5a 233471

5en. 200

ОРДЕНА ЛЕНИНА АКАДЕМИЯ НАУК УКРАИНСКОЙ ССР ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

На правах рукописи

ЭК

породзинский юрий влацимирович

УДК 539.171

ВЗАИМОДЕЙСТВИЕ НЕЙТРОНОВ С ЧЕТНО-ЧЕТНЫМИ ДЕФОРМИРУЕМЫМИ НЕАКСИАЛЬНЫМИ ЯДРАМИ

01.04.16 - физика ядра и элементарных частиц

ABTOPEPEPAT

диссертации на соискание учёной степени кандидата

физико-математических наук

Киев - 1990

Работа выполнена в Институте ядерной энергетики АН БССР

Научный руководитель: кандидат физико-математических наук, старший научный сотрудник КАШУБА И.Е.

Официальные оппоненты: доктор физико-математических наук, старший научный сотрудник КОРЖ И.А. кандидат физико-математических наук. доцент ИВАНОВА С.П.

Ведущая организация - Физико-энергетический институт, г.Обнинск

Защита состоится " 1 " Марта 1990 года в 14 15 часов на заседании Специализированного Совета Д 016.03.01 при Институте ядерных исследования АН УССР (252028, г.Киев. пр. Науки 47. ИЯИ АН УССР).

С диссертацией можно ознакомиться в библиотеке Института ядерных исследований АН УССР

> Автореферат разослан " 30 " января 1990 г.

Учёный секретарь Специализированного Совета кандидат физико-математических наук В. Мас В.Д. Чеснокова

33471

N

i the a

Thang street store. Siddieren USY Com F. L. Rosting

80 233471

ОБЦАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы</u>. Одним из важнейших аспектов прикладной ядерной физики становится в последнее время оценка ядерных данных. Вызвано это в первую очередь потребностями ядерной энергетики и перспективой использования термоядерной энергии. Для предсказания основных физических характеристик проектируемых ядерно-энергетических установок необходима как можно более полная система оцененных данных по взаимодействию нейтронов с ядрами изотопов топливно-сырьевых, конструкционных и защитных материалов в широком энергетическом интервале. В связи с ужестчением требований к безопасности реакторов особую важность приобретает гарантированная ошибка расчётных результатов, которая непосредственно связана с полнотой и качеством оцененных ядерных констант.

Оценка ядерных данных в узком смысле подразумевает их компиляцию, анализ экспериментальных погрешностей измерений различных авторов и выдачу рекомендованных данных в энергетической области, где проводились измерения.

Оценка в широком смысле дополнительно включает в себя также и теоретические методы, позволяющие с помощью модельных представлений о характере взаимодействия нуклонов с ядрами получать те ядерно-физические величины, измерения которых отсутствуют. Помимо этого, сравнение модельных расчётов с экспериментом позволяет уточнить результаты анализа экспериментальных данных, уяснить границы применимости той или иной модели и достоверность заложенных в них гипотез и упрощений.

Поэтому задача по созданию новых и модификация существующих теоретических методов и феноменологических моделей для расчёта

FI 0. A 3. 2010

сечений взаимодействия нейтронов с ядрами, а также по разработке математических алгоритмов и их реализации в ЭВМ программах является весьма актуальной.

Цель работы. Настоящая диссертация посвящена развитию на основе обобщенной оптической модели с описанием коллективного движения ядра-мишени в рамках феноменологической модели Давыдова – Чабана самосогласованного метода, позволяющего с единых позиций описывать спектроскопическую информацию и экспериментальные данные по рассеянию нейтронов на чётно-чётных деформируемых неаксиальных ядрах.

Научная новизна. На основе метода связанных каналов (МСК) с описанием коллективного движения ядра в рамках модели неаксиального деформируемого ротатора предложен метод анализа экспериментальных данных по рассеянию нейтронов на чётных деформируемых неаксиальных ядрах. Разработаны алгоритмы определения модельных параметров (неаксиальности у , мягкости и и энергетического множителя hw,) и вычисления на их основе в рамках MCK оптических сечений. Созданные алгоритмы реализованы в двух программных комплексах DATET и DACHA, которые с использованием x² критерия определяют модельные параметры из сравнения экспериментальных и вычисляемых по модели Давыдова - Чабана энергий возбуждённых состояний и параметры несферического оптического потенциала нейтрон-ядерного взаимодействия и параметр деформации из сравнения экспериментальных и рассчитываемых данных по силовым функциям, радиусу потенциального рассеяния, полному сечению взаимодействия и угловым распределениям упругого и неупругого рассеяния в нескольких опорных точках. Кроме того, программа DATET позволяет с найденными модельными параметрами рассчитать структуру возбуждённых состояний и приведенные вероятности электрических

個的 正中息得

квадрупольных переходов между ними, а программа DACHA с оптимизированными параметрами оптического потенциала – вычислять интегральные и дифференциальные нейтронные сечения во всей энергетической области.

В работе получены модельные параметры неаксиальности т и мягкости ^µ и описана структура нижайших возбуждённых состояний ядер ²³⁸U, ⁵²Cr и ⁵⁶Fe. Кроме того, для этих ядер, а также для ядер чётных изотопов селена вычислены вероятности Е2 -переходов между нижайшими возбуждёнными состояниями и статические квадрупольные электрические моменты первых 2⁺-состояний.

Исследовано влияние модельных параметров µ и γ на величины интегральных и дифференциальных нейтронных сечений. Проведен анализ экспериментальных данных по рассеянию нейтронов на ядрах 5^2 Cr , 56 Fe , 76 , 78 , 80 , 82 Se , позволяющий для 52 Cr и 56 Fe получить параметры несферического оптического потенциала, которые достаточно надёжно описывают интегральные и дифференциальные экспериментальные сечения в энергетической области 0,5 - 20 MaB. Получены параметры оптического потенциала с изотопической зависимостью реальной и мнимой глубин его для ядер чётных изотопов селена, которые удовлетворительно описывают экспериментальные данные по дифференциальным сечениям упругого и неупругого с возбуждением первого 2⁺-состояния рассеяния нейтронов в энергетической области до 5 MaB.

<u>Практическая ценность работи</u>. Изложенный в диссертации самосогласованный метод, позволяющий с единых позиций описывать спектроскопив ядер и эксперименты по нейтронному рассеянию на чётных деформируемых неаксиальных ядрах, положен в основу комплексов математических ЭВМ-программ, используемых в настоящее время в ИЯЭ АН ЕССР и в ИЯИ АН УССР для целей оценки ядерных данных. Про-

демонстрированное в диссертации хорошее качество описания экспериментальных данных по рассеянию нейтронов даёт возможность использовать развитый подход для получения оцененных нейтронных сечений мягких неаксиальных ядер.

Апробация результатов. Основные результаты диссертации докладывались и обсуждались на I-й Международной конференции по нейтронной физике, г.Киев, I987 г.; на межинститутском семинаре "Ядерные реакции при низких и промежуточных энергиях", г.Дубна, I989 г.; на конкурсе научных работ в ИЯЗ АН ЕССР, на семинарах в ИЯЗ АН ЕССР и ИЯИ АН УССР и опубликованы в материалах I-й Международной конференции по нейтронной физике, в журналах: "Ядерная физика" и "Украинский физический журнал".

<u>Объём и структура</u>. Диссертация состоит из введения, трёх глав и заключения. Работа изложена на I32 страницах основного машинописного текста, включающего 40 рисунков и I3 таблиц. Список литературы содержит I02 наименования на I3 страницах.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

<u>Во введении</u> отмечена актуальность темы, кратко сформулирована цель диссертационной работы, изложены её основные результаты и научные положения, выносимые на защиту.

<u>Первая глава</u> посвящена краткому изложению основных соотношений обобщенной оптической модели и неадиабатической теории вращательно-вибрационных возбуждений в атомных ядрах.

МСК широко применяется в настоящее время при описании взаимодействия нуклонов с ядрами, структура которых описывается в рамках ротационной или вибрационной моделей. В действительности большинство ядер не только не удовлетворяют такой систематике, но к тому же не сохраняют мод своих возбуждений; последнее ведёт к сосуществованию в ядрах различных форм, впервые наблюдавшемуся для изотопов редкоземельных элементов и ртути. Таким образом, использование в МСК функций симметричного волчка или осцилляторных функций в качестве собственных функций внутреннего гамильтониана ядра не всегда оправдано с точки зрения экспериментальных спектроскопических данных и это не может не отразиться на характеристиках вычисляемых нейтронных сечений.

С другой стороны, феноменологическая модель Давыдова - Чабана, интерпретирующая энергетическую структуру ядра собственными состояниями неаксиального деформируемого ротатора, хорошо зарекомендовала себя на большом количестве чётно-чётных и нечётных ядер при описании их возбуждений вплоть до состояний со спином I =20 по основной мраст-полосе. В предельных случаях модель Давыдова -Чабана переходит в простую ротационную или вибрационную модели. При вращении ядро испытывает растяжение, приводящее к изменению р., характеризующего его равновесную форму. Связав свойства деформируемости (мягкости) ядер с энергией бесспиновых р -колебательных возбуждений, а поперечные т -колебания поверхности ядра учитывая при этом только путём введения эффективного параметра

γ = γ_{эφφ}, модель Давыдова – Чабана для энергии коллективных
возбуждённых состояний с полным угловым моментом I и номером
τ даёт следующее выражение

$$E_{It} = \hbar \omega_{o} \left\{ (v + \frac{1}{2}) \sqrt{4 - 3/P_{It}} + \frac{4}{2\mu^{2}} \left[(P_{It} - 1)^{2} + (P_{It} - 1) P_{It} \right] \right\}$$

где величина $P_{I\tau}$ характеризует увеличение равновесной деформации β_o в основном состоянии при переходе ядра в состояние $I\tau$, так что $\beta_{I_{\tau}} = P_{I_{\tau}} \cdot \beta_o$. Параметр мягкости μ определяется отношением амплитуды нулевых колебаний поверхности ядра в основ-

ном состоянии к величине равновесного отклонения ро формы ядра от сферы. Выражение для энергии коллективных возбуждённых состояний алгоритмизировано в программе DATET, которая анализирует экспериментальные данные по схемам уровней и рассчитывает необходимые для дальнейших вычислений параметры модели. Качество описания нижайших возбуждённых состояний в рамках модели неаксиального деформируемого ротатора продемонстрировано в табл. I на примере ядра ²³⁸ U.

Энергетическая структура возбуждённых состояний ²³⁸ U довольно сложная и насчитывает до энергии возбуждения ~1,5 МэВ не менее семи полос, из них четыре построены на чётных состояниях. Выбирая в качестве базовых уровни с энергиями 45 кэВ (2[±]₁), 1060 кэВ (2[±]₂) и II06 кэВ (3[±]₁) (они в табл. I помечены ж), определены параметры неаксиальности $\gamma_{эф\phi} = 0,1402$ (8,03°) и мягкости $\mu = 0,1812$, а также энергетический множитель $\hbar \omega_o = 1,2550$ МэВ для основной и γ' -вибрационной полос. Используя затем параметры $\gamma_{э\phi\phi}$ и μ , вычислялись энергии уровней ²³⁸ U остальных полос. Результаты расчётов представлены в табл. I, где приведены также экспериментальные энергии возбуждения, спины и квантовые числа состояний (n - номер β -полосы, τ - порядковый номер состояния с данным спином I).

Как видно из табл. I, модель неаксиального мягкого ротатора достаточно точно описывает энергетическую структуру ядра (четыре полосы уровней с положительной чётностью) при дополнительном определении энергетических множителей $\hbar \omega_o$ (n = I) =0,9272 МэВ и $\hbar \omega_o$ (n = 2) =0,4957 МэВ. Тем самым для этих состояний установлены волновые функции, которые могут быть использованы в теории рассеяния нейтронов.

В диссертации были также получены модельные параметры для

Таблица І

Экспериментальные и вычисленные по модели Давыдова – Чабана значения энергий возбуждённых состояний положительной чётности ²³⁸ U

14	Спин,	Энергия во	Квантовые		числа	
п/п	чётность	Эксперимент	Расчёт	n	:	τ
I	0 + x	. 0,00	0,00	0		I
2	2* 🛪	44,9	44,85	0		I
3	4+	I48,4	148,43	0		I
4	6+	307,2	308,28	0		I
5	8*	517,8	520,95	0		I
6	10+	775,7	782,3	0		I
7	0+	927,0	927,0	ľ		I
8	2+	966,3	964	İ		I
9	0+	. 993	993 ··	2		I
10	2+	1037,3	1012	2		I
II	4+-	1055	1047	I.		I
12	2* *	1060,3	1059	0.		2
13	12+	1076,6	1085	0		I
14	3* #	1105,6	1099	0		I
15	4+	1127	1061	2		I
16	4+	1167,7	1153	0		2
17	14+	1415	1433,4	0		I
18	16+	1788	1814,6	0		I
19	18+	2191	2227,7	0		I
20	20+	2619	2669,4	0		I
21	22+	3067	3136,8	0		I
22	24+	3534,5	3627,8	. 0		I

ядер 52 Сг ($\gamma_{3\varphi\varphi} = 0,3929$ (22,51°), $\mu = 1,6772$ и $\hbar \omega_o = = 1,5621$ МэВ) и 56 Fe ($\gamma_{3\varphi\varphi} = 0,3209$ (18,38°), $\mu = 0,619$ и $\hbar \omega_o = 1,986$ МэВ), которые в рамках модели Давыдова – Чабана достаточно хорошо воспроизводят низкоенергетическую структуру.

Во второй главе полученные в первой главе результаты использованы при вычислении приведенного матричного элемента связи, определяющего динамику процесса рассеяния. Рассмотрены вопросы разложения оптического потенциала в ряд по параметру деформации, вычисления интеграла перекрытия волновых функций по β -колебаниям и расчёта приведенных вероятностей электрических квадрупольных переходов.

Для описания рассеяния нейтронов ядрами используется несферический оптический потенциал вида

$$\begin{split} & \mathbb{V}(\bar{\tau}) = \mathbb{V}_{\mathsf{R}} \cdot \underline{f}_{\mathsf{R}}(\bar{\tau}) - 4i \, \mathbb{W}_{\mathsf{D}}(\bar{\tau}) \left[1 - \underline{f}_{\mathsf{D}}(\bar{\tau})\right] - \left(\frac{\hbar^2}{\beta^4 \pi^c}\right)^2 \times \\ & \times \mathbb{V}_{\mathsf{S0}} \cdot \frac{1}{\alpha_{\mathsf{R}} \tau} \cdot \underline{f}_{\mathsf{R}}(\bar{\tau}) \cdot \left[1 - \underline{f}_{\mathsf{R}}(\bar{\tau})\right] (\hat{\mathfrak{S}} \cdot \hat{t}) \end{split}$$

с формфакторами

$$f_i(\bar{\iota}) = \left\{ 1 + \exp\left[(\iota - \bar{R}_i) / a_i \right] \right\}^{-1}, \quad i = R, D,$$

радиусы которых в приближения квадрупольных деформаций в собственной системе координат ядра определяются выражениями

$$\bar{R}_{i} = R_{0i} \left\{ 1 + \beta \cos \gamma Y_{20} (\theta', \varphi') + \frac{\beta}{\sqrt{2}} \sin \gamma \left[Y_{22} (\theta', \varphi') + Y_{2-2} (\theta', \varphi') \right] \right\},$$

в которых радиусы равновеликих сфер R_{oi} определяются как функции массового числа ядра A соотношением $R_{oi} = \tau_{oi} \cdot A^{1/3}$; $\tau_{oi} -$ параметр радиального распределения взаимодействия. Здесь $\tilde{\ell}$ – оператор орбитального момента; $\hat{\sigma}$ – оператор Паули; $V_{\rm g}$, $W_{\rm p}$,

V₅₀, a_i - параметры оптического потенциала: β и γ - параметры

определяющие форму ядра в собственной системе координат, причём β^2 характеризует суммарное квадратичное отклонение формы ядра от сферы, а параметр асимметрии ядра γ характеризует отклонение формы ядра от симметрии вращения.

Переходя к системе координат, фиксированной в пространстве и, разлагая потенциал взаимодействия в ряд по степеням переменной β , получаем его представление в виде суммы диагональной части $V_{\text{диаr}}$ и потенциала связи $V_{\text{сb}}$. Диагональная часть $V_{\text{диаr}}(\mathbf{r})$ потенциала сферически симметрична и представляет собой обычный оптический потенциал, а потенциал связи $V_{\text{сb}}$ включает в себя несферичность взаимодействия и определяется выражением

$$\begin{split} & V_{cb} (\mathbf{x}, \theta, \varphi; p) = \sum_{t} p^{t} \sigma^{(t)}(\mathbf{x}) \sum_{\mathbf{A}, \mu} Q^{(t)*}_{\mathbf{A}, \mu} Y_{\mathbf{A}, \mu} (\theta, \varphi) , \\ & \sigma^{(t)}(\mathbf{x}) = \frac{1}{t_{1}} \left\{ -V_{R} \left(\frac{R_{oa}}{a_{R}} \right)^{t} f_{R} (\mathbf{i} - f_{R}) [\mathbf{i} - \delta_{t2} (\mathbf{2} f_{R})] \right\} \times \\ & \times \left[\mathbf{i} - \delta_{t3} (6 f_{R} - 6 f_{R}^{2}) \right] \cdot \left[\mathbf{i} - \delta_{t4} (\mathbf{14} f_{R} - 36 f_{R}^{2} + 24 f_{R}^{5}) \right] - \\ & - 4\mathbf{i} W_{D} \left(\frac{R_{ob}}{a_{D}} \right)^{t} \cdot f_{D} (\mathbf{i} - f_{D}) [\mathbf{i} - \delta_{t4} (\mathbf{2} f_{D})] \cdot \left[\mathbf{i} - \delta_{t2} (6 f_{D} - 6 f_{D}^{2}) \right] \times \\ & \times \left[\mathbf{i} - \delta_{t3} (\mathbf{14} f_{L} - 36 f_{D}^{2} + 24 f_{D}^{3}) \right] \cdot \left[\mathbf{i} - \delta_{t4} (30 f_{D} - \mathbf{150} f_{D}^{2} + 240 f_{D}^{3} - \mathbf{120}) \right] \end{split}$$

а входящие в выражение для V_{cb} операторы связи каналов $q_{n\mu}^{(t)}(\theta)$ ($\theta \equiv \theta_1, \theta_2, \theta_3$) определяются в модели неаксиального деформируемого ротатора через коллективные переменные и углы Эйлера следующим образом:

$$\begin{aligned} Q_{\lambda\mu}^{(1)}(\theta) &= \Delta_{\mu\nu}^{\lambda}(\theta) q_{1}^{(1)} + \Delta_{\mu2}^{\lambda}(\theta) q_{2}^{(1)} , \\ q_{1}^{(1)} &= \cos \gamma , \quad q_{2}^{(1)} = \sin \gamma ; \end{aligned}$$

где

где

$$\begin{split} & Q_{\lambda\mu}^{(2)}(\theta) = \frac{5}{\sqrt{4\pi(2\lambda+i)}} (2200|\lambda 0) \Big[\Delta_{\mu 0}^{\lambda}(\theta) q_{1\lambda}^{(2)} + \Delta_{\mu 2}^{\lambda}(\theta) \cdot q_{2\lambda}^{(2)} + \Delta_{\mu 4}^{\lambda}(\theta) \cdot q_{2\lambda}^{(2)} \Big] , \\ & r_{AB} \\ & \left\{ \begin{array}{l} Q_{1\lambda}^{(2)} &= Q_{1}^{(1)} \cdot (22\,00|\lambda 0) \cos\gamma + Q_{2}^{(1)}(22-22|\lambda 0) \sin\gamma , \\ & Q_{2\lambda}^{(2)} &= Q_{1}^{(1)} \cdot (22\,02|\lambda 2) \cdot 2 \cdot \sin\gamma , \\ & Q_{2\lambda}^{(2)} &= Q_{2}^{(1)} \cdot (22\,22|\lambda 4) \cdot \frac{\sin\gamma}{\sqrt{2}} \Big] ; \\ & Q_{3\lambda}^{(3)} & (\theta) = \frac{4}{\sqrt{2}} \Big[(22\,00|\nu 0) \frac{5^{3/2}}{4\pi\sqrt{2\lambda+1}} (2\nu\,00|\lambda 0) \times \\ & \times \Big[\Delta_{\mu 0}^{(3)}(\theta) + \Delta_{\mu 2}^{(2)}(\theta) Q_{2\nu\lambda}^{(3)} + \Delta_{\mu 4}^{\lambda} q_{3\nu\lambda}^{(3)} + \Delta_{\mu 6}^{\lambda}(\theta) Q_{4\nu\lambda}^{(3)} \Big] , \\ & r_{AB} \\ & \left\{ \begin{array}{l} Q_{1\nu\lambda}^{(3)} &= Q_{1\nu}^{(2)}(2\nu00|\lambda 0) \cos\gamma + Q_{2\nu}^{(2)}(2\nu2-2|\lambda 0)\sqrt{2} \sin\gamma , \\ & Q_{1\nu\lambda}^{(3)} &= Q_{1\nu}^{(2)}(2\nu00|\lambda 0) \cos\gamma + Q_{2\nu}^{(2)}(2\nu02|\lambda 2)\sqrt{2} \cos\gamma + \\ & + Q_{2\nu\lambda}^{(2)}(2\nu20|\lambda 2) \sin\gamma + Q_{2\nu}^{(2)}(2\nu02|\lambda 2)\sqrt{2} \cos\gamma + \\ & + Q_{3\nu\lambda}^{(2)}(2\nu-24|\lambda 2) \sin\gamma , \\ & Q_{3\nu\lambda}^{(3)} &= Q_{2\nu}^{(2)}(2\nu22|\lambda 4) \sin\gamma + Q_{3\nu}^{(2)}(2\nu04|\lambda 4)\sqrt{2}\cos\gamma , \\ & Q_{4\nu\lambda}^{(3)} &= Q_{3\nu}^{(2)}(2\nu24|\lambda 6) \sin\gamma ; \\ \end{array} \right] \end{split}$$

и так далее. В приведенных выше формулах

$$\Delta_{\mu x}^{\lambda}(\theta) = \frac{1}{\sqrt{2(1+\delta x o)}} \left[D_{\mu x}^{\lambda}(\theta) + D_{\mu - x}^{\lambda}(\theta) \right]$$

Матричные элементы связи, входящие в правую часть системы связанных уравнений для радиальных функций, определяются на волновых функциях системы "ядро + нуклон": $<(ls)j; I_n \&t; JM \models \sum_{m_j M_I} (jI_n m_j M_I) \&lim_j \Phi I_n M_I \&vt$. Волновая функция $\Phi_{I_n M_I \&v\tau}$, описывающая коллективное движение ядра в модели Давыдова – Чабана, представляется в виде произведения функции жесткого неаксиального ротатора $\Phi_{I_n M_I \tau}$ и функции Вебера D_{v_k} , учитывающей мягкость ядра по отношению к продольным β -колебаниям:

$$\begin{split} \Phi_{\mathbf{I}_{n}M_{\mathbf{I}}k\nu\tau} &= \Phi_{\mathbf{I}_{n}M_{\mathbf{I}}\tau} \cdot D_{\nu_{k}} \\ \Phi_{\mathbf{I}_{n}M_{\mathbf{I}}\tau} &= \sum_{K \geq 0} \left[\frac{2\mathbf{I}_{n}+i}{16\pi^{2}(i+\delta\sigma\kappa)} \right]^{V_{2}} \left\{ D_{M_{\mathbf{I}}K}^{\mathbf{I}_{n}} + (-i)^{\mathbf{I}_{n}} D_{M_{\mathbf{I}}-K}^{\mathbf{I}_{n}} \right\} \cdot \Lambda_{\mathbf{I}_{n}K}^{\mathbf{t}} \, . \end{split}$$

С учётом этого для матричного элемента связи получаем выражение: $<(l^{i}S)j^{i}; I_{n}^{i}k^{i}t^{i}; JM|\sum_{t} p_{0}^{t}\sigma^{(t)}(t)\sum_{\lambda,\mu} Q_{\lambda\mu}^{(t)M}Y_{\lambda\mu}|(lS)j; I_{n}kt; JM\rangle =$ $=(-1)^{J-I_{n}-S} \cdot \frac{1}{\sqrt{4\pi}} \cdot \sqrt{(2l+1)(2j+1)(2l^{i}+1)(2jn+1)} \times$ $\times \sum_{t} p_{0}^{t}\sigma^{(t)}(t) J_{\lambda'\lambda}^{(t)} \sum_{\lambda} (l^{i}l 001\lambda 0) W(j^{i}l^{i}jl; S\lambda) \times$ $\times W(j^{i}j I_{n}^{i}I_{n}; \lambda J) \cdot <I_{n}^{i}k^{i}t^{i} ||Q_{\lambda}^{(t)*}|| I_{n}kt\rangle$

Так как оператор $Q_{\lambda\mu}^{(t)}$ является линейной комбинацией тензорных операторов $\Delta_{\mu x}^{\lambda}(\theta)$ с козффициентами $q_{\lambda}^{(t)}$, независящими от углов Эйлера, вычисление приведенного матричного элемента сводится к вычислению матричного элемента от оператора $\Delta_{\mu x}^{\lambda}(\theta)$ в пространстве функций внутреннего движения ядра-мишени $|I_n \ k t >$.

$$< \mathbf{I}_{h}^{k} k't' |\Delta_{\mu \alpha}^{\lambda *}| \mathbf{I}_{h} kt > = \underbrace{\frac{A_{\mathbf{I}_{h}K}^{t} \cdot A_{\mathbf{I}_{h}K'}^{t}}{\sqrt{2 (1 + \delta \sigma k) (1 + \delta \sigma \kappa') (1 + \delta \alpha \sigma)'}} \cdot \sqrt{\frac{2\mathbf{I}_{h} + \mathbf{I}'}{2\mathbf{I}_{h} + \mathbf{I}'}} \times$$

$$\times (\lambda I'_{n} - \mu M'_{1} | I_{n} M_{1})(-1)^{\alpha - \mu} [(\lambda I'_{n} - \alpha K' | I_{n} K) + (-1)^{I_{n}} (\lambda I'_{n} - \alpha - K' | I_{n} K) + (-1)^{I_{n}} (\lambda I'_{n} - \alpha K' | I_{n} - K) + (-1)^{I_{n} + I'_{n}} (\lambda I'_{n} - \alpha - K' | I_{n} - K)] .$$

Теперь с учётом вышеизложенного можем написать явные выражения для приведенных матричных элементов связи, но мы их здесь не приводим из-за их громоздкости.

Отличительной чертой выражения для матричного элемента связи в сравнении с ранее использованными (например, для ротационной и вибрационной моделей) является наличие в нём интеграла перекрытия волновых функций колебательного движения $J_{d'd}^{(t)}$. Для жёстких ядер ($\int^{\mu} =0$) он равен единице. В случае мягких ядер он определяется выражением:

$$J_{\mu'\mu}^{(t)} = \frac{\int_{0}^{t} y^{t} D_{\nu_{\mu'}} \left[-\frac{\eta_{\mu}^{2}}{P_{\mu'}} x_{\mu'} (y - P_{\mu'}) \right] D_{\nu_{\mu}} \left[-\frac{\eta_{\mu}^{2}}{P_{\mu}} (y - P_{\mu}) x_{\mu} \right] dy}{\sqrt{\int_{0}^{t} D_{\nu_{\mu'}}^{2} \left[-\frac{\eta_{\mu}^{2}}{P_{\mu'}} x_{\mu'} (y - P_{\mu'}) \right] dy} \sqrt{\int_{0}^{t} D_{\nu_{\mu}}^{2} \left[-\frac{\eta_{\mu}^{2}}{P_{\mu}} x_{\mu} (y - P_{\mu}) \right] dy}}$$

Здесь \measuredangle и d' определяют состояние, между которыми рассматривается связь. Наличие величины $J_{dd'}^{(t)}$ в выражении для матричного элемента связи ведёт к увеличению связи каналов, причём это усиление для разных каналов не одинаково, т.е. из-за мягкости ядра происходит перераспределение потока рассеянных частиц по каналам. Интеграл перекрытия $J_{dd'}^{(t)}$ входит также в выражение для приведенных вероятностей Е2- переходов между состояниями I'tv' и Itv

 $B(E2, Itv - I't'v') = Ba(E2, It - I't') \cdot J_{it}^{(1)^2}$, rge

первый множитель выражения является приведенной вероятностью квадрупольных переходов для жёсткого асимметричного ротатора, а второй множитель есть квадрат интеграла перекрытия при t =I волновых функций колебательного движения, описывающих внутреннее состояние ядра. Этим вторым множителем и учитывается мягкость ядра относительно β -колебаний.

Используя значения параметров у и је, которые были нами получены из анализа энергетической структуры ядер ²³⁸U, ⁵⁶Fe, ⁵²Cr и чётных изотопов Se, в предположении однороднозаряженного ядра вычислены приведенные вероятности E2 - переходов между нижайшими возбуждёнными состояниями соответствующих ядер и электрические статические моменты первых 2⁺-состояний. В качестве примера в табл.2 приведены результаты модельных расчётов и сравнение их с экспериментом для ядер чётных изотопов селена.

Таблица 2

Экспериментальные (Э) и теоретические (Т) эначения приведенных вероятностей Е2 -переходов В (Е2; i-f) и электрических квадрупольных статических моментов первых 2⁺-состояний ядер 76,78,80,82_{Se}

Величина	Тип	: 76 _{Se}	: 78 _{Se}	: ⁸⁰ Se	: ⁸² Se
$B(E2; 0_1^+ \Rightarrow 2_1^+),$	ə	4230 <u>+</u> 50	3270 <u>+</u> 60	2530 <u>+</u> 40	1800 <u>+</u> 30
$e^2 \cdot \Phi M^4$	T	2920	3092	2758	2497
$B(E2; 0_1^+ + 2_2^+),$	Э	120+5	106 <u>+</u> 5	134 <u>+</u> 4	145 <u>+</u> 15
$e^2 \cdot \overline{\Phi}M^4$	Т	145,9	135,2	105,3	107,2
B(E2; 2 ⁺ ₁ →2 ⁺ ₂)	,Э	820 <u>+</u> 20	660 <u>+</u> 50,	380 <u>+</u> 20	106 <u>+</u> 15
e ² · ΦM ⁴	Т	571,0	654,I	590,1	492,8
$Q_{1}(2^{+}_{1}),$	Э	-34 <u>+</u> 7	-26 <u>+</u> 9	-31 <u>+</u> 7	<u>-22+</u> 7
e. Φ_{M}^{2}	Т	-34,3	-32,8	-29,3	-28,6
Q., e. \$M2	T	168,5	173,5	165,7	159,8

Параметр внутреннего изадрупольного момента Q. определялся для случая однородно заряженного шара радиуса R_{or} с параметром деформации β_o . Значения R_{or} и β_o взяты из набора параметров оптического потенциала, полученного нами при анализе экспериментальных данных по рассеянию нейтронов на етих ядрах. Подобные сопоставления с экспериментальными величинами, выполненные в других работах для чисто вибрационной и ротационной моделей, показали значительно большее различие между теорией и экспериментом, чем в случае данных табл.2.

<u>Третья глава</u> посвящена анализу экспериментальных данных по рассеянию нейтронов в рамках модели связанных каналов с описанием коллективного движения ядра по модели Давыдова – Чабана.

Анализ спектроскопической информации (энергетический спектр возбуждённых состояний и приведенные вероятности электрических квадрупольных переходов между ними), проведенный в предыдущих главах, убедительно продемонстрировал правомочность выбора гамильтониана внутреннего движения ядра, и тем самым применимость его в рамках метода связанных каналов для анализа экспериментов по рассеянию нейтронов на мягких неаксиальных ядрах.

При поиске параметров несферического оптического потенциола был использован так называемый SPRT-метод, в котором в качестве опорных экспериментальных данных брались оцененные значения силовых функций S_o и S₁ S - и р -волн и радиуса потенциального рассеяния R', связанного с сечением упругого рассеяния G_{el} = 4πR², в области низких энергий налетающих нейтронов, а также экспериментальные значения сечений полного взаимодействия G_t во всей энергетической области. Кроме того, в области высоких энергий в подгонке использовалась имеющаяся надёжная информация по угловым распределениям упруго и неупруго рассеянных нейтронов.

Существенным шагом при вычислении матричных элементов связи является их сходимость по t (степень параметра деформации β, по которому разлагается потенциал взаимодействия), которая определялась требованием описать сечение рассеяния и нейтронные силовые функции S, и S, в области низких энергий нейтронов, быстрая сходимость ряда

16.

по t позволила нам ограничиться значением t =4. Вычисленные в работе значения S_o и S_i для 56 Fe в интервале энергии нейтронов 0,25-0,50 МэВ соответственно равны (в единицах 10^{-4} эВ^{-1/2}) 2,5 и 0,30, что находится в согласии с экспериментальными значениями 2,6±0,8 и 0,45±0,15. Вычисленные значения S_o и S_i при E_n =0,25 МэВ для ${}^{52}C_r$ соответственно равны 2,5 и 0,31, что согласуется с их экспериментально определенными значениями 2,1±1 и 0,3±0,2.

В качестве количественного критерия подгонки параметров несферического потенциала использовали величину χ^2 , применяемую в статистике для измерения соответствия между теоретическими (T) и экспериментальным (Э) распределениями

$$\chi^{2} = \left(\frac{S_{0}^{T} - S_{0}^{3}}{\Delta S_{0}}\right)^{2} + \left(\frac{S_{1}^{T} - S_{1}^{3}}{\Delta S_{1}}\right)^{2} + \left(\frac{R'^{T} - R'^{3}}{\Delta R'}\right)^{2} + \left(\frac{\sigma_{t}^{T} - \sigma_{t}^{3}}{\Delta \sigma_{t}}\right)^{2} + \sum_{i} \left[\frac{\frac{d\sigma(\theta_{i})^{T}}{d\Omega} - \frac{d\sigma(\theta_{i})^{3}}{d\Omega}}{\Delta \frac{d\sigma(\theta_{i})}{d\Omega}}\right]^{2}$$

Процедура подгонки сводится к задаче минимизации величины χ^2 вариацией параметров потенциала обобщенной оптической модели. Автоматический поиск оптимальных параметров потенциала реализован нами в ЭВМ-программе DACHA, в которой используется метод сопряженных градиентов, позволяющий минимизировать функцию многих переменных.

Выбор ядер ⁵⁶Fe и ⁵²Cr обусловлен в первую очередь существенно не равными нулю параметрами их формы и наличием по данным ядрам достаточно общирной экспериментальной информации; кроме того, применительно к ним использовались различные модельные подходы и тем самым появляется возможность проверки их действенности.

В результате анализа данных по рассеянию нейтронов на ядрах ${}^{52}\mathrm{Cr}$ и ${}^{56}\mathrm{Fe}$ получены следующие параметры потенциала и параметры деформации:

- ⁵⁶Fe $V_R = (56,92-0,572 \cdot E)$ MaB, $a_R = 0,635$ Φ_M ; $R_{oR} = 4,489 \Phi_M$; $W_D = (0,699+0,495 \cdot E)$ MaB, $a_D = 0,606 \Phi_M$; $R_{oD} = 4,854 \Phi_M$; $V_{50} = 6,110$ MaB; $p_o = 0,213$;

Современные требования к модельным расчётам ставят во главу тестирования модели качество описания экспериментальных данных в среднем для многих характеристик или процессов. Поэтому с данными наборами параметров потенциала были рассчитаны полные сечения взаимодействия \mathcal{O}_{t} до 20 МэВ, а также дифференциальные сечения упругого и неупругого рассеяния нейтронов в энергетических точках, где расчёт можно сравнить с экспериментом. Качество описания дифференциальных сечений рассеяния нейтронов на ядре 56 Fe продемонстрировано на рис. I.

Также проведен анализ изотопической зависимости параметров потенциала на примере чётных изотопов селена, которые интересным своим нуклонным составом: они занимают промежуточное положение между статическими ядрами по числу протонов (\mathfrak{X} =34) и нейтронов (N =42-48). Это непосредственно сказывается на их деформации и структуре энергетического спектра, свидетельствующих о том, что по крайней мере нижайшие возбуждённые состояния ядер чётных изотопов селена в сильной степени коллектизированы. Для описания состояний ядер в рассматриваемой массовой области A ~ 80 используются различные модельные подходы, которые в случае изотопов селена в той или иной степени одражают экспериментальные данные. В частности, наблюдаемые статические' электрические квадрупольные моменты первых 2⁺-состояний ядер чётных изотопов селена указывают на их продольную деформацию,

а структура энергетического спектра этих ядер может рассматриваться как доказательство их неаксиальности и мягкости относительно р -колебаний поверхности.

Выбор чётных изотопов селена при исследовании изотопической зависимости параметров оптического потенциала прежде всего обусловлен тем,что для них параметр симметрии $\mathcal{F} = (N-\mathcal{I})/A$ изменяется довольно существенно (от 0,1052 для ⁷⁶Se до 0,1707 для ⁸²Se), а это усиливает чувствительность модельных сечений рассеяния к введению изотопического слагаемого в оптический потенциал.

В результате проведенного анализа данных по рассеянию нейтронов на ядрах чётных изотопов селена получены следующие параметры оптического потенциала:

 $\begin{array}{l} V_{R} = (52, 16-0, 32 \cdot E - 20, 37 \cdot \bar{\wp}) \ \mbox{MaB}; \\ W_{D} = (7, 188 + 0, 25 \cdot E - 21, 33 \cdot \bar{\wp}) \ \mbox{MaB}; \\ t_{0R} = 1, 242 \ \mbox{Dm}, \ t_{0D} = 1, 221 \ \mbox{Dm}, \\ \alpha_{R} = 0, 6455 \ \mbox{Dm}, \ \ \alpha_{D} = 0, 5864 \ \mbox{Dm}, \ \ V_{S0} = 6 \ \mbox{MaB}. \end{array}$

Параметры деформации для рассмотренных ядер имеют следующие значения:

 $p_0({}^{76}S_e) = 0,236; p_0({}^{78}S_e) = 0,239; p_0({}^{80}S_e) = 0,225; p_0({}^{82}S_e) = 0,211.$

С полученными параметрами были рассчитаны дифференциальные сечения упругого и неупругого с возбуждением первого 2⁺-состояния рассеяния в энергетической области до 5 МэВ. Качество описания экспериментальных данных полученными параметрами продемонстрировано на рис.2 и 3. Что касается соотношения между величинами жнимото и реального изовекторного потенциалов, то в настоящей работе они близки к величинам, полученным в последних исследованиях Курапа и др.

В заключении кратко перечислены основные результаты работы.

Основные результаты и выводы

33471

N

I. На основе обобщенной оптической модели с описанием коллек-

S.S. STEEDERS

Lan U. L. Howly

тивного движения ядра-мишени в рамках модели Давыдова -Чабана разработан самосогласованный метод, позволяющий с единых позиций описывать спектроскопическую информацию (энергии возбуждённых состояний, приведенные вероятности Е2 -переходов между нихайшими возбуждёнными состояниями, статические электрические квадрупольные моменты возбуждённых состсяний) и экспериментальные данные по интегральным и дифференциальным нейтронным сечениям.

2. Разработаны алгоритмы и созданы на их основе программные комплексы DATET и DACHA, которые с помощью χ^2 -критерия, анализируя экспериментальную информацию по энергиям возбуждённых состояний и интегральным и дифференциальным нейтронным сечениям, позволяют получать модельные параметры (неаксиальности γ' , и мягкости ји и энергетический множитель $\hbar u \rangle_o$), а также параметры несферического оптического потенциала и параметр деформации.

3. Проанализированы экспериментальные данные по рассеянию нейтронов на ядрах ⁵² Сг и ⁵⁶ Fe , получены параметры деформированных оптических потенциалов, позволяющие надёжно описать экспериментальные интегральные и дифференциальные нейтронные сечения в энергетическом интервале 0,5 - 20 МаВ.

4. Получены параметры единого деформированного оптического потенциала с изотопической зависимостью действительной и мнимой глубин для чётных изотопов селена, описывающие угловые распределения упругого и неупругого рассеяния нейтронов на этих ядрах до 5 МэВ.

5. В приближении однородно заряженного ядра с параметром деформации р. и радиусом формфактора реальной части R_{oR}, полученными из оптимизации параметров оптического потенциала при анализе данных по рассеянию, вычислены приведенные вероятности электрических квадрупольных переходов между нижайшими возбуждёнными состоячиями и статические электрические квадрупольные моменты 2⁺-состояний для ядер ⁵² Cr , ⁵⁶ Fe , ²³⁸ U , ^{76,78,80,82} Se . Проведено сравнение полученных результатов с экспериментальными данными и расчётами по другим моделям. Показано, что развитый подход более адекватно отражает экспериментальную ситуацию.

Основные результаты диссертации опубликованы в следующих работах:

- I. Кащуба И.Е., Коньшин В.А., Породзинский Ю.В., Суховицкий Е.Ш. Анализ рассеяния быстрых нейтронов ядрами ²³⁸U // Ядерная физика. - 1987. - Т.46, вып.5(II). - С.1406-1411.
- Кащуба И.Е., Породзинский Ю.В., Суховицкий Е.Ш. Рассеяние нейтронов с возбуждением низколежащих состояний ⁵²Cr // Укр.физ. журнал. - 1989. - Т.34, №8. - С.1150-1156.
- Капуба И.Е., Породзинский Ю.В., Суховицкий Е.Ш. Применение модели Давыдова – Чабана для описания рассеяния быстрых нейтронов чётно-чётными ядрами // Ядерная физика. - 1988. - Т.48, вып.6(12).-С.1688-1698.
- Кащуба И.Е., Породзинский Ю.В., Суховинкий Е.Ш. Описание рассеяния быстрых нейтронов ядрами ⁵⁶ Fe на основе модели мягкого неаксиального ротатора // Нейтр.физика: Матер. I-й Междунар. конф. по нейтр.физике, Киев, 14-18 окт. 1987 г. - М.: ЦНИИатоминформ, 1988. - Т.З. - С.131-135.
- Кашуба И.Е., Поредзинский Ю.В., Суховицкий Е.Ш. Роль структурных эффектов ядра в рассеянии быстрых нейтронов на ядре ⁵²Cr // Нейтр.физика: Матер. I-й Междунар. конф. по мейтр.физике,Киев, I4-I8 окт. 1987 г. – М.: ЦНИИатоминформ, 1988. – Т.2. – С.135-138.

Holafini

Рис.І. Дифференциальные сечения упругого и неупругого с возбуждением первого 2⁺-состояния рассеяния нейтронов с энергиями E_n =2 МэВ и E_n = II,93 МэВ на ядрах 56_{Fe}

Site.

Рис.3. Дифференциальные сечения неупругого с возбуждением первого 2⁺-состояния рассеяния нейтронов с энергией E_n = 3 МэВ на ядрах ^{76,78,80,82} Se

ПОРОДЗИНСКИЙ Юрий Владимирович

ВЗАИМОДЕЙСТВИЕ НЕЙТРОНОВ С ЧЕТНО-ЧЕТНЫМИ ДЕФОРМИРУЕМЫМИ НЕАКСИАЛЬНЫМИ ЯДРАМИ

(Автореферат диссертации на соискание учёной степени кандидата физико-математических наук)

233471

Подписано в печать 19.01.90. АТ 13528 Формат 60ж84 1/16 1,5 печ. л. 1 уч.-изд.л. Тираж 100 экз. Заказ № 9 от 22.01.90 г. Бесплатно.

Отпечатано на ротапринте Института ядерной энергетики АН БССР, 220109, г.Минск, пос.Сосны

Nature States

Бел. 2005

