

Fifth International Conference ISMART 2016 Engineering of Scintillation Materials and Radiation Technologies 20 – 30 September 2016

Optical and structural properties of 3CaO-2SiO₂:Ce, 3CaF₂-2SiO₂:Ce and 3Ca_xBa_{1-x}O-2SiO₂:Ce (x=0, 0.5, 1) glasses

M. Fasoli¹, M. Korjik², F. Moretti¹, <u>Y. Tratsiak³</u>, E. Trusova⁴, A. Vedda¹

¹ Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
²Research Institute for Nuclear Problems, Bobruiskaya str. 11, 220006 Minsk, Belarus
³Research Institute for Physical Chemical Problems, Leningradaskaya str. 14, 220006 Minsk, Belarus
⁴ Belarusian State Technological University, Sverdlova str. 13a, 220006 Minsk, Belarus

Synthesis

1. Obtaining $CaCO_3$, CaF_2 or $CaBa(CO_3)_2$ powders activated by Ce^{3+} ions by using coprecipitation method;

- 2. Obtaining SiO₂ gel by TEOS hydrolysis;
- 3. Introduction of $CaCO_3$, CaF_2 or $Ca_xBa_y(CO_3)_2$ powders into SiO₂ gel.
- 4. Drying on air at 80 C for 12-24 hours
- 5. Melting in furnace

Samples glow under UV lamp (312 nm)

The absorption spectra for $3\text{CaO}-2\text{SiO}_2$ and $3\text{CaF}_2-2\text{SiO}_2$ glasses with 0.05 and 0.5 at. % of Ce³⁺ ions.

RL of the $3CaO-2SiO_2$:Ce and $3CaF_2-2SiO_2$:Ce glasses

The RL spectra for investigated glasses with composition 3CaO-2SiO₂ (a) and 3CaF₂-2SiO₂ (b) with 0.05 (solid line), 0.5 (dashed line) and 1 (dotted line) at. % of Ce³⁺ ions in comparison with BGO (marked as circles, intensity decreased by 10 times)

Normalized by PL intensity amplitude spectra at excitation at 300 nm (solid line) and 360 nm (dashed line) for $3\text{CaO}-2\text{SiO}_2$ (a) and $3\text{CaF}_2-2\text{SiO}_2$ (b) glasses with 0.05 at. % of Ce³⁺ ions in comparison with their RL spectra normalized by amplitude (marked by circles).

Structural properties of $3CaO-2SiO_2$:Ce and $3CaF_2-2SiO_2$:Ce

Raman spectra for 3CaO-2SiO_2 (a) and 3CaF_2 -2SiO₂ (b) glasses with different Ce³⁺ ions concentration

Bands interpretation

υ, cm ⁻¹	Description
~1025	anti-symmetric stretch vibrations in a three-
	dimensional array of SiO ₄ tetrahedra
~875	symmetric stretch vibrations of nonbridging
	oxygen bonds in separate SiO_4^{4-} structures in
	orthosilicate structure
~910-935	Si ₂ O ₇ ⁶⁻ structures vibrations in pyrosilicate
	structures; $(SiO_4)_n^{2-}$ chain structures vibrations
~650-660	Si-O-Si linkages vibrations
~720	asymmetric stretch vibrations of bridging oxygen
	bonds in crystalline pyrosilicates
~575-580	bending motions of oxygen bonds in direct
	structures in quenched SiO ₂
~400	bending vibrations of the Si–O–Si linkage with
	oxygen motion perpendicular to the Si–Si line
	and/or to the O–Si–O deformation of the coupled
	"tetrahedra" SiO ₄ groups

Normalized PL (a) at excitation at 350 nm and RL (b) spectra for 3CaO-2SiO₂ glass (circles) with 0.5 % Ce³⁺ ions by the intensity of SiO₂:Ce glass (solid line). On figure b the relative intensity for 3CaO-2SiO₂ glass increased at 100 times.

RL properties of the 3Ca_xBa_{1-x}O-2SiO₂:Ce (x=0, 0.5, 1) glasses

Corrected RL spectra (a) and normalized by intensity (b) for glass samples $3Ca_xBa_{1-x}O-2SiO_2$:Ce (x=0, 0.5, 1)

PL properties of the $3Ca_xBa_{1-x}O-2SiO_2$:Ce (x=0, 0.5, 1) glasses

Normolized by intensity the excitation (a, $\lambda reg = 425 \text{ nm}$) and luminescence (b, $\lambda ex = 305 \text{ nm}$ (solid lines) and 366 nm (dash lines)) spectra for $3Ca_xBa_{1-x}O-2SiO_2$:Ce (x=0, 0.5, 1) samples.

Comparison PL and RL properties of the $3Ca_xBa_{1-x}O-2SiO_2$:Ce (x=0, 0.5, 1) glasses

Comparison PL (excited at 305 nm, solid lines) and RL spectra (dashed lines) for $3Ca_xBa_{1-x}O-2SiO_2$:Ce glasses, where x=0 (a), 0.5 (b) and 1 (c)

Main results

- 1. Substitutance of O²⁻ ions in anionic sublattice onto F⁻ ions and Ca²⁺ ions in cationic sublattice onto Ba²⁺ ions do not contribute to increasing of scintillation efficiency. In both cases possibility of presence Ce³⁺ ions in different surrounding was found. With increase of the Ce³⁺ content, some part of them are localized in new different surroundings of silica groups and do not contribute in scintillation;
- 2. Presence a low intensity (or it absence) signal on TSL spectra for $3CaO-2SiO_2$ and $3CaF_2-2SiO_2$ glasses can be result of the formation by calcium ions energy levels that lying deeper the level formed by cerium ions. Thus, the levels of calcium ions act as nonradiative recombination centers;
- 3. Overlapping of excitation band of investigated glasses with CeF_3 scintillation band make these glasses promising as wavelength shifters from UV to blue region.

Thank you for attention!

