDFs, corre-
sponding to the hadron that is replaced by a polarized collid-
ing particle, by corresponding helicity distribution. With the
flavor sensitivities of the weak interaction, the single longitu-
dinal spin asymmetries measured by the RHIC spin program
have provided important information on the flavor separation
of quark helicity distributions [1276,1293].

The double and single longitudinal spin asymmetries,
defined in Eqs. (5.112) and (5.113), respectively, have been
studied in both hadron–hadron collisions at RHIC [1276] and
lepton–hadron collisions [1294,1295], and will be a major
program at the future EIC [1293].

After over 30 years since the discoveries made by the EMC
collaboration, many polarized experiments have been carried
out worldwide, the RHIC spin program in particular. From
the range of momentum fraction x accessible by existing
experimental data, we learned that the proton spin gets about
30% from quark helicity and 40% from gluon helicity. The
rest could come from the region of x that we have not been
able to explore and/or from the orbital or transverse motion
of quarks and gluons inside the bound proton [1293]. (See
the discussion in Sect. 10.3.)

Double transverse-spin asymmetries
The double transverse spin asymmetries are,

ANN = σ(↑,↑)− σ(↑,↓)
σ (↑,↑)+ σ(↑,↓) ,

where↑ and↓ indicate the direction of spin vectors transverse
to the momentum direction of the colliding particles. Since
QCD factorization requires that the factorized short-distance
dynamics is not sensitive to the details of hadronic physics,
the spin asymmetries are proportional to the difference of
hadronic matrix elements of parton fields with the hadron
spin flipped,

A ∝ σ(Q, �s)− σ(Q,−�s)
∝ 〈p, �s|O(ψq , A

μ
g )|p, �s〉 − 〈p,−�s|O(ψq , A

μ
g )|p,−�s〉.

(5.114)

The parity and time-reversal invariance of QCD requires

〈p, �s|O(ψq , A
μ
g )|p, �s〉

= 〈p,−�s|PT O†(ψq , A
μ
g )T −1P−1|p,−�s〉. (5.115)

Therefore, only partonic operators O(ψq , A
μ
g ) satisfying

〈p,−�s|PT O†(ψq , A
μ
g )T −1P−1|p,−�s〉

= ±〈p,−�s|O(ψq , A
μ
g )|p,−�s〉 (5.116)

or

〈p, �s|O(ψq , A
μ
g )|p, �s〉 = ±〈p,−�s|O(ψq , A

μ
g )|p,−�s〉

(5.117)

contribute to the factorizable spin asymmetries. Those oper-
ators that lead to a “+” sign should contribute to spin-
averaged cross sections, while those lead to a “−” sign
should contribute to spin asymmetries. Only the leading twist
quark operator that defines the quark transversity distribution
δq(x, μ2)

δq(x, μ2) = ψq(0)γ
+γ⊥γ5ψq(ξ

−),

(or h1(x, μ2)), is relevant to the double transverse spin asym-
metries of observables with a single large momentum trans-
fer Q in proton–proton collisions of transversely polarized
protons.
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The QCD factorization for the leading power contribu-
tion to the Drell–Yan production of a massive lepton pair in
a collision with two transversely polarized protons should
follow the same arguments that led to those in Fig. 119.
Here all collinear and longitudinally polarized gluons fac-
torized into gauge links, and soft gluon interactions are fac-
torized into an overall soft-factor. The factorization of spinor
traces of the Fermion lines needs to be modified to reflect the
transverse-spin projector γ±γ⊥γ5 (where ± indicates the
two possibilities due to two colliding hadrons) instead of the
γ± and γ±γ5 for unpolarized and longitudinally polarized
active quarks. Therefore, the QCD factorization formalism
for the numerator of the double transverse-spin asymmetries
is the same as that in Eq. (5.108), except the unpolarized
PDFs are replaced by the quark transversity distributions of
various flavors (no gluon transversity distribution in a spin-
1/2 transversely polarized proton), and the hard part is calcu-
lated with γ±γ⊥γ5 spin projection for transversely polarized
quarks. The collinear transversity distribution has the same
definition as the quark distribution in Eq. (5.105) with the
quark operator replaced by

1

2
ψq(0)γ

+γ⊥γ5W[0,ξ−]ψq(ξ
−)

and the unpolarized hadron state |h(p)〉 is replaced by a trans-
versely polarized hadron state |h(p), �s⊥〉.
Single transverse-spin asymmetries
The transverse single-spin asymmetry (SSA),

AN ≡ σ(sT )− σ(−sT )
σ (sT )+ σ(−sT ) ,

is defined as the ratio of the difference and the sum of
the cross sections when the spin of one of the identi-
fied hadron sT is flipped. Two complementary QCD-based
approaches have been proposed to analyze the physics behind
the measured SSAs: (1) the TMD factorization approach
[1281,1282,1296–1299], and (2) the collinear factorization
approach [1300–1308].

In the TMD factorization approach, the asymmetry was
attributed to the spin and transverse momentum correlation
between the identified hadron and the active parton, and rep-
resented by the TMD parton distribution or fragmentation
function. For example, the Sivers effect [1281] describes how
hadron spin influences the parton’s transverse motion inside
a transversely polarized hadron, while the Collins effect
[1282] describes how the parton’s transverse spin affects its
hadronization.

The TMD factorization approach is more suitable for eval-
uating the SSAs of scattering processes with two observed
and very different momentum scales: Q1 � Q2 � ΛQCD

where Q1 is the hard scale while Q2 is a soft scale sensitive
to the active parton’s transverse motion or momentum. For
example, the Drell–Yan lepton pair production when Q �

qT is a process that can be studied in terms of the TMD fac-
torization [1267]. In addition, the SIDIS when the transverse
momentum of observed final-state hadron ph � Q in the
photon–hadron Breit frame is an ideal observable for study-
ing AN , since the leading power contribution to the TMD
factorization of SIDIS is known to be valid [1267,1283].
Although the AN in SIDIS can receive contribution from
various sources, including the Sivers effect (Sivers function
f ⊥1T ) and Collins effect (Collins function H⊥1 ), as well as
contribution from the pretzelosity distribution h⊥1T [1284], it
is the choice of angular modulation that allows us to separate
these three sources of contributions in SIDIS,

ASivers
N ∝ 〈sin(φh − φs)〉UT ∝ f ⊥1T ⊗ D (5.118)

ACollins
N ∝ 〈sin(φh + φs)〉UT ∝ h1 ⊗ H⊥1 (5.119)

APretzelosity
N ∝ 〈sin(3φh − φs)〉UT ∝ h⊥1T ⊗ H⊥1 (5.120)

where D is the normal unpolarized FF, the subscript “UT”
stands for unpolarized lepton and transversely polarized
hadron, φh is an angle between the leptonic plane and the
hadronic plane in SIDIS and φs is the angle between the
hadron transverse spin vector and the leptonic plane.

The predictive power of TMD factorization leads one to
expect that the TMDs will be process-independent. However,
it was found that the Sivers function measured in SIDIS and
that in Drell–Yan process could differ by a sign. Such simple
and generalized universality should preserve the predictive
power of TMD factorization approach. Theoretically, such
sign change can be better verified from the operator definition
of the Sivers function. The quark Sivers function is defined
as the spin-dependent part of the TMD parton distributions
[1297,1309],

fq/h↑(x, k⊥, s⊥) =
∫

dy−d2y⊥
(2π)3 eixp

+y−e−i �k⊥·�y⊥

×〈p, s⊥|ψ̄(0)W[0,y]ψ(y)|p, s⊥〉|y+=0,

(5.121)

where W[0,y] is the gauge link for the leading power initial-
and final-state interactions between the struck parton and
the spectators or the remnant of the polarized hadron. The
form of the gauge links including the phase of the interac-
tions depends on the color flow of the scattering process and
is process dependent. Luckily, the parity and time-reversal
invariance of QCD removes almost all process dependence
of the TMDs. By applying Eq. (5.115) to the matrix element
in Eq. (5.121), we have

f SIDIS
q/h↑ (x, k⊥, S⊥) = f DY

q/h↑(x, k⊥,−S⊥). (5.122)

Therefore, the Sivers function has an opposite sign in SIDIS
and DY [1307,1310]. Experimentally, it is important to verify
such a relationship.
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In the collinear factorization approach, all active partons’
transverse momenta are integrated into the collinear distri-
butions, and the explicit spin-transverse momentum corre-
lation in the TMD approach is now included in the high-
twist collinear parton distributions or fragmentation func-
tions. Since the massless quark in short-distance hard colli-
sions cannot flip the spin in QCD, the SSAs in the collinear
factorization approach are generated by quantum interfer-
ence between a scattering amplitude with one active parton
and an amplitude with two active partons. The necessary
spin-flip for SSAs is achieved by angular momentum flip
between single active parton state and the state of two active
partons. Such nonperturbative effect is represented by twist-
3 collinear parton distributions or fragmentation functions,
which has no probability interpretation, and the spin flip was
made possible by QCD color Lorentz force [1301,1302].
The collinear factorization approach is more relevant to the
SSAs of scattering cross sections with a single hard scale
Q � ΛQCD. The validity of QCD factorization for SSA
in the collinear factorization approach requires study of the
collinear factorization beyond the leading power (or twist-2)
contribution.

It was demonstrated that QCD factorization works for the
first sub-leading power contribution to the hadronic cross
section, but, not beyond [1311]. That is, QCD factoriza-
tion should work for the 1/Q2 power correction to inclu-
sive and unpolarized Drell–Yan cross section [1312], 1/p2

T
corrections to unpolarized single high-pT particle produc-
tion in hadron–hadron collisions [1313], and 1/pT power
correction to single high-pT particle production in hadron–
hadron collisions with one of them transversely polarized
[1301–1303,1314]. It is the QCD factorization for the 1/pT
power correction to single high transverse momentum pT
particle production in hadron–hadron collisions with one
of them transversely polarized that enables the systematic
collinear factorization approach to study AN . For example,
the SSA of single high-pT hadron production in hadronic
collisions, A(p, sT ) + B(p′) → h(Ph) + X , can be factor-
ized [1301,1303]

AN (sT ) ∝ T (3)(x, x, sT )⊗ σ̂ ⊗ D f (z)

+δq(x, sT )⊗ σ̂D ⊗ D(3)(z, z)+ . . . , (5.123)

whereT (3) and D(3) are twist-3 three-parton correlation func-
tions and fragmentation functions, respectively, and δq (or
h1) is the leading power transversity distribution, with “. . . ”
representing a small contributions [1315]. Various extrac-
tions of T (3) and D(3) from experimental data have been
carried out [1304,1316].

The SSA is a physically measured quantity and should
not depend on how we describe it from QCD factorization
or the choice of factorization scheme or scale, which leads
to evolution equations of factorized nonperturbative distri-

butions or twist-3 quark–gluon correlation functions rele-
vant to the SSA [1317]. A complete set of the correlation
functions was generated by inserting (1) the field operator∫
dy−1

[
i STρ iε

ρσ
T F +

σ (y−1 )
]

into the matrix element of twist-
2 PDFs, and (2) the operator

∫
dy−1

[
i SσT F

+
σ (y−1 )

]
into the

matrix element of twist-2 helicity distributions [1317]. A
close set of evolution equations of these twist-3 correlation
functions as well as the leading order evolution kernels were
derived [1317–1319].

Although the two approaches each have their own kine-
matic domain of validity, they are consistent with each
other in the perturbative regime to which they both apply
[1320,1321].

5.9 Exclusive processes in QCD

George Sterman

5.9.1 Exclusive amplitudes for hadrons: geometry and
counting rules

The analysis of exclusive reactions played a role in the devel-
opment of quantum chromodynamics, and became a sub-
ject of ongoing research within QCD. This section reviews
some of the early history, landmark developments and ongo-
ing research in this lively topic, concentrating on wide-angle
scattering. The reader is referred especially to the preceding
contribution on factorization in cross sections, to Sect. 10 on
the structure of the nucleon and Sect. 11 on QCD at high
energy for closely related subject matter.

Prehistory
For many years, exclusive reactions were the language
of experimental strong interaction physics at accelerators.
In such reactions, up to low GeV energies (BeV at the
time), new resonances were found, whose quantum numbers
were revealed in the analysis of their decays. As energies
increased, the analysis of exclusive reactions gave rise to
theoretical advances like Regge theory, and the Veneziano
amplitude [7], resulting eventually in string theory. Around
the same time, the quark model for hadron spectroscopy was
developed.

With the advent of multi-GeV hadronic and leptonic accel-
erators, any nonforward exclusive final state became a small
part of the cross section. Nevertheless, if we assume that elas-
tic scattering results directly from pairwise scattering ampli-
tudes for constituent quarks, simple counting combined with
the optical theorem leads to successful predictions on the
ratios of total cross sections [1322]. Other pioneering con-
cepts introduce a geometrical picture of colliding hadrons,
whose interactions extend over their entire overlap during
the scattering [1323]. This picture is agnostic on the dynami-
cal nature of the strong interactions that mediate momentum
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transfer. The dual amplitudes of Ref. [7] are exponentially
suppressed for fixed-angle scattering, and indeed, exponen-
tial fall-off in |t | is characteristic of near-forward cross sec-
tions at high energy [1324]. For |t | in the range of a few GeV,
however, this decrease moderates to a power. This, along with
the observation of power-law fall-off for form factors [599]
suggested that fixed-angle amplitudes might, indeed must,
reflect a point-like substructure for nucleons and mesons.
This section will review some of the guiding developments
in this area, which grew along with QCD, and which con-
tinue to shape contemporary theoretical and experimental
programs.

Hadrons in the language of partons
Hadrons are bound states, whose fine-grained properties are
nonperturbative, yet based in the interactions of the quarks
and gluons that appear in the Lagrangian density of QCD. To
describe how partons can mediate the scattering of hadrons,
we introduce a Fock space picture of the hadronic state with
on-shell momentum, in terms of P+ = (1/

√
2)(P0 + P3),

mass mH and spin sH , as [900]

|H, P+, sH 〉 =
∑

FH

cF |
{
fi , xi ,ki,⊥, λi

}
FH 〉, (5.124)

where the infinite sum is over partonic Fock states, FH , each
consisting of a set of constituents, { fi . . . }, labelled by fla-
vors, fi , by the fraction xi of �PH , transverse momenta ki,⊥
and helicity λi . In QCD, the Fock states are labelled as well
by the manner in which the colors of constituents combine
to form color singlets. From these states, in principle, we
can construct any of the universal quantities of perturbative
QCD that can be written as expectation values of the hadronic
state, including collinear and transverse momentum parton
distributions. Here, however, we will for the most part make
use of only the valence state, Fval, with three constituents
for a nucleon, two for a meson. Of course, we assume that
cFval is nonzero in Eq. (5.124). The Fock state formalism puts
this approximation in context, pointing the way to systematic
expansions.

Constituent counting.
Influenced by the success of the parton model applied to
quarks, and assuming a constituent expansion like the one
just described, Brodsky and Farrar [1325], and Matveev,
Muradian and Tavkhelidze [1005] realized that under broad
assumptions on the strong interactions, the behavior in
momentum transfer of a wide range of exclusive processes
can be summarized by a simple rule, which goes under the
name of quark, or more generally constituent, counting. We
can see how this works by considering the very high-energy
elastic scattering of two hadrons, in the first instance assumed
to consist of a fixed set of “valence” partons, specified by the
quark model ([uud] for the proton, for example), moving

within a limited region of space, which we can think of a
sphere of radius RH for hadron H .

Following the intuitive analysis of partons in deep-
inelastic scattering, we imagine that hadrons can be thought
of as Lorentz contracted and time dilated. Large momentum
transfer requires all ni valence (anti-)quarks of the initial-
state hadrons i to arrive within a region of area 1/Q2, where
Q is the momentum transfer. Now the hadrons don’t know
they are going to collide, so we assume their partons are more
or less randomly scattered about within the areas of their
Lorentz-contracted wave functions. Then the likelihood for
them all to be within this small area is of order
(

1

Q2 × 1

πR2
H

)ni−1

for each hadron of radius RH . But this must also be true of
both incoming and outgoing states, so that their wave func-
tions may overlap.

At the moment of collision, we don’t have to make an
assumption on the details of the hard scattering that redirects
the partons, but we assume that otherwise the amplitude is a
function only of the scattering angle. Then, at fixed t/s (that
is fixed center of mass scattering angle), we find the quark
counting rules of Refs. [1005] and [1325],

dσ

dt
= f (t/s)

s2

(
1

s πR2
H

)∑4
i=1 (ni − 1)

. (5.125)

Figure 123 illustrates the scales involved, and the system
just before and after the hard scattering. This relation pro-
vides a set of predictions for power-behavior, for exam-
ple dσpp→pp/dt ∝ s−10, which are generally successful
[1327]. The determination of normalizations would require,
of course, control over the short-distance interactions of the
constituents, to which we will return below. For applications
of these ideas to nuclei, see Sect. 5.10.

Quark exchange, spin and transparency.
Before going further into the technical status of exclusive
amplitudes, it is natural to observe several fundamental con-
sequences of this picture. First, assuming that the integrals
over fractional momenta are insensitive to the endpoints,
the rules of quark counting follow immediately by dimen-
sional counting in the (in principle) calculable partonic scat-
tering amplitudes. The picture is quite general, and applies as
well to lepton–hadron elastic scattering. The constituent rules
then determine the power behavior of hadronic form factors
in momentum transfer, Q: Q−2 for mesons and Q−4 for
baryons. In all processes, any scattering mediated by larger
numbers of constituents is power-suppressed.

In the scattering of hadrons, there are generally many
ways in which quarks can flow from the initial to the final
state. Almost all of these describe quark exchange, whether
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Fig. 123 The geometry of constituent counting for π − π scattering
(ni = 2). The top represents the pion in a valence state that can con-
tribute to an exclusive reaction, as seen along the collision axis by an
oncoming hadron. From Ref. [1326]

in elastic scattering like π+ p → π+ p, but especially for
charge-exchange exclusive processes, likeπ− p→ π0n. The
valence Fock states described above, considered as functions
of the transverse momenta of the constituents, can be used to
construct a picture of 2 → 2 exclusive amplitudes based on
the overlaps of incoming and outgoing states. These consid-
erations lead to a variety of quite successful predictions for
dependence on momentum transfer [1328]. A particularly
striking example is the difference between proton–proton
and antiproton–proton scattering, where the latter provides
no opportunity for quark exchange. The ratio of these cross
sections is about forty to one [1328].

For hadrons with light-quark valence structure (pions,
nucleons) we anticipate that the scatterings will be com-
puted with zero quark masses. Then, in any theory based
on the exchange of vector gluons, the helicities of the quarks
are conserved, and since the scattering is in valence states
at small transverse sizes, the helicities of the valence states
directly determine the spins of the external hadrons. This fea-
ture leads to many predictions for amplitudes in which spins
are prepared and measured [1327]. Unlike constituent count-
ing rules, however, predictions for spin more often fail; for
the example of proton–proton scattering, see Ref. [1329].

Finally, specializing to color-singlet hadrons in a theory
with colored quarks, another fundamental prediction of this
picture is transparency [1330], which refers to predictions for
exclusive hard-scattering in nuclei. On the one hand, exclu-
sive scattering emerges only from valence parton configura-
tions, with all partons in a small regions of coordinate space.
On the other hand, at high energies, the lifetime of such a
virtual state is dilated by a large factor. Thus we anticipate
that both the incoming and outgoing hadrons in an exclusive
reaction propagate as effectively point-like particles through
the surrounding medium, in particular, through a nucleus.
For proton–nucleon elastic scattering with momentum trans-

fer Q, the incoming proton must be in a state of effective
area 1/Q2 on its way into the nucleus, and will be invisible
to the color fields of nucleons it encounters, whose partons
are typically spread out over scales of the order of the pro-
ton’s radius. Only when it encounters a constituent nucleon
that happens to be in a corresponding tiny valence state can it
undergo elastic scattering, producing again a pair of “stealth”
nucleons that are just as invisible on the way out. While the
amplitude for this to happen remains just as small as for free
proton–proton or proton–neutron scattering, it is not sup-
pressed by initial- or final-state interactions, in contrast to
most cross sections on nuclei. These considerations are sum-
marized in the elegant prediction for scattering on a nucleus
of atomic number Z ,

dσ

dt
[p + Z → p + p + (Z − 1)]

s→∞, t/s fixed→ Z
dσ

dt
[p + p→ p + p] . (5.126)

This is the case, at least asymptotically, and the manner in
which asymptotic behavior is reached for varied elastic reac-
tions is a subject of ongoing experimental (see for example,
Refs. [229,1331]) and theoretical investigation [1332,1333].

Splitting the hard scattering: Landshoff mechanism.
Without further assumptions, the same geometric – partonic
considerations sketched above can lead to an alternative pic-
ture and prediction for asymptotic behavior, first formulated
by Landshoff [1334]. To be specific, let’s consider meson–
meson elastic scattering (ni = n f = 2). Then, instead of a
single short-distance scattering involving all four incoming
and outgoing partons, we imagine two independent hard scat-
terings of parton pairs, each resulting in two pairs of partons
travelling in the same direction, and forming the outgoing
mesons. The geometric picture is shown in Fig. 124. We
assume that the separation b between the short-distance col-
lisions of individual pairs of partons is generically of order
RH , the hadronic radius62 Relative to the strict short-distance
picture of Fig. 123, this reaction is enhanced by the ratio
RH/(1/Q) = RH Q in the amplitude for mesons, which is
the ratio of the scale of the hard scattering to the size of the
overlap between the hadrons, as shown in the figure. Simi-
larly, there is an enhancement of (RH Q)2 for baryons, for
which

dσ

dt
= f (t/s)

s2

(
1

s πR2
H

)6

. (5.127)

In the forward region with a still-large momentum transfer,
s � −t � ΛQCD, we anticipate a factor 1/Q2 ∼ 1/t for
each hard scattering, and we find

62 We will come back to this assumption below.

123



Eur. Phys. J. C          (2023) 83:1125 Page 173 of 636  1125 

Fig. 124 Geometric enhancement in the Landshoff mechanism. The
pairs of colliding partons (within each pair, one from each colliding
hadron) are separated by distance b. Within each pair, partons are sep-
arated by a much smaller distance of order 1/Q. From Ref. [1326]

dσ

dt
= f (0)

t2

(
1

t πR2
H

)6

. (5.128)

Experimentally, at wide angles, data appear to prefer the
direct counting behavior of Eq. (5.125), but at large t and even
higher s, a behavior like Eq. (5.128) is observed [1335,1336].

5.9.2 Computing hard exclusive amplitudes in QCD

The considerations described above are based in the parton
model, although they are a significant step beyond the classi-
cal parton model results, because the hard scattering is itself
a strong interaction. With these concepts in hand, the next
great step was to apply field theoretic analysis to elastic scat-
tering, relying on asymptotic freedom to calculate short dis-
tance interactions where large momenta are exchanged, and
on ideas of factorization to separate the dynamics binding
each hadron from the short distance scattering and from each
other. Before we review this landmark analysis for exclusive
processes with hadrons, it is useful to touch on elastic scatter-
ing amplitudes for partons. These, of course, are not directly
physical, but they play an important role in the factorized
hadronic analysis that follows, and also in other areas, par-
ticularly jet cross sections.

Partons: exclusive amplitudes in QCD.
We consider partonic scattering amplitudes at “wide angles”,
labelling the combination of incoming and outgoing (mass-
less) partons and their momenta as f ,

f : f1(p1)+ f2(p2)→ f3(p3)+ f4(p4)

+ · · · + fn+2(pn+2). (5.129)

To define such an amplitude in perturbation theory requires
the regulation of infrared singularities associated with the
virtual states that include zero-momentum lines and/or lines
collinear to the external particles. This is conventionally done
by dimensional regularization, that is, by treating the number
of dimensions as a parameter, d = 4− 2ε, and continuing ε

away from zero. Starting at one loop, infrared singularities

manifest themselves as poles in ε, generally two per loop.
Despite the growing order of the poles, the amplitude can be
written in a factorized form, [1337–1339]

M[ f ]
L

(
vi ,

Q2

μ2 , αs(μ
2), ε

)
=

∏

i∈ f

J [i]
(Q′2

μ2 , αs(μ
2), ε

)

×S[ f ]L I

(
vi ,

Q2

μ2 , αs(μ
2), ε

)
H [ f ]I

(
βi ,

Q2

μ2 , αs(μ
2), s

)
.

(5.130)

In this expression, the functions J [i] contain all poles in ε due
to virtual lines collinear to the velocities, denoted vi (v2

i = 0)
of the massless external partons i . These infrared poles are
universal among the amplitudes of different partonic scatter-
ing processes. That is, they only depend on whether or not
the external parton is an (anti)quark or gluon. The infrared
factors diverge very rapidly as ε→ 0, that is, in four dimen-
sions. Many details can be found in Ref. [1340], but to get an
idea of the strength of the infrared singularities, it is sufficient
to see leading poles of the two-loop exponent of a jet func-
tion, given in terms of its expansion in terms of anomalous
γ
[i]
K ,

J [i]
(
Q2

μ2 , αs(μ
2), ε

)

∼ exp

{

−
( αs

8π

)(
1

ε2 γ
[i] (1)
K

)

+
(αs

π

)2
[
β0

8

1

ε2

3

4ε
γ
[i](1)
K − 1

2

(
γ
[i](2)
K

4ε2

)]

+ . . .

}

.

(5.131)

Here γ
[i]
K = ∑

n γ
[i](n)
K (αs/π)n is the coefficient of the

1/[1 − x]+ term of the DGLAP evolution kernel for par-
ton i , often denoted Ai (αs), with γ

[q](1)
K = CF , and β0 is the

lowest-order coefficient of the QCD beta function. The anal-
ysis that leads to the exponentiation of double infrared poles
for partonic amplitudes relies on enhancements of radiation
by accelerated massless charged particles at low angle and
energy in gauge theories. The systematic treatment of these
effects often goes by the name “Sudakov resummation”, a
term we will encounter below when we return to the Land-
shoff mechanism.

In Eq. (5.130), S[ f ]L I is a matrix in the space of color
exchanges, labelled by color tensors L and I (for example,
octet or singlet exchange), which contains the remaining
poles, all due to virtual lines with vanishing momenta. The
soft matrix, S[ f ]L I also has an expression in terms of calcula-
ble “soft” anomalous dimensions, which have wide uses in
inclusive as well as exclusive cross sections. The remaining
set of functions, H [ f ]I are free of infrared poles and contain
all dependence on momentum transfers.

Hadrons: factorization and evolution for form factors and
exclusive amplitudes.
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Historically, the analysis of hadronic exclusive amplitudes
in QCD predated that for partonic amplitudes just discussed.
This was possible because in these amplitudes external par-
ticles are, by construction, color singlets. We assume that
the picture given above for quark counting still applies,
that the elastic amplitudes result from redirecting valence
quarks and antiquarks into collinear configurations in the
final state, and that those configurations are color singlets.
Then purely soft, as opposed to collinear, singularities dis-
appear. Comparing to the partonic amplitude, Eq. (5.130),
we derive an expression for the hadronic amplitude without
a soft matrix, and with dimensionally-regularized jet func-
tions replaced by hadronic wave functions [225,226,1270]. A
short-distance, hard-scattering function denoted H describes
the short-distance scattering of ni valence quarks/antiquarks
from each external hadron, i . The general form, in this case
for 2 → 2 scattering, is

M(s, t; λi ) =
∫ 4∏

i=1

[dxi ] φi (xi,m, λi , μ)

×H

(
xi,nx j,m pi · p j

μ2 ; λi
)

. (5.132)

In contrast to partonic scattering, which describes the short-
distance scattering of a single physical parton for each direc-
tion, hadronic wave functions, φi (xi,m, λi , μ), depend on
how their valence partons share the momentum of their
external hadron, labelled by fractions xi,m ,

∑
m xi,m = 1.

Hadronic helicities, labelled by λi , determine spin projec-
tions for the quark constituents of the valence state. The inte-
grals over fractional momenta are denoted (here, for baryons)
by the notation,

[dxi ] = dxi,1dxi,2dxi,3 δ

(

1−
3∑

n=1

xi,n

)

. (5.133)

The factorization requires the choice of a factorization scale,
μ, which is naturally of the order of the renormalization
scale for the matrix element that defines the wave functions
φ(xi , λi , μ). A representative example is forπ+, whose wave
function is the matrix element of the valence quark operators
that absorb an up quark and an anti-down quark, between the
single-pion state and the QCD vacuum. In this case, defin-
ing x1 = 1 − x2 ≡ x as the fraction of the up quark, the
expression (in a physical gauge) is

φπ(x, μ) = p · n
∫ ∞

−∞
dλ

4π
ei(xp)·(λn)

×〈0|d̄(0) n · γ γ5

2
√

2nc
u(λn)|π+(p)〉, (5.134)

where the vector nμ is light-like and oppositely directed to
the pion’s momentum pμ, and nc is the number of colors. The
matrix element requires renormalization because its fields are
separated by a light-like distance, proportional to nμ.

We note the many similarities between the exclusive
amplitudes Eq. (5.132) and factorized forms of inclusive
cross sections in deep-inelastic and hadron–hadron scatter-
ing. The role of wave functions here is played by parton
distributions there, and in both cases there is a convolution in
partonic momentum fraction(s). In both cases also, the pres-
ence of a factorization scale, μ, implies evolution equations,
there for parton distributions and here for wave functions,

μ
∂

∂μ
φ(x, μ) =

∫ 1

0
dy V (x, y, αs(μ)) φ(y, μ). (5.135)

The evolution kernel V (x, y, αs) incorporates cancellations
between constituent self-energies and diagrams with gluons
exchanged between constituents. In general, the factorization
scale is proportional to the momentum transfer, and these
evolution equations make it possible to extrapolate wave
functions (and parton distributions) from one scale to another.
While space does not allow a review of the kernel and the
solutions of these equations here, an especially beautiful con-
sequence of the particular evolution equations for pion wave
functions is that at asymptotically large μ the wave functions
approach known, fixed, finite expressions,

lim
μ→∞φπ(x, μ) = 3 fπ√

nc
x(1− x), (5.136)

where fπ is the pion decay constant and again nc the number
of colors (3 for QCD of course). Again, this is a consequence
of the detailed nature of the kernel in the evolution equation,
(5.135), which follows in turn from the underlying factoriza-
tion for hard exclusive processes, Eq. (5.132).

Exceptional momentum configurations.
In their original form, the factorized amplitudes of Eq.
(5.132) apply to a very wide set of processes, including elas-
tic form factors for pions and mesons, for which the external
leptons can be counted as if they were hadrons with a sin-
gle parton. Like any such factorized expression, however, its
predictive power depends on its stability under higher-order
corrections. Of particular interest are the limits where one
fractional momenta xi approaches unity and the others van-
ish, a configuration for elastic scattering often referred to as
the Feynman mechanism (see Lecture 29 of Ref. [1341]).
Noting the example of Eq. (5.136), we generally expect, and
in case of pions in the valence state can prove, that wave
functions vanish sufficiently rapidly in these limits to pre-
serve the stability of the factorized amplitude in Eq. (5.132).
The onset of this limit is not easy to determine, however,
and has been the subject of discussion in the literature. For
form factors particularly, alternative treatments based on dis-
persion relations and QCD sum rules, provide an alternative
picture for currently accessible momentum transfers [1342].
The situation for baryonic wave functions is even more com-
plex, because the Feynman mechanism is not suppressed at
fixed orders [1343]. At high momentum transfers, this may
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be resolved by higher-order corrections [1344] (see below),
but phenomenological analyses based on the Feynman mech-
anism are also of interest [1345].

Another point of concern is the Landshoff mechanism
identified above, in which subsets of the partons scatter elas-
tically at different points in the space transverse to the beam
directions, as in Fig. 124. This process is actually lower order
in αs , but more importantly it is sensitive to the transverse
structure of the external hadrons, that is, on information that is
not included in the wave functions discussed above. However,
the resummation of higher-order QCD corrections shows that
large transverse separations are suppressed, returning us to
expectations very similar to those of Eq. (5.132).

Sudakov resummation and asymptotic behavior.
As we have seen in Fig. 124 and Eq. (5.127), the Landshoff
enhancement to inclusive amplitudes is due to the assumed
possibility of separating hard scatterings between subsets of
valence partons. As noted above, to estimate the enhance-
ment we assume that the separation is generically of the
order of the hadronic radius. The analysis through Sudakov
resummation follows from the observation that the separa-
tion of partonic hard scatterings in an overall hadronic exclu-
sive amplitude requires the scattering of isolated non-singlet
color charges without radiation. In isolation, these acceler-
ated charges would result in infrared singularities, as in Eq.
(5.131) above, which would make the amplitude vanish in
four dimensions. In our case, however, the outgoing config-
urations of the scattered partons are almost collinear, and the
divergences (infrared poles) cancel. The larger the separa-
tion b between the hard scatterings, however, the larger the
finite remainder. The result is that any process with separated
hard scatterings is suppressed relative to the acceleration of
locally singlet charge configurations, which shows that the
assumption of separated hard scatterings among pairs of par-
tons made in our analysis of the Landshoff mechanism was
not in fact warranted.

The observations above, which are the basis of trans-
parency, can be quantified, by treating the distance between
the hard scatterings in Fig. 124 as an impact factor, b, con-
jugate to transverse momentum. An analysis treating both
transverse and longitudinal momenta of quarks leads to a fac-
torized expression for hadronic scattering amplitude in terms
of a wave function that depends on both the quark transverse
momentum and longitudinal momentum fraction. As with
the classic form, Eq. (5.132), there is a close analogy to par-
ton distributions encountered in inclusive cross sections, in
this case transverse momentum distributions (TMDs). The
necessary wave functions generalize the light-cone matrix
elements like Eq. (5.134) by displacing the fields in trans-
verse (impact parameter) directions relative to the opposite-
moving light cone.

Fig. 125 Transverse separations in a multiple hard scattering. Note that
the eight potentially independent integrals over momentum fractions are
replaced by only two integrals, the same for each external hadron. From
Ref. [1326]

This factorization in impact parameter space requires a
soft matrix, which ties together soft radiation from the two
(or three) separated hard scatterings in Fig. 124. Referring to
the diagram in Fig. 125 for a baryonic exclusive process, we
anticipate a perturbative suppression whenever the distances
between hard scatterings, b1 and b2 in the figure, increase
beyond the scale of the momentum transfer. For this process,
we note that all four partons external to each hard scattering
must carry the same momentum fraction. So the eight inte-
grals over momentum fractions are reduced to two, which we
label x and y here.

The form of factorization corresponding to Fig. 125 is
then given at scattering angle θ and momentum transfer Q
by [1346]

M(s, t) = 1

2π2 sin2 θ

∑

f

∫ 1

0
dxdy θ(1− x − y)

×
∫

db1db2 Trcolor

[
U (bi Q)H1H2H3

]

×
∏

i=1,2,3,4

Ri (x, y, b1, b2), (5.137)

where the color Trace
[
U (bi Q)H1H2H3

]
ties color together

and includes εabc for colors of three quarks, with possible
color exchange in each hard scattering,

Hi (xi p1, xi p2, xi p3, xi p4) ∼ 1/(xi Q)2.

In Eq. (5.137) we may define x1 = x , x2 = y and x3 =
1− x − y.

The wave functions, R(x, y, b1, b2) drive the suppression
of large bi , and behave as

Ri (x, y, bi ) ∼ φi (x, y, b1, b2, μ ∼ 1/〈b〉)
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× exp

[

−αs

π
γ
[q][1]
K

3∑

a=1

ln2
(

1

xaQba

)]

, (5.138)

where γ
[q]
K is the same anomalous dimension as for the

quark jets in the partonic amplitude, Eq. (5.131). The
φi (x, y, 1/〈b〉) are normal partonic wave functions of the
form encountered above, now evaluated at a renormaliza-
tion scale set by the inverse of the average impact parameter
spacing between the hard scatterings. The exponential sup-
pression by double logarithms of b in Eq. (5.138) is the result
of the systematic treatment of states with soft and collinear
virtual radiation, and is thus an example of Sudakov resum-
mation [1347]. It forces the impact parameters to vanish, on
a scale that is for all intents and purposes of order 1/

√−t .
Combined with the 1/t behaviors of the three partonic hard
scatterings, the full amplitude behaves as nearly 1/t4, con-
sistent with the original constituent counting rules of Eq.
(5.125). The momentum transfer at which this behavior sets
in, however, may be quite large, especially given the factors
of x and y, which are always less than unity, in the arguments
of logarithms.

5.9.3 Toward the future

The true asymptotic behavior of many exclusive reactions in
QCD is by now well characterized, but much remains to be
understood. In particular, it is not fully clear to what extent
the success of constituent counting rules provides us with a
quantitative understanding of the normalizations of ampli-
tudes at accessible momentum transfers, and when to expect
predictions based on helicity conservation and transparency
to apply. Progress in these directions will be part of the future
of QCD, a future in which the gap between partonic and
hadronic degrees of freedom is bridged.

5.10 Hidden color

Alexandre Deur
Nuclear physics is one of the first rungs of the complex-
ity ladder rising from our current fundamental understand-
ing of Nature in terms of the Standard Model. The effective
degrees of freedom (d.o.f.) that emerge in nuclear physics
are the hadrons, namely nucleons, mesons and their excited
states. Yet, effective theories are intrinsically limited, their
effective d.o.f. being insufficient to account for peculiar phe-
nomena, e.g., diffraction for geometrical optics. Then, more
fundamental d.o.f. are necessary. Likewise, certain nuclear
phenomena are not reducible to hadronic d.o.f. and either par-
tonic d.o.f. or new effective d.o.f. are necessary. Hidden color
(HC) is such a phenomenon. In conventional nuclear physics,

a nucleus – such as the deuteron63 – is effectively a bound
state of individual nucleons. However, at the more fundamen-
tal level of QCD, the nuclear eigenstate can also have addi-
tional multi-quark Fock states which have zero color overall,
but do not cluster as a collection of nucleons. These Fock
states represent the HC d.o.f. of nuclei.

The possibility of HC d.o.f. [1348–1353] arises from
observing that the representation of color singlet multihadron
systems allows for colored cluster (Cc, colored “hadrons”)
components, e.g., a red-red-blue cluster bound to a green-
green-blue cluster contributing to the deuteron wavefunc-
tion. Such a configuration can equivalently be reexpressed as
a sum of singlet components, but without well-defined clus-
tering properties since a given valence quark has a substantial
probability to belong to any of the singlet states. Therefore,
regardless of what (equivalent) representation is preferred, it
cannot be expressed with singlet hadronic clusters, i.e., col-
orless hadronic d.o.f. This is HC. Clearly, HC goes beyond
traditional nuclear physics but is a natural expectation of
the underlying theory, QCD. HC predicts nuclear states not
describable with usual hadronic d.o.f. but with multiquark
wavefunctions, e.g., 6-quark singlet states, or singlet systems
made of Cc. The latter perspective renders intuitive that HC
states are short-distance binding configurations.

For example, in a hadronic basis of nucleon N , Δ and Cc

d.o.f. (for simplicity we ignore other N∗ isobars contribu-
tions), the deuteron is a sum of NN , ΔΔ and CcCc compo-
nents, the latter dominating at short distance, viz, large Q2

[1329]:

|D〉 = |NN 〉 + |ΔΔ〉 + |CcCc〉
with

|NN 〉 = 1
3 |[6]{33}〉 + 2

3 |[42]{33}〉 − 2
3 |[42]{51}〉, (5.139)

|ΔΔ〉=√
4
45 |[6]{33}〉+√

16
45 |[42]{33}〉+√

25
45 |[42]{51}〉,

(5.140)

|CcCc〉 =
√

4
5 |[6]{33}〉 −√

1
5 |[42]{33}〉, (5.141)

where [ ] and { } label respectively the orbital and spin-isospin
symmetries which are characterized by the bracketed number
in the usual Young tableau way, e.g.,

[6] ≡
signifies 6 quarks in s-shell, or

[42] ≡

is for 4 quarks in s-shell and 2 in p-shell [1354]. For
Q2 →∞, [6]dominates over [42]. Thus, the deuteron state is

63 Throughout this section, deuteron is used as example of nuclear
system, but the discussion is generic to multi-nucleon systems.
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[6]{33} symmetric (and totally antisymmetric overall), from
which 4/5 comes from the HC component, Eq. (5.141). The
80% dominance of HC at large Q2 is therefore expected to
control elastic scattering off the deuteron in this limit. In fact,
the ratio of the reduced deuteron form factor (i.e., normal-
ized to the nucleon form factor squared) to that of the pion is
about 15% for Q2 of a few GeV2, indicating 15% of HC in
|D〉 at this scale [1329]. That |NN 〉 and |ΔΔ〉nearly vanish at
large Q2 means that two singlet hadrons tend to not be found
close to each others, i.e., the traditional (viz, between sin-
glet hadrons) nuclear force is repulsive at short distance. The
rise with Q2 of [6] over [42] tells us that the components of
|D〉 behave differently with Q2. Their evolutions come from
gluon exchange and were calculated in Refs. [1355–1357]. It
was shown that the singlet pn state of the deuteron prevalent
at small Q2 evolves into 5 states: itself and 4 HC states.

The number of HC states quickly increases with the mass
number A of the system. For A = 1 there is 1 singlet state
and no HC state:

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1,

the last being the color singlet, the nucleon. For the deuteron,
A = 2 and

3⊗ 3⊗ 3⊗ 3⊗ 3⊗ 3

= 28⊕ 5(35)⊕ 9(27)⊕ 15(10).

⊕ 16(8)⊕ 5(10∗)⊕ 5(1),

with the 5 last states 5(1) being the singlet states. Since there
can be only one singlet state made of colorless 3-quark clus-
ters – the traditional pn (or isobars) state – the four remaining
singlet states are HC states. For A = 3, there are 41 HC states
[1358]. Calculating strictly within QCD the Q2-evolution
of nuclear amplitudes is presently not possible: Just |D〉 at
leading order involves millions of Feynman graphs. Using a
hadronic effective QFT is not helpful because adding the HC
d.o.f. negates the theory predicability [1358]. A solution is to
use the reduced nuclear amplitude technique [1348,1359].
Based on LF QCD [900,1360], it models nuclear scattering
amplitudes that obey QCD counting rules [153] (Sect. 5.9)
and gauge invariance. The method neglects nuclear binding
so that a nucleus is modeled as a cluster of collinear hadrons.
Thus, the nuclear LFWF factorizes as a product of LFWF of
nucleons in the nucleus times those of quarks in a nucleon:
ψA = ψN/A

∏
N ψq/N , with the convenient LFWF proba-

bilistic interpretation of the Fock states retained.
What are the possible signals for HC? An intuitive one

is the yield ratio (γ d → Δ++Δ−)/(γ d → pn); if |D〉 con-
tained only a state of two weakly bound singlet hadrons,

du
u© du

d©,

it would not break into a

uu
u© dd

d©= Δ++Δ−.

However, a 6-quark |uuuddd〉 state can well split into Δ++
and Δ−.

There are other possible HC signatures [1329]: the dom-
inance of HC at short distances makes large angle Comp-
ton scattering and pion photoproduction off the deuteron
prime channels to search for HC. In electron scattering, the
deuteron form factor at large Q2 should not be explainable
with hadronic d.o.f. Likewise, the deuteron inclusive ten-
sor spin structure function b1, a leading-twist quantity, is
expected to be especially sensitive to HC [1361]. Short range
correlation (SRC) measurements can also provide a signal for
HC as they probe the 2-nucleon potential at short distance.
Thus, SRC data should be sensitive to the repulsion expected
by HC and signaled by the vanishing of the |NN 〉 and |ΔΔ〉
components. The quasi-elastic reaction (to access large x)
at high Q2 resolves the nucleons of a nucleus and provides
the SRC of nucleon pairs. The ratio of pn over pp pairs was
found to be 5 times larger than the standard hadronic expec-
tation [1362,1363]. This may stem from the repulsive core
of the 2-nucleon potential. Furthermore, the measurement
of the strength of 3-nucleon correlations in A > 2 nuclei
indicates that their contribution is larger in heavy nuclei than
initially expected, suggestive of the rapid increase of number
of HC states with A. A challenge with SRC measurements is
the fast Q2 fall-off of form factors, so one may alternatively
study, also at large Q2 and high x , the behavior of inclu-
sive structure functions which should obey in that regime the
QCD dimensional counting rules based on the number ns of
spectator partons [153] (see Sect. 5.9),

xF(x) ∼ (1− x/2)2ns−1.

In the maximum x → 2 limit for the deuteron, ns = 5 for HC
(6-quark system) but ns = 2 without a dominant HC state.
HC evidence may come from indirect observations: without
HC, the only process binding hadrons not sharing covalent
quarks is glueball exchange. HC provides additional pro-
cesses [1355] which may be necessary to explain the struc-
ture of neutron stars [1364,1365].

HC may have already been observed. We mentioned the
SRC observations and that the deuteron form factor normal-
ized to the nucleon form factor squared is 15% that of the
pion. The I (J P ) = 0(3+) of the well-established d∗(2380)
(or D03) p-n resonance [1366–1374] compellingly suggests
that it is a 6-quark system with dominant HC [1375–1380].
Furthermore, while its dynamical decay properties can also
be explained by a ΔΔ state, the narrow 70 MeV width of the
d∗ is 3 times smaller than expected for the ΔΔ but agrees
with a HC state. References [1381,1382] reviewed recently
the d∗(2380) properties. Similarly, the narrow de-excitation
of 4 He∗ through e+e− emission seen at ATOMKI [1383]
can be understood as the 4He nucleus being excited into a
12-quark HC state made of 6 colored ud pairs (hexadiquark)
[1384]: it was shown that the ATMOKI anomaly cannot be
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accounted for by standard electromagnetic decay without
producing first a HC state [1385]. The latter also explains
the unusually strong binding of the 4He nucleus. Another
possible observation of HC comes the b1 data from HER-
MES [1386]. They are positive for x < 0.1 but appear to
become negative around x � 0.3, which is expected of a
6-quark HC state [1361].

These signals each hint at the existence of hidden-color
degrees of freedom. By reaching higher x and Q2, the 12
GeV upgrade of JLab and the future EIC [1293] will provide
the opportunity to confirm this fundamental feature of QCD.

5.11 Color confinement, chiral symmetry breaking, and
gauge topology

Edward Shuryak

5.11.1 Overview

Nontrivial topological structures of non-Abelian gauge fields
were discovered in the 1970s, starting with the ’t Hooft–
Polyakov monopole [1387,1388] and Belavin–Polyakov–
Schwartz–Tyupkin (BPST) instanton [1389]. These two
sets of objects were soon related to two main nonperturbative
phenomena – confinement and chiral symmetry breaking.

Confinement was connected to the so called “dual super-
conductor” model [1387,1390]. This model suggests that
magnetically charged monopoles can form a Bose–Einstein
condensate, which expels color-electric fields into flux tubes,
like a condensate of Cooper pairs in superconductors expels
magnetic fields into Abrikosov flux tubes.

Chiral symmetry breaking is connected to instantons,
which describe vacuum tunneling between topological bar-
riers. These have fermionic bound states – technically called
zero modes. In the QCD vacuum the density of these
states is high enough, so that they are “collectivized” into
quark condensates 〈q̄q〉 �= 0. This condensate breaks the
SU (N f )A X U (1)A chiral symmetry of massless QCD.

For decades, theory and phenomenology of monopoles
and instantons were developed separately, but in the last two
decades, following a breakthrough paper by Kraan and van
Baal [1391] studies of decon f inement and chiral symme-
try restoration phase transitions, based on new semiclassical
objects, called instanton-monopoles or instanton-dyons lead
to a united quantitative description of both phase transitions,
in QCD and even in its “deformed” versions.

5.11.2 Color confinement and deconfinement

Discovery of QCD 50 years ago put into motion many impor-
tant developments in the 1970s. Asymptotic freedom led to
a weak coupling regime at small distances and a flourish-
ing “perturbative QCD” describing hard processes. Going in

the opposite direction (small momenta or large distance, also
called “infrared” or IR), one finds growing QCD coupling.
In pure gauge theories the potential energy of a static quark
and antiquark pair grows linearly with increasing separation,
V (Rqq̄) ∼ σ Rqq̄ . Therefore, with a finite amount of energy
one cannot separate color charges: they are “confined”. Fur-
thermore, all electric fields are expelled from the vacuum
and get confined as well, into so called “electric flux tubes”
(also known as “QCD strings”). Their “tension” (energy per
length) is σ ≈ 1GeV/fm. In QCD with dynamical quarks,
a new qq̄ pair can be created, breaking the flux tube into
two. Yet it is still true that any objects with nonzero color
charge – such as quarks and gluons – do not exist as inde-
pendent physical objects in the QCD vacuum. This is one of
the definitions of “color confinement.”

This attractive picture of course needed to be tested. K.
Wilson [97] promoted the statement about a linear potential to
a more abstract mathematical form: the vacuum expectation
value of the Wilson line

W =
〈 1

Nc
Tr P exp

(
i
∫

C
dxμA

a
μT

a
)〉
, (5.142)

over some contour C of sufficiently large size with color
gauge fields. Here T a are color algebra generators, and P exp
means products of exponents along a given contour C . Wil-
son’s criterium states that in confining theories

W = exp[−σ ∗ Area(C)] (5.143)

falls exponentially with the area of a surface inclosed by the
contourC . If it is a rectangular contour T ∗L in 0–1 plane, the
area = T ∗L and σ is then identified with the string tension.
The very first numerical studies of non-Abelian gauge the-
ory on the lattice, by M. Creutz [354] indeed found that the
area law holds for large enough loops, and that σ is indeed
physical, that is it has correct dependence on the coupling as
dictated by asymptotic freedom. (Needless to say, numerical
evidence is not taken for a proof by mathematically inclined
folks, and an analytic proof is still missing. A million dollar
prize for such a proof still waits to be awarded.)

In Quantum Electrodynamics (QED) charge renormaliza-
tion makes the coupling larger at small distances (large
momenta transfers or UV limit), but small at large distances,
which is explained by very intuitive “vacuum polarization”
picture, in which virtual e+e− pairs screen the charges.
Screening of the charges by a QED medium – e.g. plasma of
the Sun – is well known and tested.

One may now ask what happens in a “QCD medium”.
Asymptotic freedom tells us that, contrary to QED, at small
distances the coupling decreases. But what would happen
at large distances? Calculation of the polarization tensor
[1392] had shown that, like in QED, the medium screens
the charges. Therefore, at high enough temperature the inter-
action becomes weak at all distances. Therefore hot/dense
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QCD matter must be in a phase called a Quark–Gluon
Plasma (QGP). It is the “normal phase” of QCD in which
fields in the QCD Lagrangian – quarks and gluons – cor-
respond to quasiparticles which move relatively freely. It
must be distinct from the QCD vacuum and low-T hadronic
phase, as there is no place for confinement, chiral condensate
and other nonperturbative phenomena there. The “confin-
ing” QCD vacuum and the QGP must therefore be separated
by a phase transition: and it is indeed seen in experiment
and lattice studies, which now put the critical temperature at
Tdeconfinement ≈ 155 MeV.

As discussed in detail in section on symmetries of QCD,
at vanishing quark masses it has additional chiral symmetries
. Without mass terms, in the Lagrangian the left and right-
polarized components do not directly interact with each other
and independent flavor rotations become possible. Such dou-
bled flavor symmetry can be decomposed into a vector (the
sum) and the axial (the L-R difference) symmetries. One
of them, called axial SU (N f )A symmetry (N f = 3 is the
number of light quark flavors, u, d, s), is spontaneously bro-
ken in the QCD vacuum, which possesses a nonzero quark
condensate 〈q̄q〉 �= 0. The melting (disappearance) of this
condensate should happen at another transition T > Tchiral .
Although in various settings Tdeconfinement �= Tchiral, in QCD
they seem to coincide, again based on numerical lattice evi-
dence.

Another chiral symmetry called U (1)A is broken by
the quantum anomaly and is not actually a symmetry at
all. (“Anomaly” means that while it is a symmetry of the
Lagrangian, it is not a symmetry of the quantum partition
function.)

5.11.3 Electric–magnetic duality and monopoles

Already our brief discussion above should have convinced
the reader that the QCD vacuum is quite complicated,
with one outstanding feature being the expulsion of color-
electric fields into the flux tube. Already, in the 1970s
[1390,1393,1394], an analogy between this phenomenon
and an expulsion of magnetic fields from superconductors
lead to the so called “dual superconductor” model of con-
finement.

In superconductors of the second kind there exist the so
called magnetic flux tubes or f luxons. Magnetic fields are
confined inside the tubes because of solenoidal (super)current
of Cooper pairs on their surface. QCD flux tubes transfer flux
of electric field instead. The word “dual” is used indicating
that one has to interchange electric and magnetic fields. If so,
the current in the solenoid needs to be magnetic. What can it
be made of?

The apparent asymmetry of Maxwellian electrodynamics
bothered theorists since late 1800s: can one allow magnetic
charges, by adding a nonzero r.h.s. to the∇ · �B equation? An

interesting motion for a set of electric and magnetic charges
was predicted by J.J. Thomson and H. Poincare. With discov-
ery of quantum mechanics, Dirac [1395] famously observed
that if they exist, then consistency of the theory requires that
the product of electric and magnetic coupling be quantized.
As he emphasized, the existence of one monopole in the Uni-
verse would be enough to demand quantization of all elec-
tric charges, an empirical fact to which no other explanation
existed. QED magnetic monopoles have been looked for in
exceedingly more sensitive experiments, but so far none have
been found.

Yet certain Non-Abelian gauge theories with adjoint
scalars do possess solitonic magnetic monopole solutions
of the equations of motion, as discovered independently by
′t Hooft and Polyakov [1387,1388] . Their prominent fea-
ture is that their magnetic charges comply with earlier ideas
by Dirac about special conditions, making “invisible” Dirac
strings and allowing coexistence of magnetic and electric
charges in quantum settings. Here we cannot give justice to
the explicit solution and its properties: the interested reader
can find a detailed pedagogical description in books such as
[1396]. Now, monopoles made of glue and scalars are bosons,
so at low enough temperature their ensemble should undergo
Bose–Einstein Condensation (BEC). If that happens, a “mag-
netically charged” monopole condensate would expel the
(color)electric field into electric confining flux tubes, and
explain confinement!

Seiberg and Witten [1215] have given an analytic proof in
theories with more than one supersymmetry (which possess
the needed adjoint scalars). They were able to get the exact
dependence of the effective electric coupling on the vacuum
expectation value (VEV) of the scalar g2(〈φ〉). When the
VEV is large, the theory is similar to electroweak theory,
with gluons and gluinos being light and weakly interacting,
and monopoles very heavy. When the VEV decreases, the
coupling increases to O(1), and magnetic monopoles and
dyons (particles with both electric and magnetic charges)
have masses comparable to that of gluons and gluinos.
Finally, near certain singular points the electric coupling goes
infinitely strong, with gluons and gluinos much heavier than
monopoles. An effective description in this regime is dual
QED describing magnetic interactions of light monopoles.
The remarkable fact is that opposite motion of electric and
magnetic couplings follows exactly the “consistency condi-
tion” of QED gelectric · gmagnetic = const pointed out by
Dirac [1395] nearly a century ago!

All this is very beautiful, creating significant theoretical
activity at the turn of the century, but we need to return to
QCD. It does not have adjoint scalar fields, so one cannot
directly build ’t Hooft–Polyakov monopoles. However, by
special procedures, it was possible to identify monopoles
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Fig. 126 Upper panel: QCD electric flux tube in QCD vacuum (upper)
and magnetic flux tube in superconductor (lower). The current rotated
around is made of monopoles (upper) and Cooper pairs (lower), respec-
tively. Lower panel: plot shows the lattice data on the distribution of
the electric field strength (squares) and the monopole Bose condensate
(discs) in cylindrical coordinates versus the distance in the transverse
plane. As one can see, the field is maximal at the center where the
monopole condensate vanishes. The flux tube is generated by two static
quark–antiquark external sources (not shown). The lines correspond to
a solution to (dual) Ginzburg–Landau equations

on the lattice, and locate their paths and correlations. It was
observed, in particular, that these monopoles do indeed rotate
around the confining flux tubes, producing solenoidal mag-
netic currents needed to stabilize them. The picture turns
out to be a dual copy (meaning interchange electric↔mag-
netic) to well known magnetic flux tubes in superconductors.
Figure 126 (displaying the result of lattice simulations sum-
marized in the review [1397]) shows the distribution of the
electric field and magnetic monopole condensate in a plane
transverse to the electric flux tube. Furthermore, it has been
shown [1398] that BEC phase transition of monopoles does
coincide with the deconfinement transition at finite temper-
ature Tc of (pure gauge) theories.

Ensembles of monopoles in QCD were studied, with
important applications. Monopole correlations reveal Coul-
omb-like forces between monopoles [1399], with their

Fig. 127 Top: Example of paths of 7 identical particles which undergo
a permutation made up of a 1-cycle, a 2-cycle and a 4-cycle. Middle:
Normalized densities of k−quark clusters ρk/T 3 as a function of tem-
perature in units of critical temperature Tc. Bottom: Effective chemical
potential μeff (T ) versus temperature, is shown to vanish exactly at the
critical temperature defined by thermodynamics

charges “running” in the direction opposite to that of electric
charges [1400], exactly as predicted by Dirac! It has been
shown [1401] that monopoles also play important role in
deconfined QGP phase at T > Tc: in particular they dominate
jet quenching in quark–gluon plasmas created in heavy ion
collisions, and explain unusually small viscosities observed.

The idea of Bose-clusters is explained in the top pane
of Fig. 127: identical bosons may have “periodic paths” in
which some number k of them exchange places. Such clusters
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are widely known to the community doing many body path
integral simulations for bosons, e.g. liquid He4. Feynman
argued that in order for the statistical sum to be singular at Tc,
the sum over k must diverge. In other words, one may see how
the probability to observe k-clusters Pk grows as T → Tc
from above. In Fig. 127(middle) from [1398] one sees the cor-
responding data for the cluster density. Their dependence on
k was fitted by two expressions,ρk ∼ exp (−kμeff(T )) /k5/2

or the same without the k−5/2 factor, to show that the criti-
cal T is not sensitive to these details of the fit. The effective
chemical potential μeff(T ) plotted versus temperature in the
bottom panel of Fig. 127. vanishes exactly at the deconfine-
ment temperature T = Tc (defined by different methods).
This means that monopoles indeed undergo Bose–Einstein
condensation at exactly T = Tc.

5.11.4 Topological landscape

Magnetic monopoles were only the first of the solitons (solu-
tions to nonlinear classical equations of motion, stable in the
sector with fixed topology). In fact there exist a whole zoo
of them, even in pure gauge theory without any scalar fields.

Gauge symmetry of QCD allow transformations of fields
with arbitrary SU (3) matrices Ω(x), with arbitrary depen-
dence on space-time point x . Those matrices can be divided
into topologically distinct classes. Introducing the Chern–
Simons number NCS [1402] for the gauge potentials

NCS ≡ εαβγ

16π2

∫
d3x

(

Aa
α∂β A

a
γ +

1

3
εabc Aa

αA
b
β A

c
γ

)

,

(5.144)

one may prove that if it is an integer, then the gauge configu-
ration with minimal energy is “pure gauge”, the field strength
Ga

μν = 0 and the minimal energy is zero. Thus the values of
NCS numerate “classical vacua” with different topologies.

Yet when NCS is in between these integers, the field
strength and the minimal energy is nonzero. This creates
a “topological landscape”, an infinite sequence of classical
vacua separated by barriers, see Fig. 128. By minimizing the
energy at fixed NCS (and r.m.s. size ρ) of the configurations,
one can derive [1403] the shape of this barrier in parametric
form. The configuration energy and Chern–Simons number
are expressed in terms of a parameter κ as follows

Umin(κ, ρ) = (1− κ2)2 3π2

g2ρ
,

NCS(κ) = 1

4
sign(κ)(1− |κ|)2(2+ |κ|). (5.145)

The value κ = 0 corresponds to the top of the barrier:
this configuration is called the “sphaleron” (which in Greek
means “ready to fall”). It is a solution of the classical equa-
tions of motion, a magnetic ball in which field lines of �Ba

(a = 1, 2, 3 since it is restricted to the SU(2) subgroup of

Fig. 128 The “topological landscape”: minimal potential energy Umin
(in units of 1/g2ρ) versus the Chern–Simons number NCS . Valleys at
integer values are separated by barriers. The terminology and arrows
are described in the text

SU(3)) rotate around the x, y, z axes. Since it corresponds
to an energy maximum (rather than minimum), a small per-
turbation would force it to fall down the barrier profile: this
process (also studied analytically and numerically) is called
“the sphaleron explosion”. (We indicated it on the right side
of Fig. 128 by red downward arrow.)

Sphalerons were originally discovered in electroweak the-
ory [1404,1405]: in this case the sphaleron energy is very
large, about 8 TeV. There were long debates whether those
can be produced at LHC or future colliders: so far not a
single event of this kind has been observed. Production
of sphaleron-like hadronic clusters with various sizes and
masses, in pp collisions at RHIC and LHC, are under con-
sideration, see more in review [1406]. Green arrows on the
r.h.s. of Fig. 128 indicate the instanton-sphaleron process in
which vacuum is excited to a “turning point” magnetic con-
figuration at the side of the barrier, from which it explodes
(rolls downward).

Quantum mechanics allows potential barriers to be pene-
trable due to “tunneling”. So, at any energy, even zero, tun-
neling events occur, changing NCS spontaneously. Under the
barrier the potential energy is larger than the total, and the
kinetic energy is negative E − U = K < 0. Since it is pro-
portional to momentum squared K ∼ π2, the motion should
occur with imaginary momentum. That lead to the idea to
describe this motion in imaginary time τ = i t , or Euclidean
space-time. Explicit solutions describing tunneling have been
found [1389], and are known as the BPST instantons (indi-
cated by the horizontal blue line on the left of Fig. 128). To
find them one assumes the solution is spherically symmetric
in 4-d, and can be described by scalar trial radial function f ,
with

gAa
μ = ηaμν∂νF(y), F(y) = 2

∫ ξ(y)

0
dξ ′ f (ξ ′) (5.146)

with ξ = ln(x2/ρ2) and η the ’t Hooft symbol defined by

ηaμν =
⎧
⎨

⎩

εaμν μ, ν = 1, 2, 3,
δaμ ν = 4,
−δaν μ = 4.

(5.147)

We also define ηaμν by changing the sign of the last two
equations. Putting this expression into the gauge Lagrangian
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Fig. 129 QCD lattice configuration under “deep cooling”: blue and
yellow regions are locations of instantons and anti-instantons. One can
also see a few magnetic flux tubes

one finds that it takes the form

Leff =
∫

dξ

[
ḟ 2

2
+ 2 f 2(1− f )2

]

(5.148)

where the dot is the derivative with respect to ξ . This corre-
sponds to the motion of a particle in a double-well potential.
Note that, since L = K − U , the sign in front of the poten-
tial is inverted, giving two maxima rather than minima. The
instanton solution is the one “sliding” from one maximum,
at ξ = 0, to the other at ξ = 1.

As an individual instanton is basically a 4d ball of Ga
μν

fields, the gauge field vacuum (in Euclidean time) can be
described by an ensemble of instantons and antiinstantons
(those with η̄aμν). The so called instanton liquid model (ILM)
[1407] concluded that the instanton size and density

ρ = 1

3
fm, nI+ Ī =

1

R4 = 1 fm−4 (5.149)

led to chiral symmetry breaking, reproducing parameters of
chiral perturbation theory and pion properties. Note that the
4d ball volume isπ2ρ4/2, and the diluteness nI+ Ī π2ρ4/2 ∼
1/20 � 1 of the ensemble is quite small. Yet, they are inter-
acting with each other strongly, thus the use of the word
“liquid” in the name. Many years later, numerical simula-
tions on the lattice have shown what it looks like, see Fig. 129
from [1408] . Technically, this is a lattice gauge field “deeply
cooled” (with the action minimized) which removes gluons
but keeps the gauge topology intact. One can find more on
lattice topology in Sect. 4.3.2.

5.11.5 Instantons bind quarks, and by this generates chiral
dynamics

G. ‘t Hooft [1409] has found that instantons bind massless
fermions at zero energy. Technically, these are solutions of
the Dirac equation in the instanton field, called fermionic

zero modes. The Pauli principle applies, and each instan-
ton (a gauge field ball) binds one of each light quark, u, d, s.
Therefore an “instanton liquid” contains “collectivized” light
quark states. It is analogous to a ensemble of atoms: while
each has its own electrons, at a finite density of atoms, these
electrons can be in different phases, e.g. “insulating” or “con-
ducting,” depending on whether collective electron states do
or do not have nonzero density of states on the Fermi surface.
Similarly, an ensemble of instantons can have a spectrum of
Dirac eigenvalues λ, either wi th or wi thout a gap at λ = 0:
in the latter case (analogous to a conductor) the chiral sym-
metry is spontaneously broken. With the ILM parameters
mentioned above, one can prove that this is indeed the case
in the QCD vacuum, and in fact it correctly reproduces the
density of Dirac eigenvalues at zero (proportional to “vac-
uum quark condensate”) 〈q̄q〉 ≈ −(240 MeV )3 known from
phenomenology.

This physics can be described in different, simpler terms.
Massless quark fields in QCD have left and right-polarized
components which, according to the QCD Lagrangian, have
independent flavor symmetries. Yet, as quarks get dressed
by nontrivial vacuum fields they may get mixed together so
that the quarks develop nonzero “constituent quark masses”
Meff ∼ 350–400 MeV. The nucleon mass is about 3Meff : so
the phenomenon of chiral symmetry breaking explains the
“mystery of our mass”.

Furthermore, gauge theory in Euclidean time can naturally
describe the properties at finite temperature T : just define τ

to be on a circle with a circumference h̄/T (known as Mat-
subara time). Then the instanton solution can easily be made
periodic. Although zero fermionic modes are still there at any
T , the spectrum changes at T > Tχ and the Dirac eigenvalue
spectrum contains a nonzero gap, and chiral symmetry gets
unbroken at high T . For a review on the chiral dynamics
induced by an interacting ensemble of instantons see [1410].

5.11.6 QCD correlation functions: from quarks to mesons
and baryons

Physics of QCD correlation functions using the so called
QCD sum rule method and lattice numerical simulations is
described in other sections. For a general pedagogical review
see e.g. Ref. [1411]. At small distances between the operators
the natural description is provided by perturbative diagrams,
defined in terms of quarks and gluons. At large distances they
are described in terms of the lowest hadrons with appropriate
quantum numbers.

Of great interest however is their behavior at intermediate
distances, at which a transition from one language to another
takes place. As summarized in Ref. [1411], using diagrams
with a single instanton one can explain the scale of this tran-
sition in “problematic” channels. In particular, it is attraction
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in the pion channel and repulsion in η′, attraction for scalar
glueball and repulsion for pseudoscalar one, etc.

Furthermore, experimentally known correlation functions
were quantitatively reproduced by the interacting instanton
liquid model even at large distances, first for many mesonic
channels [1412,1413] and subsequently for baryonic corre-
lators [1414]. As a result, the predictive power of the model
has been explored in substantial depth. Many of the coupling
constants and hadronic masses were calculated, with good
agreement with experiment and lattice. (This was shown to
be the case, in spite of the fact that instanton models did not
explain confinement.)

Subsequent calculations of baryonic correlators [1414]
have revealed further surprising facts. In the instanton vac-
uum the nucleon was shown to be made of a “constituent
quark” plus a deeply bound diquark, with a mass nearly
the same as that of constituent quarks. On the other hand,
decuplet baryons (like Δ++) had shown no such diquarks,
remaining weakly bound set of three constituent quarks. To
my knowledge, this was the first dynamical explanation of
deeply bound scalar diquarks. Deeply bound scalar diquarks
are a direct consequence of the ‘t Hooft Lagrangian, a mech-
anism that is also shared by the Nambu–Jona–Lasinio inter-
action [1415], but ignored for a long time. This subsequently
lead to the realization that diquarks can become Cooper pairs
in dense quark matter; see [1416] for a review on “color
superconductivity”.

5.11.7 Instanton-dyons lead to semiclassical theory of the
deconfinement and chiral transitions

We have described monopoles and instantons, and have
shown how they can help us understand such important non-
perturbative properties as con f inement and chiral symme-
try breaking, respectively. Yet neither of them were able to
describe both of them in a natural way.

This was achieved only during the last decade, using what
are called instanton-dyons (kind of a hybrid of these two topo-
logical animals, also known as instanton-monopoles). Tech-
nically, if they are far from each other, they can be described
as monopoles, which use the A0 component of the gauge field
instead of the adjoint scalar of the Georgi-Glashow model,
involved in ’t Hooft–Polyakov monopole construction. When
they overlap, they can still be followed analytically. When
their centers happen to be at the same spatial point, their
superposition turns out to be nothing else but the well known
instanton [1391,1417]!

A hybrid often inherits good properties of both parents –
but maybe some bad properties as well. In order to sort these
out, we need to start explaining from special role of A0 in the
finite-temperature theory. We have mentioned that finite tem-
perature theory is defined on a circle τ ∈ C1 with the Matsub-
ara period. In such cases there exist a phenomenon known

Fig. 130 Temperature dependence of the mean Polyakov line in pure
SU (3) gauge theory, from lattice and instanton-dyon statistical simu-
lations, displays a clear first order phase transition in which 〈P〉 jumps
from zero below Tc to a finite value in the quark–gluon plasma phase
at high T

in mathematics as “holonomy”: there are non-contractable
contours. The so called Polyakov line

P = P exp

[

i
∫

C
dτ Aa

0T
a
]

(5.150)

(T a is a color generator) is a gauge invariant operator.
(Because A0 must be periodic on (Euclidean time circle)
C1, its gauge factors cancel out.) Therefore, if it has cer-
tain values, it cannot be undone and thus, at finite T , one
cannot use the A0 = 0 gauge. And indeed, the average of
P has some well defined expectation value 〈P(T )〉, exten-
sively studied on the lattice (see Fig. 130). Since it is a uni-
tary SU (3) matrix, it can be defined by three eigenvalues
exp(iμi ), i = 1, 2, 3. The phases μi are called holonomies
μi (T ): they prescribe the magnitude of the fields Aa

0(T ).
Physically 〈P(T )〉 ∼ exp[−FQ/T ] is related to the free
energy of a static quark: in the confining phase the latter is
infinite and 〈P(T )〉 = 0 while in quark–gluon plasma phase
it is finite and 〈P(T )〉 �= 0: so it is the order parameter of
deconfinement.

Recognizing that A0 may have a nonzero constant value
all over the system, which cannot be gauged away and is
thus physical, one has to look for solutions of the YM equa-
tions at finite temperatures which at distance �r → ∞ go to
such values of A0. (Rather complicated) solutions of this type
[1391] for instantons were found, and it was recognized (only
after its actions were plotted) that it describes a continuous
deformation, from one spherical instanton into Nc indepen-
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dent bumps. If Nc = 3, one can follow how the triplet of
instanton-dyons is born!

Now let us summarize their properties. Like instantons,
they are (anti) selfdual �E = ± �B and live in Euclidean space
time. So, they are not really particles, since they do not
exist in the Minkowski world. Like instantons, they have
nonzero topological charges Q ∼ ∫

d4x( �E · �B). Unlike
instantons, however, those charges are not quantized to inte-
gers: Qi , i = 1, 2, 3 can take any values, except that their
sum is still |∑3

1 Qi | = 1. These Qi (equal to their actions Si )
are proportional to differences νi = μi+1 −μi of the eigen-
values of the Polyakov line (the holonomies). So, Si = νi S
where the coefficient is the “instanton action”

S = 8π2

g(T )2 =
(

11

3
Nc − 2

3
N f

)

log

(
T

ΛQCD

)

Non-integer Qi is only possible because they inher-
ited properties of another parent, the magnetic monopoles.
These objects are connected by Dirac strings (this connec-
tion undoes the topological classification theorems which
require that the fields be smooth at infinities.) They are called
“dyons” because a magnetic charge plus a selfduality implies
also presence of an electric charge (although real only in the
Euclidean world and thus not quite physical).

Before we can proceed, we need to clarify one more puz-
zle related to fermionic zero modes of instanton-dyons . An
instanton has one fermionic zero mode, and if it gets split
into three instanton-dyons , one may ask how this zero mode
be shared between them. The answer, also due to van Baal
and collaborators, is that the zero mode is centered near one
of the three: which one depends on the interrelation between
holonomy phases μi and quark periodicity phases called z f
where index f means flavor, u, d, s . . .. Further details on
instanton-dyons, their interaction and fermionic zero modes
can be found in references mentioned.

This information should be sufficient to understand how
one can “hunt” for these objects on the lattice. One method
is “cooling” of vacuum fields, like that used in Fig. 129.
Better still is “constrained minimization” [1418] preserving
the value of 〈P〉: it revealed selfdual clusters of topological
charges which integrate to non-integer values. But the best
is the “fermionic filter”, developed by Gattringer et al. and
Ilgenfritz et al., based on the zero modes of the quark Dirac
operator. In Fig. 131 we show an example from [1419,1420]
in which it was used. QCD simulations with realistic masses,
performed by large collaborations on supercomputers, pro-
vide a set of configurations to these authors. These calcula-
tions are especially expensive since they use the so called
domain wall fermions providing very accurate chiral sym-
metry of lattice fermions. Yet Larsen et al. used even better
ones, called overlap fermions, for which chiral symmetry is
exact even for finite lattices (without the continuum limit

Fig. 131 Space slice of density of an exact zero mode from QCD
simulation at T = Tc. The three colors refer to dyons of three different
types

a → 0 taken). Those possess exact zero modes λ = 0 and
configurations have exactly integer topological charges.

Figure 131 shows a typical landscape of the zero mode
densities |ψ0(x)|2 in two spatial dimensions. Red, blue and
green colors show those for three different fermionic peri-
odicity phases, identifying three instanton – dyon types (for
Nc = 3) that they want to locate. The peaks correspond
to locations and sizes of the individual zero modes in these
field configurations. One can be convinced that the peaks are
instanton-dyons because their shapes are well described by
analytic formulae as derived by van Baal and collaborators,
within a few percent accuracy. Furthermore, this is true not
only for well separated ones, but also for overlapping ones!
The gauge field configurations are for T a little bit above
deconfinement Tc, in a quark–gluon plasma possessing zil-
lions of thermal quarks and gluons: and yet, the instanton-
dyons are apparently undisturbed by them! (For clarity: we
do not mean here the values of the topological charge Q
or number of zero modes, protected by certain mathemati-
cal theorems. The observed space-time shapes of the Dirac
eigenmodes are not protected by any theorems known to us.)

Previous works however have not analyzed the “topologi-
cal clusters”, the situations in which two or three dyons over-
lap strongly. The Kraan–van Baal solution allows to study
these cases, and good agreement was also found in the numer-
ical analysis of instanton-dyon ensembles in [1419,1420].
The semiclassical description of zero and near-zero Dirac
modes on the lattice is quite accurate, at least in terms of the
zero mode shapes. While the very existence of zero modes
was required by topological theorems, good correspondence
of their shapes (in physical thermal vacuum versus pure semi-
classical dyons) was a good unexpected news.

This (and many similar plots) extracted from simula-
tions of the QCD vacuum should convince the reader that
instanton-dyons are well identified objects, in terms of which
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one can try to describe the underlying gauge field configu-
rations. If so, perhaps a dream being alive for half a cen-
tury since 1970s to develop consistent semiclassical theory
of deconfinement and chiral transitions can still be realized.

Following this idea, ensembles of instanton-dyons were
studied by a number of methods, including the mean field
(solving certain “gap equations”) or straightforward statisti-
cal Monte-Carlo simulations. Those were performed first for
the SU(2) gauge theory [1421], then for the SU(3) [391], first
without dynamical fermions, then with them [1422,1423].
In Fig. 130 we have shown one example of a comparison
between a semiclassical instanton-dyon ensemble and lattice
simulations. We cannot present here other results of these
works but just state that they compare well with the loca-
tion and properties of QCD phase transitions which we now
know from lattice simulations. Note that those works were
done on laptops or ordinary PCs, not supercomputers, and
yet the number of topological objects in them are counted by
hundreds, while very expensive lattice simulations have only
few of them (as one can see from the example above).

Furthermore, in such studies people used not just QCD,
but also two types of “QCD deformations”. One of them adds
extra operators with powers of the Polyakov line to the gauge
action. By changing their strength one can affect the location
and strength of the deconfinement phase transition. Another
type of QCD deformation makes quarks obeying modified
periodicity condition on the Matsubara circle, making quark
statistics to be intermediate between fermions and bosons.
This deformation affects the location and strength of the chi-
ral phase transition. What these deformations tell us is that
these two phase transitions should not generically be coinci-
dent, as they are in QCD. Again, one can apply such defor-
mations on the lattice or in the instanton – dyon semiclas-
sical theory, and compare the results. So far, the agreement
between them is quite good, which is encouraging.

5.11.8 Conclusions and discussion

The main thrust of this section is to convince the reader that
topological solitons play an important role in the understand-
ing of such nonperturbative phenomena in QCD as confine-
ment and chiral symmetry breaking in vacuum, as well as
deconfinement and chiral symmetry restoration at high tem-
peratures. A wider view on that should include the deformed
versions of QCD, or even other gauge theories, electroweak
or supersymmetric theories.

It would be nice to have just one type of those: but
in fact the history of the field we followed in this section
included (at least) three: the particle-monopoles, instantons
and instanton-dyons. All of those were found on the lattice,
by different “filters”, and were shown to be strongly cor-
related with certain physical phenomena we would like to
understand.

The particle − monopole behavior convincingly shows
that confinement is a Bose–Einstein condensation, explain-
ing both the confining flux tubes and their disappearance at
high T .

The instantons have fermionic clouds bound to them,
and their “collectivization” into a “conductor” without a gap
explains how a “quark condensate” is formed, the physics
of massless pions, and (unlike earlier theories) why η′ is
so heavy. They explain the value of the “constituent quark
mass” as well as that of the nucleon (and thus ourselves).
While instanton ensembles do not explain confinement, they
do have most of the lowest mesons and baryons (nucleon
included) as bound states.

The instanton-dyons (being a hybrid of the first two) con-
nect topology with holonomy (the Polyakov line, or nonzero
A0 VEV, in Euclidean formulation) in a way, which produces
a nice semiclassical theory of both deconfinement and chiral
transition. It was shown to work quantitatively, not only for
QCD, but for its deformations as well.

Taken together, those facts and observations are impres-
sive. The reader is reminded that they constitute the result
of five decades of work by multiple theorists. But still, the
reader is perhaps a bit confused by the very richness of the
story told. One would probably prefer a simpler and more
uniform picture.

Such feelings are shared by some active participants in
this process, and some light at the end of the tunnel is, in
fact, now showing. At the end of the section, let us briefly
describe these later developments.

It started with Ref. [1424], using the well controlled setting
of the most-supersymmetric gauge theory, withN = 4 super-
symmetries. This theory has adjoint scalars and ’t Hooft–
Polyakov monopoles as classical solutions, and the partition
function in terms of these monopoles can be calculated. The
same theory in a R3C1 setting (preserving supersymmetries)
also has holonomies and instanton-dyons, and the partition
function written in terms of these was calculated as well.
The two expressions are completely different, one better con-
verges at small and another at large radius of the circle C1.
Nevertheless, as Dorey et al. observed, using Poisson summa-
tion formula, both produce the same answer for the statistical
sum! This unexpected result was called “the Poisson dual-
ity”. The importance of this paper was not noticed promptly.
Indeed, such duality is very nontrivial: it is enough to remem-
ber that monopoles are particles moving in Minkowskian
space-times, while instanton-dyons can only be defined in
Euclidean periodic formulation. And yet, they apparently
describe the same dynamics!

In fact this phenomenon has nothing to do with supersym-
metry or gauge theories, and is present in a much broader
domain. In Ref. [1425], the existence of the Poisson duality
was demonstrated for a simple quantum mechanical rota-
tor. The duality means that a partition sum can either be
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