

::::

NICA

project at LHEP

In an an and an a

Rogachevsky Oleg for MPD/BM@N team ISMART 2014 Minsk 13.10.2014

QCD phase diagram

The collision of two heavy nuclei which approach and smash against each other with almost the speed of light. According to Einstein's theory of special relativity they look like thin pancakes. This "Little Bang" creates in the laboratory the primordial state of matter, called Quark-Gluon Plasma (QGP). The QGP expands like a fireball, cools and finally turns into ordinary matter.

. The thousands of particles produced will be recorded by detectors. The tracks that those particles leave in the detectors will be analysed by modern powerful software tools.

The challenge is to infer the properties of the QGP state of matter by studying the different particles that arrive in the detectors.

QCD Critical point quest

M. Stephanov

XXIV International Symposium on Lattice Field Theory July 23-28 2006 Tucson Arizona, US

Comparison of predictions for the location of the QCD critical point on the phase diagram. Black points are model predictions: NJLa89, NJLb89 – [12], CO94 – [13, 14], INJL98 – [15], RM98 – [16], LSM01, NJL01 – [17], HB02 – [18], CJT02 – [19], 3NJL05 – [20], PNJL06 – [21]. Green points are lattice predictions: LR01, LR04 – [22], LTE03 – [23], LTE04 – [24]. The two dashed lines are parabolas with slopes corresponding to lattice predictions of the slope dT /d μ B 2 of the transition line at μ B = 0 [23, 25]. The red circles are locations of the freezeout points for heavy ion collisions at corresponding center of mass energies per nucleon (indicated by labels in GeV)

[13] A. Barducci, R. Casalbuoni, S. De Curtis, R. Gatto and G. Pettini, Phys. Lett.
B 231 (1989) 463; Phys.
Rev. D 41 (1990) 1610.
[14] A. Barducci, R. Casalbuoni, G. Pettini and R. Gatto, Phys. Rev. D 49 (1994)
426.
[15] J. Berges and K. Rajagopal, Nucl. Phys. B 538 (1999) 215 [arXiv:hep-
ph/9804233].
[16] M. A. Halasz, A. D. Jackson, R. E. Shrock, M. A. Stephanov and J. J. M.
Verbaarschot, Phys. Rev. D
58 (1998) 096007 [arXiv:hep-ph/9804290].
[17] O. Scavenius, A. Mocsy, I. N. Mishustin and D. H. Rischke, Phys. Rev. C 64
(2001), 045202
[arXiv:nucl-th/0007030].
[18] N. G. Antoniou and A. S. Kapoyannis, Phys. Lett. B 563 (2003) 165
[arXiv:hep-ph/0211392].
[19] Y. Hatta and T. Ikeda, Phys. Rev. D 67 (2003) 014028 [arXiv:hep-
ph/0210284].
[20] A. Barducci, R. Casalbuoni, G. Pettini and L. Ravagli, Phys. Rev. D 72,
056002 (2005)
[arXiv:hep-ph/0508117].
[21] S. Koessner, C. Katti and W. Weise, $arXiv:hep-ph/0609281$.
[22] Z. Fodor and S. D. Katz, JHEP 0203 (2002) 014 [arXiv:nep-lat/0106002];
JHEP 0404, 050 (2004)
[arXiv:nep-lat/0402000].
and C. Sahmidt, Prog.
Theorem Diversion $152, 118, (2004)$ [arVirghon lat/0212006]
[24] R. V. Gavai and S. Gunta, Phys. Rev. D 71, 114014 (2005) [arXiv:hop
[24] R. V. Gavar and S. Gupta, Thys. Rev. D 71, 114014 (2003) [arXiv.nep- lot/0419035]
[25] P. de Forerand and O. Philipsen, arXiv:hen-nh/0301209; Nucl. Phys. B 673
(2003) 170
[arXiv:hen-lat/0307020]: Nucl Phys Proc Suppl 129 521 (2004) [arXiv:hen-
lat/03091091
100 0000 100 J.

January 31, 2000

Evidence for a New State of Matter: An Assessment of the Results from the CERN Lead Beam Programme

Ulrich Heinz and Maurice Jacob Theoretical Physics Division, CERN, CH-1211 Geneva 23, Switzerland

A common assessment of the collected data leads us to conclude that we now have compelling evidence that a new state of matter has indeed been created, at energy densities which had never been reached over appreciable volumes in laboratory experiments before and which exceed by more than a factor 20 that of normal nuclear matter. The new state of matter found in heavy ion collisions at the SPS features many of the characteristics of the theoretically predicted quark-gluon plasma.

arXiv:nucl-th/0002042v1 16 Feb 2000

The Quark-Gluon-Plasma is Found at RHIC

3rd RHIC Milestone

Nuckar Physics	
Suppressed π^0 Production at Large Transverse Momentum in Central Au + Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV} \dots$ S.S. Adler <i>et al.</i> (PHENIX Collaboration)	072301
Centrality Dependence of Charged-Hadron Transverse-Momentum Spectra in d + Au Collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$ B.B. Back <i>et al.</i> (PHOBOS Collaboration)	072302
Absence of Suppression in Particle Production at Large Transverse Momentum in $\sqrt{s_{NN}} = 200 \text{ GeV } d + \text{Au}$ Collisions	072303
S.S. Adlet et a_i . (PHENIX Couldoration) Evidence from $d + Au$ Measurements for Final-State Suppression of High- p_T Hadrons in Au + Au Collisions at	
RHIC J. Adams et al. (STAR Collaboration)	072304
Transverse-Momentum Spectra in Au + Au and d + Au Collisions at $\sqrt{s_{NN}}$ – 200 GeV and the Pseudorapidity Dependence of High- p_T Suppression L Arsene <i>et al.</i> (BRAHMS Collaboration)	072305

RHIC White papers

BNL -73847-2005 Formal Report

Nuclear Physics A 757 (2005)

Hunting the Quark Gluon Plasma

RESULTS FROM THE FIRST 3 YEARS AT RHIC

Assessments by the experimental collaborations

April 18, 2005

Relativistic Heavy Ion Collider (RHIC) • Brookhaven National Laboratory, Upton, NY 11974-5000

CONTENTS

Forward	Ì
Quark Gluon Plasma and Color Glass Condensate at RHIC? The Perspective from the BRAHMS Experiment	1
Formation of Dense Partonic Matter in Relativistic Nucleus-Nucleus Collisions at RHIC: Experimental Evaluation by the PHENIX Collaboration	33
The PHOBOS Perspective on Discoveries at RHIC 1	159
Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions	53

STAR BES program

Experimental Study of the QCD Phase Diagram and Search for the Critical Point: Selected Arguments for the Run-10 Beam Energy Scan at RHIC

The STAR Collaboration (B. I. Abelev et al.)

Introduction & Summary

We present an overview of the main ideas that have emerged from discussions within STAR for the Beam Energy Scan (BES). The formulation of this concise and abridged document is facilitated by the existence of a much longer and more comprehensive companion document entitled *Experimental Exploration of the QCD Phase Diagram:* Search for the Critical Point [1]. The compelling arguments and motivations for the physics of our proposed Beam Energy Scan program, which have a particular role in guiding the run plan (see p. 13) as set out in our discussion of Tables 1 and 2, are (not in order of priority):

- A. A search for turn-off of new phenomena already established at higher RHIC energies; QGP signatures are the most obvious example, but we define this category more broadly. If our current understanding of RHIC physics and these signatures is correct, a turn off must be observed in coveral signatures, and such corroboration is an essential part of the "unfinished business" of QGP discovery [2]. The particular observables that STAR has identified as the essential drivers of our run plan are:
 - (A-1) Constituent-quark-number scaling of v2 , indicating partonic degrees of freedom;
 - (A-2) Hadron suppression in central collisions as characterized by the ratio R_{CP};
 - (A-3) Untriggered pair correlations in the space of pair separation in azimuth and pseudorapidity, which elucidate the ridge phenomenon;
 - (A-4) Local parity violation in strong interactions, an emerging and important RHIC discovery in its own right, is generally believed to require deconfinement, and thus also is expected to turn-off at lower energies.
- B. A search for signatures of a phase transition and a critical point. The particular observables that we have identified as the essential drivers of our run plan are:
 - (B-1) Elliptic & directed flow for charged particles and for identified protons and pions, which have been identified by many theorists as highly promising indicators of a "softest point" in the nuclear equation of state;
 - (B-2) Azimuthally-sensitive femtoscopy, which adds to the standard HBT observables by allowing the tilt angle of the ellipsoid-like particle source in coordinate space to be measured; these measurements hold promise for identifying a softest point, and complements the momentum-space information revealed by flow measurements, and
 - (B-3) Fluctuation measures, indicated by large jumps in the baryon, charge and strangeness susceptibilities, as a function of system temperature – the most obvious expected manifestation of critical phenomena.

Current & future experiments

Facility	SPS	RHIC BES	Nuclotron -M	NICA	SIS/100 (300)	LHC
Laboratory	CERN Genev a	BNL Brookhave n	JINR Dubna	JINR Dubna	FAIR GSI Darmsta dt	CERN Geneva
Experiment	NA61 SHIN E	STAR PHENIX	BM@N	MPD	HADES CBM	ALICE ATLAS CMS
Start of data taking	2011	2010	2015	2019	2017/18	2009
CMC energy GeV/(N+N)	5.1 – 17.3	7.7 – 200	< 3.5	4 - 11	2.3 – 4.5	up to 5500
Physics	CP & OD	CP & OD	HDM	OD & HDM	OD & CP	PDM

CP — critical point OD — onset of deconfinement, mixed phase, 1st order phase transition HDM — hadrons in dense matter PDM — properties of deconfined matter

Barion density & hypernuclei production

Munzinger, J.Stachel, H.Stocker Hypernuclei production 50+50 Hadronic freeze-out enhanced at high baryon 30+30 densities (NICA) $\epsilon^* = m_N^{} \rho$ Yield (dN/dy) for 10⁶ events -**∓**-³∕H - ³He, ³He 10 -**-**-_^5H -----⁴He, ⁴He 10 --___6He 10 -<mark>→</mark>__{AAΞ}⁷He S=0 & Q/B=0.4 40 10 RHIC 30 20 10 FAIR 10 1 0.00 10⁻¹ 0.04 0.08 0.12 0.16 Net baryon density $\rho_{\rm B}$ (fm⁻³) 10⁻² 10⁻³⊧ 10⁻⁴

10⁻⁵

10

10²

10³

 $\sqrt{\mathbf{s}_{_{\mathrm{NN}}}}$ (GeV)

A.Andronic, P.Braun-

Particles yield

NICA physics

http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome

Draft v 10.01 January 24, 2014

> SEARCHING for a QCD MIXED PHASE at the NUCLOTRON-BASED ION COLLIDER FACILITY (NICA White Paper)

Observables

I stage:: mid rapidity region (good performance)

- □ Particle yields and spectra $(\pi, K, p, clusters, \Lambda, \Xi, \Omega)$
- Event-by-event fluctuations
- Femtoscopy involving π, K, p, Λ
- Collective flow for identified hadron species
- Electromagnetic probes (electrons, gammas)

II stage: : extended rapidity + ITS

- Total particle multiplicities
- □ Asymmetries study (better reaction plane determination)
- Di-Lepton precise study (Endcap Calorimeter)
- Charm
- Exotics (soft photons, hypernuclei)

Measurements regarded as complementary to RHIC/BES and CERN/NA61, However, higher statistics & (close to) the total yields for rare probes at MPD No boost invariance at NICA – more accurate source parameters fit without rapidity cut Rapidity dependence of the fireball thermal parameters will be possible at NICA

Superconducting accelerator complex NICA (Nuclotron based Ion Collider fAcility)

Facility Operation Scenario

Nuclotron (1993)

superconducting accelerator for ions and polarized particle
physics of ultrarelativistic heavy ions, high energy spin physics

Nuclotron provides now performance of experiments on accelerated proton and ion beams (up to Xe^{42+} , A=124) with energies up to 6 AGeV (Z/A = 1/2)

Booster (synchrophasotron (1957-2002))

The heaviest magnet is one measuring 196 ft in diameter, with a weight of 40,000 tons, for the 10 GeV synchrophasotron in the Joint Institute for Nuclear Research at Dubna, near Moscow.

Collider — heavy ion mode

Au(+79) ion mode

[] - element length

() - distance between elements

Veksler & Baldin Laboratory of High Energy Physics, JINR

Unique SC heavy ion source

Heavy ion source: Krion-6T ESIS

5.4 Tesla magnetic field was reached

E.D.Donets, E.E.Donets

Test gold ion beams have been produced $Au^{30+} \div Au32^{32+}, \ 6\cdot 10^8 \ ppp, \ T_{ioniz} = 20 \ ms$ Ion beams $Au^{51+} \div Au^{54+}$ are produced. <u>New goal</u>: $Au^{65+} \div Au^{69+}$

Source for polarized particles the goal: 10¹⁰ deuterons per pulse

The booster inside Synchrophasotron yoke

I.N.Meshkov

V.V.Putin

Nuclotron beams

Parameter	Project (2017)		Achie	eved
Magnetic field, T	2.0 (Β ρ = 4)	2.8 T⋅m)	2.0	0
Field ramp, T/s	1.0		0.8	8
Repetition period, s	5.0		8.0	0
	Energy, GeV/u	lons/ cycle	Energy, GeV/u	lons/ cycle
<i>Light ions</i> \Rightarrow d	6.0	5.10 ¹⁰	5.6	1.10 ¹⁰
Heavy ions	With KRION-67	T & Booster	Without KRION-2	
⁴⁰ Ar ¹⁸⁺	4.9	2.10 ¹⁰	3.5	5.10 ⁶
⁵⁶ Fe ²⁶⁺	5.4	1.10 ¹⁰	2.5	2·10 ⁶
¹²⁴ Xe ^{48/42+}	4.0	2⋅10 ⁹	1.5	1.10 ³
¹⁹⁷ Au ⁷⁹⁺	4.5	2⋅10 ⁹		
Polarized beams	With SPI & Sib	erian snake	With PO	LARIS
p↑	11.9	1.10 ¹⁰		
d↑	5.6	1.10 ¹⁰	2.0	5.10 ⁸

Magnets for the booster

Booster dipole at cryo-test (9690A) and magnetic measurements

Quadrupol e lense

Sextupole corrector prototype (for SIS100 and NICA booster) at assembly

Magnets for the collider

Cryo-tests (autumn 2012), magnetic measurements, new cryo-plant at b.217 (power convertors, cryogenics, etc.)serial production...

NICA experiments

Multi Purpose Detector

MPD Conseptual Design Report

http://nica.jinr.ru

Version 1.4

The MultiPurpose Detector – MPD

to study Heavy Ion Collisions at NICA (Conceptual Design Report)

Project leaders: A.N. Sissakian, A.S. Sorin, V.D. Kekelidze

Editorial board:

V.Golovatyuk, V.Kekelidze, V.Kolesnikov, D.Madigozhin, Yu.Murin, V.Nikitin, O.Rogachevsky

Internal referee board:

N.Gorbunov, V.Kolesnikov, I.Meshkov, A.Olshevski, Yu.Potrebenikov, N.Topilin, I.Tyapkin, Yu.Zanevsky, A.Kurepin

The MPD Collaboration:¹

Kh.U.Abraamyan, S.V.Afanasiev, V.S.Alfeev, N.Anfimov, D.Arkhipkin, P.Zh.Aslanyan, V.A.Babkin, S.N.Bazylev, D.Blaschke, D.N.Bogoslovsky, I.V.Boguslavski, A.V.Butenko, V.V.Chalyshev, S.P.Chernenko, V.F.Chepurnov, VI.F.Chepurnov, G.A.Cheremukhina, I.E.Chirikov-Zorin, D.E.Donetz, K.Davkov, V.Davkov, D.K.Drvablov, D.Drnojan, V.B.Dunin, L.G.Efimov, A.A.Efremov, E.Egorov, D.D.Emelyanov, O.V.Fateev, Yu.I.Fedotov, A.V.Friesen, O.P.Gavrischuk, K.V.Gertsenberger, V.M.Golovatvuk, I.N.Goncharov, N.V.Gorbunov, Yu.A.Gornushkin, N.Grigalashvili, A.V.Guskov, A.Yu.Isupov, V.N.Jejer, M.G.Kadykov, M.Kapishin, A.O.Kechechyan, V.D.Kekelidze, G.D.Kekelidze, H.G.Khodzhibagiyan, Yu.T.Kiryushin, V.I.Kolesnikov, A.D.Kovalenko, N.Krahotin, Z.V.Krumshtein, N.A.Kuz'min, R.Lednicky, A.G.Litvinenko, E.I.Litvinenko, Yu.Yu.Lobanov, S.P.Lobastov, V.M.Lysan, L.Lytkin, J.Lukstins, V.M.Lucenko, D.T.Madigozhin, A.I.Malakhov, I.N.Meshkov, V.V.Mialkovski, I.I.Migulina, N.A.Molokanova, S.A.Movchan, Yu.A.Murin, G.J.Musulmanbekov, D.Nikitin, V.A.Nikitin, A.G.Olshevski, V.F.Peresedov, D.V.Peshekhonov, V.D.Peshekhonov, I.A.Polenkevich, Yu.K.Potrebenikov, V.S.Pronskikh, A.M.Raportirenko, S.V.Razin, O.V.Rogachevsky, A.B.Sadovsky, Z.Sadygov, R.A.Salmin, A.A.Savenkov, W. Scheinast, S.V.Sergeev, B.G.Shchinov, A.V.Shabunov, A.O.Sidorin, I.V.Slepnev, V.M.Slepnev, I.P.Slepov, A.S.Sorin, O.V.Teryaev, V.V.Tichomirov, V.D.Toneev, N.D.Topilin, G.V.Trubnikov, I.A.Tyapkin, N.M.Vladimirova, A.S.Vodop'yanov, S.V.Volgin, A.S.Yukaev, V.I.Yurevich, Yu.V.Zanevsky, A.I.Zinchenko, V.N.Zrjuev, Yu.R.Zulkarneeva Joint Institute for Nuclear Research, Dubna, RF

V.A.Matveev, M.B.Golubeva, F.F.Guber, A.P.Ivashkin, L.V.Kravchuck, A.B.Kurepin, T.L.Karavicheva, A.I.Maevskaya, A.I.Reshetin, E.A.Usenko Institute for Nuclear Research, RAS, Troitsk, RF

¹The list of participating Institutes is currently a subject of update.

MPD solenoid

Length of the TPC	340 cm Full length : 400cm				
Outer radius of vessel	140cm				
Inner radius of vessel	27 cm				
Length of the drift volume	170cm (of each half)				
Magnetic field strength	0,5 Tesla				
Electric field strength	~140V/cm;				
Drift gas	90% Ar+10% Methane, Atmospheric pres. + 2 mbar				
Gas amplification factor	~ 104				
Drift velocity	5,45 cm/µs;				
Drift time	≤ 31µs				
Temperature stability	< 0.1°C				
Pad size	4x12mm ² and 5x18mm ²				
Number of pads	~ 110 000				
Pad raw numbers	53				
Maximal event rate	≤ 5 kHz (Lum. 10 ²⁷)				
Signal to noise ratio	30:1				

Phase space

Charged Particle ID

E = 9 GeV, 2000 events, UrQMD

Low-p cutoff ~ **100 MeV** for a **0.5 T** magnetic field

TPC prototype

Test with laser beam

Field cage

Time of Flight detector

mRPC prototype with a strip

(T1 - T2) for two mRPCs

Full scale mRPC prototype with a strip

Electromagnetic calorimeter

Design of the ECAL module.

 $\begin{array}{l} Pb(0.35 \ mm) + Scint.(1.5 \ mm) \\ 4x4 \ cm^2 \ , \ L \ \sim 35 \ cm \ (\sim \ 14 \ X_0) \\ read-out: \ WLS \ fibers \ + \\ MAPD \end{array}$

Setup for testing ECAL prototypes

Energy resolution

Zero Degree Calorimeter

Module assembling at

Transverse size 10x10 cm², length~160 cm, weight ~120 kg. 60 lead/scintillator sandwiches. 6 fiber/MAPD 10 MAPDs/module

Beam test at CERN

0.1

0

0.2

 $E_{dep}^{0.3}$

FFDL

Time difference (T1-T2) for 2 FFD modules measured in Dec'12

Test facility at Nucltron

FFDR

Barionic Matter at Nuclotron

BM@N Conseptual Design Report

http://nica.jinr.ru

Conceptual Design Report

BM@N — Baryonic Matter at Nuclotron

Study of Strange Matter Production in Heavy-Ion Collisions at the Nuclotron

Experimental cave

counting rooms

BM@N detectors

BM@N drift chambers

Zero Degree Calorimeter

ZDC platform test in Kramatorsk

· Energy deposited in ZDC vs collision impact parameter

Sci-Pb sandwich calorimeter with PMT readout, 104 modules

Radiation doses at BM@N

Equivalent Doses (mkSv/hour): FLUKA simulation, Au+Au, 4 GeV/nuclon, intensity 10⁷ Au/sec, Vacuum beam line

Spin Physics Detector

draft version 2.1 14.06.2010

THE SPIN PHYSICS DETECTOR- SPD to study spin structure of the nucleon and polarization effects at NICA (Conceptual Design Report)

JINR Dubna 2010

- 1. PHYSICS MOTIVATION
- 1.1 Drell-Yan processes

Contents

INTRODUCTION

- **1.2** J/**\psi** production processes
- 1.3 Spin effects in elastic *pp pd* and *dd* scattering
- 1.4 Spin effects in inclusive high-p_T reactions
- 1.5 Polarization effects in heavy ions collisions
- 2. THE POLARIZED BEAMS AT NICA COLLIDER
- 3. THE SOURSE OF POLARIZED IONS
- 4. POLARIMETRY AT NUCLOTRON-M AND NICA COLLIDER
- 5. PROPOSED MEASUREMENTS
- 5.1 Studies of Drell-Yan and J/ ψ production processes
- 5.2 Studies of the spin effects in baryon, meson and photon productions.
- 5.3 Cross sections, helicity amplidudes and double spin asymmetries (Krisch effect) in elastic reactions.
- 5.4 Studies of polarization effects in heavy ion collisions

6. DETECTOR

- 6.1 Toriod magnet for precision momentum measurements.
- 6.2 Silicon Vertex Detector
- 6.3 Drift Chambers for tracking system
- 6.4 EM Calorimeter
- 6.5 Trigger Hodoscopes
- 6.6 Range System
- 6.7 Ingeneering systems and services

7. COST ESTIMATION

References

NICA – basic milestones

The project of NICA complex was approved	2010
The 1-st stage of Nuclotron modernization was completed	2010
The project	approval – completion
NICA accelerator complex	2010 – 2019
MPD (MultiPurpose Detector)	2010 – 2019
BM@N (Barionic Matter at Nuclotron) I stage	2012 - 2017
SPD (Spin Physics Detector)	is in progress

NICA Complex Civil Engineering

The State Expertise – Oct. 2013 International tender – 2013

Preparatory works completed - 2014 1-st contract with General Contractor – 2

Civil construction will be completed by 2018 Start up version of NICA Collider: commissioning is foreseen in 2019

International Cooperation @ Nuclotron-M / NICA experiments

Joint Institute for Nuclear Research

□ The University of Sidney, Australia

Physics Institute Az.AS, Azerbaijan

□ Particle Physics Center of Belarusian State University, **Belarus**

□ Institute for Nuclear Research & Nuclear Energy BAS, Sofia, **Bulgaria**

Hilendarski University of Plovdiv, Bulgaria

Blagoevgrad University, Blagoevgrad, Bulgaria

- □ University of Science and Technology of China, Hefei, China
- Department of Engineering Physics, Tsinghua University, Beijing, China

Osaka University, Japan

□ RIKEN, Japan

GSI, Darmstadt, Germany

- □ Aristotel University of Thessaloniki, Greece
- □ Institute of Applied Physics, AS, Moldova
- □ Institute of Physics & Technology of MAS, University of Mongolia
- □ Warsaw Technological University, Warsaw, Poland
- □ Institute for Nuclear Research, RAS, **RF**
- □ Nuclear Physics Institute of MSU, **RF**
- □ St.Petersburg State University, **RF**
- □ Institute Theoretical & Experimental Physics, **RF**
- □ University of Cape Town, **RSA**
- □ Bogolyubov Institute for Theoretical Physics, NAS, Ukraine
- □ Institute for Scintillation Materials, Kharkov, **Ukraine**
- □ State Enterprise Science & Tech. Research Design Institute, Kharkov, Ukraine
- □ TJNAF (Jefferson Laboratory), USA

Thank you for attention

Back up

QGP signatures

QUARK-GLUON PLASMA

From Big Bang to Little Bang

© K. Yagi, T. Hatsuda and Y. Miake 2005

- (1) A second rise in the average transverse momentum of hadrons due to a jump in entropy density at the phase transition.
- (2) Measurement of the size. of the fireboll by particle interferometry with identical hadrons (Hanbury-Brown and Twiss effect).
- (3) Enhanced production of strangeness and charm from QGP.
- (4) Enhanced production of anti-particles in QGP.
- (5) An increase of an elliptic flow of hadrons from early thermalization of an anisotropic initial configuration.
- (6) Suppression of the event-by-event fluctuations of conserved charges
- (7) Suppression of high- $\mathbf{p}_{_{\mathrm{T}}}$ hadrons due to the energy loss of a parton in QGP

(8) ??dification of the ?????ti?s of heavy mesons $(J/\Psi, \Psi', \Upsilon, \Upsilon')$ due to the color Debye screening in QGP.

- (9) Modifications of the mass and width of the light vector ??sons due to chiral symmetry restoration.
- (10) Enhancement of thermal photons and diieptons due to the emission from deconfined QCD plasma

Pioneering ideas/experiments:

► 1980/00: AGS/SPS experiments with heavy ions discovery of strongly interacting matter (large volume, in ≈ equilibrium)

2000: M.Gazdzicki, M. Gorenstein statistical model predictions of the phase transition at the SPS energies

2000: NA49 at the CERN SPS discovery of phase transition of strongly interacting matter

► 2000-...: RHIC experiments study the properties of QGP