

New Phase of the EDELWEISS Dark Matter Search Experiment

- Scientific goal
- Status and results of the EDELWEISS experiment
- · EDELWEISS-III
- Conclusion and outlook

S. Rozov (JINR, Dubna, Russia)

NUCLEUS-2014

Minsk, July 2nd, 2014

Motivation Astrophysical data clearly shows existence of an unidentified form of matter

~4.9% NORMAL MATTER

~26.8%DARK MATTER

DARK ENERGY

 $\sim 63.3\%$ DARK ENERGY

DARK ENERGY

DARK ENERGY

The EDELWEISS experiment search Non Baryonic Cold Dark Matter in form of WIMPs with Cryogenic HPGe Detectors

About 50 scientists from

- CRTBT, SPM-CNRS, Grenoble, France
- CSNSM, IN2P3-CNRS, Universite Paris XI, Orsay, France
- CEA, (IRFU / IRAMIS) Saclay, France
- Department of Physics and Astronomy, University of Sheffield, UK
- DzLNP, Joint Institute for Nuclear Research, Dubna
- IPNL, Lyon, IN2P3-CNRS, France
- KIT (IK / EKP/ IPE), Karlsruhe, Germany
- Laboratoire Souterrain de Modane, CEA-CNRS, Modane, France
- University of Oxford, Department of Physics, Oxford, UK.

A Search for Cold Dark Matter with Cryogenic **Detectors at Frejus Underground Laboratory**

EDELWEISS experiment search for rear events of WIMP-nucleon scattering χ $\mathbf{E}_{\mathbf{R}} = \mathbf{E}_{\chi} \frac{4 M_A M_{\chi}}{(M_A + M_{\gamma})^2} \cos^2 \theta_A$

WIMP γ from the galactic halo V ~ 230 km/s

Main experimental challenges are: event rate is ultra small (below of 1 per 100 kg of matter per day); energy deposition is tiny (below of 100 keV)

Thus main tasks for any Dark Matter search experiment are: detector mass + long stable data taking detectors' performance (low threshold, good resolution) background reduction

Solutions of the background problem:

- 1. Traditional
- 2. Special

Solutions of the background problem:

1. Traditional

Experiment is located in one of the deepest underground laboratory – LSM – with muon flux only 4 $\mu/m^2/day$

Using of multi layer shielding + active veto system Material selection

Continuous control of radon and neutron background

2. Special

Using of *Heat* and *Ionization* HPGe detectors, running in ³He-⁴He dilution cryostat (<20 mK)

Ratio $E_{ionization}/E_{recoil}$ is =1 for electronic recoil ≈ 0.3 for nuclear recoil \Rightarrow Event by event identification of the recoil \Rightarrow Discrimination $\gamma/n > 99.99\%$

Detectors with special concentric planar electrodes for active rejection of surface events (miss-collected

The EDELWEISS-II

Main result of the EDELWEISS-II phase of the experiment 10 ID ~400 g HPGe detectors (fiducial mass 1.6 kg)

standard halo $\rightarrow \sigma_{SI} < 4.4 \text{ x} 10^{-8} \text{ pb at } 90\%$ C.L. for $M_{WIMP} = 85 \text{ GeV/c}^2$

EDW (384kgd; [20-200keV], 5evts $\rightarrow \sigma_{SI} < 4.4 \text{ x} 10^{-8} \text{ pb}; M_{WIMP} = 85 \text{ GeV/c}^2$) EDW-I \rightarrow EDW-II x20 improvement

EDW (384kgd; [20-200keV], 5evts $\rightarrow \sigma_{SI} < 4.4 \text{ x } 10^{-8} \text{ pb}; M_{WIMP} = 85 \text{ GeV/c}^2$) CDMS (~379kgd; [~10-100keV], 4 evts; $\sigma_{SI} < 3.8 \text{ x } 10^{-8} \text{ pb}; M_{WIMP} = 70 \text{ GeV/c}^2$)

EDW (384kgd; [20-200keV], 5evts $\rightarrow \sigma_{SI} < 4.4 \text{ x } 10^{-8} \text{ pb}; M_{WIMP} = 85 \text{ GeV/c}^2$) 113 kgd; [5-20keV], 1-3 evts $\rightarrow \sigma_{SI} < 1.0 \text{ x } 10^{-5} \text{ pb}; M_{WIMP} = 10 \text{ GeV/c}^2$)

Excellent results but where are WIMPs?

Excellent results but where are WIMPs?

Main upgrade from EDELWEISS-II to EDELWEISS-III

- Nature of the background
- Detector's mass

Both aims are targeted with new FID800 detectors + improved experimental setup

γ (¹³³Ba) calibration of ID400 detectors (EDELWEISS-II).

Excess of events in the intermediate region, events in the WIMP search region

FID800 detectors

EDELWEISS-III: improved neutron shielding

Neutron background reduction by 10 + times

~10 cm of polyethylene below detectors.

~6 cm of PE on the sides and top.

Low-radioactive cables and connectors.

New copper screens (cryostat), plates and bars.

1: external cupper screen of the cryostat; 2: lead shielding; 3: main polyethylene shielding (EDELWEISS-2 and 3); 4: electronics in the main polyethylene shielding; 5: part of the new polyethylene shielding (EDELWEISS-3).

EDELWEISS-III

Less microphonics.Resolution improvement by 30%.

EDELWEISS-III, new fast electronics

upgrade of electronics & cabling

100

new cables 300K-100k-1K-10mK

K FET boxes AD boxes w/ 100kHz/40MHz sampling → new front-end electronics <1 keV FWHM baseline resolution</p>

upgrade of DAQ & data structure

FE electronics

- low power high resol. HEMT@4K

EDELWEISS-III, 36 new FID800 detectors produced and installed in the cryostat Significant increase of the fiducial mass (from 1.6 kg to ~22 kg)

EDELWEISS-III timeline and aims

- Now, July 2014
 - fully equipped cryostat with 36 FID800 detectors
- end 2014
- July 2014 Ily equipped cryostat th 36 FID800 detectors 2014 each 3.500 kg.d (125 days of data taking) reach 3.500 kg.d

sensitivity to WIMP-nucleon SI cross-section of better of the $4x10^{-45}$ cm² for a M_{WIMP} ~100 GeV/c²

- early 2016
 - reach 12.000 kg.d (500 days of data taking)

The target

We hope to see WIMP's signals soon

• Dark Matter problem is important for both particle physics and astrophysics;

•EDELWEISS experiment located at Modane Undeground Laboratory (France). The experiment aimed for direct WIMP observation in terrestrial laboratory with HPGe cryogenic detectors working in heationization mode;

• EDELWEISS has a potential for exploring 10⁻⁴⁵ cm² level in next few years (region of interest of SUSY models – discovery of WIMPs);

BACKUP SLIDES

IONISATION SIGNAL

ID detectors and results

- ²¹⁰Pb source calibration at LSM
- **Rejection** ~ 1 in 2 10⁴!
- Equivalent to exposure of 4000- 40 000 kgd !

- Gamma rejection better than 1 in 10⁵
- Expected background ~0.1 per 3000 kg.d

$^{210}\text{Pb}\ \beta$ rejection of 200g

Scheme of background surface events

Level of contamination is very low: < 0.5 alphas / detector / day (few tenth atoms of 210 Pb per cm²)

Anyway need a confirmation that background is due surface events -> MC + experimental test

Background in Rol (20-200 keV)		Rate 90%CL (event / 384 kg.d)
γ-background	1.8.10 ⁴ events	
133Ba calibration:	× 3·10 ⁻⁵ leakage into Rol	< 0.9
Surface events	5000	
210Pb source:	× 6·10 ⁻⁵	< 0.3
Neutrons from all components		
Geant4 x measured radiopurity		< 3.1
μ-induced events	$\Gamma \ ^{\mu -n} = 0.008 ^{+0.005}_{-0.004}$ (events/kg.d)	
veto efficiency (conservative):	>93.5%	< 0.72
Total		< 5.02

Modane Underground Laboratory (LSM)

Go deep underground to search for probably most interesting part of the Universe

m

m

1263

6210

FRANCE

Muons: 5x10⁻⁵ μ.m⁻².s⁻¹ Neutrons: ~5x10⁻² n.m⁻².s⁻¹ Radon: 10 Bq/m³

1298

Altitudes Distances 1228 m

Beyond EDELWEISS-III \rightarrow EURECA

EURECA "baseline" site: DOMUS@LSM

EURECA baseline design

https://dl.dropbox.com/u/58745013/EURECA-CDR-final.pdf

EURECA detector towers

12 towers with Ø=280mm tray tower spacing: d=360mm

tower of 18x6 casings with Ø=86mm; h=48mm →1296 detectors 800g-Ge

(or 2160 detectors **300g-CaWO**₄)

2013 ongoing study:

- technical design of a tower a)
- cabling & frontend electr. b)
- thermal conductance tests C)

SNOWMASS 2013

Where Are We Going?

