МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ТАТАРСКИЙ ГОСУДАРСТВЕННЫЙ ГУМАНИТАРНО-ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ

Р.Х. САФАРОВ

ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

(С приложениями к живым системам)

M 010

Казань 2008 УДК 539.17 ББК 22.38 С 21

Печатается по решению учебно-методического совета физического факультета Татарского государственного гуманитарнопедагогического университета

Научный редактор: Р.М. Юльметьев – доктор физ.-мат. наук, проф.

Рецензенты: *Ю.А. Нефедьев* – доктор физ.-мат. наук, проф. (КГУ); *А.С. Ситдиков* – кандидат физ.-мат. наук, доц. (КГЭУ).

Сафаров Р.Х. Физика атомного ядра и элементарных частиц: С 21 учебное пособие для студентов педагогических вузов. — Казань: РИЦ «Школа», 2008. — 280 с.

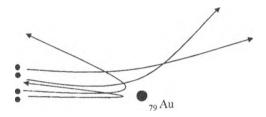
ISBN 5-94712-015-1

Учебное пособие составлено на основе лекций, практических и индивидуальных занятий, проводимых проф. Сафаровым Р.Х. на кафедре теоретической физики в ТГГПУ. Пособие разбито на 3 части (модули), по которым проводится контроль знаний студентов в виде контрольной работы и компьютерного тестирования. С целью оказания помощи студенту в освоении материала каждая тема пособия завершается заданием контрольных вопросов для самоконтроля знания. Для овладения основными приемами решения задач в конце каждой темы приводится подробный разбор решения типичных задач, а затем задаются задачи для самостоятельного выполнения. В приложении приведены таблицы всех известных к настоящему времени изотопов химических элементов и элементарных частиц с их характеристиками. Эти данные могут быть использованы при проведении практических занятий.

В пособии рассматриваются некоторые проблемы биологического воздействия излучений радиоактивных изотопов на организм человека и современное состояние радиационной безопасности населения.

Пособие предназначено для студентов физического факультета педагогических вузов.

© Р.Х. Сафаров, 2008 г.


ISBN 5-94712-015-1 © Оформление РИЦ «Школа», 2008

Часть I. Физика атомного ядра

Глава 1. Свойства атомных ядер

1.1. Опыт Резерфорда. Открытие атомного ядра, протона и нейтрона. Гипотеза о нейтрон-протонной структуре ядра

История открытия атомного ядра начинается с опытов Резерфорда и его учеников, когда было доказано существование в атоме массивного центра, названного **ядром**. Резерфорд, изучая явление прохождения α -частиц через вещество, обнаружил рассеяние α -частиц на большие углы вплоть до 180° , т.е. рассеяние назад. Такое рассеяние возможно только от массивного центра внутри атома.

 α - частицы

Рис.1.1. Рассеяние α -частиц на ядре 79 Au

Для теоретического описания этих результатов он в 1911 г. формулирует планетарную модель строения атома, согласно которой - внутри атома имеется положительно заряженное ядро малых размеров, в котором сосредоточена почти вся масса атома, а вокруг ядра обращаются электроны.

В рамках этой модели Резерфорд выводит знаменитую формулу

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{z}^2 \mathrm{Z}^2 \mathrm{e}^4}{16\mathrm{E}_{\alpha}^2} \cdot \frac{1}{\sin^4 \chi/2},\tag{1.1}$$

где ze и E_{α} - электрический заряд и кинетическая энергия α -частицы, а Ze- заряд ядра.

Резерфорд Эрнест (1871-1937) - основоположник ядерной физики. Родился в Новой Зеландии. Переехав Англию, работал в 1895-98 в Кавендишской лаб-рии у Дж.Дж. Томсона. В 1898-1907 работая профессором в Канаде, делает фундаментальные открытия: открыл α - и β - лучи, разработал теорию радиоактивного распада, установил закон радиоактивных превращений. Вернувшись в Англию, стал директором Кавендишской лаборатории, которая стала ведущим центром ядерной физики. Установил закон рассеяния α -частиц в 1911, что привело к открытию ядра в атоме. В 1919 осуществил первую ядерную реакцию и открыл протон. Лауреат Нобелевской премии по химии за 1908.

Сотрудники Резерфорда X. Гейгер и 3. Марсден в течение двух лет, проводя трудоемкие эксперименты, подтверждают правильность формулы Резерфорда. Термин **ядро** был введен Резерфордом в 1912 г.

В 1919 г. Резерфорд осуществил первую ядерную реакцию, пропуская через азот α -частицы, получаемые от радиоактивного вещества, и открыл **протон.**

В 1932 г. английский физик Дж. Чадвик открыл существование **нейтрона**, и в том же году Д.Д. Иваненко и Гейзенберг выдвинули идею **нейтрон-протонной структуры атомного ядра**, которая полностью оправдалась.

Согласно современным представлениям атомное ядро с массовым числом A состоит из Z протонов и N нейтронов так, что A=Z+N и обозначается A_ZX_N , например, ${}^{238}_{92}U_{146}$. Уже ранние опыты Резерфорда показали, что размеры ядра очень малы $\sim 10^{-15}\,\mathrm{m}$ и слабо зависят от массового числа A. Эту зависимость можно вывести из гидродинамической модели атомное ядро, согласно которой атомное ядро рассматривается, как капля несжимаемой жидкости. Тогда объем ядра, состоящего из A протонов и нейтронов с объемом ν каждый, равен

$$Av = \frac{4}{3}\pi R^3$$
. (1.2)

Откуда находим зависимость радиуса ядра от массового числа

$$R = r_0 A^{1/3}, (1.3)$$

где $r_0 = \sqrt[3]{3 \, \text{v} / 4 \pi} = \text{const}$. Из многочисленных экспериментов следует усредненное значение $r_0 = 1,3 \varphi \text{м}$, где $1 \varphi \text{ерм} \text{и} = 1 \varphi \text{м} = 10^{-15} \text{м}$. Размеры самого легкого $\frac{1}{1} \text{H}$ и самого тяжелого $\frac{238}{92} \text{U}$ ядер различаются всего в 6 раз.

1.2. Составные части атома

Атом химического элемента с порядковым номером Z в периодической таблице Менделеева и с атомной массой A состоит из ядра с зарядом + Ze (e - элементарный заряд) и массой $Am_H(m_H$ - масса атома водорода), и облака электронов с общим зарядом - Ze .

Атом в целом электрически нейтрален и имеет размеры $\sim 10^{-10}$ м. Атомное ядро содержит Z протонов и A-Z=N нейтронов и имеет размеры $\sim 10^{-15}$ м .

Электрон е-, открытие которого приписывается Дж. Дж. Томсону (1897 г.). В действительности открытие электрона растянулось на более полстолетия. В его открытие принимали участие многие ученые, начиная с М. Фарадея, установившего законы электролиза. Только в опытах Р. Милликена в 1911 году было установлено точное значение заряда электрона, абсолютная величина е которого была отождествлена с элементарным зарядом

$$-q_e = e = 1,6021893(\pm 46) \cdot 10^{-19} \text{ Km}.$$
 (1.4)

Масса электрона имеет значение

$$m_e \equiv m = 9,109534(\pm 47) \cdot 10^{-31} \, \text{K}_{\Gamma},$$
 (1.5)

или в энергетических единицах:

$$m = 0.5110034 (\pm 14) \text{ M}_{3}\text{B}.$$
 (1.6)

Электрон обладает спином $s=1/2\hbar$, проекция которого может принимать только 2 значения $s_z=\pm 1/2\hbar$. В соответствии с этим

он подчиняется статистике Ферми-Дирака, т.е. является фермионом, для которого распространяется принцип запрета Паули.

Электрон не обладает электрическим дипольным моментом, но имеет собственный магнитный момент. Согласно релятивистской квантовой механике П. Дирака электрон должен иметь магнитный момент электрона, равный одному магнетону Бора

$$\mu_{\rm B} \equiv \frac{e\hbar}{2m} \approx 9.3 \cdot 10^{-24} \, \text{Дж/Тл}. \tag{1.7}$$

Но экспериментальное значение магнитный момент электрона оказалось незначительно отличающимся от предсказания теории Дирака

$$\mu_e / \mu_B = 1,0011596567(\pm 35).$$
 (1.8)

Это различие квантовая электродинамика объясняет влиянием физического вакуума, в котором постоянно происходят образование электрон-позитронной пары и ее аннигиляция (поляризация вакуума).

Современная физика рассматривает электрон как истинно элементарную частицу, не обладающую структурой и размерами, по крайней мере

$$R_e < 10^{-18} \text{ M}.$$
 (1.9)

Электрон является наилегчайшей из всех заряженных элементарных частиц и потому абсолютно стабилен $\tau_e = \infty$. Он участвует в электромагнитном, слабом и гравитационном взаимодействиях, но не участвует в сильном взаимодействии, т.к. относится к классу лептонов.

Протон р был открыт в 1919 г. Резерфордом. Масса протона равна

$$m_p \approx 1836,2m \approx 1,672 \cdot 10^{-27} \text{ kg} \approx 938,3 \text{M} \Rightarrow \text{B}.$$
 (1.10)

Протон имеет положительный заряд е. Спин протона равен $s=1/2\hbar$, т.е. является фермионом. Он обладает магнитным моментом:

$$\mu_{\rm p} \approx 2,79\mu_{\rm N},\tag{1.11}$$

где μ_N - ядерный магнетон, который в 2000 раз меньше магнетона Бора:

$$\mu_{\rm N} \equiv \frac{e\hbar}{2m_{\rm p}} \approx 5.05 \cdot 10^{-27} \,\text{Дж} \,/\,\text{Тл} \,.$$
 (1.12)

Согласно теории протон должен обладать магнитным моментом, равным одному ядерному магнетону, а его аномальный магнитный момент указывает на то, что протон является составной частицей. Таким образом, протон обладает внутренней структурой и размерами $R_{\rm p} \sim 10^{-15}\,\rm m$. Протон участвует во всех взаимодействиях, в том числе и сильном, и относится к классу адронов. Протон считается стабильной частицей, но по современной теории Великого Объединения это оспаривается. Современные эксперименты оценивают его время жизни:

$$\tau_{\rm p} \ge 6.5 \cdot 10^{31} \,\text{meT},$$
 (1.13)

что на много превосходит возраст Вселенной $\tau \sim 10^{10}$ лет.

Нейтрон поткрыт Чадвиком в 1932 году, не обладает электрическим зарядом $q_n = 0$. Его масса равна

$$m_n \approx 1838,7 m \approx 1,675 \cdot 10^{-27} \, \text{K} \Gamma \approx 939,6 \text{M} \Rightarrow \text{B},$$
 (1.14) отличаясь от массы протона всего на 0,1%:

$$\Delta m_N = m_p - m_p \approx 2.5 m \approx 1.3 M \ni B. \tag{1.15}$$

Нейтрон имеет спин, равный $s=1/2\hbar$, является фермионом. Но, несмотря на нулевой электрический заряд, он обладает магнитным моментом:

$$\mu_{\rm p} = -1.91\mu_{\rm N},\tag{1.16}$$

т.е. вектора $\vec{\mu}$ и \vec{s} направлены противоположно. Так как заряд нейтрона $q_n=0$, то и магнитный момент должен быть $\mu=0$. Аномальный магнитный момент указывает на то, что нейтрон является составной частицей. Отметим, что $\mu_n/\mu_p=-2/3$. Нейтрон так же участвует во всех видах взаимодействий и относится к классу адронов. Свободный нейтрон не стабилен, распадается по схеме

$$n \to p + e^- + \widetilde{\nu}_e \tag{1.17}$$

Чадвик Джеймс (1891-1974) - английский физик-экспериментатор. Родился в Боллингтоне, окончил Манчестерский и Кембриджский ун-ты. Работал в ун-тах: Кембриджском (1923-35), Ливерпульском (1935-48), в колледжах Кембриджского ун-та (1948-58). В 1932 исследуя излучение бериллия, показал, что оно является потоком нейтральных частиц — нейтронов (Нобелевская премия за 1935). Исследовал искусственное превращение ядер под действием альфа-частиц, образование электроннопозитронных пар гамма-квантами, расщепление дейтрона под действием гамма-квантов, получение цепной реакции деления ядер, рассчитал критическую массу урана-235.

слабого взаимодействия с участием антинейтрино со средним временем жизни $\tau_n \approx 15$ мин.

Фотоны γ не входят в состав атома, они рождаются и уничтожаются в процессе электронных переходов. Кванты света долгое время не признавали частицами, только после работ Комптона убедились, что они обладают всеми свойствами частицы. В 1926 г. Льюис удачно назвал их фотонами. Фотон электрически нейтрален $q_{\gamma}=0$, его масса так же равна нулю $\mathbf{m}_{\gamma}=0$. Спин фотона равен $\mathbf{s}=1$, а состояние $\mathbf{s}_z=0$ не реализуется. Он может находиться в состояниях с $\mathbf{s}_z=\pm 1$, т.е. электромагнитная волна поперечна. Фотон в свободном состоянии стабилен $\tau_{\gamma}=\infty$. Фотон считается истинно элементарной частицей. Он участвует в электромагнитном взаимодействии, как переносчик этого взаимодействия.

1.3. Нуклон и его квантовые числа: изоспин и барионный заряд

Протоны и нейтроны в атомном ядре связаны ядерными силами, которые превосходят кулоновские силы отталкивания протонов. Этот тип взаимодействия назвали ядерным или сильным взаимодействием.

Так как силы ядерного взаимодействия этих частиц на много превосходят силы электромагнитного взаимодействия, то при изучении ядерных процессов можно пренебречь электромагнитной энергией взаимодействия протонов. Тогда нейтрон и протон становятся неразличимы, т.е. в ядерных взаимодействиях они ведут себя совершенно одинаково. Это позволяет рассматривать их как два разных состояния одной частицы — нуклона N.

При создании квантовой механики Паули предложил математический аппарат для описания состояний электрона со спином s=1/2, принимающих только два значения $s_z=\pm 1/2$. Гейзенберг применил этот аппарат для описания двух состояний нуклона, введя новое квантовое число T=1/2, называемое изоспином. Состояния протона и нейтрона различаются 3-ей компонентой изоспина $T_3=\pm 1/2$. При этом протону сопоставляется значение $T_3=+1/2$, а нейтрону - $T_3=-1/2$. Таким образом, нуклон обретает 5 степеней свободы, и его волновая функция $\psi(\vec{r},s_z,T_3)$ зависит от 3 пространственных координат \vec{r} , проекции спина S_z и проекции изоспина T_3 . Ядро, состоящее из T_3 нуклонов, имеет изоспин

$$T_3 = \sum_{a=1}^{A} T_3^{(a)}. {(1.18)}$$

Проекции изоспина складываются алгебраически, а изоспины нуклонов складываются как вектора. Изоспин легких ядер является хорошим квантовым числом, но тяжелые ядра, в которых много протонов и энергия кулоновского взаимодействия их уже не мала, ядра не характеризуют квантовым числом изоспина.

Нуклону приписывают еще одно квантовое число — барионным заряд B=1. Частица, обладающая ненулевым барионным зарядом, называют барионом, Такие частицы участвуют в сильных взаимодействиях. Но электрон не обладает барионным зарядом B=0 и не участвует в сильных взаимодействиях.

Ядро, состоящее из A=Z+N нуклонов, имеет барионный заряд, равный массовому числу $B_{\mathfrak{g}}=\sum\limits_{a}^{A}B_{a}=A$. Квантовые числа

бариона: изоспин и барионный заряд - связаны с его электрическим зарядом соотношением

$$q = e(T_3 + B/2).$$
 (1.19)

Проверим эту формулу - для нейтрона имеем 0 = e(-1/2 + 1/2), а для протона 1e = e(1/2 + 1/2). Соотношение (1.19) играет важную роль в физике элементарных частиц, где его обобщают на все частицы, включая соответствующие квантовые числа.

Согласно релятивистской квантовой механике каждой частице соответствует античастица, у которой изоспин, электрический и барионный заряды имеют противоположный знак, а масса, спин и время жизни совпадают. Английский физик-теоретик П. Дирак предсказал существование античастицы у электрона, и такая античастица — позитрон е⁺ был впервые обнаружен К. Андерсоном в космических лучах в 1932 г. Антипротон р и антинейтрон п были открыты в 1955-56 годы после запуска в Беркли (США) мощного беватрона — ускорителя протонов на энергию 6 ГэВ . В настоящее время античастицы открыты почти у всех частиц. Существование античастиц вытекает из свойства симметрии законов физики относительно преобразования зарядового сопряжения.

1.4. Нейтрон-протонная диаграмма. Изотопы, изобары и изотоны. Магические числа

Атомное ядро химического элемента обозначается, как ${}^A_Z X_N$, где Z- число протонов определяет вид химического элемента X, а из A- массового числа элемента можно определить число нейтронов N, поэтому достаточно задать ядро в виде ${}^A X$. Иногда атомное ядро с заданными Z и N называют нуклидом.

Для систематизации нуклидов используется нейтрон-протонная диаграмма, в которой все известные нуклиды представляются на графике в зависимости от Z и N (рис.1.2).

Атомы, имеющие определенное значение Z, но различные массовые числа A, т.е. различное число нейтронов N, называются изотопами. Они занимают одну клетку в таблице Менделеева, а на нейтрон-протонной диаграмме они занимают клетки горизонтальной строки.

На этой диаграмме вертикальные колонки содержат нуклиды с одинаковым числом нейтронов N, но с разными Z и A, которые называют изотонами. Нуклиды с одинаковыми A, но разными Z, называют изобарами. Частным случаем изобаров являются зеркальные ядра, число протонов одного из которых равно числу нейтронов другого, и наоборот:

$$Z_1 = N_2$$
, $N_1 = Z_2$, $A_1 = A_2$.

В качестве примера приведем следующие пары зеркальных ядер:

$$_{1}^{3}$$
 H_{2} и $_{2}^{3}$ He_{1} , $_{3}^{7}$ Be и $_{3}^{7}$ Li_{4} , $_{5}^{11}$ B_{6} и $_{6}^{11}$ C_{5} и т.д.

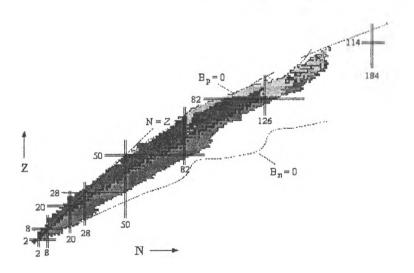


Рис. 1.2. Нейтрон-протонная диаграмма нуклидов

Черными точками на N-Z - диаграмме показаны стабильные ядра. Область, где расположены стабильные нуклиды, обычно называют долиной стабильности. Самыми тяжелыми стабильными изотопами являются нуклиды свинца (Z=82) и висмута (Z=83).

В природе так же нет стабильных элементов с Z = 43 (43 Tc) и Z = 61 (61 Pm).

Наиболее распространены в природе химические элементы, у которых ядра содержат число протонов или нейтронов, равное магическому числу: 2, 8, 20, 28, 50, 82, 126. Особенно стабильны дважды магические ядра. К ним относятся следующие ядра: гелий $_2^4$ Не $_2$, кислород $_8^{16}$ О $_8$, кальций $_2^{40}$ Са и свинец $_{82}^{208}$ Рb $_{126}$. Стабильные ядра с малым массовым числом $_4$ содержат одинаковое число протонов и нейтронов.

Узка «дорожка» стабильности - в природе известны только 260 устойчивых изотопов. У химического элемента только 2 или 3 изотопа стабильных, т.е. при отклонении числа нейтронов $N\pm 1$ ядро может оставаться стабильным. Например, у водорода имеется 3 изотопа: ${}^1_1 H$ - протий, ${}^2_1 H$ - дейтерий и ${}^3_1 H$ - тритий уже нестабилен. При добавлении большего числа нейтронов или его нехватке $N\pm 2,3,...$ изотоп становится нестабилен.

С левой стороны от стабильных ядер в таблице находятся ядра, перегруженные протонами (протонноизбыточные ядра), справа — ядра, перегруженные нейтронами (нейтронноизбыточные ядра). Протонноизбыточные ядра являются радиоактивными и превращаются в стабильные, в основном, в результате β^+ - распадов, протон, входящий в состав ядра при этом превращается в нейтрон. Нейтронноизбыточные ядра также являются радиоактивными и превращаются в стабильные в результате β^- -распадов, с превращением нейтрона ядра в протон.

Тяжелые ядра наряду с процессами β^- - и β^+ - распада подвержены также α -распаду и спонтанному делению. В природе встречаются еще 70 нестабильных изотопов, т.е. такие радиоактивные ядра, как $^{238}_{92}$ U, $^{232}_{90}$ Th и др. В настоящее время искусственно в лабораториях получены свыше 3000 новых радиоактивных изотопов (радионуклидов). Теория предсказывает возможность синтезирования \sim 7000 изотопов, т.е. предстоит еще открыть свыше 4000 изотопов. На N – Z диаграмме пунктирная линия очерчивает область возможного существования атомных ядер. Линия $B_p = 0$

 $(B_{p}$ - энергия отделения протона) ограничивает область существования атомных ядер слева. Линия $B_{n}=0$ (B_{n} - энергия отделения нейтрона) - справа. Вне этих границ атомные ядра существовать не могут, так как распадаются за характерное ядерное время ($\sim 10^{-23}$ c).

В настоящее время усилия физиков направлены на расширение области изученных ядер, как в сторону нейтронно-избыточных, так и в протонно-избыточных ядер. Особые усилия направлены на получение сверхтяжелых элементов. Синтезированы сверхтяжелые элементы вплоть до Z=118.

В нашей стране исследования по синтезу сверхтяжелых элементов были начаты под руководством Γ . Флерова в г. Дубна и продолжаются Ю. Оганесяном. Учитывая заслуги российских физиков г. Дубны в открытии большого числа изотопов тяжелых элементов (Z=102-105), новому элементу с Z=105 было присвоено имя Dubnium (Db).

Теория предсказывает, что наиболее устойчивым является следующее ядро с Z=114 и N=184 (остров стабильности).

1.5. Масса и энергия связи. Полуэмпирическая формула Вайцзеккера

Почти вся масса атома сосредоточена в ядре, а масса электронной оболочки составляет очень малую долю массы атома. В ядерной физике массу атомных ядер принято измерять в энергетических единицах $M \ni B / c^2$, имея в виду, что энергия связана с массой выражением $E = mc^2$, откуда масса равна $m = E / c^2$, а c^2 в знаменатели обычно опускают для краткости.

Масса покоя ядра всегда меньше суммы масс его протонов и нейтронов

$$M_{\pi} < Zm_p + Nm_n$$
,

где m_p и m_n - массы протона и нейтрона, соответственно. При образовании ядра из нуклонов уменьшается его масса на величину

$$\Delta M = Zm_p + Nm_n - M_{s},$$

и соответственно, уменьшается энергия этой системы на величину

$$E_{cB}(Z,A) = \Delta Mc^2 = (Zm_p + Nm_n - M_g)c^2,$$
 (1.20)

называемую энергией связи ядра. Она определяет такое значение энергии, которая необходима, чтобы разложить ядро на составляющие, или, наоборот, это энергия, которая выделяется при объединении свободных нуклонов в одно связанное состояние — атомное ядро. Эта справедливо только тогда, когда $E_{cB}(Z,A) > 0$, т.е. когда ядро устойчиво относительно развала, а не в случае $E_{cB}(Z,A) < 0$, когда ядро абсолютно не стабильно,

В прикладной ядерной физике более употребительна атомная единица массы (а.е.м.):

la.e.m. =
$$M_a(^{12}C)/12 \approx 1,6582 \cdot 10^{-27} \text{ kg} \approx 931,44 \text{M} \Rightarrow \text{B}, \quad (1.21)$$

где $M_a(^{12}C)$ - масса нейтрального атома углерода. Массы протона и нейтрона близки к этой единице:

$$m_p \approx 1,00728a.e.M$$
 $m_n \approx 1,00867a.e.M$. (1.22)

Поэтому масса ядра приблизительно равна его массовому числу. Например, масса α - частицы, т.е. ядра гелия, равна

$$M(_{2}^{4}He) = M_{\alpha} \approx 4,00152a.e.m.$$

Вследствие этого весьма полезным понятием в ядерной физике оказался дефект массы ядра, который определяется разностью между массой ядра, выраженной в а.е.м. и массовым числом

$$\Delta(\mathbf{Z}, \mathbf{A}) = \mathbf{M}_{g} - \mathbf{A}. \tag{1.23}$$

Для установления зависимости между дефектом массы и энергией связи ядра подставим в формуле (11.20) выраженные в *а.е.м.* величины: $M_g = A + \Delta(Z,A)$, $m_p = 1 + \Delta_p$, $m_n = 1 + \Delta_n$. Тогда получим формулу для энергии связи ядра

$$E_{cB}(Z,A) = Z\Delta_{p} + N\Delta_{n} - \Delta(Z,A). \tag{1.24}$$

Часто пользуются величиной энергии отрыва одного нуклона из ядра. В частности, для отрыва протона из ядра необходима энергия

$$E_p = E_{Z,A} - E_{Z-1,A-1} = \Delta_p + \Delta(Z-1,A-1) - \Delta(Z,A),$$
 (1.25)

а для вырывания из ядра нейтрона требуется энергия

$$E_{n} = E_{Z,A} - E_{Z,A-1} = \Delta_{n} + \Delta(Z,A-1) - \Delta(Z,A).$$
 (1.26)

Эксперименты указывают, что энергия отделения нуклона из четного Z или N ядра больше, чем у нечетного ядра, т.е. в ядрах существует немаловажный эффект спаривания нуклонов.

Для стабильных ядер энергия отделения нуклона имеет положительное значение. А при избытке протонов или нейтронов в ядре энергия отделения нуклона уменьшается, и в предельном случае, она может обратиться в нуль, это означает, что такие ядра не могут существовать в природе. На нейтрон-протонной диаграмме, область возможных, еще не отрытых нуклидов очерчена пунктирными кривыми с такими данными $B_{\text{p}}=0$ и $B_{\text{n}}=0$.

Проблема стабильности ядра связана с определением точного значения массы ядра и его составляющих. Один из основных методов измерения масс заряженных частиц является массспектроскопия, основанная на разложении в магнитном поле пучка ускоренных электрическим полем частиц. Другой метод определения масс частиц основан на использовании законов сохранения энергии и импульсов частиц в ядерных превращениях. С помощью последнего метода была установлена масса нейтрона.

Энергия связи возрастает с увеличением массового числа. Поэтому вместо нее вводят удельную энергию связи, т.е. энергию, приходящую на один нуклон:

$$\varepsilon = E(Z, A) / A. \tag{1.27}$$

Удельная энергия связи для многих ядер оказывается постоянной величиной, равной ~ 8 МэВ. Она быстро возрастает от $\varepsilon=0$ при A=1 до $\varepsilon\approx 8$ МэВ при A=16, проходя через максимум $\varepsilon_{\text{max}}\approx 8,8$ МэВ при $A\approx 60$ (в районе железа и никеля) и постепенно уменьшается до $\varepsilon\approx 7,6$ МэВ для последнего природного элемента — урана $^{238}_{92}$ U. Постоянство удельной энергии указывает на то, что энергия ядра пропорциональна числу нуклонов $E(Z,A)\approx \varepsilon A$, т.е. ядерные силы обладают свойством насыщения.

Уменьшение удельной энергии связи при переходе к тяжелым ядрам объясняется кулоновским отталкиванием протонов, энергия которых пропорциональна \mathbb{Z}^2 . Поэтому реакция деления тяжелого

ядра на более легкие является зкзотермической реакцией, проходящей с выделением энергии.

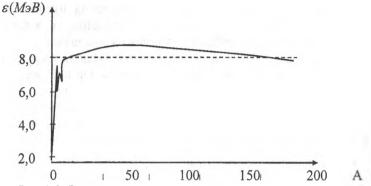


Рис.1.3. Зависимость удельной энергии связи от массового числа

Рассмотрим деление ядра A_ZX на два примерно одинаковых ядра ${}^{A'}_{Z'}X$ с ${}^{A'} \approx A/2$ и ${}^{Z'} = Z/2$. При этом выделяется энергия:

$$Q_{\text{дел}} = 2E_{Z',A'} - E_{Z,A} = 2\varepsilon_{A'}A' - \varepsilon_{A}A \approx (\varepsilon_{A'} - \varepsilon_{A})A.$$
 (1.28)

Так как $\varepsilon_{A'} > \varepsilon_A$, то $Q_{\text{дел}} > 0$, т.е. выделяется энергия при делении ядра. Точно так же при малых A кривая $\varepsilon(A)$ проявляет завал, и, следовательно, при слиянии легких ядер выделяется энергия. Рассмотрим процесс слияния двух одинаковых ядер Z'X в одно ядро Z'X, для которого Z = 2Z' и Тогда имеем $Q_{\text{синт}} = E_{Z,A} - 2E_{Z',A'} = \varepsilon_A A - 2\varepsilon_{A'}A' = (\varepsilon_A - \varepsilon_{A'})A$. (1.29)

Так как $\epsilon_A > \epsilon_{A'}$, то $Q_{\text{синт}} > 0$, т.е. наблюдается выделение энергия при объединении двух легких ядер в одно ядро.

Существует полуэмпирическая формула Вайцзеккера для зависимости энергии связи ядра от массового числа:

$$E_{Z,A} = \alpha_1 A - \alpha_2 A^{2/3} - \alpha_3 Z^2 A^{-1/3} - \alpha_4 (A - 2Z)^2 / A - \alpha_5 A^{-3/4} \delta(Z,A) \quad (1.30)$$

а удельная энергия связи задается выражением:

$$\varepsilon = \alpha_1 - \alpha_2 A^{-1/3} - \alpha_3 Z^2 A^{-4/3} - \alpha_4 (A - 2Z)^2 / A^2 - \alpha_5 A^{-7/4} \delta(Z, A). \quad (1.31)$$

Неизвестные параметры α , определяются из экспериментальных значений масс ядер. В настоящее время общеприняты следующие значения коэффициентов:

$$\alpha_1 = 15,75 \text{ M} \Rightarrow \text{B}, \quad \alpha_2 = 17,8 \text{ M} \Rightarrow \text{B}, \quad \alpha_3 = 0,71 \text{ M} \Rightarrow \text{B},$$

$$\alpha_4 = 23,7 \text{ M} \Rightarrow \text{B}, \quad \alpha_5 = 34 \text{ M} \Rightarrow \text{B}.$$
(1.32)

Для учета эффекта спаривания вводится функция:

$$\delta(Z,N) = \begin{cases} +1 & \text{для} & \text{HH} - \text{ядер} \\ 0 & \text{для} & \text{ЧН} - \text{ядер} \\ -1 & \text{для} & \text{ЧЧ} - \text{ядер} \end{cases}$$
 (1.33)

Объяснение этой формулы можно провести в рамках гидродинамической модели, в которой ядро представляется, как несжимаемая жидкая капля. Первое слагаемое в (1.30) выражает факт пропорциональности энергии числу нуклонов в ядре $E_1 = \alpha_1 A$. Обращает на себя внимание значительное отклонение α_1 от $\epsilon \approx 8$ МэВ. Такую энергию связи должна иметь ядерная материя при выключенном электромагнитном взаимодействии.

Второе слагаемое связано с поверхностными явлениями, аналогичными поверхностному натяжению, которое уменьшает энергию связи на величину, пропорциональной поверхности ядерной капли $E = \sigma \cdot 4\pi R^2$. С учетом формулы (1.3) имеем $E_2 = -\alpha_2 A^{2/3}$.

Третье слагаемое объясняет наличие кулоновского отталкивания протонов внутри ядра, энергия которого пропорциональна $E_{\text{кул}} = kZ^2 e^2 \, / \, R$. Поэтому вклад в энергию связи кулоновского отталкивания равна $E_3 = -\alpha_3 Z^2 A^{-1/3}$.

Следующая поправка обусловлена эффектом симметрии, т.е. приближенным равенством $Z \approx N$ в легких ядрах. Поэтому ее можно представить в виде:

$$E_4 = \alpha_4 (N - Z)^2 / A = \alpha_4 (A - 2Z)^2 / A$$
,

где A в знаменатели указывает на некоторое ослабление эффекта при переходе к тяжелым ядрам.

Наконец, последняя поправка объясняется эффектом спаривания нуклонов. Наиболее стабильными являются четно-четные (ЧЧ) ядра с четными значениями протонов и нейтронов. Наименее стабильны нечетно-нечетные (НН) ядра и в промежутке между ними по стабильности нечетно-четные (НЧ) ядра. Наилучшую подгонку к опытным данным дает зависимость $E_5 = \alpha_5 A^{-3/4} \delta(Z,N)$.

На основании формулы (1.20) имеем выражение для полной энергии ядра ${A \atop Z}X$:

$$E = M_g c^2 = (Zm_p + Nm_n)c^2 - E_{cB}(Z, A).$$
 (1.34)

Формула (1.34) с коэффициентами (1.32) и (1.33) позволяет вычислить массу любого ядра ${}^{A}_{Z}X$ с относительной погрешностью $\sim\!10^{-4}$. С помощью полуэмпирической формулы (1.30) можно находить и многие другие характеристики ядра: энергию α -распада, энергию β - распада, энергию вырывания протона или нейтрона, энергию деления и синтеза и др.

1.6. Квантовомеханические характеристики состояния ядра

Атомное ядро, как и атом, является квантовомеханическим объектом и характеризуется дискретными значениями энергии уровней. Но размеры атомного ядра меньше атома в 10^{-5} раз, то и масштабы энергии ядра значительно отличаются от атомных энергий. Можно оценить эти энергии на основе положений квантовой механики. Частица в потенциальной яме размерами $\mathbf{x} \sim \Delta \mathbf{x}$ согласно соотношениям неопределенностей $\Delta \mathbf{x} \Delta \mathbf{p} \sim \hbar$ имеет импульс порядка $\mathbf{p} \sim \Delta \mathbf{p}$. Откуда энергетические масштабы нуклона в ядре

$$E \sim \Delta E = (\Delta p)^2 / (2m_p) = (\hbar / \Delta x)^2 / (2m_p) =$$

= $(1,05 \cdot 10^{-34} / 10^{-15})^2 / (2 \cdot 1,67 \cdot 10^{-27}) = 0,33 \cdot 10^{-11}$ Дж = 20МэВ

Напомним, что энергия электрона в атоме водорода порядка $E \sim 10$ эВ, а ядерная энергия, по крайней мере, в 10^5 раз больше энергии, проявляемой в химических реакциях. Так как нуклоны внутри ядра обладают кинетической энергией порядка десятка

МэВ, что на много меньше собственной энергии $m_p c^2 = 938 \text{МэВ}$, то движение нуклонов внутри ядра можно рассматривать с точностью 10^{-2} в нерелятивистском приближении, т.е. релятивистские поправки в ядре составляют всего 1% от основного эффекта.

Атомное ядро, как квантовомеханическая система связанных нуклонов, имеет основное и возбужденные состояния с дискретным значением энергии. С увеличением энергии возбуждения время жизни ядра в этом состоянии уменьшается, и согласно соотношениям неопределенностей $\Delta E \Delta t \sim \hbar$ уширяются энергии уровней. В пределе они перекрываются, и спектр уровней ядра становится почти сплошным.

Состояние ядра характеризуется, помимо энергии, и квантовыми числами: спином I и четностью $\pi=\pm$. Под спином ядра понимают

$$\vec{\mathbf{I}} = \sum_{\mathbf{a}=1}^{\mathbf{A}} \vec{\mathbf{j}}_{\mathbf{a}} \tag{1.35}$$

сумму полных моментов отдельных нуклонов ядра $j=\overline{l}+\overline{s}$. Ядра с четным A имеют целочисленные значения спинов I=0,1,2,..., а ядра с нечетным A имеют полуцелые спины I=1/2,3/2,...Причем спины ядра в основном и в возбужденном состояниях могут быть разными. Но если в основном состоянии — целый спин, то и в возбужденных состояниях принимают только целые значения. Спины четно-четных ядер в основном состоянии равны нулю. Это свидетельствует о существовании эффекта спаривания двух нуклонов с равными по модулю, но противоположными по направлениям полными моментами $j_1=-j_2$. Спин является важной характеристикой ядра, которая определяет все процессы: γ -излучение, радиоактивный распад, ход ядерной реакции и др.

Со спином связана статистика, которой подчиняются ядра. Ядра с целочисленным спином подчиняются статистике Бозе-Эйнштейна и являются бозонами, а ядра с полуцелыми спинами подчиняются статистике Ферми-Дирака, являются фермионами, на которых распространяется принцип запрета Паули, согласно

которому два тождественных фермиона не могут находиться в одном квантовом состоянии.

Состояния квантовомеханической системы, каковой является атомное ядро, характеризуется так же и четностью состояния, которая определяется поведением системы при отражении пространственных координат

$$\hat{P}\psi = \pi\psi$$
, rge $\pi = (-1)^1$. (1.36)

Здесь l - орбитальный момент нуклона.

Для частиц с нулевой массой, например, для фотона, не существует понятия орбитального момента 1. Вместо этого вводится аналог этого понятия, называемый мультиполем L. Полный момент фотона может принимать значения L=1,2,3,... и состояния называются, соответственно, дипольным, квадрупольным, октупольным и т.д. Состояние фотона с моментом L и четностью $(-1)^L$ называется электрическим 2^L - полем, а состояние с таким же моментом и четностью $(-1)^{L+1}$ называется магнитным 2^L - полем. Соответсвенно, существуют обозначения EL для электрического мультиполя, и ML для магнитного мультиполя.

1.7. Электромагнитные моменты ядер

Согласно классической электродинамике энергию взаимодействия заряженной системы с внешними электрическим и магнитным полями можно представить в виде разложения по мультипольным моментам:

$$E = q\phi + (\vec{p} \cdot \Delta\phi) + \frac{1}{6} \sum_{ij} Q_{ij} \frac{\partial^2 \phi}{\partial x_i \partial x_j} + \dots - (\vec{\mu} \cdot \vec{B}) + \dots$$
 (1.37)

В электродинамике доказывается, что заряженная система с ненулевым зарядом $q \neq 0$ имеет четные электрические моменты и нечетные магнитные моменты. Следовательно, атомное ядро, как электрически заряженная система с q=Ze, не имеет дипольный электрический момент $\vec{p}=0$, но может иметь электрический квадрупольный момент $Q_0=Q_{zz}$ и магнитный дипольный момент $\vec{\mu}$.

Электрический квадрупольный момент определяется выражением

$$Q_{ij} = \sum_{a}^{A} e_a (3x_i^{(a)} x_j^{(a)} - r^2 \delta_{ij}).$$
 (1.38)

Наличие квадрупольного момента у ядра указывает на отклонение его формы от сферичности, т.е. на деформацию формы ядра. Если ввести параметр деформации

$$\beta = \frac{\Delta R}{R},\tag{1.39}$$

где $\Delta R = R_a - R_b$, а R_a и R_b - большая и малая полуоси эллипсоида вращения. Тогда квадрупольный момент ядра можно представить в виде

$$Q_0 = \frac{4}{5} \operatorname{ZeR}^2 \beta. \tag{1.40}$$

Из экспериментального значения квадрупольного момента ядра можно определить деформацию формы ядра. Один из самых первых методов установления электромагнитных моментов и спина ядра был основан на изучении сверхтонкого расщепления оптических спектров атома. Для большинства ядер параметр деформа- $\beta \sim 0.01 \div 0.02$, r.e. форма этих ядер почти ции незначителен сферическая. Но существуют ядра с большой деформацией $\beta \sim 0.2 \div 0.3$, которые имеют форму эллипсоида вращения. Квантовая механика утверждает, что вращение квантовой системы сферической формы не приводит к перемещению материи в пространстве из-за принципа тождественности частиц. Только несферическая система может иметь вращательную степень свободы. В энергетическом спектре четно-четных ядер существует простая зависимость энергии уровней

$$E_{I} = \frac{\hbar^{2}}{2\Im}I(I+1) \tag{1.41}$$

с последовательностью спинов $I^{\pi} = 0^+, 2^+, 4^+, \dots$ Такая зависимость энергии свойственна вращению системы с моментом инерции \Im . Наличие вращательных энергий является доказательством несферичности многих ядер.

Из электродинамики известно, что магнитный момент $\vec{\mu}$ заряженной частицы обусловлен ее вращением и пропорционален моменту \vec{I}

$$\vec{\mu} = g\vec{I}, \qquad (1.42)$$

где g- фактор ядерных систем измеряется в единицах ядерного магнетона μ_N . Магнитный момент $\bar{\mu}$ атомного ядра складывается из магнитных моментов нуклонов. В него дают вклады собственные моменты протонов

$$\vec{\mu}_{p} = g_{p}\vec{s}, \qquad (1.43)$$

собственные магнитные моменты нейтронов

$$\vec{\mu}_n = g_n \vec{s} \tag{1.44}$$

и магнитные моменты орбитального движения протонов

$$\mu_1 = \mathbf{g}_1 \tilde{\mathbf{1}} \,. \tag{1.45}$$

Сложение механических моментов \vec{s} и \vec{l} в полный момент — спин ядра \vec{l} определяется правилами оболочечной модели ядра и по полному моменту определяется магнитный момент ядра. Приведем значения g-факторов:

$$g_p = 5.58 \cdot g_N, \quad g_n = -3.82 \cdot \mu_N, \quad g_1 = 1 \cdot \mu_N,$$
 (1.46)

где ядерный магнетон равен

$$\mu_{N} = e\hbar/2m_{p} = 5,05 \cdot 10^{--27} Дж/Тл.$$

Отметим, что магнитные моменты ядер по порядку равны ядерному магнетону, т.е. они на 3 порядка меньше атомных магнитных моментов.

1.8*. Распределение плотности ядерной материи

Оценка размера ядра была сделана еще во времена опытов Резерфорда по рассеянию α -частиц. В распоряжении экспериментаторов имелись природные источники альфа-частиц с энергией $E \sim 5 M \text{ > B}$. Такая частица может подойти к ядру на расстояние, когда ее кинетическая энергия E сравняется с кулоновской энергией отталкивания $E = 2Ze^2/(4\pi\epsilon_0 r_{\text{min}})$. Откуда имеем $r_{\text{min}} = 2 \cdot 10^{-14}$ м. На этих расстояниях не наблюдались отклоне-

ния от кулоновского взаимодействия и не проявляется ядерные силы. Следовательно, размер ядра не превышает $R < 2 \cdot 10^{-14} \ _{M}$.

Атомное ядро является протяженным образованием, имеющее определенное строение, которое характеризуется соответственным распределением массы и электрического заряда внутри ядра. Чтобы прозондировать внутреннюю структуру ядра, нужны частицы с большой энергией, у которых длина волны де-Бройля $\lambda = h/p = h/\sqrt{2mE} < R_{\rm ядра}$ меньше размеров ядра.

Необходимые энергии для таких экспериментов были достигнуты только в 50-ые годы прошлого столетия на ускорителях электронов. Эксперименты по рассеянию быстрых электронов на ядрах впервые провел американский физик Р. Хофштадтер.

Метод извлечения информации о структуре ядра из данных по рассеянию основан на сравнении экспериментально измеренных сечений рассеяния с теоретически вычисленными значениями. Исходным пунктом всех рассуждений является формула Резерфорда, в которой следует положить для электронов z=1. При релятивистских энергиях электронов z=10 в задаче о рассеянии на ядре необходимо учитывать наличие спина и магнитного момента у электрона. Такую задачу решил Н. Мотт в 1929 году, который обобщил формулу Резерфорда:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{\mathrm{M}}} = \frac{Z^{2}\mathrm{e}^{4}}{4\mathrm{E}^{2}} \frac{\cos^{2}(\theta/2)}{\sin^{4}(\theta/2)},\tag{1.47}$$

где θ - угол рассеяния в СЦИ. Эта формула Мотта предсказывает сечение рассеяния, на несколько порядков превышающее экспериментальное значение. Это понятно, т.к. быстрые электроны проникают внутрь ядра и рассеиваются на точечных элементах внутри ядра. Поэтому в формулу Мотта необходимо ввести поправочный множитель, учитывающий протяженность ядра

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega_{\rm M}} |F(q)|^2, \qquad (1.48)$$

где $F(q) = \int \rho(r) \exp(i \vec{q} \vec{r}) d^3 r$ называется форм-фактором ядра, нормированным на условием F(0) = 1. Сравнивая экспериментальное значение сечения рассеяния электрона на ядре

Хофштадтер Роберт - американский физик, родился в 1915 в Нью-Йорке, окончил Принстонский ун-т (1938), где работал в 1946-50, с 1950 — в Станфордском ун-те, в 1967-74 —директор Лаб-рии физики высоких энергий. В 1939-40 принимал участие в создании генератора Ван-де-Граафа. Сконструировал ряд счетчиков у-излучений и нейтронов. В 1955-58 в экспериментах по рассеянию электронов высокой энергии получил информацию о распределении заряда внутри ядра и нуклона (Нобелевская премия,1961).

с теоретическим значением по формуле (1.48), определяют формфактор F(q). По известному формфактору можно восстановить плотность электрического заряда ядра $\rho(r)$, совершая обратное преобразование Фурье:

$$\rho(\mathbf{r}) = \frac{1}{(2\pi)^3} \int \mathbf{F}(\mathbf{q}) \exp(-i\overline{\mathbf{q}}\overline{\mathbf{r}}) d^3 \mathbf{q}.$$
 (1.49)

Основная цель экспериментов состоит в определении формфакторов F(q) для различных значений переданного импульса q от нулевого значения и до максимального q_{max} , который в принципе должен быть бесконечным. Чем больше интервал q, для которого определен форм-фактор, тем точнее устанавливается плотность $\rho(r)$. В результате этих исследований было установлена радиальная плотность электрических зарядов ядра, которая наиболее удовлетворительно описывает структуру большой совокупности средних и тяжелых ядер:

$$\rho(r) = \frac{\rho_0}{1 + \exp(\frac{r - R_{1/2}}{\delta})}.$$
 (1.50)

Такая функция известна как распределение Ферми, согласно которому во внутренней области ядра плотность почти постоянна и

приблизительно равна $\rho_0 \sim 0,17\cdot 10^{17}~{\rm кг/m}^3$. Здесь $R_{1/2}$ — радиус ядра, который определяется из условия $\rho(R_{1/2}) = \rho_0/2$, т.е. расстоянием от центра ядра до точки на поверхностном слое, где плотность уменьшается до половинного значения. Выяснилось, что радиус ядра зависит от массового числа A и эту зависимость можно представить формулой $R_{1/2} \approx (1,1-1,2)\cdot 10^{-15}\cdot A^{1/3}{\rm m}$. Величина δ связана с толщиной поверхностного слоя, в пределах которого плотность изменяется от $0,1\,\rho_0$ до $0,9\,\rho_0$. Она почти одинакова для всех ядер. Легкие ядра не имеют области постоянной плотности. Более подходящим для них является гауссово распределение

$$\rho(\mathbf{r}) = \left(\frac{3}{2\pi a^2}\right)^{\frac{3}{2}} \exp\left(-\frac{3}{2} \frac{\mathbf{r}^2}{a^2}\right). \tag{1.51}$$

Из опытов по рассеянию электронов на ядрах определяется распределение плотности электрического заряда внутри ядра, которая

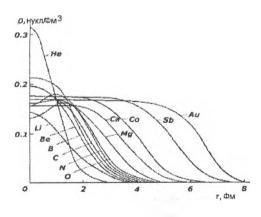


Рис. 1.4. Распределение плотности ядерной материи

создается электрически заряженными протонами, следовательно, в этих опытах фактически определяется плотность протонов, но не нейтронов, которые не обладают электрическим зарядом.

С этой целью проводилось изучение структуры ядер с помощью быстрых протонов, которые могут взаимодействовать с нейтронами внутри ядра. Анализ этих экспериментов позволяет сделать вывод, что в легких и средних ядрах распределения протонов и нейтронов в пределах точности эксперимента одинаковы.

Хофштадтер продолжал эти опыты на ускорителях с более высокой энергией электронов, которые могут прозондировать уже и внутреннюю структуру протонов. Было обнаружено существование внутри нуклона точечных образований, названных партонами, а затем их отождествили с кварками и глюонами. За эти работы Хофштадтер удостаивается Нобелевской премии за 1961 г.

Вопросы для закрепления знаний

- 1. Почему результаты опыта Резерфорда по рассеянию α частиц опровергают модель атома Томсона и свидетельствуют о наличии положительно заряженного атомного ядра малых размеров, содержащего основную часть массы атома?
- 2. Пользуясь таблицей изотопов, перечислите стабильные изотопы селена.
- 3. Пользуясь таблицей изотопов, перечислите изобары ядер с A = 15.
- **4.** Приведите стабильные изотоны с N = 15.
- **5.**Укажите, какие из следующих ядер: ${}^{12}_{5}$ B, ${}^{14}_{6}$ C, ${}^{14}_{7}$ N, ${}^{14}_{8}$ O, ${}^{16}_{8}$ O являются а) изотопами, б) изобарами, в) изотонами, г) зеркальными.
- **6.** Сравните радиусы ядер ¹ H, ²⁷ Al и ²¹⁶ Ra.
- * 7. Рассчитайте величину атомной единицы массы в МэВ.
 - 8. Используя зависимость, существующую между радиусом и массовым числом, оцените плотность ядра.
 - 9. Каким был бы радиус Земли, если бы она состояла из вещества, имеющего плотность ядра?
 - 10. Изобразите графически, как выглядит пространственная плотность ядерной материи в $^1{\rm H}$ и $^{197}{\rm Au}$.

- 11. Изобразите, как выглядит пространственная плотность заряда в протоне, нейтроне и в атоме.
- 12.Получите выражение для энергии связи ядра через массы нейтральных атомов.
- 13. Считая, что разность энергий связи зеркальных ядер определяется разностью кулоновской энергией, и используя выражение для кулоновской энергии равномерно заряженного шара радиусом R

$$E_{KYM} = \frac{3Z^2e^2}{5R},$$

покажите, что разность энергий связи двух зеркальных ядер с зарядами Z и Z+1 равна

$$\Delta E_{_{\text{CB}}} \approx \Delta E_{_{\text{KYJ}}} = \frac{3}{5} \frac{e^2 (2Z+1)}{R}.$$

- **14.** Используя экспериментальное значение для разности энергии зеркальных ядер $^{15}\,\mathrm{N}\,$ и $^{15}\,\mathrm{O}\,$, оцените радиус этих ядер.
- 15. Вычислите величину ядерного магнетона.
- **16.** Чему равны величины магнитных моментов свободных нейтрона и протона и как они направлены относительно их спинов?
- 17. Рассчитайте магнитный момент системы протон-нейтрон в состоянии 3S_1 . Сравните результат с экспериментальным значением магнитного момента дейтрона $\mu_d=0.86\mu_N$.
- 18. Рассчитайте отношение магнитных моментов протона и электрона. На какую идею наводит результат?
- **19.** Известно, что внутренний квадрупольный момент ядра ¹⁷⁵ Lu равен 5,9б. Какую форму имеет это ядро? Чему равен параметр деформации этого ядра?
- 20. Пользуясь нейтрон-протонной диаграммой изотопов, укажите, при каких значениях N и Z ядро обладает сферической формой или деформацией формы.
- 21. Каковы возможные значения изоспина системы, состоящей из а) двух нейтронов, б) протона и нейтрона? Укажите значения проекции изоспина.
- **22.** Определить значение изоспина T основного состояния ядер изотопов углерода 10 C, 11 C, 12 C, 13 C, 14 C.

Примеры решения задач

Задача 1.1. Определите удельную энергию связи для следующих ядер:

a)
$${}_{2}^{4}$$
He, 6) ${}_{3}^{7}$ Li, ${}_{8}^{16}$ O, ${}_{7}^{16}$ O, ${}_{92}^{238}$ U.

Решение. Удельная энергия связи $\epsilon(A,Z) = E_{cB}(A,Z)/A$, где энергия связи определяется выражением

$$E_{cr}(Z,A) = Z\delta(1,1) + N\delta_n - \delta(Z,A)$$

Подставив значения дефекта масс, получаем:

a)
$$\varepsilon(2,4) = (2 \cdot 7,289 + 2 \cdot 8,071 - 2,424)/4 = 7,073 \text{ MbB/Hykn}$$

- б) $\varepsilon(3,7) = 5,606 \,\mathrm{MэВ/нукл}$,
- в) $\varepsilon(8,16) = 7,976 \text{ МэВ/нукл},$
- г) $\epsilon(92,238) = 7,570 \text{ МэВ/нукл.}$

Задача 1.2. Чему равна энергия отделения нейтрона в ядрах удельная энергия связи 9_4 Ве и 8_4 Ве?

Решение: Энергия отделения нейтрона из ядра определяется выражением

$$E_n = \delta_n + \delta(Z, A - 1) - \delta(Z, A)$$

Энергия отделения нейтрона из ядра 4 Ве равна

$$E_n = \delta_n + \delta(4.8) - \delta(4.9) = 8.071 + 4.941 - 11.347 = 1.665 \text{ MbB}.$$

А энергия отделения нейтрона из ядра ${}^{8}_{4}$ Вс равна $E_{n}=18,898~M$ эB. Удельные энергии связи равны

$$\varepsilon(4,9) = 6,463 \text{ M}_{3}B$$
, $\varepsilon(4,8) = 7,062 \text{ M}_{3}B$.

Задача 1.3. Используя формулу Вайцзеккера, вычислите энергию деления ядра $^{238}_{\ \ 92}\mathrm{U}$ на два равные осколка.

Решение. Энергия деления ядра на два равных осколка выражается формулой

$$E_f = (2 \cdot M_a (46,119) - M_a (92,238))c^2 =$$

= $2 \cdot \varepsilon (46,119) \cdot 119 - \varepsilon (92,238) \cdot 238$.

В задаче 1.1. была вычислена удельная энергия урана ядра $^{238}_{92}$ U $\epsilon(92,238) = 7,57 \text{ MэВ/нуклон},$

но для ядра $^{119}_{46}\mathrm{Pd}$ удельная энергия $\epsilon(46,\!119)$ не известна. Вычислим ее на основе полуэмпирической формулы Вайцзеккера

$$\varepsilon_{Z,A} = \alpha_1 - \alpha_2 A^{-1/3} - \alpha_3 Z^2 A^{-4/3} - \alpha_4 \frac{(A - 2Z)^2}{A^2} - \alpha_5 A^{-7/4} \delta(Z, N)$$

Для ядер с нечетным массовым числом A параметр $\alpha_5=0$. Опуская член с α_5 , имеем

$$\varepsilon(46,119) = 15,75 - 17,8 \cdot 119^{-1/3} - 0,71 \cdot 46^2 \cdot 119^{-4/3} - 23,7 \cdot (119 - 2 \cdot 46)^2 / 119^2 = 8,27$$
 МэВ/нуклон.

Следовательно, в результате деления одного ядра $^{238}_{\ \ 92}\mathrm{U}$ выделяется энергия

$$E_f = 2 \cdot 8,27 \cdot 119 - 7,6 \cdot 238 = 159,5 \text{ M}_{3}B.$$

Задача 1.4. Вычислите выделяемую энергию в следующих термоядерных реакциях:

- 1) ${}_{1}^{2}D + {}_{1}^{2}D \rightarrow {}_{1}^{1}p + {}_{1}^{3}T$,
- 2) ${}_{1}^{2}D + {}_{1}^{2}D \rightarrow {}_{0}^{1}n + {}_{2}^{3}He$,
- 3) ${}_{1}^{2}D + {}_{1}^{3}T \rightarrow {}_{0}^{1}n + {}_{2}^{4}He$,
- 4) ${}_{2}^{3}\text{He} + {}_{1}^{2}\text{D} \rightarrow {}_{1}^{1}\text{p} + {}_{2}^{4}\text{He}$.

Пренебрегая кинетической энергией частиц до реакции, определить, какую энергию уносит каждая частица после реакции.

Решение: Выделяемая энергия реакции Q определяется изменением суммарной энергии связи частиц, участвующих в реакции.

1)
$$Q = 2\delta(1,2) - \delta(1,1) - \delta(1,3) = 2 \cdot 13136 - 7,289 - 14,950 = 4,033 \text{ M} \Rightarrow \text{B}$$

Т.к. кинетические энергии частиц малы, то можно пользоваться нерелятивистским приближением, и законы сохранения импульса и энергии частиц имеют вид:

$$\vec{P}_1 + \vec{P}_2 = 0 \hspace{0.5cm} \text{if} \hspace{0.5cm} \frac{P_1^2}{2m_1} + \frac{P_2^2}{2m_2} = 0, \label{eq:power_power}$$

После реакции частицы разлетаются в противоположные стороны, и законы сохранения имеют вид:

$$\vec{P}_1' + \vec{P}_2' = 0$$
 $u \frac{{P_1'}^2}{2m_1'} + \frac{{P_2'}^2}{2m_2'} = Q.$

Откуда имеем кинетические энергии разлетающихся частиц

$$E_p = \frac{m(_1^3T)}{m_p + m(_1^3T)}Q = 3,025 \text{ M}_3B$$
,

$$E_T = \frac{m_p}{m_p + m(_1^3T)} Q = 1,008 \text{ M}_3B.$$

$$E_n = 2,453 \text{ M} \cdot B$$
, $E_{He} = 0,817 \text{ M} \cdot B$.

3)
$$Q = 17,59 \text{ M}_{3}B$$
, $E_{n} = 14,07 \text{ M}_{3}B$, $E_{He} = 3,52 \text{ M}_{3}B$.

4)
$$Q = 18,35 \text{ M} \cdot 3B$$
, $E_p = 14,68 \text{ M} \cdot 3B$, $E_{He} = 3,67 \text{ M} \cdot 3B$.

Задача 1.5. Используя формулу Вайцзеккера, определите наиболее стабильный изобар при заданном массовом числе А.

Решение: Изобары отличаются друг от друга значениями Z. Поэтому задача сводится к определению зарядового числа Z, при котором энергия связи максимальна. Продифференцируем выражение (1.10) при постоянном A и приравняем к нулю

$$\frac{\partial E(Z,A)}{\partial Z} = 0.$$

Получаем

$$-2\alpha_3 Z A^{-1/3} + 4\alpha_4 (A - 2Z) / A = 0.$$

Откуда имеем

$$Z = \frac{A}{2 + A^{2/3} \alpha_3 / 2\alpha_4}$$

Подставляя значения постоянных α_3 и α_4 , получаем выражение для определения Z и A β – стабильных ядер $Z = \frac{A}{2 + 0.015 A^{2/3}}$.

Задания для самостоятельной работы

Задача 1.6. Определите удельную энергию связи для следующих ядер: a) $^{40}_{20}$ Ca , б) $^{63}_{29}$ Cu , в) $^{200}_{80}$ Hg. Составьте график зависимости $\varepsilon(A)$, используя и результаты задачи 1.1.

Ответ: а) 8,55 МэВ/нуклон,

- б) 8,75 МэВ/нуклон,
- в) 7,93 МэВ/нуклон.

Задача 1.7. Чему равна удельная энергия связи и энергия отделения нейтрона и протона в ядре 16 O? Почему они различаются? Ответ: $\varepsilon(8,16) = 7,976$ МэВ, $E_n = 15,663$ МэВ,

Задача 1.8. Вычислите энергию, которая выделяется при синтезе ⁴ Не из двух ядер ² Н.

Ответ: $E_n = 23.85 \text{ МэВ}$

 $E_p = 12,127 \text{ M} \cdot \text{B}$.

Задача 1.9. Почему удельная энергия связи уменьшается для легких и тяжелых ядер?

Задача 1.10. Рассчитать отношение энергий связи нуклонов в ядре $^{238}_{92}\,\mathrm{U}\,$ и электронов в этом атоме.

Глава 2. Ядерные силы и модели

2.1.Основные свойства ядерных сил

Как известно, атом является квантовой системой многих тел, и существующая теория структуры атома позволяет рассчитать любую характеристику атома с достаточной точностью, благодаря существованию параметра малости — отношению энергии электромагнитного взаимодействия частиц атома к собственной энергии частиц. Атомное ядро также является квантовой системой многих частиц - нуклонов. Но для ядра до сих пор не удается построить завершенную теорию ядерной структуры из-за отсутствия такого параметра малости — отношения ядерного взаимодействия нуклонов к их собственной энергии. Другой немаловажной причиной тому является то, что до сих пор не установлена аналитическая формула сил между нуклонами, несмотря на обилие экспериментальных сведений о взаимодействиях нуклонов. Многочисленные эксперименты установили, что ядерные силы обладают следующими свойствами.

- 1. Ядерные силы оказываются весьма интенсивными, поэтому их относят к сильным взаимодействиям. Они на 3 порядка мощнее электромагнитных сил. Ядерные силы обеспечивают устойчивое состояние ядра со средней энергией связи 8МэВ, составляющей $\sim 10^{-2}$ от энергии покоя нуклона $\mathrm{m_pc^2} \approx 940\mathrm{M}$ эВ. А электромагнитные силы приводят к образованию атом водорода, в котором энергия связи электрона составляет $\sim 10^{-5}$ часть от энергии покоя $\mathrm{mc^2} \sim 0$,5МэВ. Отношение этих характерных коэффициентов дает величину $\sim 10^{-3}$, т.е. электромагнитное взаимодействие на 3 порядка слабее ядерных взаимодействий.
- 2. В отличие от электромагнитных сил, ядерные силы имеют конечный радиус действия $R_s \sim 10^{-15} \, \mathrm{M}$, т.е. являются короткодействующими. К такому заключению привели уже первые опыты Резерфорда, которое было подтверждено многочисленными экспериментальными данными.
- 3. Ядерное взаимодействие между нуклонами носит **притягательный** характер, но на малых расстояниях притяжение между нуклонами сменяется отталкиванием. Для описания это свойство ядер-

ных сил вводят отталкивающую сердцевину. Считается, что ядерный потенциал обладает сингулярным поведением, стремясь к $+\infty$ при стремлении расстояния к $r \to 0$ (Puc.2.1).

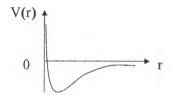


Рис. 2.1.Отталкивающая сердцевина потенциала взаимодействия нуклонов

4. Ядерные силы являются **нецентральными**, т.е. они зависят не только от расстояния между нуклонами, но и от взаимной ориентации их спинов и от ориентации спинов относительно прямой, соединяющей нуклонов. Нецентральную часть ядерного взаимодействия называют **тензорными силами**. Тензорный характер ядерных сил представляется потенциалом в следующей форме:

$$U_{T} = V(r)\{3(\vec{s} \cdot \vec{n}) - s^{2}\}$$
 (2.1)

где $\vec{s} = \vec{s}_1 + \vec{s}_2$ - спин двух частиц.

В качестве примера проявления таких сил можно привести ядро дейтерия 2_1H , у которого спин S=1, т.е. спины нейтрона и протона параллельны. Но не существует связанного состояния нейтрона и протона с общим спином S=0. В случае центральных сил связанное состояние 2 нуклонов не зависит от направления спинов, и такое состояние с S=0 должно существовать.

5. Ядерные силы обладают свойством зарядовой независимости. Это означает равенство ядерных сил, действующих между протоном и протоном, между нейтроном и нейтроном и между протоном и нейтроном, находящихся в одинаковых состояниях. О зарядовой симметрии говорит и равенство сечений p-p- рассеяния и n-n-рассеяния при высоких энергиях, когда вкладом кулоновского рассеяния протонов можно пренебречь. Об этом свойстве ядерных сил

Юкава Хидэки (1907-1981) - японский физик-теоретик, родился в Токио. Окончил ун-т в Киото (1929), там же преподавал (1932-33), в ун-те Осаке (1933-39), директор Ин-та фундаментальной физики (1939-70). В 1935 выдвинул гипотезу о существовании частиц, ответственных за перенос ядерного взаимодействия между нуклонами в ядре. Предсказанные им частицы (пимезоны) были обнаружены в 1947 экспериментально (Нобелевская премия. 1949). Совместно с С.Сакатой предсказал в 1935 К-захват, в 1938 построил скалярную теорию ядерных сил. Принимал участие в движении ученых за запрещение атомного оружия.

свидетельствует то, что у легких ядер, в которых роль электромагнитного взаимодействия не велика, число Z протонов примерно равно числу N нейтронов. Но с наибольшей убедительностью свойство зарядовой симметрии подтверждает сравнение энергетических спектров зеркальных ядер (рис.2.2).

Е(Мэ	B)	I^{π}	Е(МэВ
6.5		5/3-	6.5
4.6		7/2-	4.5
0.48		1/2	0.43
0.0		3/2 //////	0.0
	⁷ ₃ Li ₄	$_{4}^{7}\mathrm{Be}_{3}$	

Рис. 2.2. Схема энергетических уровней пары зеркальных ядер

6.Ядерные силы обладают свойством насыщения. Это следует из того, что для ядра полная энергия, пропорциональна числу частиц $E_{Z,A} \sim \widetilde{\epsilon} A$, в то время как электромагнитная энергия взаимодейст-

вия заряженных частиц пропорциональна числу пар частиц A(A-1)/2, т.е. приблизительно $E_{\rm кул}\sim A^2$. Это означает, что ну клон в ядре взаимодейству ет только с небольшим числом соседних ну клонов, т.е. ядерные силы обладают свойством насыщения. Таким свойством насыщения обладают и силы, действу ющие в химии. Например, в молекуле воды один атом кислорода может связать только два атома водорода H_2O .

7. Ядерные силы являются обменными силами. Как известно из химии, в молекуле водорода H_2 существует ковалентная связь между атомами водорода, которая происходит за счет постоянного обмена электроном между атомами.

Исходя из аналогии с химическим взаимодействием, японский физик Юкава выдвинул в 1935 году гипотезу, что ядерное взаимодействие есть результат обмена нуклонов виртуальными мезонами. Он оценил массы этих частиц на основе соотношения неопределенностей $\Delta E \Delta t \sim \hbar$, согласно которому закон сохранения энергии может нарушаться на величину ΔE только в течение времени $\Delta t \sim \hbar/\Delta E$. Один нуклон испускает частицу, а другой нуклон ее быстро поглощает, затем он испускает ее и первый нуклон ее поглощает. Такой процесс обмена промежу точной частицей происходит постоянно между нуклонами, находящимися в связанном состоянии. Промежу точные частицы, участвующие в процессе обмена, называют виртуальными частицами.

Оценим массу m этой вирту альной частицы. При ее испускании и поглощении происходит нарушение закона сохранения энергии на величину $\Delta E \sim mc^2$ на время $\Delta t \sim \hbar/mc^2$. За это время частица, двигаясь со скоростью, близкой к скорости света, проходит расстояние между ну клонами, равное радиусу действия ядерных сил $R_s \sim c\Delta t$. Откуда находим массу вирту альной частицы

$$m \sim \Delta E/c^2 = \hbar/\Delta tc^2 = \hbar/R_s c \sim (200 \div 300) m_e,$$
 (2.2)

т.е. масса этих частиц промежуточная между массой электрона и массой нуклона. Поэтому их назвали мезона ми. В 1937 году были открыты мюоны - частицы промежуточной массы, которых приняли за переносчиков ядерного взаимодействия. Но оказалось, что эти частицы слабо взаимодействуют с ядрами. И только в 1947 году были открыты π -мезоны, переносчики ядерного взаимодействия.

Они существуют в виде π^+, π^-, π^0 . Следовательно, изоспин π^- мезона равен T=1, проекция которого T_3 принимает три значения +1,0,-1, соответствующие частицам π^+, π^0, π^- . Внутренняя четность отрицательна: $J^{\eta}=0^-$. Их массы имеют следующие значения:

$$m_{\pi^+} = m_{\pi^-} \approx 139,57 \text{M} \Rightarrow B \approx 273 \text{m}_e$$
 (2.3a)

и
$$m_{\pi^0} \approx 134,97 \text{M} \ni \text{B} \approx 264 \text{m}_e$$
. (2.36)

π-Мезоны нестабильны и обладают средним временем жизни:

$$t_{\pi^{+}} = t_{\pi^{-}} \approx 2.6 \cdot 10^{-8} c, \qquad t_{\pi^{0}} \approx 0.8 \cdot 10^{-16} c$$
 (2.4)

Итак, согласно современной мезонной теории ядерных сил два нуклона, находясь на малом расстоянии $r \leq \hbar / m_{\pi c} c^2$, обмениваются виртуальными пионами, что является причиной их взаимодействия. При этом возможны 4 типа обмена:

$$p \leftrightarrow p + \pi^0$$
, $n \leftrightarrow n + \pi^0$, $p \leftrightarrow n + \pi^+$, $n \leftrightarrow p + \pi^-$. (2.5)

Если имеется один изолированный нуклон, то он находится в облаке испускаемых и поглощаемых им виртуальных пионов. При сближении другого нуклона до этого облака происходит обмен пионами, так о существляется взаимодействие между нуклонами.

2.2. Коллективные модели ядра. Колебательные и вращательные возбуждения ядра

Несмотря на обилие сведений о взаимодействии нуклонов, до сих пор не удается установить аналитическое выражение ядерных сил и построить завершенную теорию атомного ядра. Поэтому для количественного описания структуры ядра прибегают к приближенным, модельным описаниям ядра. Под ядерной моделью понимают совокупность упрощающих реальность предположений, которые, не требуя точного знания ядерных сил, позволяют с некоторой точностью описать некоторые характеристики ядер. Естественно, для описания всего многообразия свойств и явлений ядра пришлось развить большое количество разных моделей ядра. Наиболее важные модели можно объединить в 3 большие группы: коллективные модели, описывающие коллективные возбуждения ядер,

Нильс Бор (1885-1962) –датский физик-теоретик, окончил ун-т в Копенгагене (Дания, 1908), работал в Кембридже у Дж.Дж. Томсона (1911-12), у Резерфорда в Манчестере (1912-13), с 1920 - директор созданного им в Копенгагене Института теоретической физики, который стал международным центром физиков-теоретиков. В 1913 создал первую квантовую теорию атома (Нобелевская премия, 1922). Он один из создателей гидродинамической модели ядра (1936), автор теории составного ядра и теории деления атомного ядра (1939).

оболочечные модели, описывающие одночастичные возбуждения ядер, и **обобщенные** модели, объединяющие положения коллективных и оболочечных моделей.

Первой коллективной моделью ядра была капельная (гидродинамическая) модель, предложенная в 1936 г. Н. Бором совместно с Дж. Уиллером и Я. Френкелем. В этой модели ядро рассматривается как сферическая капля несжимаемой заряженной жидкости.

В рамках этой модели удалось объяснить многие свойства атомного ядра и получить полуэмпирическую формулу для энергии связи атомных ядер (формула Вайцзеккера), которая позволила понять некоторые закономерности в α - и β - распадах, делении ядер и оценивать массы и энергии связи новых ядер. Капельная модель была основой для создания более совершенных моделей, которые описывали коллективные возбуждения ядра: колебательное и вращательное возбуждения. Такие модели получили обобщающее название коллективной модели.

В рамках такой модели колебание рассматривается как колебание поверхности ядра. При этом поверхность ядра может колебаться с различными мультипольностями λ . Колебание с мультипольностью $\lambda = 0$ - называют монопольным колебанием, с $\lambda = 1$ - дипольным колебанием, с $\lambda = 2$ - квадрупольным колебанием и т.д. Монопольное колебание совершает ядра, сжимаясь и расширяясь

вблизи равновесной формы (рис 2.3, а). Дипольные колебания производят нейтроны относительно протонов (рис.2.3,в). Эти колебания имеют большие энергии $\sim 20~$ МэВ и проявляются в виде гигантских резонансов в реакциях рассеяния протонов на ядрах.

Квадрупольные колебания ядра совершаются в виде нарушения сферичности ядра (рис.2.3,б). Они имеют низкие энергии ~ 1 МэВ и наблюдаются во многих ядрах. Квантование таких колебаний приводит к квадрупольным фононам со спином $I^{\pi}=2^+$ и с энергией $E=\hbar\omega_2$. В качестве примера на рис.2.4 приводится спектр нижайших энергетических уровней четно-четного ядра $^{60}_{28}$ Ni . Первый возбужденный уровень со спином $I^{\pi}=2^+$ является одно-

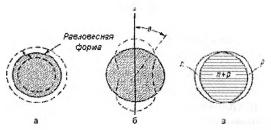


Рис.2.3. Колебания ядра: а - монопольное, б - квадрупольное, в – дипольное.

фононным уровнем с энергией $1\hbar\omega_2=1,3$ МэВ. Выше по энергии наблюдается двухфононное состояние, расщепленное

2.9
$$2^{+}$$
 $n_{2}=2$
2.3 4^{+} $n_{2}=1$

0 /////

Рис. 2.4. Спектр низших уровней ядра 60 Ni

из-за взаимодействия фононов на 3 уровня со спинами $I^{\pi}=0^+,2^+,4^+$ и центром тяжести, приблизительно равным энергии двух фононов $\sim\!2\hbar\omega_2$.

Согласно квантовой механике сферически-симметричная система не имеет вращательные степени свободы, так как при повороте такой системы не происходит перемещение материи в пространстве из-за принципа тождественности микрочастиц. Поэтому сферические ядра не имеют вращательные возбуждения. Вращаться могут несферические (деформированные) ядра вокруг оси, перпендикулярной оси симметрии. Энергия вращательных состояний четночетного ядра описывается в первом приближении соотношением

$$E_{1} = \frac{\hbar^{2}I(I+1)}{2\Im},$$
 (2.6)

где \Im - момент инерции ядра, I - спин ядра, пробегающий целочисленные значения.

Рис.2.6. Вращательный спектр сильнодеформированного ядра ¹⁷⁰Нf

Если определить момент инерции ядра из энергии первого уровня со спином J=2, то теоретическое значение энергии вращения, вычисляемое по формуле (2.6), с увеличением углового момента вращения быстро расходится с экспериментальной энергией. На рис.2.5 они приведены в последнем столбце. Это указывает на то, что вращение ядра отличается от вращения твердого тела. Атомное ядро является довольно мягким образованием, проявляет центробежное растяжение формы, в нем так же проявляются силы Кориолиса, которые приводят к определенным следствиям. Поэтому исследование вращения ядра является одно из эффективных направлений изучения структуры ядра.

2.3. Модель оболочек. Одночастичные состояния ядер

Экспериментальные исследования выявили периодичность в изменении таких характеристик ядер, как энергия связи, спин, магнитный момент и др. Описать эту периодичность капельная модель была не способна.

Например, существует важная закономерность: особенно устойчивыми являются ядра, у которых число протонов или нейтронов равно магическому числу: 2,8,20,28,50,82,126. Такая закономерность известна и в атомах, и объясняется наличием электронных оболочек в атоме. Атомы инертных газов особенно стабильны, так как они отличаются тем, что они обладают полностью заполненными оболочками.

Существование магических ядер наводит на мысль, что оболочечная структура свойственна и атомным ядрам. По аналогии с электронами в атоме полагают, что нуклоны в ядре также движутся почти независимо в некотором самосогласованном поле. Но в отличие от атома в ядре нет выделенного силового центра, создающего поле и удерживающие электроны в этом поле. В ядре сами нуклоны создают такое поле, как результат усреднения взаимодействия всех нуклонов ядра. Но для применения к ядру приближения самосогласованного поля необходима предпосылка образования оболочек. В этом важную роль играет принцип Паули: принцип Паули препятствует потере энергии нуклоном при столкновении, так как все низколежащие одночастичные состояния заняты, то нуклоны движутся независимо друг от друга, без столкно-

вения по своим орбитам в самосогласованном поле. Это позволяет говорить об индивидуальных орбитах нуклонов.

Таким образом, оболочечная структура ядра основана на положении, что ядерные силы, действующие на отдельный нуклон, можно свести к среднему полю V(r) по аналогии с центральным полем в атоме. Малый радиус действия ядерных сил говорит о том, что форма среднего поля должна быть сходной с формой распределения плотности ядерной материи — распределением Ферми (1.50). Эта форма потенциала описывается функцией

$$V_{SW}(r) = \frac{V_0}{1 + \exp(\frac{r - R_{1/2}}{\delta})},$$
 (2.7)

Здесь V_0 - глубина потенциальной ямы, а другие величины схожи с величинами формулы (1.50).

Решающий шаг в становлении оболочечной модели сделали М. Гепперт-Майер и Дж. Иенсен в 1949 г., высказав идею, что в ядрах в отличие от атома значительную роль играет взаимодействие s спина нуклона с его l орбитальным моментом импульса. Благодаря включению в рассмотрение спин-орбитального взаимодействия

$$V_{ls}(\mathbf{r}) = -V_{ls} \cdot \hat{\mathbf{s}} \cdot \hat{\mathbf{l}}$$
 (2.8)

удалось воспроизвести наблюдаемые в эксперименте магические числа.

Таким образом, гамильтониан нуклона в соответствующем самосогласованном поле имеет вид

$$\hat{\mathbf{H}} = \hat{\mathbf{T}} + \mathbf{V}_{SW}(\mathbf{r}) + \mathbf{V}_{ls}(\mathbf{r}). \tag{2.9}$$

Собственные состояния нуклона в таком потенциале находят, решая уравнение Шредингера

$$\hat{H}\Psi_n = E_n \Psi_n \tag{2.9}$$

численно, разлагая искомую функцию состояний по базису собственных функций сферического осциллятора

$$\Psi_{\rm n} = \sum a_{\rm nlm} \Psi_{\rm nlm} \,. \tag{2.10}$$

Гепперт-Майер Мария (1906 –1972) — американский физик-теоретик, родилась в Катовице. Окончила Геттингенский ун-т (1930). В 1931-39 работала в ун-те Дж Гопкинса, в 1939-46- в Колумбийском унте, в 1946-60 — в Аргоннской национальной лаборатории, с 1960-профессор Калифорнийского ун-та. Предсказала двухфотонное поглощение света, двойной бета-распад и разработала его теорию. Ввела представление о спин-орбитальной связи и независимо от X. Йенсена создала оболочечную модель ядра (Нобелевская премия, 1963).

Эти состояния характеризуются квантовыми числами, которые определяют физические величины, сохраняющиеся при движении в сферическом осцилляторном поле, и описываются волновыми функциями вида:

$$\psi_{nlm} = \frac{u_{nl}(r)}{r} Y_{lm}(\theta, \varphi), \qquad (2.11)$$

где сферическая функция $Y_{lm}(\theta,\phi)$ является собственной функцией оператора квадрата орбитального момента \hat{l}^2 и проекции момента l на ось z, равной m.

На рис.2.6. приведено схематическое изображение энергетических уровней нуклона в потенциале Вудса-Саксона. Слева расположены осцилляторные оболочки $п\hbar\omega$, которые расщепляются на энергетические уровни с различными значениями I орбитального квантового числа. При этом оболочка распадается на уровни с такими I орбитальными квантовыми числами, что четность n номера оболочки совпадает с четностью I орбитального квантового числа.

Также отметим, что вместо обозначения последовательности уровней с квантовыми числами nl = 00,11,20,22,31,33,40,42,44,... используются спектроскопическое обозначение:

где главное квантовое число n заменено числом, определяющим, который раз в этой последовательности встречается уровень с данным орбитальным квантовым числом l, т.е. вместо значения орбитального квантового числа l=0,1,2,3,4,... пользуются буквенными обозначениями: s,p,d,f,g,...

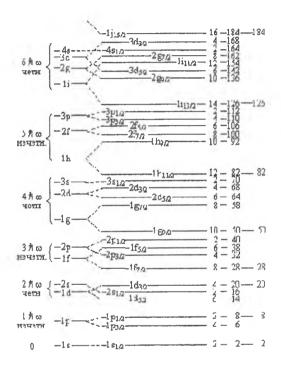


Рис. 2.6. Одночастичные уровни в оболочечном потенциале.

Учет спин-орбитального взаимодействия приводит к дополнительному расщеплению уровня с 1 орбитальным квантовым числом на два подуровня с полным угловым моментом $j=l\pm s$. Вектор полного момента j имеет 2j+1 значений проекции, и соответственно j- подуровень имеет 2j+1 состояний, которые имеют одну и ту же энергию. В этом случае говорят, что j- подуровень вырожден 2j+1 кратно. Принцип Паули позволяет на этом подуровне за-

селиться 2j+1 нейтронов или протонов отдельно. На рис. 2.6 против каждого j- подуровня указано число вакантных мест. Далее указано полное число нуклонов одного сорта при последовательном заполнении всех нижних уровней, т.е. число нейтронов или протонов в ядре. Последнее число, приведенное на рис. 2.6, — это магическое число, при котором заполняется оболочка.

Как видно из рис.5.6, что магические числа 28, 50, 82, 126 получаются благодаря учету спин-орбитального взаимодействия. Подуровни с наибольшим моментом $1f_{7/2}$, $1g_{9/2}$, $1h_{11/2}$, $1i_{13/2}$ оказываются энергетически более выгодными, и они опускаются в нижнюю осцилляторную оболочку.

В соответствии с принципом Паули все нижние по энергии уровни в ядре последовательно заполняются нейтронами и протонами раздельно. Наличие спаривательного взаимодействия между нуклонами приводит к тому, что суммарный угловой момент нуклонов заполненного ј- подуровня равен нулю. Т.е. два нуклона с одинаковым квантовым числом ј, но с противоположными по знаку магнитными квантовыми числами ти — те спариваются так, что их полный момент равен нулю. Поэтому все нуклоны четночетного ядра спарены и спин такого ядра в основном состоянии равен нулю. А спин соседнего нечетного ядра определяется угловым моментом того нуклона, который находится сверх заполненного ј- подуровня.

Возбуждение нечетного ядра происходит перескоком нечетного нуклона на более высокий подуровень. А для возбуждения четночетного ядра необходима дополнительная энергия, чтобы разорвать пару, а затем неспаренный нуклон заселить на более высокий уровень. Его место остается пустым, или иначе, дыркой. Таким образом, возбуждение четно-четного ядра определяется состоянием неспаренной частицы и дырки и называют частично-дырочным возбуждением. Тем не менее, такие возбуждения нечетного ядра и четно-четного ядра называют одночастичными возбуждениями, в противоположность коллективным возбуждениям, в которых участвует большое количество нуклонов.

Оболочечная модель во многих случаях хорошо воспроизводит экспериментальные значения энергии, спинов и четностей низковозбужденных состояний ядра, электрических квадрупольных и

магнитных моментов атомных ядер, средние времена жизни β -активных ядер, объясняет распределение ядер-изомеров. Наилучшие предсказания оболочечная модель дает для ядер вблизи заполненных оболочек.

В качестве примера применения оболочечной модели рассмотрим спины основных состояний легких ядер. Изотоп гелия 3_2 Не $_1$ имеет ядро, состоящий из N=1 нейтрона и Z=2 протона. Два нейтрона с конфигурацией $1s_{1/2}$ спарены и их суммарный момент равен нулю. Спин этого ядра определяется неспаренным протоном $1s_{1/2}$ и равен $1^{\pi}=1/2^{+}$.

Ядро бериллия ${}^9_4{\rm Be}_5$ имеет N = 5 нейтронов и Z = 4 протонов. Протоны спарены, поэтому вклад в спин определяется состоянием нечетного нейтрона в конфигурации $1P_{3/2}$. Для заполнения этой подболочки не хватает одного нейтрона, т.е. при добавлении одного нейтрона с $1P_{3/2}$ заполняется подоболочка, у которой полный момент равен нулю. Следовательно, здесь мы имеем дырку с конфигурацией $1P_{3/2}$, и спин ядра определяется этой дыркой и равен $1^\pi=3/2^-$.

Рассмотрим магнитный дипольный момент ядра в одночастичной модели оболочек. Оператор магнитного момента ядра состоит из двух частей, одна из которых обусловлена током, создаваемым орбитальным движением заряда, другая — спиновым магнитным моментом нуклона:

$$\widehat{\mu} = \mu_{N} (g_{1} \cdot \widehat{l} + g_{s} \cdot \widehat{s}), \qquad (2.12)$$

где μ_N - ядерный магнетон, g_1 и g_s - орбитальное и спиновое гиромагнитные отношения, значения которых приведены в (1.46).

Магнитный момент ядра определяется как среднее значение z-той компоненты оператора (2.12) в состоянии с $j_z = m = j$:

$$\mu = \int \psi_{j,m=j}^* \hat{\mu} \psi_{j,m=j} dr \qquad (2.13)$$

Вычисление магнитного момента нечетного ядра в одночастичной оболочечной модели дается выражением

$$\mu = \{(j-1/2)g_1 + g_s/2\}\mu_N \quad \text{при} \quad j = l+1/2, \tag{2.14}$$

$$\mu = \frac{j}{j+1} \{ (j+3/2)g_1 - g_s/2 \} \mu_N \quad \text{при} \quad j = l-1/2.$$
 (2.15)

Теоретические значения магнитного момента, вычисленные по формулам (2.14) и (2.15), приведены на рис.2.7 в виде кривых для ядер с нечетным нейтроном. Эти кривые называют линиями Шмидта. Экспериментальные значения магнитных моментов этих ядер приведены кружочками. Видно из рис.2.7, что экспериментальные значения магнитных моментов лежат не на линиях Шмидта, а между линиями Шмидта.

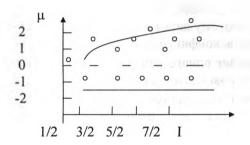


Рис. 2.7. Магнитные моменты ядер с нечетным нейтроном (кружочки) и теоретические линии Шмидта

А в большинстве случаев экспериментальные значения магнитных моментов лежат заметно ближе к одной из линий. Таким образом, модель оболочек дает качественное описание магнитных моментов. Для получения более точного совпадения теории с опытом необходим учет дополнительных взаимодействий между нуклонами.

Теперь рассмотрим вопрос, как оболочечная модель описывает электрический квадрупольный момент ядра. Согласно модели оболочек теоретическое значение квадрупольного момента нечетного ядра определяется квадрупольным моментом последнего нечетного протона и выражается формулой

$$Q = -er^2 \frac{2j-1}{2j+1},$$
 (2.16)

где r^2 - средний квадрат расстояния неспаренного протона от центра ядра.

Вычисленные по формуле (2.16) значения квадрупольного момента ядра согласуется с экспериментом только для ядер вблизи замкнутых оболочек. Но вдали от замкнутых оболочек величины квадрупольных моментов ядер во много раз превосходят теоретическое значение. Отсюда следует, что квадрупольные моменты ядер имеют не одночастичное, а коллективное происхождение. Такие ядра с большим квадрупольным значением встречаются в областях с массовыми числами $150 \le A \le 180$ (область редких земель) и A > 220 (заурановая область). Эти области ядер называют областями сильнодеформированных ядер.

Как видим, что одночастичная оболочечная модель имеет ограниченное применение. Но она служит основой для построения более правильных моделей, которые строятся, усложняя и расширяя одночастичную оболочечную модель.

2.4. Обобщенная модель

Атомные ядра проявляют как одночастичные возбуждения, так и коллективные возбуждения, для описания которых приходилось пользоваться различными моделями. Д. Рейнутором, О. Бором и Б. Моттельсоном была разработана обобщенная модель ядра, в которой описываются коллективные и одночастичные степени свободы ядра. В этой модели предполагается сильная связь внешних по отношению к заполненным оболочкам нуклонов с остовом, что может приводить к устойчивой равновесной деформации ядра. Движение остова описывается в гидродинамической модели. Одночастичные состояния рассчитываются в деформированном потенциале.

Для существования вращательных возбуждений ядра необходимо допустить, что форма ядра может деформироваться. Как известно, что при полном заполнении нуклонами оболочки ядро приобретает сферическую форму, угловые моменты нуклонов полностью взаимно компенсируются, и спин ядра равняется нулю. Если же в ядре имеются нуклоны сверх остова, то взаимодействие этих нуклонов между собой и с нуклонами остова приводит к отклонению формы ядра от сферичности. Таким образом, в ядрах с числом нуклонов, сильно отличающихся от магических чисел, возникает

Ore Бор (1922-) - датский физиктеоретик, сын Н. Бора. Окончил Копенгагенский ун-т (1946), работал в Лос-Аламосской лаб-рии (1944-45), в Ин-те теоретической физики в Копенгагене (с 1946), профессор Копенгагенского ун-та (с 1956) директор Ин-та им, Н. Бора (1962-70), в Ин-те теоретической физики (с 1975). Разработал совместно с Б. Моттельсоном коллективную модель ядра (Нобелевская премия, 1975). Построил модель переходного состояния деляшегося ядра и каналов деления ядер. В 1958 с Б. Моттельсоном и Д. Пайнсом выдвинул идею сверхтекучей модели ядра.

устойчивая равновесная деформация ядра. При этом считается, что эта деформация имеет форму эллипсоида вращения.

Потенциал самосогласованного поля деформированного ядра получает отклонения от сферичности при замене в формуле (2.7) постоянного радиуса ядра $R_{1/2}=$ const на выражение поверхности жидкой капли

$$R_{1/2}(\theta, \varphi) = \sum_{\lambda \mu} \alpha_{\lambda \mu} Y_{\lambda \mu}(\theta, \varphi). \tag{2.17}$$

Если положить в этой формуле, например, мультипольность $\lambda=2$, то получим квадрупольную форму эллипсоида вращения. Задавая коэффициентам разложения при сферической функции $Y_{\lambda\mu}(\theta,\phi)$ возможность гармонически меняться со временем $\alpha_{2\mu}(t)$, описывают квадрупольные колебания поверхности эллипсоида.

Следующим важным положением модели является - это выполнение условия адиабатичности (медленности) коллективных движений (колебания и вращения) деформированного ядра по отношению к характерным скоростям внутреннего движения, связанного с одночастичным возбуждением:

Выполнение этого условия позволяет раздельно рассматривать внутреннее движение нуклона в деформированном самосогласованном поле от коллективного движения ядра в целом. В связи с этим рассматривается две системы координат: лабораторная система координат (x, y, z), относительно которой вращается ядро, и связанная с ядром вращающаяся система координат (1, 2, 3), в которой рассматривается одночастичное движение нуклонов. Принято направлять ось 3 вращающейся системы вдоль большой оси симметрии эллипсоидального ядра.

Полный момент количества движения ядра — спин ядра \vec{I} складывается из коллективного вращательного момента ядра \vec{R} и внутреннего момента нуклонов $\vec{J} = \sum \vec{j}_a$:

$$\vec{\mathbf{I}} = \vec{\mathbf{R}} + \vec{\mathbf{J}}. \tag{2.19}$$

Моменты \vec{J} и \vec{R} прецессируют вокруг направления \vec{I} - полного момента количества движения. Так как аксиально-симметричное эллипсоидальное ядро может вращаться только вокруг оси перпендикулярной к оси симметрии 3, то из этого вытекает (см. рис.2.8), что вектор \vec{R} перпендикулярен оси 3, и проекции полного и внутреннего угловых моментов на ось симметрии должны быть равны между собой: $I_3 = J_3 = \hbar K$ (2.20)

Рис. 2.8. Сложение угловых моментов в сфероидальном ядре

Из-за прецессии вектор \vec{J} не имеет фиксированного направления, но имеет определенное значение проекции одновременно - M на неподвижную ось z и K - на вращающуюся ось симметрии.

3. Итак, состояние движения аксиально-симметричного ядра можно характеризовать набором квантовых чисел $|\alpha$ IMK>, где α -дополнительные квантовые числа, определяющие внутреннее состояние нуклонной системы.

Решая уравнения Шредингера в т аком деформированном поле, получают собственные энергии и собственные функции нуклона, часть которых приведена на рис.2.9. Как видно из рисунка, что энергетический спектр одночастичных состояний нуклона меняется в зависимости от величины параметра деформации ε . При $\varepsilon=0$ картина уровней такая же, как в сферическом оболочечном потенциале. Появление аксиально-симметричной деформации приводит к расщеплению каждой nlj орбиты на (2j+1)/2 энергетических уровней со значениями квантового числа $m \equiv K = j, j-1,...1/2 > 0$.

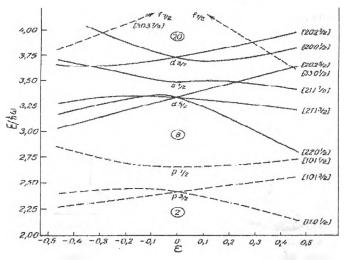


Рис. 2.9. Одночастичные уровни энергии в сфероидальном потенциале при 2 < N, Z < 20. В квадратных скобках указаны асимптотические квантовые числа N, n_3 , Λ и K.

Каждый расщепленный уровень остается дважды вырожденным по знаку проекции (\pm K) так, что на каждом таком уровне могут находиться не более двух нуклонов одного сорта, отличающихся знаком проекции углового момента на ось симметрии 3.

В аксиально-симметричном поле сохраняются проекции квантовых чисел одночастичного состояния нуклона: n_3 главного квантового числа n, Λ - орбитального момента 1 и Σ - спинового момента нуклона. Одночастичные состояния нуклона пределяются заданием этих квантовых чисел. Полную энергию деформированного ядра можно представить в виде суммы энергии вращения относительно внешней системы координат и энергии движения нуклонов относительно внутренней системы координат:

$$E = \frac{\vec{R}^2}{2\Im} + E_{\text{одн}} = E_{\text{вращ}} + E_{\text{внутр}} + E_{\text{взаим.}}, \qquad (2.21)$$

где $E_{\rm вp} = \frac{I(I+1)-K^2}{2\Im}$ - собственно вращательная энергия, зависящая только от коллективных переменных,

 $E_{\text{внутр}} = E_{\text{одн}} + \frac{J_1^2 + J_2^2}{2\Im}$ - внутренняя энергия ядра, зависящая от внутренних переменных,

 $E_{\text{взаим}} = -\frac{2(I_1J_1+I_2J_2)}{2\Im}$ - взаимодействие внутренних и коллективных степеней свободы (так называемое взаимодействие Кориолиса).

В выражении (2.21) рассмотрено только вращательное коллективное движение. В общем случае, при наличии и колебательных степеней свободы, необходимо добавить и энергии колебания ядра соответствующей мультипольности

$$E_{\text{колеб}} = n_{\lambda} \hbar \omega_{\lambda}. \tag{2.22}$$

Обобщенная модель основана на адиабатическом приближении, в соответствии с которым каждое внутреннее состояние не искажается при вращении ядра. Поэтому каждому внутреннему состоянию

8 928,26	7 1432.97 6 1263.92 5 1117.60 4 994.77 3 895.82 2 821.19 K \pi = 2 +	8 1605.85 7 1448.97 6 1311.48 5 1193.04 4 1094.05 Κπ = 4	7 1950.81 6 1820.14 5 1708.01 4 1615.36 3 1541.58 κπ = 3-
6 548.73			
4 264.081			
$\frac{2}{0} \frac{79.800}{0}$ $\kappa \pi = 0 +$			

Рис. 2.10. Энергетические уровни ядра ¹⁶⁸Er.

с энергией $E_{\text{внутр}}$ и проекцией K соответствует вращательная полоса (см. рис. 2.10). Вращательная полоса имеет последовательность уровней со спинами $I=K,\ K+1,\ K+2...$ Если внутреннее состояние ядра характеризуется квантовым числом K=0, то из-за аксиальной симметрии ротатора возможны только четные значения угловых моментов вращательных состояний: I=0,2,4,6,..

Более совершенные варианты обобщенной модели рассматривают взаимодействие между разными вращательными полосами, вызываемое силами Кориолиса.

2.5. Учет остаточных взаимодействий нуклонов. Микроскопические теории структуры ядра

В дальнейшем модели ядра совершенствовались, главным образом, на основе учета остаточных взаимодействий, которые оставались не учтенными в среднем самосогласованном потенциале, и на более строгом теоретическом описании рассматриваемы физических явлений.

Многочисленные экспериментальные факты давно указывали на существовании спаривательного взаимодействия между нуклонами в ядре, но первоначальные ядерные модели не могли теоретически описать спаривание нуклонов. Это стало возможным после того, как академик Н.Н. Боголюбов разработал теорию явлений сверхтекучести и сверхпроводимости. Идею о существовании в ядре сверхтекучих взаимодействий нуклонов впервые высказали О. Бор, Б.Моттельсон и Н.Н. Боголюбов. С.Т. Беляев и независимо от него В.Г. Соловьев применили этот изящный математический аппарат к ядру и получили новую модель, получившую название сверхтекучей модели ядра. Основное положение этой модели основано на том факте, что между двумя нуклонами одного сорта в одинаковых энергетических состояниях и с равными, но с противоположными угловыми моментами, сильное спаривателное взаимодействие.

Эта модель решила ряд проблем, которые оставались не объяснимыми. Одна из проблем была связана с теоретическим описанием момента инерции ядра, т.е. с вопросом о том, как вращается ядерная материя. Оказалось, что вращается она совсем не как жидкая капля, не как твердое тело, а как совершенно новое образование, как сверхтекучая жидкость.

Следующим шагом в развитии ядерных моделей было математическое описание колебания как коллективного движения, в котором непосредственно участвуют пары нуклонов с общим угловым моментом, равным соответствующей мультипольности колебательного возбуждения ядра. Как известно, капельная модель рассматривала колебание, как колебание поверхности жидкой капли. Такое феноменологическое описание колебания оставалось и после квантования колебания. На смену феноменологическому описанию колебания пришла микроскопическая теория колебательных возбуждений. Согласно этой теории нуклоны, движущиеся по своим индивидуальным орбитам, вследствие определенного дальнодействующего взаимодействия принимают участие в дополнительном синхронном движении. Такое синхронное движение наблюдается в плазме, когда ионы, движущиеся по своим орбитам, начинают согласованное движение, которое проявляется как колебание. Такое описание ядра называют теперь не моделью, а скорее, как микроскопическая теория структуры ядра. Соответствующая математика этой теории довольно сложна, поэтому на этом ограничимся наше знакомство с моделями ядра.

Вопросы для закрепления знаний

- **2.1.** Перечислите экспериментально установленные свойства ядерных сил и объясните их физический смысл.
- 2.2. Выпишите 4 типа взаимодействия нуклонов через обмен пимезонами.
- **2.3**. Представляя атомное ядро, как капля несжимаемой жидкости, получите соотношение между радиусом ядра и его массовым числом $R = r_0 A^{1/3}$.
- 2.4. Какие члены в формуле Вайцзеккера для энергии связи ядер следуют из капельной модели?
- **2.5.** Выпишите формулу, описывающую колебания поверхности сферической капли, и схематично представьте на рисунке 2^{λ} -польные колебания: $\lambda=1$ дипольные, $\lambda=2$ квадрупольные, $\lambda=3$ октупольные, $\lambda=4$ гексадекапольные колебания.
- **2.6.** Схаматично представьте на рисунке спектр энергии уровней квадрупольных колебаний ядра.
- **2.7.**Схаматично представьте на рисунке спектр энергии вращательных уровней ядра.
- 2.8. Почему квантовые объекты сферической формы (атомы, молекулы, ядра) не могут иметь вращательный спектр.
- 2.9. Выпишите гамильтониан одночастичной оболочечной модели и поясните необходимость каждого члена гамильтониана.
- 2.10. Перечислите магические числа нейтронов и протонов, и чем отличаются магические ядра?
- 2.11. Какую роль играет принцип Паули в обосновании модели оболочек?
- 2.12. Какими квантовыми числами описываются ядерные состояния в модели оболочек?

- **2.13.** На основе одночастичной модели оболочек установите спины и четности основных состояний следующих ядер: 3He , 5He , ${}^{11}B$, ${}^{13}C$, ${}^{15}N$, ${}^{17}O$.
- **2.14.** Изобразите схему заполнения энергетических уровней оболочек нуклонами в ядрах 11 B, 17 O.
- 2.15. Изложите основы обобщенной модели ядра.
- **2.16.** Что такое остаточные взаимодействия и какова роль остаточных взаимодействий сверхтекучего типа в атомном ядре?

Примеры решения задач

Задача 2.1. В опытах Резерфорда было установлено, что ядерные силы действуют на расстояниях порядка $R_s \approx 10^{-15}\,_{M}$. Японский ученый Юкава выдвинул идею, что переносчиками ядерных взаимодействий являются пионы. На основе соотношений неопределенностей оцените массу пионов.

Решение: Из соотношений неопределенностей $\Delta E \Delta t \approx \hbar$ имеем, что закон сохранения энергии может нарушаться на ΔE в течение времени $\Delta t \approx \hbar / \Delta E$. За это время испускаемая частица удаляется на расстояние $c\Delta t \approx R_s$. Так как $\Delta E = mc^2$, то масса пионов

$$m=\hbar\,/\,R_{_S}c={}_{1,\!05}\cdot{}_{10}^{-34}\,/{}_{10}^{-15}\cdot{}_{3}\cdot{}_{10}^{8}={}_{0,\!3}\cdot{}_{10}^{-27}\,{}_{K\Gamma}\approx300\cdot{}m_{_{\scriptstyle e}}\,.$$

Задача 2.2. На рис.2.2 показан энергетический спектр ядра $^{106}{\rm Pd}$. Оценить энергию первого возбужденного состояния $I^\pi=2^+$. Решение: На рис.2.2 приведен типичный колебательный спектр ядра, имеющего в основном состоянии спин и четность $I^\pi=0^+$. При энергиях, вдвое превышающих энергию первого возбужденного состояния, находятся три состояния примерно с одинаковой энергией и имеющих квантовые характеристики $I^\pi=0^+,\,2^+,\,4^+$, что соответствует сумме двух квадрупольных фононов $\lambda=2$. Вычислим среднюю энергию 2 фононов

$$E_{2\Phi} = (1,229 + 1,133 + 1,127)/3 = 1,163 \text{ M} \ni B$$
.

Тогда энергия однофононного состояния с I^{π} = 2 равна $E_{1\varphi} = 1,\!163/2 = 0,\!582 \; \text{МэВ} \, .$

Задача 2.3. Показать, что низкоэнергетические возбужденные состояния деформированного ядра $^{180}\,\mathrm{Hf}$, представленные на рис. 2.3, представляют собой вращательный спектр. Вычислить изменение момента инерции с ростом спина вращательных уровней. Решение: Энергия вращательных состояний четно-четных

$$1,079$$
 — 8^+
 $0,637$ — 6^+
 $0,307$ — 4^+
 $0,093$ — 2^+
 0 — 0^+
 $E(M\ni B)$ I^π

деформированных ядер описывается формулой $\overline{E}_I = \frac{\hbar^2 I(I+1)}{2J}$, согласно которой отношение энергии уровней со спином I=4 и I=2 равно $\mathrm{E}_4/\mathrm{E}_2=3,3$. Вычислим отношение экспериментальных энергий этих уровней для ядра 180 Hf $\mathrm{E}_4/\mathrm{E}_2=0,307/0,093=3,3$.

Полученное значение отношения, а также отсутствие в спектре ядра состояний со спином I=1,3,5,... указывает, что это вращательная полоса. Экспериментальное значение момента инерции в единицах \hbar^2/M ЭВ определяется следующим выражением

$$J_I = I(I+1)/(2E_I).$$

Вычислим момент инерции ядра в следующих состояниях:

E₂ = 6/(2·0,093) = 32,26
$$\hbar^2$$
 / M₂B
E₄ = 20/(2·0,307) = 32,57 \hbar^2 / M₂B,
E₆ = 42/(2·0,637) = 32,97 \hbar^2 / M₂B,
E₈ = 72/(2·1,079) = 33,36 \hbar^2 / M₂B.

Следовательно, момент инерции ядра возрастает с увеличением скорости вращения ядра, что указывает на появление центробежных сил.

Задача 2.4. На основании одночастичной модели оболочек определить значения спинов и четностей I^{π} основных состояний изотопов кислорода - 15 O , 16 O , 17 O , 18 O .

Решение: Четно-четные изотопы $^{16}{\rm O}$ и $^{18}{\rm O}$ имеют в основном состоянии спин и четность $I^{\pi}=0^+$. Спин и четность ядра $^{17}{\rm O}$ определяется одним нейтроном в состоянии $1d_{5/2}$ сверх четночетного остова ядра $^{16}{\rm O}$. Следовательно, для ядра $^{17}{\rm O}$ спин основного состояния равен $I^{\pi}=5/2^+$. А спин и четность ядра $^{15}{\rm O}$ определяются "нейтронной дыркой" (по отношению к четно-

четному ядру 16 O) в состоянии $1p_{1/2}$. Спин ядра 15 O равен полному моменту "нейтронной дырки" в этом состоянии I=1/2, а четность определяется орбитальным моментом l нуклона в данном состоянии $\pi=(-1)^1=(-1)^1=-1$, то есть $I^\pi=1/2^-$.

Задача 2.5. Сравните экспериментальное значение магнитного мен-

та ядер
$$\mu(_1^3 \text{H}) = 2,97 \mu_{\text{N}}, \qquad \mu(_3^7 \text{Li}) = 3,26 \mu_{\text{N}},$$
 $\mu(_4^9 \text{Be}) = -1,18 \mu_{\text{N}}, \qquad \mu(_8^{17} \text{O}) = -1,89 \mu_{\text{N}}$

с теоретическим предсказанием одночастичной оболочечной модели.

Решение: Ядро 3_1 Н имеет протонную конфигурацию $1s_{1/2}$ с полным моментом j=l+s=0+1/2=1/2. Следовательно, расчеты магнитного момента дают значение

$$\mu = (1/2 - 1/2) \cdot 1 + 5,586/2 = 2,79 \mu_N$$

которое согласуется с экспериментальным значением. Ядро $^{7}_{4}$ Li имеет протонную конфигурацию $1p_{3/2}$ с j=1+1/2=3/2. Модельное значение магнитного момента

$$\mu = (3/2 - 1/2) \cdot 1 + 5,586/2 = 3,79 \,\mu_{N}$$

несколько отличается от экспериментального значения. Ядро 9_4 Ве имеет нейтронную конфигурацию $1p_{3/2}$ и теоретическое значение магнитного момента

$$\mu = (3/2 - 1/2) \cdot 0 - 3,826/2 = -1,91 \mu_N$$

которое так же несколько отличается от эксперимента. Ядро $^{17}_{8}$ О имеет нейтронную конфигурацию $1d_{5/2}$ и его магнитный момент имеет значение

$$\mu = (5/2 - 1/2) \cdot 0 - 3,826/2 = -1,91 \mu_N$$

согласующееся с экспериментом.

Задача 2.6. Сравнить экспериментально измеренное значение магнитного момента дейтрона $\mu=0.86\mu_{\rm N}$ с магнитным моментом системы нейтрон-протон в состоянии с J=1 и относительным орби-

тальным моментом L=0 (S_1 -состояние), оценить вклад компоненты с J=1 и L=2 (D_1 -состояние) в волновую функцию дейтрона.

Решение: Состояние дейтрона с J=1 может быть представлено суперпозицией S_1 и D_1 состояний с относительными орбитальными моментами L=0 и L=2. В случае L=0 спины протона и нейтрона параллельны, а в случае L=2 их векторы направлены противоположно вектору орбитального момента. В случае L=0 имеем

$$\vec{\hat{\mu}} = (g_1 \vec{l} + g_p \vec{s} + g_n \vec{s}) \mu_N = (1 \cdot 0 + 0 \cdot 0 + 5,586 \cdot 1/2 - 3,826 \cdot 1/2) \mu_N = 0,88 \mu_N.$$

В случае $L\!=\!2$ орбитальный момент каждого нуклона $1\!=\!L/2\!=\!1.$ Тогда

$$\vec{\hat{\mu}} = (g_1 \vec{l} + g_p \vec{s} + g_n \vec{s}) \mu_N = (1 \cdot 1 + 1 \cdot 0 - 5,586 \cdot 1/2 + 3,826 \cdot 1/2) \mu_N = 0,12 \mu_N.$$

Обозначим вклад состояния с L=2 как $\mathcal X$. Тогда

$$x \cdot 0.12\mu_N + (1-x) \cdot 0.88\mu_N = 0.86\mu_N$$
.

Получаем x = 0.026. То есть вклад состояния с L = 2 в волновую функцию дейтрона составляет 2,6%.

Задания для самостоятельной работы

Задача 2.7. Пионы являются переносчиками ядерных взаимодействий, масса которых $m \approx 200~m_e$. На основе соотношений неопределенностей оцените радиус действия ядерных сил и сравните с радиусом действия электромагнитных взаимодействий, которые переносятся фотонами.

Задача 2.8. Спектр низших уровней ядра $^{238}_{92}\mathrm{U}$ имеет следующие энергии:

$$E_0=0$$
 при $I^\pi=0^+,$ $E_2=0,047~M$ э B при $I^\pi=2^+,$ $E_4=0,148~M$ э B при $I^\pi=4^+,$ $E_6=0,308~M$ э B при $I^\pi=6^+,$ $E_8=0,519~M$ э B при $I^\pi=8^+,$ $E_{10}=0,777~M$ э B при $I^\pi=10^+.$ Определите, как изменяется момент инерции этого ядра с увеличением спина возбужденного состояния I .

Задача 2.9. На основе одночастичной модели оболочек определите спин и четность I^{π} основного состояния изотопов бериллия - $^{7}_{4}$ Be, $^{8}_{4}$ Be, $^{9}_{4}$ Be.

Задача 2.10. Сравните экспериментальное значение магнитного момента ядер:

$$\mu({}_{1}^{1}H) = 2,79\mu_{N},$$
 $\mu({}_{2}^{3}He) = -2,13\mu_{N},$ $\mu({}_{6}^{13}C) = 0,70\mu_{N},$ $\mu({}_{7}^{15}N) = -0,28\mu_{N}$

с теоретическим предсказанием одночастичной оболочечной модели.

Otbet:
$$\mu({}_1^1 H) = 2,79 \mu_N$$
, $\mu({}_2^3 He) = -1,91 \mu_N$, $\mu({}_6^{13} C) = 0,64 \mu_N$, $\mu({}_7^{15} N) = -0,26 \mu_N$.

Глава 3. Радиоактивные превращения ядер

3.1. Радиоактивность. Основной закон распада, постоянная распада. Единицы активности источника. Фундаментальные взаимодействия

Под словом радиоактивность понимают всякий стабилизированный (устоявшийся) процесс спонтанного (самопроизвольного) распада ядра с превращением в другие ядра и частицы:

$${}_{z}^{A}X \rightarrow {}_{z'}^{A'}Y + a_1 + \dots + a_n, \tag{3.1}$$

где X - материальное ядро, Y - дочернее ядро, a_n - частицы распада. Частицей распада ядра может быть любая частица, например: при испускании γ -частиц, когда $a_n = \gamma$, такой процесс называется γ -излучением, при $a_n = \beta$ процесс называют β - распадом, при $a_n = \alpha$ - α - распадом, а при $a_n = \frac{A}{Z}$ Y, т.е. при испускании осколка ядра распад называют делением ядра.

Исторически радиоактивность является первым ядерным процессом, обнаруженным человеком. В 1896 г. французский ученый А.Беккерель, изучая явление фотолюминесценции солей урана, открыл излучение, которое вначале называли лучами Беккереля. В последующем французская ученая польского происхождения Мария Склодовская вместе с мужем П.Кюри открыли новые элементы: полоний 84 Ро и радий 88 Ra, более активные, чем уран. Они предложили термин радиоактивность.

Ядра, подверженные радиоактивному распаду, называются радиоактивными. Ядра, не испытывающие распад, называют стабильными. В природе в естественном виде существует $\sim\!260$ стабильных изотопов и $\sim\!60$ радиоактивных ядер. Радиоактивные ядра возникли: одни в процессе первичного синтеза химических элементов, другие возникают за счет распада первичных радиоактивных ядер, или под действием потока космических лучей, падающих на Землю.

Очевидно, что необходимым, но не всегда достаточным условием радиоактивного распада является его энергетическая выгодность — масса радиоактивного ядра должна превышать сумму масс осколка и частиц, вылетающих при распаде:

Беккерель Антуан Анри (1852-1908)французский физик, родился в Париже, окончил Политехническую школу (1874), в которой работал с 1876 профессором, зав. кафедрой. Работы посвящены оптике и радиоактивности. В 1896 г. изучая действие люминесцирующих веществ на фотопленку, открыл самопроизвольной излучение солей урана, названное радиоактивностью (Нобелевская премия, 1903). Впервые установил, что отношение заряда к массе бета-частиц такое же, как у частиц катодных лучей. Изучал физиологическое воздействие радиоактивного излучения.

$$m_x > m_y + \sum_i m_i,$$
 (3.1)

иначе с выделением энергии

$$Q = (m_x - m_y) - \sum m_i > 0.$$
 (3.2)

Таким образом, всякий радиоактивный распад происходит с выделением энергии Q>0. Такой процесс называют экзотермическим.

Как показывают наблюдения, что радиоактивный распад ядра – явление статистическое. Нельзя предсказать, когда именно распадется данное ядро. Даже одинаковые ядра распадаются за разное время. Но среднее время жизни данного сорта ядер, определенное за большой промежуток времени, величина постоянная для этих ядер и не зависит от внешних воздействий - ни от температуры, ни от давления и т.д. Поэтому среднее время жизни является физической характеристикой распада ядер.

Выведем основной закон распада радиоактивных ядер. Если в момент времени t имеется большое число ядер N, то за промежуток времени dt количество распавшихся ядер в среднем пропорционально исходному числу ядер и времени

$$dN = -\lambda N dt, \qquad (3.3)$$

Склодовская-Кюри Мария 1934) - польский и французский физик и химик. Родилась в Варшаве, окончила Парижский ун-т по физике (1893) и по математике (1894). В 1895 г. вышла замуж за физика П. Кюри и работала в его лаборатории. С 1906 г. профессор и зав. кафедрой Парижского ун-та, с 1914 также директор Института радия. Выделила новые радиоактивные элементы: полоний (1898) и радий (1899) (Нобелевские премии по физике (1903) и по химии (1911)). Разработала методы измерения радиоактивности, изучала наведенную радиоактивность, установила влияние излучения на живую клетку. Умерла от лейкемии.

где коэффициент пропорциональности λ называют постоянной распада. Знак минус в (3.3) указывает на уменьшение общего числа ядер со временем. Результатом интегрирования является основной закон радиоактивного распада

$$N = N_0 e^{-\lambda t}. (3.4)$$

Здесь N - количество нераспавшихся ядер, N_0 - количество ядер в начальный момент времени t=0. Отметим, что этот закон относится к статистическим средним и справедлив только при большом количестве ядер.

Количество распавшихся $\, N_p \,$ ядер определим прямым вычитанием из начального количества ядер количество нераспавшихся ядер

$$N_p = N_0(1 - e^{-\lambda t})$$
 (3.5)

Постоянную распада λ можно связать с другими величинами, характеризующими интенсивность процесса распада ядер: с периодом полураспада $T_{1/2}$ и средним временем жизни τ . Периодом полураспада называют время, за которое число радиоактивных ядер уменьшается вдвое:

$$N(T_{1/2}) = \frac{1}{2}N_0$$

Подставив это в (3.4)

$$\frac{1}{2}N_0 = N_0 e^{-\lambda T_{1/2}},$$

получим период полураспада

$$T_{1/2} = \frac{\ln 2}{\lambda} = \frac{0,69}{\lambda}.$$
 (3.6)

Среднее время жизни определяется как статистическое усреднение

$$\tau = \frac{1}{N_0} \int_0^\infty t dN(t) = -\frac{1}{N_0} \int_0^\infty t \lambda N(t) dt = -\int_0^\infty t \lambda e^{-\lambda t} dt = \frac{1}{\lambda}.$$
 (3.7)

Следовательно, между этими величинами существую соотношения

$$\tau = \frac{1}{\lambda} = \frac{T_{1/2}}{\ln 2} = \frac{T_{1/2}}{0.69},\tag{3.8}$$

$$T_{1/2} = 0.69\tau. (3.9)$$

Естественной величиной, описывающей радиоактивный распад, является постоянная распада λ . Физический смысл этой величины выражает вероятность распада ядра за единицу времени. Если взять большое число N ядер, то за единицу времени в среднем распадается λ N ядер. Эта величина характеризует скорость распада данного количества ядер в целом, т.е. активность источника излучений. Таким образом, устанавливают определение активности радиоактивного источника излучений

$$I_0 = -\frac{dN}{dt} = \lambda N. (3.10)$$

В международной системе единиц СИ активность источника измеряется в **беккерели**, равной скорости распада в 1 распад за 1 секунду:

$$15\kappa = \frac{1pac\pi a \pi}{1c}.$$
 (3.11)

Старейшей и до сих пор наиболее употребительной является внесистемная единица активности источника - кюри:

$$1$$
Ки = $3,7 \cdot 10^{10}$ распад/с. (3.12)

Активность в 1 Ки равна активности 1 г радиоактивного препарата ²²⁶Ra. Такое количество радия было впервые добыто Марией Кюри-Склодовской из рудных отвалов в результате титанического труда. Она ввела понятие активности элементов и метод измерения ее по

ионизации воздуха, который становится проводником электрического тока.

При бомбардировке ядер ускоренными частицами происходит ядерная реакция с излучением новых частиц, т.е. в ядерных реакциях также наблюдается распад ядер. Никакой физической границы между радиоактивностью и распадом ядер в ядерных реакциях не существует. Тем не менее, радиоактивность выделяют в самостоятельный раздел ядерной физики. Под радиоактивностью понимают установившийся распад ядер, т.е. длительный во времени процесс. Время протекания ядерной реакции определяется временем, характерного для сильного взаимодействия $\sim 10^{-23}$ с, такое время не возможно измерить обычными методами. На практике к радиоактивным ядрам относят ядра, время жизни которых можно измерить радиотехническими методами. Этими средствами удается измерить времена от 10^{-12} с и до 10^{22} лет.

Самым удивительным в явлении радиоактивности является колоссальное различие времен жизни ядер. Очевидно, что должны существовать какие-то физические причины, которые препятствуют распаду в течение гигантского времени, а потом все-таки происходит распад ядра.

Одной из главных причин является тип взаимодействия, под действием которых происходит распад. Существуют 4 типа фундаментальных взаимодействий, которые отличаются интенсивностью взаимодействия I, радиусом действия R и характерным временем протекания процессов т.

За единицу интенсивности взаимодействия принята интенсивность сильного взаимодействия. В этих единицах интенсивность гравитационного взаимодействия для микрочастиц столь мала, что в ядерных процессах оно не проявляется. Электромагнитное и слабое взаимодействия отличаются по времени от сильного взаимодействия. Поэтому происходит процесс стабилизации (задержки) распадов ядер, если распад происходит не за счет сильного взаимодействия, а за счет электромагнитного или слабого взаимодействий, время протекания которых на много порядков больше.

Существует множество других причин стабилизирующих распад ядер, увеличивая среднюю жизнь ядер. Например, в случае сраспада, который происходит за счет туннельного проникновения сквозь кулоновский барьер. Такой туннельный эффект запрещен по

классическим законам, но в микромире частица может просочиться сквозь барьер, и вероятность такого процесса сильно зависит от энергии частицы, поэтому время распада варьирует в больших пределах.

N	Тип	І-интенсив-	R-радиус	τ-характерно
	взаимодействия	ность	действия	время
1	Сильное взаимодействие	1	10 ⁻¹⁵ м	10 ⁻²³ c
2	Электромагнитное взаимодействие	1/137	90	10 ⁻¹⁸ c
3	Слабое взаимодействие	10-10	10 ⁻¹⁰ м	10 ⁻¹³ c
4	Гравитационное взаимодействие	10 ⁻³⁸	∞	?

Отметим, что, в принципе, любая частица может участвовать в распаде ядер. Но нейтронной радиоактивности не существует, а протонная радиоактивность обнаружена позже всех других видов распада ядер. Дело в том, что для нейтрона нет кулоновского барьера, который бы задерживал излучение нейтрона. Поэтому время излучения нейтрона очень мало, меньше времени, характерного радиоактивным распадам. Что касается протонной радиоактивности, то она наблюдается в протонно-избыточных ядра, и распад таких ядер сильно конкурирует с β^+ -распадом, который чаще наблюдается.

3.2. Типы радиоактивных превращений. Правила сдвигов

В природе в естественных условиях встречаются основные виды радиоактивных превращений ядер: α -распад, β –превращения и γ -излучение. Позже были открыты и другие типы распадов. В следующей таблице представлены известные типы радиоактивных распадов. Здесь использованы обозначения для фундаментальных взаимодействий, через которые происходит распад ядра: S – сильное взаимодействие, E – электромагнитное взаимодействие и W – слабое взаимодействие. В табл.3.1. приведен конкретный вид процессов распада.

Табл. 3.1. Типы радиоактивных превращений

Тип	ΔZ	ΔΑ	Процесс	Взаимо-
превращения				действие
α-распад	-2	-4	${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He$	S+E
β –превращения:	±1	0		W
β⁻-распад	+1	0	${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + e^{-} + \widetilde{\nu}_{e}$	W
β ⁺ -распад	-1	0	${}_{Z}^{A}X \rightarrow {}_{Z-1}^{A}Y + e^{+} + \nu_{e}$	W
К-захват	-1	0	${}_{Z}^{A}X + e^{-} \rightarrow {}_{Z-1}^{A}Y + \nu_{e}$	W
ү-излучение	0	0	${}_{Z}^{A}X^{*} \rightarrow {}_{Z}^{A}X + \gamma$	Е
Спонтанное деление	~Z/2	~A/2	${}_{Z}^{A}X \rightarrow {}_{Z'}^{A'}Y + {}_{Z-Z'}^{A-A'}\widetilde{Y}$	S+E
Протонная радиоактивность	-1	-1	${}_{Z}^{A}X \rightarrow {}_{Z-1}^{A-1}Y + {}_{1}^{1}H$	S+E
Двухпротонная радиоактивность	-2	-2	${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-2}Y + {}_{1}^{1}H + {}_{1}^{1}H$	S+E

В случае γ -излучения ${}^A_Z X^* \to {}^A_Z X + \gamma$ звездочкой обозначено возбужденное состояние ядра ${}^A_Z X^*$. К β -превращениям относится и K-захват ${}^A_Z X + e^- \to {}^A_{Z-1} Y + \nu_e$, который происходит с участием нейтрино. Этот тип распада происходит путем захвата ядром электрона из ближайшей K-оболочки и излучением нейтрино.

Протонная и двухпротонная радиоактивности открыты сравнительно позже. В настоящее время открыт новый тип радиоактивного распада — так называемый кластерный распад, когда ядро испускает ядра, тяжелее 4_2 Не, такие ядра, как $^{12}_6$ С и др. Таким образом, этот тип распада является промежуточным между α -распадом и спонтанным делением ядра, объединяя физическую картину распадов.

В таблице указаны изменения числа протонов ΔZ и массового числа ΔA , происходящие при каждом распада. Эти правила, известные как **правила сдвигов**, определяют сдвиг на соответствующее число клеток в периодической таблице Менделеева. Если указано $\Delta Z = +1$, то это означает, что в результате распада образуется элемент, который в таблице Менделеева находится на одну клетку пра-

вее исходного, материнского элемента, а в случае $\Delta Z=-1$, то левее на одну клетку. А ΔA показывает изменение соответствующего массового числа. Эти правила сдвига являются простыми следствиями законов сохранения электрического заряда и барионного заряда (массового числа).

3.3. Радиоактивные ряды. Трансурановые элементы

Все тяжелые ядра с массовым числом A>209 оказываются нестабильными относительно α -распада из-за возрастания роли кулоновской энергии в этих ядрах. Если массовое число ядра намного превышает граничное значение A=209, то такое ядро переходит в стабильное ядро через ряд последовательных α -превращений. И промежуточные ядра испытывают β^- -распады и γ — излучения.

Дело в том, что в тяжелых ядрах процентное содержание нейтронов больше, чем в легких ядрах. При α -распаде изменение числа протонов и нейтронов одинаковое $\Delta Z=2$ и $\Delta N=2$, и образуется более легкое ядро, в котором нарушено это соотношение нейтронов и протонов. Поэтому при избытке нейтронов более выгодным становится β^- -распад, в котором нейтрон превращается в протон, и восстанавливается нарушенное соотношение нейтронов и протонов в ядре. При этих распадах промежуточное ядро может образоваться в возбужденном состоянии и излишек энергии уносится γ -излучением.

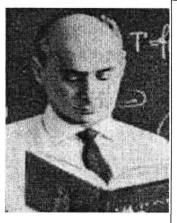
Массовое число A при β^- -распаде и γ -излучении не меняется, а при α -распаде уменьшается на $\Delta A = -4$. Поэтому остаток от деления массового числа на 4 единицы остается одинаковым для всех ядер одной цепи распада. Таким образом, все естественные радиоактивные элементы можно сгруппировать в 4 семейства (ряда) с таким остатком: 4n+0, 4n+1, 4n+2, 4n+3. В табл. 3.2. приведены наиболее долгоживущие изотопы и их периоды полураспада для каждого из 4 рядов.

Каждый ряд характеризуется изотопом, имеющим наибольший период полураспада, все остальные изотопы этого ряда имеют меньшие периоды полураспада. Поэтому в силу установившегося векового равновесия содержание этого изотопа в ряду больше, и название ряда определяется этим изотопом.

Табл.3.2. Четыре семейства радиоактивных элементов

Ряд	A	Долгоживу- щий изотоп	Т _{1/2} лет	Число превраще- ний	Конечное ядро
Торий	4n	²³² ₉₀ Th	1,4 · 1010	12	²⁰⁸ ₈₂ Pb
Нептун	4n+1	²³⁷ ₉₃ Np	2,2·10 ⁶	13	²⁰⁹ ₈₃ Bi
Уран	4n+2	²³⁸ ₉₂ U	4,5·10 ⁹	18	²⁰⁶ ₈₂ Pb
Актиний	4n+3	²³⁵ ₉₂ U	7·10 ⁸	16	²⁰⁷ ₈₂ Pb

Но последний ряд в табл.3.2 получил свое название потому, что предшествующие актинию $^{227}_{89}$ Ас члены с ураном $^{235}_{92}$ U были открыты позже.


В качестве примера приведем последовательность превращений радиоактивного ряда 4n:

$$\begin{array}{c}
92 U^{236} \xrightarrow{\alpha}_{90} Th^{232} \xrightarrow{\alpha}_{88} Ra \\
\downarrow \quad \beta^{-} \\
89 Ac^{228} \\
\downarrow \quad \beta^{-} \\
90 Th^{228} \xrightarrow{\alpha}_{88} Ra^{224} \xrightarrow{\alpha}_{86} Rn^{220} \xrightarrow{\alpha}_{84} Po^{216} \xrightarrow{\alpha}_{82} Pb^{212} \\
\downarrow \quad \quad \beta^{-} \\
83 Bi^{212} \\
\downarrow \quad \beta^{-} \\
84 Po^{212} \xrightarrow{\alpha}_{82} Pb^{208}
\end{array}$$

В результате радиоактивного распада этих рядов образуется конечный продукт — стабильный дважды магический изотоп $_{82}{\rm Pb}^{206}$ или околомагические изотопы $_{82}{\rm Pb}^{207,208}$ и $_{83}{\rm Bi}^{209}$.

Табл.3.3. Синтезированные трансурановые элементы

Z	Сим-	Название	A	T _{1/2}	Год от-	Лаборатория,
	вол			172	крытия	автор
93	Np	Нептуний	237	2,2·10 ⁶ r	1939	Калифорнийский у- т. Э. Макмиллан
94	Pu	Плутоний	244	8,3·10 ⁷ r	1940	Чикаго, Арагонн- ская лаб-я Г. Си- борг,
95	Am	Америций	243	7,4·10³ r	1945	Г. Сиборг, Чикаго, Аргоннская лаб-я
96	Cm	Кюрий	247	1,6 · 10 ⁷ r	1944	Г. Сиборг, Чикаго, Аргоннская лаб-я
97	Bk	Берклий	247	1,4·10³ r	1949	Г. Сиборг, Беркли, Калифорнийский ун.
98	Cf	Калифорний	251	900 г	1950	Г. Сиборг, Чикаго, Арагоннская лаб-я
99	Es	Эйнштейний	254	250 д	1952	Из почвы после взрыва водородной бомбы
100	Fm	Фермий	257	79 д	1953	Из почвы после взрыва водородной бомбы
101	Md	Менделевий	258	54 д	1955	Из почвы после взрыва водородной бомбы
102	No	Нобелий	259	1,5 ч	1957- 67	ОИЯИ (Дубна, СССР), Г.Н.Флеров
103	Lr	Лоуренсий	260	3 м	1965	ОИЯИ (Дубна, СССР), Г.Н.Флеров
104	Rf	Резерфордий	260	0,1 c	1964	ОИЯИ (Дубна, СССР), Г.Н.Флеров
105	Db	Дубний	260	40 c	1970	ОИЯИ (Дубна, СССР), Г.Н.Флеров
106	Sg	Сиборгий	266	21 c		
107	Bh	Борий	264	0,44 c		
108	Hs	Хассий	277	16,5 мин		
109	Mt	Мейтнерий	266	0,8 мс		

Флеров Георгий Николаевич (1913-90) — советский физикэкспериментатор, академик, родился в Ростове-на-Дону, окончил Ленинградский политехн. ин-т (1938), работал у И. В. Курчатова в Ленинградском ФТИ, руководитель сектора ИАЭ им. И.В.Курчатова (1943-60), директор Лаборатории ядерных реакций (ОИЯИ, г. Дубна, с 1960). Совместно с К.А.Петржаком открыл но-

В природе существуют элементы до $Z = 92 \, (q_2 \, U)$, а элементы с Z > 92 называются трансурановыми элементами. Они не встречаются в природе, а синтезированы искусственно в научных лабораториях. Последовательное получение их началось в 40-х годах американскими учеными во главе с Г.Сиборгом, у нас с конца 50-х лаборатории NRNO (г. Дубна), возглавляемой Г.Н.Флеровым, а после его смерти Ю.Ц.Оганесяном. В табл.3.3 приведены синтезированные элементы с указанием года и лаборатории получения их. Учитывая заслуги физиков Дубны в открытии большого числа изотопов тяжелых элементов (102-105), в 1997 году решением Генеральной Ассамблеи чистой и прикладной химии элементу с Z = 105 было присвоено имя Dubnium (Db).

В настоящее время исследования сверхтяжелых ядер продолжаются. Уже существенно повышена эффективность регистрации сверхтяжелых ядер и усовершенствована методика их наблюдения. В результате многолетней и интенсивной работы физикамиядерщиками были синтезированы новые элементы вплоть до 118-го. С увеличением атомного номера элемента его время жизни резко падает. Так, если уран, имеющий атомный номер 92, живет около 1 миллиарда лет, то 110-й элемент - только доли секунды. Поэтому представляют большие трудности идентификация новых элементов, живущих столь короткое время. Но теоретические ис-

следования предсказывают существование повышенной стабильности ядер с магическими числами протонов и нейтронов. Согласно современным представлениям следующее после Pb дважды магическое ядро $^{294}_{110} X^{184}$ должно иметь большое время жизни, а около него должны группироваться ядра с достаточно большими временами жизни (остров стабильности). Пока все попытки выйти на остров стабильности не увенчались успехом. Однако поиск его продолжается.

3.4. Альфа-распад. Закон Гейгера-Неттола. Туннельный механизм

Альфа-распад — это радиоактивное превращение ядер с испусканием α -частиц, т.е. ядер гелия 4_2 He:

$${}_{Z}^{A}X \rightarrow {}_{Z-2}^{A-4}Y + {}_{2}^{4}He + Q$$
 (3.13)

Любое ядро заурановой области с Z > 83 обладает α -активностью. Но известно, что обладают α -активностью также и некоторые изотопы редкоземельных элементов, у которых число нейтронов N > 83. Понятно, что α -распад является экзотермическим процессом с выделением энергии Q > 0 и происходит в тех ядрах, в которых энергия отрыва α -частицы отрицательна:

$$\varepsilon_{A}A - \varepsilon_{A-4}(A-4) - \varepsilon_{\alpha} 4 < 0. \tag{3.14}$$

Учитывая, что удельные энергии связи для ядер с большим массовым числом A близки $\varepsilon_{\rm A} \approx \varepsilon_{\rm A-4}$, то из (3.14) приходим к следующему необходимому условию α -распада

$$\varepsilon_{\rm A} < \varepsilon_{\alpha} \approx 7 \text{ M}{\circ}\text{B}.$$
 (3.15)

Экспериментально установлено, что энергии α -частиц заключены в определенных пределах: редкоземельные ядра 150<A<180 испускают α -частицы с энергией от 2 до 4,5 МэВ, а ядра с A >180 испускают с большей энергией от 4 до 9 МэВ.

Но период полураспада $T_{1/2}$ меняется в широком диапазоне, так например, изотоп свинца $^{204}_{82}{\rm Pb}$ распадается с периодом

 $T_{1/2} = 1,4 \cdot 10^{17}$ лет, а полоний $^{212}_{84}$ Ро имеет период $T_{1/2} = 3 \cdot 10^{-7} c$. Период полураспада α -распада резко зависит от энергии вылетающих α -частиц. Такая зависимость периода полураспада $T_{1/2}$ от

энергии E_{α} α -частиц описывается эмпирически установленным законом Гейгера-Неттола:

$$\log T_{1/2} = C + \frac{D}{\sqrt{E_{\alpha}}},$$
 (3.16)

где C и D - постоянные.

Для объяснения зависимости $T_{1/2}$ от E_{α} в 1928 году Γ . Гамов, Э. Кондон и Р. Герни разработали теорию α -распада. В этой теории считается, что α -частица находится внутри ядра в сформированном виде. Ее потенциальная энергия представлена на рис.3.1.

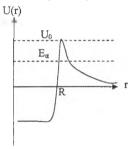


Рис.3.1. Потенциальная энергия α-частицы внутри ядра

Внутри ядра на α -частицу действуют ядерные силы притяжения, а вблизи границы ядра эти силы сменяется на кулоновское поле оттал-кивания, высота барьера которого равна

$$U_0 = \frac{1}{4\pi\epsilon_0} \frac{2e(Z-2)e}{R_{\text{ядра}}} \approx 30 \text{ МэВ.}$$
 (3.17)

Вылетающая из ядра α -частица имеет энергию $E_{\alpha}{\sim}9M$ эВ < U_0 , меньшую высоты барьера. И по законам классической механики она не может преодолеть барьер, т.е. α -частица внутри ядра заперта кулоновским барьером. Однако α -частица является квантовым объектом, и она может просочиться сквозь барьер за счет **туннельного** эффекта. В так называемом квазиклассическом приближении квантовой механики можно вычислить коэффициент прохождения сквозь барьер:

$$D = \exp\left\{-\frac{2}{\hbar} \int_{R}^{r_0} \sqrt{2m_{\alpha}(U(r) - E_{\alpha})} dr\right\}, \qquad (3.18)$$

где R и r_{θ} –точки поворота, определяемые из условия $E_{\alpha}=U(r)$.

Чтобы получить λ постоянную α -распада, нужно умножить коэффициент прохождения D на поток α -частиц, приближающихся к границе ядра. За этот поток можно взять f частоту соударений α -частицы со стенками ядра, которая равна

$$f = \frac{1}{\tau} = \frac{v}{2R} = \frac{p}{2Rm_{\alpha}} \approx \frac{\hbar}{2m_{\alpha}R^2},$$
 (3.19)

Здесь воспользовались соотношением неопределенностей в виде $pR \approx \hbar$. Подставляя эти значения, можно вычислить постоянную распада $\lambda = Df$, а, следовательно и период полураспада. Полагая $E_{\alpha} < U_0$, после некоторых математических преобразований, можно получить и формулу Гейгера-Неттола.

Таким образом, квантовомеханическая теория α-распада трактуется как тунельный переход. В настоящее время эта теория значительно совершенствована и ее предсказания хорошо согласуются с экспериментом.

3.5. Бета-превращения. Теория Ферми

Бета-превращения — это такие радиоактивные превращения атомных ядер, в котором нейтрон переходит в протон (или наоборот) с участием электронов (позитронов) и нейтрино (антинейтрино). Первоначально, когда еще не знали о существовании нейтрино, экспериментаторы столкнулись с рядом трудностей: казалось, что нарушается закон сохранения энергии, вылетающий электрон имеет сплошной спектр, в то время как энергии начального и конечного ядер строго квантованы. Имелись и другие необъяснимые трудности. Некоторые ученые, в том числе и Н. Бор, были готовы отказаться от закона сохранения энергии в бета-превращениях. Чтобы оставить в силе закон сохранения энергии В. Паули высказал гипотезу о ненаблюдаемой в эксперименте частицы, которая уносит часть энергии вылета. Эта гипотеза стала общепризнанной, частицу назвали нейтрино v. Она не наблюдаема в эксперименте, так как не обладает

электрическим зарядом и имеет ничтожно малую (почти нулевую) массу, а спин ее равен 1/2, т.е. относится к фермионам.

В настоящее время известны следующие 3 типа β-превращения.

а) Электронный β-распад с участием электрона и антинейтрино

$${}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}Y + e^{-} + \widetilde{v}. \tag{3.20}$$

б) Позитронный β-распад с участием позитрона и нейтрино

$${}_{Z}^{A}X \rightarrow {}_{Z-1}^{A}Y + e^{+} + v.$$
 (3.21)

в) К-захват, при котором электрон из электронной К-оболочки атома захватывается ядром и испускается нейтрино

$${}_{Z}^{A}X + e^{-} \rightarrow {}_{Z-1}^{A}Y + \nu. \tag{3.22}$$

г) Наконец, к β-превращениям относят и процессы захвата нейтрино или антинейтрино ядром:

$$v + {}_{Z}^{A}X \rightarrow {}_{Z+1}^{A}Y + e^{-},$$
 (3.23)

$$\widetilde{\mathbf{v}} + {}_{Z}^{\mathbf{A}} \mathbf{X} \rightarrow {}_{Z-1}^{\mathbf{A}} \mathbf{Y} + \mathbf{e}^{+}. \tag{3.24}$$

Примером нейтринного захвата является реакция

$$v + {}_{17}^{37}\text{Cl} \rightarrow {}_{18}^{37}\text{Y} + e^-,$$
 (3.25)

предложенная Б.М. Понтеркорво для регистрации солнечных нейтрино.

Как известно, α -распад является процессом, происходящим внутри ядра, но β - распад является процессом, происходящим внутри нуклона. Находящиеся внутри ядра нуклоны распадаются по схеме:

a)
$$n \rightarrow p + e^{-} + \widetilde{\nu}$$
,
6) $p \rightarrow n + e^{+} + \nu$,
B) $e^{-} + p \rightarrow n + \nu$,
 $r) \nu + n \rightarrow p + e^{-}$.
$$(3.26)$$

Все эти процессы относятся к слабым взаимодействиям, а потому протекают сравнительно медленно. Экспериментально наблюдался бета-распад свободного нейтрона и измерен его период полураспада $\tau_n \approx 15$ мин. Но распад свободного протона запрещен, так как масса протона меньше массы нейтрона: $m_p < m_n$, т.е. энергетически не воз-

можен. Поэтому для процессов β^- -распада должен выполнятся энергетический баланс

$${}_{Z}^{A}M>_{Z+1}^{A}M+m,$$
 (3.27)

где m — масса электрона. В таблицах приводятся не массы ядер m_X и m_Y , а массы нейтральных атомов. Массы начального и конечного атомов при β^- -распаде равны:

$$M_i = m_X + Zm, (3.28)$$

$$M_f = m_Y + (Z+1)m$$
. (3.29)

Подставляя (3.28) и (3.29) в (3.27), получим необходимое условие β^- -нестабильности

$$M_i > M_f. \tag{3.30}$$

Для процесса $\,\beta^{+}\text{-распада должен выполняться энергетический баланс$

$${}_{Z}^{A}M>_{Z-1}^{A}M+m$$
 (3.31)

и необходимое условие р + - нестабильности

$$M_i > M_f + 2m$$
. (3.32)

Для К- захвата имеем энергетический баланс

$${}_{7}^{A}M + m > {}_{7}^{A}M$$
 (3.33)

и условие нестабильности

$$M_i > M_f. \tag{3.34}$$

Теперь рассмотрим теорию β^- распада, задачей которой является объяснение экспериментальных сведений и предсказание значений еще не измеренных величин. В первую очередь это относится к объяснению сплошного спектра β -частиц и вычисление среднего времени жизни нейтрона. Такую теорию развил в 1934 году Э. Ферми. Он отправлялся от аналогии с квантовой электродинамикой. Фотон не находится внутри электрона (атома), а испускается при переходе электрона из одного энергетического состояния в другое. Точно также β^- распад есть переход нуклона из одного состояния (нейтронного) в другое (протонное) с рождением электрона и антинейтрино:

$$n \to p + e^- + \widetilde{\nu} \,. \tag{3.35}$$

Но рождение античастицы можно представить как уничтожение частицы

$$n + v \rightarrow p + e^{-}. \tag{3.36}$$

В рамках квантовой теории поля строится гамильтониан слабого взаимодействия в следующем виде

$$H_{cn,B3} = G_F(\hat{\Psi}_p^+ \Gamma_a \hat{\Psi}_n)(\hat{\Psi}_e^+ \Gamma^a \hat{\Psi}_v). \tag{3.37}$$

Здесь оператор $\hat{\Psi}_p^+$ описывает рождение протона, $\hat{\Psi}_n$ - уничтожение нейтрино, рождение электрона, $\hat{\Psi}_v$ - уничтожение нейтрино (рождение антинейтрино), Γ_a - 4-рядные матрицы, действующие на спинорные переменные, а G_F - константа Ферми, описывающая интенсивность слабого взаимодействия. Если гамильтониан задан, то с помощью существующих правил можно вычислить все интересующие нас величины. Вероятность рассматриваемого процесса определяется квадратом матричного элемента $M_{if} = < f |H_{\text{сл.взд.}}| i > и$ после соответствующих суммировании по дискретным переменным и интегрирования по непрерывным переменным можно получить

$$dw = \sum_{S} ||\langle f|H|i\rangle|^2 d\Omega = BF(Z, E)E(E_m - E)^2 \sqrt{E^2 - m^2} dE, \qquad (3.38)$$

где $E_m=m_X-m_Y$ - максимальное выделение энергии, а F(Z,E)-функция дается в виде таблицы, она протабулирована. Формула (3.38) задает распределение энергии E вылетающей β -частицы, которое схематично представлено на рис.3.2. Спектр энергии β -частиц сплошной, так как максимальная энергия выделения E_m статически распределяется между β -частицей и нейтрино.

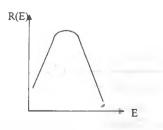


Рис. 3.2. Сплошной спектр β-частиц

Энергия β -частиц меняется от минимального значения $E=mc^2=0.51 \, \text{MpB}$ до E_m . Чтобы получить постоянную распада нейтрона λ , следует проинтегрировать вероятность (3.38) по энергиям

$$\int_{0}^{E_{m}} dw(E) \approx \lambda. \tag{3.39}$$

А среднее время жизни определяется просто $\tau = \frac{1}{\lambda}$. Обычно на основе экспериментальных данных строится так называемый график Ферми

$$f(E) = \left[\frac{dw/dE}{F(z,E)E\sqrt{E^2 - m^2}} \right]^{1/2} \approx E_m - E.$$
 (3.40)

Разрешенные по правилам отбора β -переходы из одного состояния ядра в другое имеют график Ферми в виде прямой (см. рис.3.3). Но при наличии конкурирующих процессов с разным энерговыделением $E_{\rm m}$ и при нарушении правил отбора график Ферми отличается от прямой линии. Предельная энергия β -частиц находят по пересечению прямой с осью E графика Ферми. На основе этих данных можно вывести определенные сведения о массе нейтрино.

Рис.3.3. График Ферми для ускоренного β-процесса

Так как скорость распада изменяется в широком интервале времени, то для ее характеристики пользуются величиной $\log f\tau$, которая для ускоренных переходов, т.е. незапрещенных по правилам отбора, имеет порядок $\approx 6 \div 7$, а для запрещенных переходов имеет $\approx 2 \div 3$.

В настоящее время теория β -распада Ферми значительно усовершенствована. В первую очередь она модифицировалась учетом несохранения четности в слабых взаимодействиях, и с развитием ядерных моделей стало возможным использования более реалистических волновых функций состояния ядра.

3.6. Нейтрино и его свойства. Несохранение четности

Паули, основываясь на том, что при β^- -распаде не сохраняется момент импульса и энергия, выдвинул идею о существовании нейтральной частицы, которая не фиксируется в эксперименте из-за ничтожного слабого взаимодействия. Э.Ферми принял эту гипотезу и назвал эту частицу — нейтрино и включил ее в свою теорию β^- распада. Естественно, уловить эту частицу непосредственно в экспериментах не возможно, поэтому было предложено для экспериментального подтверждения гипотезы нейтрино по измерению энергии отдачи ядер при излучении нейтрино. Только в 1941 году Дж. Аллен сумел зарегистрировать энергию отдачи ядер лития при K-захвате

$$e^{-} + {}_{4}^{7}Be \rightarrow {}_{3}^{7}Li + v,$$
 (3.41)

Но точно измерить эту энергию и оценить массу нейтрино не удалось.

Только в 50 гг. окончательно было установлен факт существования нейтрино и определен ряд важных его характеристик. Электрический заряд нейтрино равен нулю q=0, а спин равен $s_z=1/2~\hbar$, таким образом, нейтрино относится к ферми-частицам. Масса нейтрино полагают равным нулю $m_0=0$, но некоторые в это сомневаются и продолжают эксперименты по измерению массы нейтрино. Профессор В.А.Любимов из Москвы, занимающийся этой проблемой в течение многих лет, дает оценку массы нейтрино очень малую, но отличную от нуля $14~{\rm 3B} < m_{\nu} < 46~{\rm 3B}$. Наличие даже столь малой массы нейтрино приводит к существенному решению проблемы скрытой массы во Вселенной.

Нейтрино преподносило не мало сюрпризов экспериментаторам. В результате длительных исследований было установлено, что лептонов, которые не участвуют в сильных взаимодействиях, существует 3 дублета: e^- и V_e , μ^- и V_μ , τ^- и V_τ . Оказалось, что нейтрино, участвующие в реакциях с электроном e^- , мюоном μ^- или таоном τ^- , различаются. Чтобы их различать, стали приписывать им разные лептонные заряды: лептонам e^- и V_e приписывают электронный лептонный заряд $L_e = +1$, лептонам μ^- и V_μ - мюонный лептонный заряд $L_\tau = +1$. Лептоны имеют соответствующие им античастицы: e^+ и \overline{V}_e , μ^+ и \overline{V}_μ , τ^+ и \overline{V}_τ . Им приписывают лептонные заряды противоположного знака: $L_e = -1$, $L_\mu = -1$ и $L_\tau = -1$. А другие частицы не имеют лептонный заряд, им приписывают L = 0.

В 1956—57 гг. экспериментаторы столкнулись еще с одной проблемой с участием нейтрино — оказалось, что закон сохранения четности в реакциях с нейтрино может нарушаться. Американские ученые китайского происхождении Ц. Ли и Ч. Янг выдвинули гипотезу о несохранении четности в слабых взаимодействиях. Ц. Ву экспериментально доказала справедливость этой гипотезы.

3.7. Гамма-излучение ядер. Мультипольность излучения. Правила отбора. Изомерия. Внутренняя конверсия.

В результате радиоактивных превращений ядра оказываются в возбужденном состоянии. Эти ядра, находящиеся в возбужденном состоянии, могут переходить в более низкие энергетические состояния без измерения Z и A, но с испусканием γ -кванта. Такое явление называют гамма-излучением ядра. Так как энергии состояний ядра дискретны, то и спектр γ -излучения дискретен. Энергии γ -излучения простирается от 10 кэB и до 3 MэB.

Гамма-излучение обусловлено электромагнитным взаимодействием, ему не мещает кулоновский барьер, поэтому время жизни γ -

активных ядер существенно меньше времен жизни ядер по отношению к β - и α -распадам, обычно они лежат в интервале 10^{-7} - $10^{-13}\,c$, но существуют γ -активные ядра, у которых времена жизни достигают нескольких часов и больше, это явление связанное с изомерией, которое рассмотрим позже.

Гамма-переходы подчиняются определенным правилам отбора, вытекающие из законов сохранения момента импульса и четности. Закон сохранения момента импульса требует, чтобы момент импульса L, уносимый γ -квантом, равнялся векторной разности спинов уровней, между которыми происходит γ -переход, т.е. чтобы выполнялись неравенства треугольника

$$|I_i - I_f| \le L \le I_i + I_f. \tag{3.42}$$

Закон сохранения четности требует выполнения правил отбора по четности:

$$\pi_{i} = \pi_{f} \cdot \pi_{\gamma}. \tag{3.43}$$

Состояния свободного γ -кванта с определенными моментами импульса L называют мультиполями излучения. Различают электрическое излучение с мультиполями EL и магнитное излучение с мультиполями ML. Им соответствуют четности $\pi = (-1)^L$ - для электрического излучения EL и $\pi = (-1)^{L+1}$ - для магнитного излучения ML. Так как γ -квант является векторной частицей, то уносимый излучением минимальный момент импульса равен L=1, Таким образом, существуют следующие мультипольное излучения: L=1 - дипольное излучение, L=2 - квадрупольное, L=3 - октупольное излучение и т.д.

При обычных энергиях излучении отношение радиуса ядра $\,R\,$ к длине волны излучения $\,\lambda\,$ дает величину порядка

$$\frac{\mathbf{R}}{\lambda} \approx 10^{-2} \div 10^{-3},$$
 (3.44)

т.е. $\lambda > R$ и излучение происходит не из ядра, а из электромагнитного поля, окружающего ядро. Поэтому при расчете вероятности γ -излучения пользуются так называемым длинноволновым приближением. Можно показать, что период полураспада сильно зависит от этого отношения

$$\frac{1}{T_{1/2}} \approx \left(\frac{R}{\lambda}\right)^{2L},\tag{3.45}$$

Откуда следует, что с увеличением мультиполности L вероятность излучения сильно падает. Если правилами отбора по спину и четности нет запрета, то наблюдается излучение низшего мультиполя.

Силы магнитного взаимодействия слабы по сравнению с электрическими силами, и магнитное излучение ML ослаблено по сравнению с электрическим излучением EL в отношении как магнитный момент к электрическому дипольному моменту:

$$\left(\frac{\mu}{d}\right)^2 \approx 10^{-2} \div 10^{-3} \ . \tag{3.46}$$

Вероятности γ -переходов M1 и E2 оказываются сравнимы по величине. Поэтому наблюдаются смешанные γ -излучения: M1 и E2, M2 и E3, т.д.

Экспериментально установлено, что ядра определенной области массового числа A имеют возбужденные состояния, которые характеризуются сравнительно большим временем жизни. Например, ядро $^{115}_{49}$ In имеет в основном состоянии спин и четность $I^{\pi}=9/2^+$, а первое возбужденное состояние с энергией E=0,335 МэВ спин $I^{\pi}=1/2^-$. По правилам отбора высвечивания из этого возбужденного состояния в основное состояние ядра возможно М4 излучением. А этот γ -переход сильно заторможен и время жизни ядра в этом состоянии сравнительно большое - $T_{1/2}$ =14,4 час.

Рис.3.4. Изомерное состояние $I^{\pi} = 1/2^{-}$ ядра $^{115}_{49}$ In

Долгоживущие возбужденные состояния ядер называются изомерами. Это явление получило простое объяснение в рамках оболочечной модели. В одночастичной схеме уровней встречаются близко

расположенные уровни с сильно отличающими моментами и противоположной четности. Как в случае $^{115}_{49}$ In , последний 49 протон заселяет одночастичный уровень $1{\rm g}_{9/2}$, а первое возбуждение ядра происходит при переходе этого протона в соседний уровень $2{\rm p}_{1/2}$. Из-за сильного различия моментов импульса состояний γ -излучение имеет мультипольность L=4, которое сильно заторможено. Явление изомерии встречаются у ядер с числом нуклонов N, Z < 50, 82, 126 - так называемые острова изомерии.

До сих пор рассматривался у-излучение, с помощью которого высвечивается энергия возбуждения ядра. Имеется и конкурирующий процесс, роль которого возрастает с увеличением мультипольности перехода и с уменьшением его энергии. Это внутренняя конверсия, при которой энергия возбуждения ядра передается одному из электронов атомной оболочки. Внутренняя конверсия происходит за счет обмена ядра и электрона виртуальными фотонами. Это явление можно сравнить с фотоэффектом в атоме, когда фотон вырывает электрон из атома. Первоначально это явление и назывался ядерным фотоэффектом. Но оказалось, что в случае ядра явление в корне отличается, мы здесь имеем дело с виртуальным фотоном и поэтому $0^+ \rightarrow 0^+$ для внутренней конверсии, что абсовозможен переход лютно запрещено для у-излучения. Характерным отличием электронов внутренней конверсии является то, что спектр конверсионных электронов дискретен, а спектр электронов β-распада сплошной.

Вопросы для закрепления знаний

- **3.1.** Что понимают под радиоактивностью, и какие единицы ее измерения?
- 3.2. Чем отличается естественная радиоактивность от искусственной радиоактивности?
- **3.3.** Выпишите основной закон радиоактивного распада для количества нераспавшихся ядер и для распавшихся ядер.
- **3.4.** Какая связь между постоянной распада, периодом распада и средним временем жизни изотопа?
- 3.5. Перечислите типы радиоактивных превращений и правила смещения для них.

- **3.6.** Перечислите четыре семейства (ряда) α -превращений естественных радиоактивных ядер.
- 3.7. В чем заключается туннельный механизм α -распада?
- **3.8.** Поясните закон Гейгера-Неттола для α -распада?
- **3.9.** Выпишите типы β распада и представьте их через внутрину-клонный процесс.
- **3.10.** Каков энергетический спектр β распада и какова роль нейтрино в энергетическом балансе β процесса?
- 3.11. Условие нестабильности ядра относительно β -распада имеет вид $M_x > M_y + m_e$, где M_x , M_y массы исходного и конечного ядер, m_e масса электрона (позитрона). А условие нестабильности, выраженное через дефекты массы нейтральных атомов, представляется в виде: $\Delta_x > \Delta_y$ для β^- распада и K- захвата, $\Delta_x > \Delta_y + 2m_e$ для β^+ распада. Получите последнее условие нестабильности.
- **3.12**. Какие типы нейтрино существуют и каков их лептонный заряд?
- 3.13. Опишите эксперимент, подтвердивший несохранение четности в слабых взаимодействиях.
- 3.14. Выпишите правила отбора в у распаде ядер.
- **3.15.** Что называют изомерией, и в какой области массовых чисел изомерия изотопов встречается?
- **3.16.** Что называют внутренней конверсией электронов и чем отличается от фотоэффекта?

Примеры решения задач

Задача 3.1. Определить количество свинца 208 Pb , возникающего из 1 кг чистого изотопа 238 U за период, равный возрасту Земли 2,2·10° лет. Период полураспада изотопа 238 U равен $T_{1/2} = 4,5 \cdot 10^{9}$ лет.

Решение: Число накопившихся стабильных ядер ²⁰⁸ Pb в результате радиоактивного распада равно

$$N = N_0 (1 - e^{-0.69t/T_{1/2}}).$$

Выразим число частиц через массу вещества $N=mN_A/\mu$, где $N_A=6,02\cdot 10^{23}$ моль $^{-1}$ - число Авогадро, μ - молярная масса вещества. Следовательно,

$$m_{Pb}N_A / \mu(Pb) = m_U N_A / \mu(U)(1 - e^{-0.69t/T_{1/2}}).$$

Откуда имеем

$$m_{Pb} = 1 \text{KF} \cdot \frac{208}{238} (1 - e^{-0.69 \cdot 2.2 \cdot 10^9 / 4.5 \cdot 10^9}) = 0.25 \text{KF}.$$

Задача 3.2. Найти активность I_0 массы 1Γ радия 226 Ra, период полураспада которого равен $T_{1/2} = 1560$ лет.

Решение: Активность радиоактивного вещества определяется числом распадов за единицу времени 1c:

$$I_0 = -dN/dt = \lambda N.$$

Выразим постоянную распада через период полураспада $\lambda = \ln 2 / T_{1/2}$. А число частиц связано с массой вещества

$$N = N_A m / \mu$$
,

где N_A - число Авогадро, а $\mu = 226 r$ / моль - молярная масса радия. Подставляя эти выражения, получим

$$I_0 = \frac{\text{mN}_A \ln 2}{\mu T_{1/2}} = \frac{1 \cdot 6,02 \cdot 10^{23} \cdot 0,6}{226 \cdot 1560 \cdot 365 \cdot 24 \cdot 60 \cdot 60} = 3,7 \cdot 10^{10} \,\text{BK} = 1 \,\text{Ku}.$$

Задача 3.3. Активность препарата ^{32}P равна $I_0=2$ мкКи. Какая масса такого препарата, если период полураспада этого изотопа $T_{1/2}=14,5$ суток?

Решение: Активность радиоактивного вещества в количестве N ядер с постоянной распада λ равна $I_0 = \lambda N$. Активность измеряется в $Ku(1\ Ku=3.710^{10}\ {\rm pac}$ распадов/с). Постоянная распада связана с периодом полураспада $T_{1/2}=\ln 2/\lambda$. Количество ядер в образце массой m грамм равно

$$N = mN_A / \mu$$
,

где N_A - число Авогадро, $\mu = 32 \Gamma / моль - молярная масса фосфора. Тогда активность препарата$

$$I_0 = \lambda N = \frac{\ln 2mN_A}{\mu T_{1/2}}.$$

Масса препарата равна

$$m = \frac{\mu I_0 T_{1/2}}{N_A \ln 2} = 32 \cdot 2 \cdot 10^{-6} \cdot 3,7 \cdot 10^{10} \cdot 14,5 \cdot 24 \cdot 3600/(6,02 \cdot 10^{23} \cdot 0,69) =$$
$$= 7,1 \cdot 10^{-12} \, \text{r}.$$

Задача 3.4. В кровь человека ввели 1 $cм^3$ раствора, содержащего искусственный радиоизотоп натрия 24 Na активностью $I_0 = 2 \cdot 10^3$ частиц/с. Активность 1 $cм^3$ крови, взятой через время t = 5 ч, оказалась равной $I_0 = 16$ частиц/мин. Зная период полураспада $T_{1/2}(^{24}\text{Na}) = 15$ ч, определить объем крови человека.

Решение: Активность введенного в кровь 1 см 3 препарата равна $I_{01} = \lambda N_1 = 0.69 N_1 / T_{1/2}$.

Активность растворенного в объеме V крови препарата через время t равна

$$I_{02} = \lambda N_2 / V = 0.69 / (VT_{1/2}) \cdot N_1 e^{-0.69 \cdot t / T_{1/2}}$$
 Откуда объем крови равен

$$V = (I_{01}/I_{02})e^{-0.69t/T_{1/2}} = \frac{2 \cdot 10^3}{16/60}e^{-0.695/15} = 5.9 \cdot 10^3 \text{ см}^3 \approx 6\pi$$

Задача 3.5. В результате α - распада радий ²²⁶Rа превращается в радон ²²²Rn. Какой объем радона при нормальных условиях будет находиться в равновесии с 1 ε радия? Период полураспада ²²⁶Ra равен $T_{1/2}(^{226}Ra) = 1600$ лет, а для ²²²Rn имеем период полураспада $T_{1/2}(^{222}Rn) = 3,82$ дня.

Решение: После установления векового равновесия число радиоактивных ядер обоих изотопов и их постоянные распада будут связаны уравнением:

$$\lambda_{Ra}N_{Ra} = \lambda_{Rn}N_{Rn}.$$

Откуда имеем число ядер радона

$$N_{Rn} = N_{Ra} \lambda_{Ra} / \lambda_{Rn} = N_{Ra} T_{1/2} (Rn) / T_{1/2} (Ra).$$

Искомый объем

$$V = V_{M} N_{Rn} / N_{A},$$

где $V_{\rm M}=22,4$ л/моль- молярный объем газа, а $N_{\it Rn}/N_{\it A}$ - число молей. Выразим количество ядер 226 Ra через массу m

$$N_{Ra} = mN_A/\mu$$
.

Тогда получим

$$V = \frac{V_{\text{M}} m T_{1/2}(\text{Rn})}{\mu T_{1/2}(\text{Ra})} = \frac{22,4 \, \text{л} / \, \text{моль} \cdot 1 \, \text{г} \cdot 3,82 \, \text{дня}}{226 \, \text{г} / \, \text{моль} \cdot 1600 \, \text{лет} \cdot 365 \, \text{дней} / \, \text{год}} = 6,5 \cdot 10^{-7} \, \text{л}$$

Задача 3.6. Определить возраст деревянного предмета, если активность на единицу массы $^{14}\mathrm{C}$ составляет 0 , 7 активности свежесрубленного дерева.

Решение: В археологии применяется радиоуглеродный метод определения возраста. Растения поглощают углекислый газ из воздуха, и поэтому относительное количество радиоактивного углерода 14 С (период полураспада $T_{1/2} = 5730$ лет) и стабильного углерода

 12 С в живых растениях такое, как в воздухе. После гибели растения, прекращается поглощение углерода растением из воздуха, а радиоактивный изотоп углерода в растении распадается. По убыли активности можно определить возраст дерева. Убыль активности

$$N/N_0 = e^{-\lambda t} = e^{-0.69 t/T_{1/2}}$$
.

Откуда возраст дерева

$$t = T_{1/2} \ln(N/N_0)/0,69 = 2962$$
 года.

Задача 3.7. Какой изотоп образуется из $^{238}_{92}$ U после трех α - распадов и двух β - распадов?

Решение: Согласно правилам смещения после трех α - распадов имеем

$$\Delta Z = 3 \cdot (-2) = -6$$
 M $\Delta A = 3 \cdot (-4) = -12$.

А после двух β - распадов $\Delta Z_2 = +2$ и $\Delta A = 0$. Следовательно, $^{238}_{92}\mathrm{U} \to ^{226}_{88}\mathrm{X}$. А это изотоп радия $^{226}_{88}\mathrm{Ra}$.

Задача 3.8. Определить верхнюю границу спектра позитронов, испускаемых при β^+ - распаде ядра $^{27}_{14}{\rm Si} {\to}^{27}_{13}{\rm Al} + \beta^+ + \nu_e$, используя значения дефект масс атомов $\delta(27,14) = -12,385\,{\rm MpB}$ и $\delta(27,13) = -17,197\,{\rm MpB}$.

Решение: Энергия в + - распада

$$Q = M(A,Z) - M(A,Z-1) - m_e = \delta(27,14) - \delta(27,13) - 2m_e,$$
 где $M(A,Z)$ и $M(A,Z-1)$ - массы ядер.

Верхняя граница спектра позитронов равна энергии распада $T_{\text{max}} = Q = -12,385 + 17,197 - 2 \cdot 0,511 = 3,592 \, \text{M}_{2}\text{B}.$

Задача 3.9. Какие мультипольные моменты γ - переходов возможны между состояниями ядер, указанных на рис. 3.1 и рис.3.2? **Решение**: Мультипольность γ - переходов определяется правилами отбора по спинам $\left|I_i-I_f\right| \leq L \leq I_i+I_f$ и по четности $\pi_{\gamma}=\pi_i\pi_f$.

В случае перехода a имеем $1 \le L \le 2$ и $\pi_{\gamma} = +$. Следовательно, это смешанный переход E2+M1. Для перехода b имеем $1 \le L \le 2$ и $\pi_{\gamma} = -$. Значит - E1, а примесь M2 пренебрежимо мала.

Решение: Мультипольность γ - переходов определяется правилами отбора по спинам $|I_i-I_f|\leq L\leq I_i+I_f$ и по четности $\pi_\gamma=\pi_i\pi_f$. В случае перехода a имеем $1\leq L\leq 2$ и $\pi_\gamma=+$. Следовательно, это смешанный переход E2+M1. Для перехода b имеем $1\leq L\leq 2$ и $\pi_\gamma=-$. Значит - E1, а примесь E10 мала.

Задание для самостоятельной работы

Задача 3.10. При ядерных испытаниях некоторое количество изотопа $^{90}{\rm Sr}$ с периодом полураспада $T_{1/2}=29,1$ лет попало в окружающую среду. Через какое время активность рассеянных радионуклидов снизится в 10 раз?

Ответ: 97,1 лет.

Задача 3.11. В природной урановой среде радий содержится в отношении 1 атом на $2.78 \cdot 10^6$ атомов урана. Определить период полураспада урана, если известно, что период полураспада радия равен 1620 лет.

Ответ: $T_{1/2}(^{238}U) = 4.5 \cdot 10^9$ лет.

Задача 3.12. Период полураспада изотопа ²¹⁰Ві равен 4,97 дня. Какой активностью обладает 1 мг этого препарата, выдержанного 10 дней?

Ответ: 31 Ки.

Задача 3.13. Покажите, что по законам классической физики α -частица с энергией $E_{\alpha}=5$ МэВ не может вырваться из ядра $^{238}_{92}$ U из-за существования кулоновского барьера. Указание: вычислите энергию кулоновского отталкивания α -частицы и ядра при непосредственном соприкосновении.

Задача 3.14. Какой изотоп образуется из $^8_3\mathrm{Li}$ после одного β - распада и одного α - распада?

Ответ: ⁴₂He.

Глава 4. Ядерные реакции

4.1. Законы сохранения ядерных реакций Ядерными реакциями называются процессы рассеяния вида

$$a + {}_{Z}^{A}X \rightarrow {}_{Z}^{A'}Y + b$$
 или ${}^{A}X(a,b)^{A'}Y$, (4.1)

где X, Y — атомные ядра, a,b — разные частицы. Бомбардирующей частицей a может быть нейтрон (a=n), протон (a=p), электрон (a=e), тяжелый ион (a=I), наконец, если $(a=\gamma)$, то реакцию называют фотоядерной реакцией. Под действием налетающей частицы различается характер ядерных превращений: кулоновское возбуждение ядра, вызванное заряженной частицей, деление ядра, ядерный синтез, процессы множественного рождения частиц.

В зависимости от энергии налетающей частицы a ядерные реакции протекают существенно по-разному. Поэтому ядерные реакции классифицируют по энергиям бомбардирующей частицы, выделяя область малых энергий ($E_a \le 1$ кэВ), низких энергий (1 кэВ $1 \le E_a \le 1$ мэВ), средних энергий ($1 \le 1$ мэВ $1 \ge 1$ мэВ1

Ядерные реакции сильно различаются от того, бомбардируется ли легкое ядро или тяжелое ядро. Поэтому ядерные реакции классифицируют по массовому числу ядра-мишени: если A < 50, то называют ядерные реакции на легких ядрах, при 50 < A < 100 — реакции на средних ядрах, A > 100 — на тяжелых ядрах.

Бомбардируя ядро-мишень потоком частиц с одинаковой энергией, исход реакции может быть разным. В этом случае говорят, при одном и том же входном канале получается разные выходные

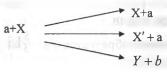


Рис. 4.1. Выходные каналы реакции

каналы реакции. Вероятность этих выходных каналов разная. Но упругое рассеяние всегда является одним из выходных каналов, т.е. любая реакция сопровождается упругим рассеянием.

Следовательно, ядерная реакция является процессом рассеяния, и они происходят при соблюдении всех необходимых законов сохранения: закона сохранения: закона сохранения импульса $\vec{P}_{in} = \vec{P}_{out}$, момента и четности $I_{in} = I_{out}$; $\Pi_i = \Pi_o$, электрического заряда $Q: Z_{in} = Z_{out}$, барионного заряда $B: A_{in} = A_{out}$, лептонного заряда L.

Из закона сохранения полной энергии имеем для ядерной реакции

$$mc^2 + Mc^2 \rightarrow m'c^2 + M'c^2 + Q.$$
 (4.2)

Откуда следует энергия реакции:

$$Q = [(m + M) - (m' + M')]c^{2}.$$
 (4.3)

Если Q>0, то реакция - экзотермическая с выделением энергии, если Q<0, то реакция - эндотермическая с поглощением энергии, при Q=0 имеем упругое рассеяние.

Эндотермическая реакция протекает только при энергиях налетающей частицы, превышающей пороговую $E_{\rm nop}$ энергию ядерной реакции. Обозначим минимальная кинетическая энергия налетающей частицы, при которой возможно эндотермическая реакция

$$E_{\text{nop}} = E_{\text{min}} = \frac{P_1^2}{2m},$$
 (4.4)

где P_1 - импульс налетающей частицы, а мишень покоится $P_2 = 0$ в лабораторной системе координат. Кинетическая энергия центра

инерции системы $\frac{P_1^2}{2(m_1+M_2)}$ бесполезна для реакции, поэтому

пороговая энергия должна быть больше энергии реакции на эту величину

$$E_{\text{nop}} = |Q| + \frac{P_1^2}{2(m+M)}.$$
 (4.5)

Исключая импульс частицы P_1 из (4.4) и (4.5), получим пороговую энергию

$$E_{\text{nop}} = |Q|(1 + \frac{m}{M}).$$
 (4.6)

Если налетающая частица a имеет положительный заряд, то ее проникновению в ядро препятствуют электрические силы отталкивания. Иными словами, вблизи поверхности ядра она «наталкивается» на кулоновский барьер, который необходимо преодолеть, чтобы ядерная реакция протекала:

$$U_{\text{кул}} = \frac{1}{4\pi\epsilon_0} \frac{zZe^2}{R} = 1.2 \frac{zZ}{A^{1/3}} \text{M} \Rightarrow B.$$
 (4.7)

Например, для протона z=1, сталкивающегося с ядром свинца Z=82, A=207, кулоновский барьер равен $U_{\rm кул}\approx 16{\rm M}{\rm эB}$. А для нейтрона, не обладающего электрическим зарядом q=0, кулоновского барьера не существует, и нейтрон даже с малой энергией легко проникает в ядро-мишень.

4.2 Эффективное сечение ядерных реакций

Эксперименты с ядерными реакциями проводят, бомбардируя ядра мишени потоком заряженных частиц из ускорителя или потоком нейтронов из атомного реактора. Считается, что все частицы имеют одну и ту же энергию, плотность потока частиц равномерна и равна $j=N_a/St$ - числу частиц, падающих за единицу времени на единицу площади, перпендикулярной к направлению импульса частиц. Обычно в этих экспериментах измеряют полное N число частиц b, образовавшихся в результате реакции. Естественно, что выход реакции N пропорционален плотности налетающих частиц j. Поэтому интенсивность реакции характеризуется отношением:

$$\sigma = \frac{N}{i},\tag{4.8}$$

которое называют интегральным эффективным сечением ядерной реакции. Интегральное сечение имеет размерность

$$[\sigma] = \left[\frac{1/c}{1/m^2c}\right] \approx \left[m^2\right]$$
 площади и пропорционально поперечному се-

чению ядра-мишени, но иногда из-за волновых свойств частиц может значительно превышать поперечные размеры мишени. Знание интегрального сечения нужно, например, при получении радиоактивных изотопов для определения времени облучения мишени. Величину интегрального сечения реакции можно рассчитать в рамках соответствующей ядерной модели и, сравнивая результаты расчета с экспериментальными данными, устанавливают важные детали строения ядра.

Большую информацию получают, если измеряется не интегральное сечение, а дифференциальное эффективное сечение ядерных реакций, которое определяет зависимость выхода реакции от энергии бомбардирующей частицы

$$d\sigma(E) = \frac{d\sigma}{dE} dE. \tag{4.9}$$

Поведение дифференциального сечения от энергии налетающей частицы определяется механизмом реакции, который протекает поразному для различных налетающих частиц и ядер, Эта зависимость в некоторых случаях описывается плавной кривой, иногда резонансной кривой в виде частокола пиков.

Особый интерес представляет изучение угловой зависимости продуктов реакции, которая определяется измерением углового дифференциального эффективного сечения

$$d\sigma(\Omega) = \frac{d\sigma}{d\Omega}d\Omega. \tag{4.10}$$

На рис.4.2 схематически изображено угловое распределение продуктов реакции. Оно зависит от ориентации спинов частиц, от углового момента, уносимого частицами, часто проявляется волновое свойство микрочастиц в виде дифракционной картины рассеянных частиц.

Интегрируя угловое дифференциальное сечение (4.10) по всем значениям телесного угла получают интегральное сечение реакции. Значение интегрального сечения можно оценить из следующих по-

ложений. Если налетающая частица достаточно быстрая так, что ее дебройлевская длина волны $\lambda \sim \frac{\hbar}{P} < R$

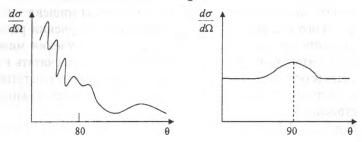


Рис. 4.2. Схематическая зависимость дифференциального сечения do

меньше размеров R ядра-мишени, тогда интегральное сечение можно положить равным поперечному сечению этого ядра

$$\sigma \sim \sigma_{K\pi} = \pi R^2. \tag{4.11}$$

Это позволяет получить представления о величинах сечений ядерных реакций. Учитывая, что радиусы ядер варьируются в пределах от $10^{-15} \, M$ до $10^{-14} \, M$, имеем:

$$\sigma \sim \left| 10^{-15} \right|^2 \sim 10^{-30} \,\mathrm{m}^2 \sim 0.016 \,\mathrm{aph}$$
 (4.12)

За единицу измерения сечение реакции принят барн, который равен

$$15aph = 10^{-28} m^2 (4.13)$$

Но если частица a медленная, то сечение реакции может резко увеличиться, так как в этом случае оно определяется не радиусом ядра, а дебройлевской длиной волны:

$$\sigma \sim \pi \lambda^2$$
 при $\lambda > R$. (4.14)

Понятия «быстрая» или «медленная» зависит от радиуса ядра мишени, то условие «медленности» $\lambda >> R$ можно переписать в виде $T << \widetilde{T}$, где

$$\widetilde{T} = \frac{P^2}{2_T} = \frac{\hbar^2}{2_T \lambda^2} = \frac{\hbar^2}{2_T R^2}.$$
 (4.15)

Если частица a является нуклоном, то формула (4.15) дает для легких ядер $\widetilde{T} \approx 20\,\mathrm{M}\mathrm{9B}$, а для тяжелых ядер $\widetilde{T} \approx 0.2\mathrm{M}\mathrm{9B}$. Отсюда явствует, что нуклон с одной и той же энергией иногда можно считать медленным (при соударении с легким ядром), а иногда быстрым (при соударении с тяжелым ядром).

Совершенно иначе обстоит дело с нейтронами. Они не несут электрического заряда, а потому могут реагировать с тяжелыми ядрами, даже будучи очень медленными. В дополнение к этому, сечения реакций для медленных частиц гораздо больше, чем для быстрых. Именно этим обстоятельством и обусловлена та огромная роль, которую играют нейтроны в ядерной физике.

В дальнейшем будем часто использовать закон, установленный Э.Ферми в 1935 году. Он утверждает, что при низких энергиях сечение экзотермического процесса обратно пропорционально скорости налетающей частицы:

$$\sigma \sim \frac{1}{v}.\tag{4.16}$$

Понять этот закон просто, медленная частица дольше пролетает мимо ядра-мишени и, следовательно, больше времени взаимодействия частицы с ядром.

4.3 Механизмы ядерных реакций. Прямые ядерные реакции

Ядерная реакция происходит при столкновении частицы с ядром, но исход реакции может быть разным, даже если исходные условия реакции остаются неизменными, так как процесс р еакции носит статистический характер. Конечный результат реакции различается механизмом протекания реакции. Существует много разных механизмов, и нет ни одного универсального механизма реакции. К тому же в данной конкретной реакции отдельные механизмы обычно конкурируют друг с другом. Но наибольшую известность получили прямые ядерные реакции и ядерные реакции через составное ядро.

Прямые ядерные реакции протекают при высоких энергиях налетающей частицы и отличаются следующими особенностями:

- продукты реакции летят преимущественно вперед в системе центра инерции,
- энергия налетающей частицы почти полностью передается вылетающей частице.

Для описания этих процессов С. Батлер в 1953 году предложил следующий механизм. Налетающая частица взаимодействует не с ядром в целом, а с отдельным нуклоном или группой нуклонов на периферии ядра, непосредственно передавая ему свою энергию в течение характерного ядерного времени $\tau_{\rm ядр} \sim 10^{-21} - 10^{-22} \, {\rm c}$. Такие процессы чрезвычайно многообразны. Отметим среди них реакцию срыва (d, p) и (d, n), когда дейтрон пролетая мимо ядра, и ядро срывает один нуклон из него, а далее летит уже одинокий нуклон и реакции подхвата (p, d) и (n, d), или обратный процесс — реакция подхвата (p,d) и (n,d).

Рис. 4.3. Реакции срыва (d,p) и (d,n).

Когда из ядра выбивается нуклон в реакции подхвата (p,d), то состояние нуклона в ядре согласно оболочечной модели имеет определенный угловой момент, который сказывается на угле рассеяния продуктов реакции. Точно так же и в реакции срыва, когда заселяется нуклон на оболочечный уровень в ядре, угловой момент состояния нуклона определяет угловое распределение улетающего дейтрона.

Реакция протекает в соответствии с моделью оболочек. Из этих исследований следует, что в легких ядрах нуклоны объединены в группы типа α-частицы. На этой основе сформулирована модель нуклонных ассоциаций, или кластеров, именуемая также единой моделью ядра. Основные ее идеи не противоречат представлениям оболочечной модели, а дополняют их.

4.4 Ядерная реакция через составное ядро

Многие ядерные реакция характеризуются тем, что они протекают сравнительно медленно — за время $\tau \sim 10^{-12}\,\mathrm{c} > \tau_{\mathrm{g}}$, на много порядков превышающее ядерное время. Угловое распределение

продуктов этих реакций в системе центра инерции симметрично относительно угла $\theta = 90^{0}$ к направлению импульса падающей частицы. При малых энергиях частицы их сечения имеют резко выраженные максимумы. Объяснение таких реакций было дано в 1936 году Н. Бором, который предложил механизм составного ядра.

Ядерные реакции через составное ядро проходят в 2 этапа:

$$a + X \to C^* \to Y + b \tag{4.17}$$

На первом этапе частица a захватывается ядром X и растрачивает свою энергию на многочисленные соударения с нуклонами внутри ядра. В итоге образуется составное ядро C^* . Оно находится в возбужденном состоянии, на что указывает звездочка в обозначении. Энергия возбуждения ядра $E_{\rm c}^*=E_{\rm a}+\varepsilon_{\rm c}$ складывается из энергии $E_{\rm a}$ налетающей частицы и $\varepsilon_{\rm c}$ энергии связи, которая высвобождается при образовании ядра C^* . Первый этап завершается очень быстро образованием составного ядра.

На втором этапе энергия возбуждения распределяется между нуклонами, пока случайно не сосредоточится на отдельном нуклоне и будет в состоянии преодолеть кулоновский барьер и выйти за пределы ядра. Продолжительность второго этапа на много порядков превышает τ_g время первого этапа так, что составное ядро забывает, как оно образовалось. Поэтому можно считать независимыми эти два этапа реакции: образование составного ядра $a+X\to C^*$ и распад его $C^*\to Y+b$. Это позволяет записывать сечение σ_{ab} реакции в целом в виде произведения сечения образования составного ядра σ_{ac} и вероятности λ_{cb} процесса распада

$$\sigma_{ab} = \sigma_{ac} \lambda_{cb} \tag{4.18}$$

Составное ядро может распадаться по разным каналам: упругого рассеяния X+a, неупругого рассеяния X^*+a , радиационного захвата $C+\gamma$, Y+n, Y+p, $Y+\alpha$ и др. Вероятность распада по определенному каналу характеризуется соответствующей парциальной шириной распада Γ_b . Сумма парциальных ширин всех распадов равна $\Gamma=\sum \Gamma_b$ - полной ширине распада. Нормированная ве-

роятность распада по каналу $C^* \to Y + b$ равна $\lambda_{cb} = \Gamma_b / \Gamma$. Поэтому сечение реакции (4.18) выражается формулой

$$\sigma_{ab} = \sigma_{ac} \frac{\Gamma_b}{\Gamma}.$$
 (4.19)

Составное ядро находится в возбужденном состоянии, каждый энергетический уровень ядра имеет определенное значение энергии E_i и времени жизни τ_i . Используя соотношения неопределенности $\Delta E \Delta t \sim \hbar$ и полагая, что неопределенность времени жизни порядка времени жизни $\Delta t \sim \tau_i$, определим неопределенность в энергии уровня возбуждения $\Delta E = \hbar/\Delta t$. Точно такая связь парциальной ширины распада уровня $\Gamma_i = \hbar/\tau_i$ со временем жизни уровня. Таким образом, ширина уровня ядра непосредственно связана со временем жизни уровня — с уменьшением времени жизни уровня ширина уровня, т.е. размытость уровня увеличивается.

Обозначим δE - расстояние между уровнем. В нижней части спектра возбужденных состояний ядра, где энергии возбуждения ядра еще малы, выполняется неравенство $\Gamma < \delta E$, и энергетический спектр ядра C^* - дискретен. В данной области имеются явно выделенные значения энергии E_a налетающих частиц:

$$E_0 = E_a = E_i^* - \varepsilon \tag{4.20}$$

и процесс образования составного ядра носит резонансный характер. В этом случае сечение ядерной реакции через составное ядро описывается знаменитой формулой Брейта-Вингера

$$\sigma_{ab} = \sigma_{ac} \lambda_{cb} = \pi \lambda_a^2 \frac{\Gamma_a \Gamma_b}{(E - E_0)^2 + \Gamma^2 / 4},$$
 (4.21)

где λ_a - длина дебройлевской волны падающей частицы, Γ_a / Γ - вероятность образования составного ядра по каналу $a+X\to C^*$, E_0 - энергия уровня составного ядра с учетом (4.20), E- энергия падающей частицы.

В заключение отметим, что в настоящее время ядерные реакции уже широко используются не только в научных исследованиях, но и для прикладных целей. С помощью ядерной реакции выделяют из ядра энергию на атомных электростанциях, производят радиоактивные изотопы для медицины и народного хозяйства, ядерные реак-

ции используются для изучения строения ядра, свойств ядерных сил, и, наконец, для изучения механизма самих ядерных реакций.

Вопросы для закрепления знаний

- 1. Чем отличаются экзотермические реакции от эндотермических реакций?
- 2. Почему порог реакции больше модуля энергии реакции?
- 3. Какие законы сохранения универсальны в ядерных реакциях?
- 4. Что такое сечение реакции, и в каких единицах оно измеряется?
- 5. Почему сечение реакции больше для медленных налетающих частиц по сравнению с быстрыми частицами?
- 6. Как зависит понятие быстрые частицы от массового числа ядра мишени?
- 7. Что такое каналы ядерной реакции?
- 8. Опишите механизм прямой ядерной реакции: а) какое время протекания реакции, б) каково угловое распределение продуктов реакции, в) каково соотношение энергии налетающей и вылетающей частиц?
- 9. Опишите механизм ядерной реакции через составное ядро: а) какое время протекания реакции, б) каково угловое распределение продуктов реакции, в) какова энергетическая зависимость сечения реакции при больших энергиях падающей частицы, г) какова энергетическая зависимость сечения реакции при низких энергиях?
- 10. Какие составные ядра образуются в следующих реакциях:

a)
10
B(α , p) 13 C, B) 12 C(3 He, α) 11 C, 6) 9 Be(p, d) 8 Be c) 10 F(p, α) 16 O?

- 11. Испускание нуклонов составным ядром напоминает испускание молекул нагретой каплей жидкости. Объясните почему?
- 12. Выпишите формулу Брейта-Вигнера и объясните, какие процессы она описывает.
- 13. Сечение ядерной реакции через составное ядро при малых энергиях налетающей частицы носит явный резонансный характер, а при высоких энергиях не проявляется резонанс. Объясните почему?
- 14. Как меняется спектр уровней ядра с увеличением энергии его возбуждения?
- 15. Как полная ширина распада ядра связана с вероятностью распада по определенному каналу?

Примеры решения задач

Задача 4.1. Используя законы сохранения, выпишите все возможные реакции ускоренных протонов с ядрами ${7 \atop 3}$ Li.

Решение: Законы сохранения электрического заряда, барионного и лептонного зарядов, позволяют протекание следующих двухчастичных реакций:

1.
$${}_{3}^{7}$$
Li+p \rightarrow p+ ${}_{3}^{7}$ Li,

2.
$${}_{3}^{7}\text{Li} + p \rightarrow n + {}_{4}^{7}\text{Be},$$

3.
$${}_{3}^{7}\text{Li} + p \rightarrow \gamma + {}_{4}^{8}\text{Be}$$
,

4.
$${}_{3}^{7}\text{Li} + p \rightarrow {}_{1}^{2}\text{H} + {}_{3}^{6}\text{Li}$$
,

5.
$${}_{3}^{7}\text{Li} + p \rightarrow {}_{1}^{3}\text{H} + {}_{3}^{5}\text{Li}$$
,

6.
$${}_{3}^{7}\text{Li} + p \rightarrow {}_{2}^{4}\text{He} + {}_{2}^{4}\text{He}$$
.

Задача 4.2. В каких реакциях можно получить изотоп 8_4 Ве? Решение: В соответствии с законами сохранения и имеющими в природе изотопов можно получить 8_4 Ве из следующих реакций:

1.
$$p + {}_{3}^{7}Li \rightarrow {}_{4}^{8}Be + \gamma$$
,

2.
$$p + {}^{10}_{5}B \rightarrow {}^{8}_{4}Be + {}^{3}_{2}He$$
,

3.
$$p + {}^{11}_{5}B \rightarrow {}^{8}_{4}Be + {}^{4}_{2}He$$
,

4.
$$\gamma + {}_{4}^{9}Be \rightarrow {}_{4}^{8}Be + n$$
,

5.
$$\gamma + {}^{10}_{4}\text{Be} \rightarrow {}^{8}_{4}\text{Be} + d$$
,

6.
$${}_{1}^{2}H + {}_{3}^{6}Li \rightarrow {}_{4}^{8}Be + \gamma$$
,

7.
$${}_{2}^{4}\text{He} + {}_{2}^{4}\text{He} \rightarrow {}_{4}^{8}\text{Be} + \gamma$$
.

Задача 4.3. Найти энергию Q ядерных реакций

a)
$${}_{3}^{7}\text{Li} + p \rightarrow p + {}_{3}^{7}\text{Li}$$
,

6)
$${}_{3}^{7}\text{Li} + p \rightarrow {}_{2}^{4}\text{He} + {}_{2}^{4}\text{He}$$
,

B)
$$_3^7Li + p \rightarrow n + _4^7Be$$
.

Для эндотермических реакций вычислить пороговую энергию.

Указание: дефект масс указанных изотопов:

$$\Delta(1,0) = 8,071 \text{ } M \ni B, \quad \Delta(1,1) = 7,289 \text{ } M \ni B,$$

$$\Delta(4,2) = 2,424 \, M_{\odot}B, \quad \Delta(7,3) = 14,907 \, M_{\odot}B,$$

 $\Delta(7,4) = 15,768 \ M_{\odot}B.$

Решение: Энергия ядерной реакции равна

$$Q = [(m + M) - (m' + M')]c^{2}$$
.

- a) Q = [(14,907 + 7,289) (14,907 + 7,289)] = 0
 - это упругое рассеяние без изменения энергии.
- б) $Q = [(14,907 + 7,289) 2 \times 2,424)] = 17,35 MэВ$
- это экзотермическая реакция с выделением энергии.
- B) $Q = [(14,907 + 7,289) (15,768 + 8,071)] = -1,64 M_9B$
- это эндотермическая реакция с поглощением энергии. В этом случае реакция происходит при пороговой энергии протонов $E_{\text{пор}} = \left| Q(m+M)/M \right| = 1,64 \times (1,0078 + 7,0160 / 7,0160 = 1,93 \, \text{M} \Rightarrow \text{B} \, .$

Задача 4.4. Выход реакции образования радиоактивных изотопов можно охарактеризовать либо числом $k_1=N_1\,/\,N_2$ - отношением N_1 - числа происшедших актов ядерного превращения к N_2 - числу бомбардирующих частиц, либо числом $k_2=I_0\,/\,N_2\left[\mathrm{E}\kappa\right]$ - отношением I_0 активности полученного продукта к N_2 - числу частиц, бомбардирующих мишень. Как связаны между собой величины k_1 и k_2 ?

Решение: Так как активность препарата $I_0 = \lambda N_1$, то $k_2 = I_0 / N_2 = \lambda N_1 / N_2 = \lambda k_1 = k_1 \ln 2 / T_{1/2}$.

Задача 4.5. При бомбардировке ${}^7_3\mathrm{Li}$ протонами образуется радиоактивный изотоп бериллия ${}^7_4\mathrm{Be}$ с периодом полураспада ${T_{1/2}} = 4,67\cdot 10^6$ с. Найти выход реакции k_1 , если известно, что

бомбардирующие протоны с общим зарядом q=1 мк $A\cdot \mathbf{q}$ вызывают активность полученного препарата $I_0=6,51\cdot 10^6$ Бк.

Решение: Из задачи 4.4 имеем

$$k_1 = k_2 T_{1/2} / \ln 2 = I_0 T_{1/2} / (N_2 \ln 2).$$

Суммарный заряд равен $q=eN_2$, откуда $N_2=q$ / е. Следовательно,

$$k_1 = eI_0T_{1/2}/(q\ln 2) = 1,6 \cdot 10^{-19}6,51 \cdot 10^6 \cdot 4,67 \cdot 10^6/(10^{-6} \cdot 36000,69) \approx 1/500$$

Задача 4.6. В реакции ${}^{14}_{7}\text{N} + {}^{4}_{2}\text{He} \rightarrow {}^{1}_{1}\text{H} + {}^{17}_{8}\text{O}$ под каким углом φ к направлению движения α -частицы вылетает протон, если известно, что

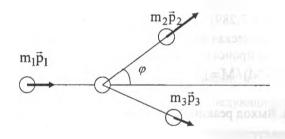


Рис.4.1. К задаче 4.6.

его кинетическая энергия равна $W_2 = 8,5 \ M$ эB, а кинетическая энергия α - частицы равна $W_1 = 7,7 \ M$ эB и энергия реакции $Q = -1,18 \ M$ эB?

Решение: Обозначим $m_1,\ m_2$ и m_3 - массы бомбардирующей α - частицы, протона и ядра отдачи $^{17}_{\ 8}O$; а $W_1,\ W_2$ и W_3 - их кинетические энергии. Так как ядро мишени $^{14}_{\ 7}N$ неподвижно, то закон сохранения энергии запишется так:

$$W_1 + Q = W_2 + W_3 (1),$$

где Q - энергия реакции. Закон сохранения импульса имеет вид:

$$\vec{p}_1 = \vec{p}_2 + \vec{p}_3$$
 (2).

Из (2) имеем

$$p_3^2 = p_1^2 + p_2^2 - 2p_1p_2\cos\varphi$$
 (3).

Так как

$$W = p^2 / 2m$$
, $TO p^2 = 2mW$ (4)

и уравнение (3) примет вид

$$2m_3W_3 = 2m_1W_1 + 2m_2W_2 - 2\cos\phi\sqrt{m_1m_2W_1W_2} .$$

Откуда имеем

$$W_3 = m_1 W_1 / m_3 + m_2 W_2 / m_3 - 2\cos\varphi\sqrt{m_1 m_2 W_1 W_2} / m_3$$
 (5).

Исключая из (1) энергию W_3 , получим формулу, которая связывает кинетическую энергию бомбардирующих α -частиц с кинетической энергией протонов:

$$W_1(m_3 - m_1) + Qm_3 = W_2(m_2 + m_3) - 2\cos\phi\sqrt{m_1m_2W_1W_2}$$
.

Откуда имеем

$$\cos \varphi = [W_2(m_2 + m_3) - W_1(m_3 - m_1) - Qm_3]/(2\sqrt{m_1m_2W_1W_2}) = 0.849,$$

или $\phi = 32^{0}$.

Задание для самостоятельной работы

Задача 4.7. Определить изотоп ${}_{Z}^{A}X$ в следующих реакциях:

1.
$${}_{13}^{27}\text{Al} + n \rightarrow {}_{Z}^{A}X + {}_{2}^{4}\text{He}$$

2.
$${}^{27}_{13}\text{Al} + {}^{4}_{2}\text{He} \rightarrow p + {}^{A}_{Z}X$$

3.
$${}^{19}_{9}F + p \rightarrow {}^{A}_{Z}X + {}^{16}_{8}O$$

4.
$$^{55}_{25}Mn + ^{A}_{Z}X \rightarrow n + ^{55}_{26}Fe$$

5.
$${}^{14}_{7}N + n \rightarrow {}^{A}_{Z}X + {}^{14}_{6}C$$

6.
$${}^{15}_{7}N + p \rightarrow {}^{A}_{2}X + {}^{4}_{2}He$$

Задача 4.8. Найти энергию Q следующих реакций:

a)
$${}_{3}^{7}\text{Li} + {}_{1}^{2}\text{H} \rightarrow {}_{4}^{8}\text{Be} + {}_{0}^{1}\text{n}$$
,

6)
$${}_{3}^{7}\text{Li} + p \rightarrow \gamma + {}_{4}^{8}\text{Be}$$
,

$$_{\rm B})_{4}^{9}{\rm Be} + \gamma \rightarrow n + _{4}^{8}{\rm Be}$$
.

Для эндотермических реакций вычислить пороговую энергию.

Ответ: a)
$$Q = 15,12 \, M$$
э B , б) $Q = 17,2 \, M$ э B , в) $Q = -1,77 \, M$ э B , $E_{\pi op} = 1,77 \, M$ э B

Задача 4.9. В результате ядерной реакции

образуется радиоактивный изотоп кобальта с периодом полураспада $T_{1/2}=80~cym$. Найти выход реакции k_1 , если известно, что бомбардирующие протоны с общим зарядом $q=20~{\rm MKA\cdot Y}$ вызывают активность полученного препарата $I_0=5,2\cdot 10^7~{\rm K}$. Ответ: $k_1=1/1000$.

Задача 4.10. При бомбардировке изотопа лития дейтронами образуются две α -частицы, разлетающиеся симметрично под углом ϕ к направлению скорости бомбардирующих дейтронов. Какую кинетическую энергию W_2 имеют образующиеся α -частицы, если известно, что энергия бомбардирующих дейтронов $W_1=0,2$ МэВ и энергия реакции Q=22,42 МэВ. Найти угол ϕ .

Ответ: $W_2 = 11,31 \,\text{M} \Rightarrow \text{B}, \ \phi \approx 87,3^{\circ}.$

Глава 5. Деление ядер. Ядерная энергетика

5.1 Механизмы деления ядер

Деление ядер — это процесс превращения ядра в несколько (2, редко 3 или 4) осколков, сравнимых по массе. Различают спонтанное деление (самопроизвольное) деление, которое относят к радиоактивным превращениям, и вынужденное деление, происходящее под действием нейтронов, что является примером ядерной реакции.

В 1934 году Э. Ферми начал опыты по облучению урана нейтронами в надежде получить трансурановые элементы в цепочках превращений вида

$${}_{0}^{1}n+{}_{Z}^{A}X \to {}_{Z}^{A+1}X + \gamma,$$

$${}_{0}^{1}n+{}_{Z}^{A}X \to {}_{Z+1}^{A+1}Y + e^{-} + \widetilde{\nu}_{e}.$$
(5.1)

Он действительно обнаружил β^- -излучение, причем весьма сложного состава, и сделал (ошибочный) вывод о синтезе элемента с Z = 93.

В 1938-39 г.г. О.Ган и Ф.Штрассман повторяя этот опыт, облучали уран нейтронами, наблюдали активность La и Ba - элементов из середины таблицы Менделеева. Л.Мейтнер и О.Фриш объяснили этот результат. При захвате нейтрона ядро урана делится на 2 сравнимых по массе осколка, что в то время считалось совершенно не вероятным.

Процесс деления ядра можно объяснить в рамках капельной модели. Будем считать, что ядро находится в основном состоянии и имеет сферическую форму. Кроме того, предположим для простоты, что ядро делится на два идентичных осколка $\overset{A}{Z}$, $\overset{A}{Z}$, так что $\overset{A}{Z}$ = $\overset{A}{Z}$ 2.

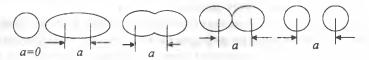


Рис. 5.1 Процесс деления

Чтобы процесс деления был энергетически выгодным (экзотермическим), необходимо, чтобы энергия деления была положительной:

$$Q_{\text{дел}} = (\varepsilon_{A/2} - \varepsilon) \cdot A > 0.$$
 (5.2)

Полная энергия ядра X задается формулой Вайцзеккера, и полная энергия ядра Y — той же формулой, но с заменой Z на Z/2 и A на A/2. Если не учитывать член спаривания, то для энергии реакции деления имеем:

$$Q_{\text{дел}} = E_x - 2E_y = \left(1 - \sqrt[3]{2}\right)\alpha_2 A^{\frac{2}{3}} + \left(1 - \frac{1}{\sqrt[3]{4}}\right)\alpha_3 Z^2 A^{-\frac{1}{3}}.$$
 (5.3)

Рассматриваемый процесс становится экзотермическим, начиная с ядра X_0 , для которого $Q_{\text{дел}} = 0$, что дает для его характеристик:

$$\frac{\alpha_3}{\alpha_4} \left(\frac{Z^2}{A} \right)_0 = \sqrt[3]{4} \frac{\sqrt[3]{2} - 1}{\sqrt[3]{4} - 1} \cong 0,7.$$
 (5.4)

Заметим, что в выражении (5.4) слева стоит отношение кулоновской и поверхностной энергий исходного ядра:

$$\frac{E_{\text{кул}}}{E_{\text{пов}}} = \frac{\alpha_3 Z^2}{\alpha_4 A}.$$
 (5.5)

Произведя количественный расчет этого выражения. и подставляя числовые значения α_2 и α_3 , получаем для «критического» ядра:

$$\left(\frac{Z^2}{A}\right)_{\text{kp}} \approx 50 \tag{5.6}$$

Откуда следует, что «критическими» становятся ядра с $Z\approx110$. Если $Z^2/A>50$, то такие ядра не могут существовать, так как они делятся, причем мгновенно. Если отношение Z^2/A для данного ядра меньше критического значения, то возможность деления ядра требует дополнительного анализа.

Рассмотрим с этой целью поведение полной энергии ядра при возрастании **параметра** деформации a. Как видно из рисунка 5.1 значение a=0 характеризует невозбужденное сферическое ядро (a). Для слабо деформированного ядра (b) параметр a есть рас-

стояние между фокусами эллипсоида. Для сильно деформированного ядра (в) а приобретает смысл расстояния между центрами наметившихся к делению дочерних ядер. После разрыва ядерной капли а становится равным расстоянию между центрами разлетающихся осколков. Зависимость полной энергии E=E(a) изображена на рис. 5.2. Штриховая кривая отвечает критическим ядрам, которые мгновенно делятся без воздействия извне. Сплошная кривая на рис. 5.2 соответствует интересующим нас ядрам, некритическим ядрами. Для них при малых деформациях, т.е. в окрестности точки a=0 кривая идет вверх. В другом предельном случае, при $a \rightarrow \infty$, имеем: $E=2E_Y < E_X$. В какой-то точке $a=a_{KP}$ зависимость E=E(a) должна иметь максимум, как это и изображено на рис.5.2.

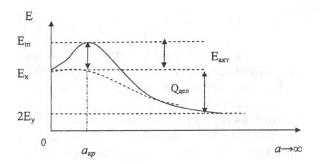


Рис. 5.2. Зависимость полной энергии делящегося ядра от параметра a

Разность между энергией E_x невозбужденного ядра и значением энергии $E=2E_Y$ при $a\longrightarrow\infty$ есть энергия реакции деления $Q_{\text{дел.}}$ Разность между максимальной энергией E_m деформированного ядра и энергией E_x называется энергией активации:

$$E_{akt} = E_{max} - E_{x}. ag{5.7}$$

Чтобы ядро развалилось, ему надо сообщить извне энергию возбуждения $E_{\mathsf{возб}} > E_{\mathsf{акт}}$. В процессе деления выделяется энергия

$$E_{\text{BMJEH}} = Q_{\text{JEH}} - E_{\text{BO36}}, \tag{5.8}$$

которая может оказаться положительной.

С некоторой вероятностью ядро может развалиться без сообщения ему энергии. Механизм такого спонтанного деления подобен механизму α -распада, так как проходит за счет туннельного эффекта. Поскольку массы осколков велики, то вероятность спонтанного деления чрезвычайно мала. В 1940 году наши ученые К.А. Петржак и Г.Н. Флеров открыли явление спонтанного деления ядер и измерили период спонтанного распада урана $^{238}_{92}$ U, который оказался фантастически большим $T_{1/2}$ =0,8 10^{16} лет. Для урана $^{238}_{92}$ U отношение Z^2/A =35,5<50, значительно меньше критического, и вероятность распада чрезвычайно мала.

5.2 Деление ядер под действием нейтронов. Цепная реакция

При каждом акте спонтанного деления выделяется значительное количество энергии. Но источником энергии эти процессы служить не могут: они чрезвычайно редки и неуправляемы. С практической точки зрения неизмеримо больший интерес представляет вынужденное деление тяжелых ядер под действием нейтронов. Интенсивность реакции деления зависит от энергии нейтронов E_n и от сорта делящихся ядер X.

Общепринятой является следующая терминология. Нейтроны с энергиями от 0,025 до 0,5 эВ называются тепловыми, с энергиями от 0,5 эВ до 1 кэВ — резонансными, с энергиями от 1 до 100 кэВ — промежуточными, а с энергиями от 100 кэВ до 14 МэВ — быстрыми.

Процесс деления является сравнительно медленным, т.к. требует глубокой перестройки структуры ядра. С момента захвата нейтрона ядром ${}_Z^AX$ до момента деления проходит время $\tau \approx 10^{-17}\,\mathrm{c}$, на 5 порядков превышающее τ_{gg} . Поэтому процесс деления происходит по схеме

$$n + {}^{A}X \rightarrow {}^{A+1}C^{*} \rightarrow Y_1 + Y_2 \tag{5.9}$$

через образование составного ядра $^{A+1}C^*\equiv^{A+1}X^*$ в возбужденном состоянии. Деление произойдет в том случае, когда будет выполнено условие $E^*_{воз6}>E_{\rm акт}$. Энергия возбуждения ядра при захвате нейтрона равна

$$E_{BO36} = E_n + \varepsilon_{A+1} \tag{5.10}$$

и состоит из кинетической энергии E_n , внесенной захваченным нейтроном, и удельной энергии связи ε_{A+1} , которая выделяется при захвате нейтрона и образования составного ядра ^{A+1}C . Из (5.10) имеем кинетическую энергию нейтрона $E_n = E_{Bo36} - \varepsilon_{A+1}$ и подставляя в условие развала при сообщении извне энергии возбуждения $E_{Bo36} > E_{akt}$, получим условие возможности деления ядра:

$$E_n > E_f = E_{akt} - \varepsilon_{A+1}, \qquad (5.11)$$

где E_f — эффективный порог деления, при энергиях нейтрона ниже которого не происходит деление ядра. Так как энергия активации $E_{\rm akt}$ и удельная энергия связи $\varepsilon_{\rm A+l}$ теоретически вычисляемы, то и эффективный порог деления E_f можно вычислить для конкретного ядра и определить при каких энергиях падающего нейтрона возможно деление ядра. Так как удельная энергия связи четно-четного ядра $\varepsilon_{\rm qet} > \varepsilon_{\rm heq}$ больше нечетного ядра, то возможно для некоторых ядер $E_{\rm akt} < \varepsilon_{\rm A+l}$ и порог деления крайне мал и даже отрицателен $E_f < 0$. Подставляя значения $E_{\rm akt}$ и $\varepsilon_{\rm A+l}$ в выражение (5.11), получим значения порога деления E_f для изотопов урана:

$$E_{\rm f} = \left\{ \begin{array}{ccc} -0.3 & \text{МэВ для} & ^{235}\text{U}, \\ 1.6 & \text{МэВ для} & ^{238}\text{U}. \end{array} \right.$$
 (5.12)

Таким образом, изотоп урана 235 U делится под действием медленных нейтронов, а изотоп 238 U под действием быстрых нейтронов. На опыте обнаружена эта разница в делении ядер двух изотопов урана: 238 U и 235 U. Ядра урана 238 U делятся под действием нейтронов с кинетической энергией не менее 1 MэВ, в то время как ядра урана 235 U делятся при захвате самых медленных, тепловых нейтронов. Тепловые нейтроны вызывают деления ядер изотопа урана 233 U и трансуранового элемента плутония $^{239}_{94}$ Pu .

Имеется и другое не менее существенное преимущество в делении ядер изотопа 235 U. В области малых энергий действует так называемый закон 1/v, согласно которому сечение деления обратно пропорционально скорости частицы $\sigma \sim 1/v$. Поэтому для теп-

ловых нейтронов с энергией $E_n \sim 0.025$ эВ сечение деления 235 U оказывается равным примерно $\sigma \sim 600$ барн, а для изотопа ^{238}U , делщегося при энергиях нейтрона $E_n > 2$ Мэв сечение деления всего $\sigma \sim 0.5$ барн.

С реакцией деления (n,f) конкурируют процессы неупругого рассеяния (n,n'), упругого рассеяния (n,n) и радиационного захвата (n,γ), которые мешают делению. При малых энергиях конкурирующие процессы мало вероятны или просто отсутствуют. При каждом акте деления одного ядра ²³⁵U выделяется энергия

При каждом акте деления одного ядра 235 U выделяется энергия $Q_{\text{дел}} = (\epsilon_{\text{A/2}} - \epsilon_{\text{A}}) \text{A} \approx 200 \, \text{M}$ эВ, основная доля которой (~80%) освобождается в виде кинетической энергии осколков. Их обычно два и существенно отличаются по массе друг от друга.

Так как в тяжелых ядрах наблюдается избыток нейтронов, а в получаемых осколках- ядрах малой массы число протонов и нейтронов почти одинаково, то этот избыток нейтронов испускается во время акта деления. Поэтому их называют мгновенными нейтронами.

После испускания мгновенных нейтронов осколки оказываются в возбужденном состоянии. Эта энергия возбуждения освобождается испусканием мгновенных у-квантов.

Испускание мгновенных нейтронов не восстанавливает равновесное отношение N/Z в осколках. Они еще перегружены нейтронами и освобождаются от них путем ряда β^- -распадов с вылетом электронов и электронных антинейтрино. Бета-превращения сопровождаются γ -излучением, но уже запаздывающим по сравнению с первичным актом деления.

Наконец, излучаются запаздывающие нейтроны, количество которых не большое, но их наличие важно для осуществления управляемой цепной реакции.

Рассмотрим, как происходит процесс деления урана ²³⁵U. При захвате нейтрона ядро делится в основном на два осколка и испускается в среднем два нейтрона. Эти 2 нейтрона при их захвате ядрами вызывают 2 деления ядер с испусканием 2² нейтронов, которые вызовут 2³ нейтронов и т. д. В итоге разовьется лавинообразный процесс — цепная ядерная реакция. Если не регулировать

ее, то цепная реакция завершится взрывом колоссальной силы, который и происходит в атомной бомбе.

Для получения управляемой цепной реакции необходимы следующие условия.

- 1. В цепной реакции с медленными нейтронами участвует только изотоп ^{235}U . В естественной смеси урана находится изотопа ^{238}U 99,3%, а необходимого изотопа ^{235}U всего 0,7%. Для осуществления цепной реакции необходимо обогатить естественный уран изотопом ^{235}U до 15%. Проблема обогащения урана довольно сложна.
- 2. Испускаемые при делении 235 U нейтроны имеют $E_n\sim 2~$ МэВ. Для осуществления реакции деления на тепловых нейтронах необходимо замедлить нейтроны. В качестве замедлителя используют материалы, масса ядер которых мала и сравнима с массой нейтрона. Другое требование к материалу замедлителя, чтобы ядра замедлителя не захватывали нейтроны. Хорошим замедлителем является тяжелая вода D_2O дейтерий не захватывает нейтроны, но из-за ее дороговизны используют в качестве замедлителя обычную воду H_2O , хотя водород захватывает часть нейтронов с образованием дейтерия.

Для снижения вероятности захвата нейтрона материалом замедлителя вместо однородной смеси урана и замедлителя (гомогенная среда) применяется гетерогенная система в виде чередующихся блоков урана и замедлителя. Образовавшийся в уране быстрый нейтрон успевает уйти в замедлитель, где становится тепловым, после чего диффундирует обратно в уран и вступает в реакцию деления. Таким путем удается повысить вероятность реакции на 40-50%.

Первую цепную реакцию деления осуществил Э. Ферми в 1942 году, используя чередующие блоки естественного урана и графита в качестве замедлителя.

3. Цепная реакция будет идти лишь в том случае, когда ядерного горючего достаточно много. Минимальная масса топлива, при которой еще протекает цепная реакция, называется критической массой. Она зависит от формы, наличия отражателя. Критическую массу можно существенно уменьшить, окружив зону реакции отражателем нейтронов, который предотвращает утечку нейтронов, направляя их обратно в зону реакции. Хорошим отражателем

телем является бериллий. В реакциях на тепловых нейтронах роль отражателя часто выполняет замедлитель.

4. Для количественной характеристики скорости нарастания цепной реакции вводят величину k, называемую коэффициентом размножения нейтронов в среде. Он определяется как отношение числа быстрых нейтронов в данном поколении к их числу в предшествующем поколении:

$$k = \frac{N_{i}}{N_{i-1}}. (5.13)$$

Если в первом поколении было N_1 нейтронов, то в n-ом поколении их будет $N_n=N_1k^{n-1}$. Отсюда ясно, что при k=1 реакция протекает стационарно (рабочий режим реактора), при k>1 интенсивность реакции нарастает (режим разогрева реактора или взрыв бомбы), при k<1 реакция гаснет. Система при k=1 называется критической, при k>1 - надкритической, при k<1-подкритической. Очевидно, что критическая масса — это как раз масса горючего в критической системе.

5.3 Ядерные реакторы на тепловых и быстрых нейтронах

Ядерные реакторы — это устройства, в которых протекает управляемая цепная реакция деления тяжелых ядер. Реакторы — сложнейшие в техническом и технологическом отношении установки, которые различаются по ряду признаков:

- 1. по энергии нейтронов, при которой протекает реакция деления ядер, различаются реакторы: на тепловых, на быстрых и на промежуточных нейтронах;
- 2. ядерное горючее (^{235}U , ^{239}Pu , ^{233}U), обычно смещанное с ураном ^{238}U , и сырьё для воспроизводства горючего (^{238}U , ^{232}Th);
- 3. тип замедлителя: обычная вода, тяжелая вода, органические жидкости, графит, бериллий...
- 4. тип теплоносителя, служащего для отвода тепла из активной зоны в установку, вырабатывающую электроэнергию: обычная вода, водяной пар, органические жидкости, азот, жидкие металлы.
- 5. по структуре активной зоны: гомогенные и гетерогенные;
- 6. по режиму работы: непрерывный, импульсный;
- 7. по назначению: энергетические, исследовательские, для воспроизводства делящихся материалов.

Энрико Ферми (1901-1954) – итальянский физик, родился в Риме. Окончил Пизанский ун-т (1922), работал в Гёттингенском ун-те у М. Борна (1923), в Лейденском ун-те у П. Эренфеста (1924), преподавал в Римском и Флорентийском ун-тах. В 1938 эмигрировал в США, где работал в Колумбийском (1939-42), Чикагском (1942-45) ун-тах, в Ин-те ядерных исследований (Чикаго с 1946). Разработал статистику частиц с полуцелым спином (1925), создал теорию бета-распада (1933-34), открыл искусственную радиоактивность (1934), создал количественную теорию ионизационных потерь энергии заряженных частиц (1939), В его честь назван 100-й элемент – фермий. Нобелевская премия (1938).

Типичная схема реактора на **тепловых нейтронах** приведена на рис 5.3. Главная часть реактора — **активная зона**, в которой протекает цепная реакция и выделяется энергия. Для уменьшения утечки нейтронов активная зона окружается отражателем. Активная зона состоит из замедлителя, в который помещены кассеты с горючим — твэлы (тепловыделяющие элементы).

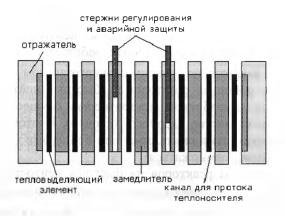


Рис. 5.3. Схема реактора на тепловых нейтронах

По каналам циркулирует теплоноситель, непосредственно контактирует с поверхностью твэлов и отводит от них выделяющееся тепло. Интенсивность протекания цепной реакции регулируется специальными стержнями, изготовленными из материалов, которые сильно поглощают нейтроны (кадмий, карбид бора и др.).

В предрабочем состоянии стержни полностью вдвинуты в активную зону, коэффициент размножения k < 1, и цепная реакция не идет. По мере выдвижения стержней поглощение нейтронов уменьшается, коэффициент размножения возрастает, и при некотором положении достигается равенство k=1. Реактор начинает работать, но постепенно топливо выгорает, а активная зона отравляется продуктами реакции, и регулирующие стержни приходится выдвигать, используя первоначальный «запас реактивности». На случай выхода реактора в надкритический режим работы (k>1) предусмотрены дополнительные аварийные стержни, которые в любой момент могут быть быстро вдвинуты в активную зону для предотвращения взрыва.

Доля производства электроэнергии на АЭС в 1999 году составила во Франции — 76%, в Западной Европе — 43%, Японии — 36%, Северной Америке 19%, а в России составила только 14,4% (в том числе: в территориях Центра России — 28,2%, Северо-запада — более 41%, Поволжья — 23%)

Развитие ядерной энергетики направлено на строительство реакторов на быстрых нейтронах, которые имеют ряд преимуществ по сравнению с реакторами на тепловых нейтронах. Дело в том, что реактор на тепловых нейтронах работает на изотопе урана ²³⁵ U, но его энергозапас сравним с энергозапасом органического топлива. А с помощью реакторов на быстрых нейтронах можно одновременно с выработкой электроэнергии осуществлять расширенное воспроизводство ядерного горючего. Поэтому их называют реакторами-размножителями или бридерами (от английского breed – расти, размножаться).

Принцип работы реакторов на быстрых нейтронах в следующем. В реактор загружают ядерное топливо — смесь урана 239 U с некоторым количеством плутония 239 Pu. Ядерная энергия выделяется в результате деления плутония 239 Pu. а уран 239 U играет

роль сырья, из которого воспроизводится ядерное горючее по схеме:

$$n + {}^{238}_{92}U \longrightarrow {}^{239}_{92}U \xrightarrow{\beta^{-}} {}^{239}_{93}Np \xrightarrow{\beta^{-}} {}^{239}_{94}Pu.$$
 (5.14)

Но эксплуатация реакторов на быстрых нейтронах более сложно. Так как здесь нет запаздывающих нейтронов, то управление реакцией деления сильно затруднено. Вместо регулирующих стержней приходится регулировать расстояние между отражателем и активной зоной.

Первый экспериментальный реактор БР-2 на быстрых нейтронах был построен у нас в г. Обнинске в 1956 г. С 1973 года работает в городе Шевченко (Казахстан) атомная электростанция с электрической мощностью в 120 МВт, а тепловая мощность 650 МВт, которая используется для опреснения морской воды до 80 тыс. тонн в сутки. На Белоярской АЭС в Челябинской области уже несколько десятилетий находится в эксплуатации блок БН-600.

Строительство атомных электростанций на быстрых нейтронах считается наиболее перспективным направлением развития энергетики будущего до тех пор, пока не будет освоен управляемый термоядерный синтез.

5.4. Реакции синтеза. Проблема управляемого термоядерного синтеза. Критерий Лоусона. Токамаки

Из графика зависимости удельной энергии связи $\varepsilon_A(A)$ от массового числа A следует, что выделение энергии возможно не только при делении тяжелых ядер, но и при слиянии легких ядер, в реакциях синтеза. Поскольку завал кривой удельной энергии связи $\varepsilon_A(A)$ в области малых массовых чисел крутой, то в реакциях синтеза может выделяться существенно больше энергии на один нуклон q = Q/A, чем в реакциях деления.

Основным препятствием к протеканию реакций синтеза является наличие **кулоновского барьера**, который должны преодолеть сталкивающиеся ядра, прежде чем они достаточно сблизятся и смогут вступить в сильное взаимодействие. Его высоту $U_{\text{кул}}$ можно оценить по формуле

$$U_{\text{кул}} = k \cdot \frac{Z_1 \cdot Z_2 \cdot e^2}{R} \approx 0,1 \text{M}_2\text{B},$$
 (5.15)

полагая в ней $R=R_1+R_2$. Для типичных реакций синтеза она составляет десятки и сотни кэВ.

Для преодоления кулоновского барьера необходимо разогнать ядра до $E > U_{\kappa y \pi}$, т.е. нагреть до температуры $T \sim 10^9$ К. Собственно, сильный разогрев вещества — единственный способ осуществления самоподдерживающихся реакций синтеза, в связи чем они обычно именуются **термоядерными реакциями**. При высоких температурах T вещество существует в виде **плазмы**, удержание которой с помощью магнитных полей представляет сложную проблему - проблему **управляемого термоядерного синтеза** (УТС).

Сегодня все надежды на УТС связывают с дейтерий-тритиевой реакцией

$$_{1}^{2}H+_{1}^{3}H\rightarrow_{2}^{4}He+_{0}^{1}n+17,6M\ni B,$$
 (5.16)

которая считается наиболее эффективной. Ее характеризуют сравнительно низкий кулоновский барьер и большое сечение при относительно невысоких энергиях. Энерговыделение этой реакции

$${
m q}=rac{{
m Q}}{{
m A}}pprox 3,5{
m M}{
m 9}{
m B}$$
 / нуклон значительно превосходит величину $q\sim 1M{
m 9}{
m B}$, типичную для деления тяжелых ядер.

Овладение реакциями синтеза даст человечеству практически неисчерпаемый источник энергии, так как в реакции синтеза на самом деле происходит соединение 4 ядер водорода в одно ядро гелия

$$4_1^1 H \rightarrow {}_2^4 He + 2e^+ + Q,$$
 (5.17).

а водорода в водах морей и океанов Земли достаточно. Другое преимущество реакции синтеза в том, что не образуются радиоактивные отходы, как при делении ядер.

Но для получения полезной энергии $W_{\text{пол}}$ из реакции синтеза сначала необходимо затратить тепло $W_{\text{теп}}$ на разогрев плазмы до необходимой температуры. Поэтому важен энергетический баланс

- условие выгодности $W_{\text{пол}} > W_{\text{теп}}$. С этой целью рассмотрим число элементарных актов синтеза в единице объема:

$$N = \alpha(T) \cdot n_D n_T \cdot \tau, \qquad (5.18)$$

где т — время удержания плазмы в горячем состоянии, n_D и n_T - концентрации дейтерия 2H и трития 3H , $\alpha(T)$ — некоторая функция температуры T, вид которой определяется энергетической зависимостью сечения реакции синтеза и условиями процессов теплообмена в плазме.

В одном акте синтеза выделяется энергия Q, а в единице объема за время τ выделяеся энергия QN, которую можно преобразовать в электрическую энергию

$$W_{\text{пол}} = \eta Q N = \eta Q \alpha(T) n_{\text{Д}} n_{\text{T}} \tau, \qquad (5.19)$$

где η – коэффициент преобразования (КПД).

С другой стороны, на разогрев рассматриваемого количества плазмы требуется затратить тепловую энергию на единицу объема

$$W_{\text{ren}} = 2\frac{3}{2}kT(n_D + n_T),$$
 (5.20)

где множитель 2 учитывает, что в плазме наряду с ядрами (ионами) присутствуют в таком же количестве электроны. Подставляя (5.19) и (5.20) в условие энергетической выгодности процесса в целом $W_{\text{пол}} > W_{\text{теп}}$, получим время, необходимое для удержания плазмы:

$$\tau > \frac{3kT(n_D + n_T)}{\alpha(T)\eta Qn_D n_T} \equiv \frac{3kTn}{\alpha(T)\eta Qn_D (n - n_D)}$$
 (5.21)

где $n = n_D + n_T -$ полная концентрация ядерных частиц. Очевидно, что правая часть минимальна при $n_D = n/2$. Поэтому условие (5.18) можно переписать как

$$m\tau > \frac{12kT}{\alpha(T)\eta Q} = f(T)$$
 (5.22)

С увеличением температуры T функция f(T) убывает (из-за возрастания сечения реакции), а в области очень высоких температур она возрастает (из-за наличия сомножителя T). Поэтому при некотором $T=T_0$ функция f(T) достигает минимума. Ясно, что температура T_0 наиболее благоприятна для осуществления УТС. Деталь-

ный анализ поведения функции $\alpha(T)$ показывает, что для реакции синтеза оптимальна температура

$$T_0 \cong 2 \cdot 10^8 \,\mathrm{K}. \tag{5.23}$$

Если положить $\eta = 1/3$ (реальное значение коэффициента преобразования внутренней энергии в электрическую) и учесть, что Q=17.6~MэB, то (минимальное) значение $f(T_0)$ оказывается равным примерно $10^{20}~c/m^3$. В итоге приходим к следующему условию стационарного протекания дейтерий-тритиевой реакции:

$$\eta \tau > 10^{20}$$
, (5.24)

где время т измеряется в секундах, а концентрация n — в обратных кубических метрах. Условия типа (5.20) и (5.21) и составляют содержание знаменитого критерия Лоусона.

Итак, для получения управляемой термоядерной реакции необходимо:

- 1. высокая температура T смеси дейтерия d и трития t,
- 2. достаточная плотность смеси n,
- 3. достаточное время удержания т плазмы.

В земных условиях удовлетворить сформулированным условиям чрезвычайно трудно. В 1951 г. И.Е.Тамм и А.Д. Сахаров предложили метод магнитного возбуждения и удержания плазмы и конструкцию установки.

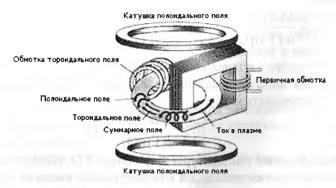


Рис.5.4. Схема токамака

Установка представляет собой тороидальную вакуумную камеру, на которую намотаны катушки с током для создания (тороидального) магнитного поля. Вакуумную камеру заполняют смесью дейтерия и трития и с помощью индуктора в ней создают вихревое электрическое поле. Индуктор представляет собой первичную обмотку большого трансформатора, в котором камера токамака является вторичной обмоткой. Протекающий через плазму ток нагревает плазму (омический нагрев) и создает вокруг себя полоидальное магнитное поле, которое поле сжимает протекающий через плазму ток, и тем самым создается теплоизоляция нагретой плазмы от стенок тороидальной камеры.

Такая установка получила названия токамак (тороидальная камера с магнитными кольцами). В 1955 году была сконструирована первая такая установка в Институте Атомной Энергии им. И.В. Курчатова. После успехов в создании атомного и водородного оружия и для мирных целей АЭС задача осуществленная УТС не представлялась чрезмерно сложной. Скоро стало ясно, что не возможно решить задачу в скором будущем. Нужны планомерные исследования и большие материальные и интеллектуальные затраты с привлечением к сотрудничеству развитые страны. С 1956 года начался процесс рассекречивания программ по УТС. Теперь во многих странах мира построены исследовательские установки типа токамак. Теперь их в мире свыше 150 установок, самые крупные из них: Т-15 (Москва), ЈЕТ (Англия), ТFTR (США), ЈТ-60 (Япония), ТОРУС-ІІ (Франция).

По международному договору (МАГАТЭ) разработан проект с участием многих стран построить демонстрационный термоядерный реактор, не отличающийся от промышленного. Долго решался вопрос, где разместить эту установку - в Японии или во Франции, наконец, этот вопрос был решен в пользу Франции.

Вопросы для закрепления знаний

- **1.1** Почему спонтанное деление ядер относят к разновидности радиоактивного деления?
- 6.2. Почему вынужденное деление относят к ядерным реакциям?
- **6.3**. В капельной модели конкуренция сил поверхностного натяжения, удерживающие ядро от развала, и сил кулоновского от-

талкивания определяется параметром делимости, который имеет критическое значение $Z^2/A \approx 50$. Оцените значение параметра делимости для реальных ядер, и оцените Z ядра, для которого достигается критическое значение параметра делимости.

- 6.5. Почему в процессе деления ядра выделяются мгновенные и запаздывающие нейтроны, а протоны не выделяются?
- 6.6. Что такое критическая масса и цепная реакция деления?
- **6.7.** Как достигается управление процессом цепной реакции деления, и при каком значении коэффициента размножения нейтронов?
- **6.8**. Атомный реактор состоит из следующих основных узлов: ТВЭЛы, замедлители, теплоноситель, поглотители, отражатели. Объясните их назначение.
- **6.9.** Каким требованиям должен удовлетворять материал, используемый в качестве замедлителя нейтронов ядерном реакторе? Почему для этой цели часто используется тяжелая вода?
- **6.10.** Какие преимущества атомных реакторов на быстрых нейтронах?
- **6.11.** В чем заключается проблема управляемой термоядерной реакции?
- **6.12**. Каков физический смысл критерия Лоусона $n\tau > 10^{20}$?
- 6.13. Какие принципы работы токамака?
- **6.14**. Какие преимущества управляемых термоядерных установок?

Примеры решения задач

Задача 5.1. Какую кинетическую энергию имеют тепловые нейтроны, находящиеся в термодинамическом равновесии с окружающей средой, соответствующей нормальным условиям? Решение: Частица, находящаяся в термодинамическом равновесии со средой при температуре $T = 300^{0} \, \mathrm{K}$, имеет энергию

$$E = 3/2 \cdot kT = 1.5 \cdot 1.38 \cdot 10^{-23} \cdot 300 \text{ Д} = 6.2 \cdot 10^{-21} / 1.6 \cdot 10^{-19} \text{ 3B} = 0.04 \text{ 3B}$$

Задача 5.2. Найти максимальную часть кинетической энергии (в %), теряемую нейтроном при упругом соударении с по-коящимся ядром: а) дейтерия 2_1 H, б) бериллия 9 Be, в) углерода 12 C и г) урана 238 U?

Решение: Выпишем законы сохранения импульса и кинетической энергии при лобовом столкновении нейтрона с покоящимся ядром массы m_A :

$$m\vec{v} = m\vec{v}' + m_A \vec{v}_A,$$

 $mv^2/2 = mv'^2/2 + m_A v_A^2/2.$

Представим эти уравнения в виде:

$$m(\vec{v} - \vec{v}') = m_A \vec{v}_A \tag{1},$$

$$m(\vec{v} + \vec{v}')(\vec{v} - \vec{v}') = m_A v_A^2$$
 (2).

Из (1) и (2) имеем:

$$\vec{\mathbf{v}} + \vec{\mathbf{v}}' = \vec{\mathbf{v}}_{\mathbf{A}} \tag{3}.$$

Умножим (3) на m и сложим c (1):

$$2m\vec{v} = (m + m_A)\vec{v}_A,$$

откуда

$$\vec{v}_A = 2m\vec{v}/(m+m_A).$$

Изменение энергии нейтрона при соударении $\Delta E = E - E' = E_A \quad \text{или}$

$$\Delta E / E = m_A v_A^2 / 2E = 4mm_A / (m + m_A)^2$$
.

Подставляя массы сталкивающихся частиц, получим:

a)
$$\Delta E/E = 88,9\%$$
, 6) $\Delta E/E = 36\%$,

B)
$$\Delta E / E = 28,4\%$$
, Γ) $\Delta E / E = 1,7\%$.

Задача 5.3. Найти минимальную кинетическую энергию нейтрона, при которой в результате захвата его ядром 238 U последует деление, если известно, что энергия активации образующего ядра составляет около $E_{\text{акт}}=7~\text{МэВ}$. Указание: дефекты масс равны: $\Delta(238,92)=47,305~\text{МэВ}$, $\Delta(239,92)=50,570~\text{МэВ}$, $\Delta(1,0)=8,071~\text{МэВ}$.

Решение: При захвате нейтрона ядром образуется составное яд-

ро: $n + {}^{238}_{92}\mathrm{U} \! \to \! {}^{239}_{92}\mathrm{U}^{\star}$. Энергия отделения нейтрона из ядра ${}^{239}U$

равна
$$\varepsilon_{A+1} = (47,305 + 8,071) - 50,570 = 4,81 \, Mag.$$

Энергия возбуждения ядра складывается из энергий $E_{\text{воз}} = E_n + \epsilon_{A+1}$. Условие вынужденного деления ядра $E_{\text{воз}} \ge E_{\text{акт}}$. Откуда имеем

$$E_n \ge E_{a_{KT}} - \varepsilon_{A+1} = 7 - 4,81 = 2,19 \, M_{3}B$$
,

т.е. при энергии быстрых нейтронов происходит деление ^{238}U .

Задача 5.4. Ядро атома урана ^{235}U испытывает деление при захвате теплового нейтрона. Считая для простоты, что ядро распадается на два одинаковых осколка, которые в момент деления находились на расстоянии $r = 1,6 \cdot 10^{-14} \, \text{м}$ друг от друга, а затем разлетаются под влиянием электростатического отталкивания, оценить освобождающуюся энергию на один акт деления.

Решение: Энергия кулоновского отталкивания осколков равна $E = (1/4\pi\epsilon_0) \cdot Z_1 Z_2 e^2 / r = 9 \cdot 10^9 \cdot (46)^2 (1,6 \cdot 10^{-19})^2 / 1,6 \cdot 10^{-14} = 3 \cdot 10^{-11} \text{Джc} = 3 \cdot 10^{-11} / 1,6 \cdot 10^{-19} \text{ эB} = 1,9 \cdot 10^8 \text{ эB} = 190 \text{ MэB}.$

Задача 5.5. Тепловая мощность реактора на атомном реакторе равна 90 МВт. Сколько урана будет израсходовано за год непрерывной работы на силовой установке ледокола, состоящей из трех таких реакторов? Сколько каменного угля потребовалось бы для получения такой же энергии?

Решение: Мощность ледокола

$$P = 3 \times 90 \ MBm = 270 \ MBm = 2,7 \cdot 10^8 \ Дж/c$$
.

За 1 год расходуется энергии

$$E = P \times 365 \times 24 \times 3600 = 8,5 \cdot 10^{15}$$
 Дж.

При делении одного атома урана 235 U выделяется энергия $E_{\text{nerv}} = 200 \text{ M}$ э $B = 2 \cdot 10^8 \times 1,6 \cdot 10^{-19} \text{ Дж} = 3,2 \cdot 10^{-11} \text{ Дж}$.

Следовательно, для получения такой энергии необходимо число атомов

$$n = E/E_{BHX}$$
 (1).

С другой стороны такое число атомов находится в $\, m \,$ массе $\, n = N_{\,\Delta} \, m \, / \, A \,$ (2).

Приравнивая (1) и (2), получим $m = AE/(N_A E_{\text{вых}}) = 235 \cdot 8,5 \cdot 10^{15} / (3,2 \cdot 10^{-11} \cdot 6,02 \cdot 10^{23}) = 104 \cdot 10^3 \, \epsilon = 104 \, \text{kg}.$

Удельная теплота сгорания каменного угля $q=2,6\cdot 10^7~\mbox{Джc/кг}$. Следовательно, необходимо каменного угля

$$m = E/q = 8.5 \cdot 10^{15}/2.6 \cdot 10^7 \text{ kg} = 3.3 \cdot 10^8 \text{ kg}$$
.

Задача 5.6. Образец из природного урана облучается потоком тепловых нейтронов интенсивностью $J=10^{10}~\text{n/cm}^2\text{c}$. Определить тепловую мощность, выделяемую $1~\text{cm}^3$ образца в результате деления ядер урана 235 U, эффективное сечение которых составляет $\sigma=590~\text{барн}$.

Решение: При каждом делении ядра $^{235}{
m U}$ выделяется энергии

$$E_{\text{вых}} = 200 \text{ M}$$
э $B = 2 \cdot 10^8 \cdot 1,6 \cdot 10^{-19} = 3,2 \cdot 10^{-11} \text{ Дж}.$

Число ядер, вступивших в реакцию равно $N = \sigma J n$, а ядер ^{235}U находится в естественной смеси в соотношении $0.7\% = 7 \cdot 10^{-3}$. В объеме $1 \, cm^3$ смеси их находится $n = 7 \cdot 10^{-3} \cdot \rho N_A / A$, где $\rho = 19.7 \, \epsilon / cm^3$ - плотность урана. Число вступивших в реакцию ядер равно $N = 7 \cdot 10^{-3} \, \sigma J \rho N_A / A =$

 $=7\cdot10^{-3}\cdot590\cdot10^{-24}\cdot10^{10}\cdot19,7\cdot6,02\cdot10^{23}/238=19,7\cdot10^{8}$ n / см 3 с . Следовательно, единица объема образца выделяет энергию $w=E_{\rm RLY}\cdot N=3,2\cdot10^{-11}\cdot19,7\cdot10^{8}=0,063~{\rm Br}/{\rm cm}^{3}$.

Задание для самостоятельной работы

Задача 5.7. Советские физики К.А. Петржак и Г.Н. Флеров экспериментально обнаружили, что, кроме α - распада, ядра ^{235}U испытывают спонтанное деление. Найти отношение активностей I_{α}/I_f обоих процессов, если известно, что период α - распада ^{235}U равен $T_{1/2\alpha}=8,5\cdot110^8$ лет, а среднее время жизни данных ядер для спонтанного деления составляет $\tau=3\cdot10^{17}$ лет.

ОТВЕТ: $I_{\alpha} / I_{f} = \ln 2 \cdot \tau_{f} / T_{1/2\alpha} = 2.5 \cdot 10^{8}$.

Задача 5.8. При захвате теплового нейтрона ядром 235 U и последующего деления возникает два осколка и два нейтрона. Оценить величину энергии, освобождаемой при данном процессе, если энергия связи на один нуклон в делящемся ядре составляет 7,8 $M_{2}B$, а в осколках деления - по 8,6 $M_{2}B$. Ответ: $Q = 171,6 \, M_{2}B$.

Задача 5.9. Энергия возбуждения, необходимая для деления ядра, возникающего при захвате нейтрона ядром 235 U , должна быть не меньше $E_{a\kappa m}=6,2$ $M_{9}B$. Будет ли сопровождаться делением захват ядром 235 U теплового нейтрона? (Указание: дефекты масс равны: $\Delta(235,92)=40,915$ $M_{9}B$ и $\Delta(236,92)=42,441$ $M_{9}B$). Ответ: Да, произойдет деление ядра, так как энергия возбуждения делящегося ядра 236 U равна

$$E_{BO36} = E_n + \epsilon_{235+1} = 7 \text{ M}_{9B} > E_{akt}$$
.

Задача 5.10. Определить количество нейтронов, генерируемых в 1c в реакторе мощностью P=10~MBm, считая, что при каждом делении освобождается 200~M9B энергии и выделяется 2,47 нейтрона в среднем.

Ответ: $7,7 \cdot 10^{17}$ нейтронов/с.

Задача 5.11. Вычислить суточный расход урана ^{235}U в ядерном реакторе с тепловой мощностью 3 ΓBm . Сколько нефти потребовалось бы сжигать в сутки для получения такой же мощности? $У \kappa asahue$: удельная теплота сгорания жидкого углеводородного топлива $d_H = 42000 \, \kappa \, \text{Дж} \, / \, \text{кг}$.

Ответ: 3,16 кг, 6100 т.

Задача 5.12. Для осуществления реакции синтеза

 $_{1}^{2}H+_{1}^{3}H\rightarrow_{2}^{4}He+n+Q$ необходимо ядрам дейтрона и трития преодолеть кулоновский барьер между ними. Определить кинетическую энергию этих ядер, необходимую для преодоления этого барьера. До какой температуры необходимо нагреть смесь дейтерия и трития для осуществления реакции синтеза?

Ответ: $E \approx 0.4 \text{ M} \Rightarrow B$, $T \approx 2 \cdot 10^9 \text{ K}^{\circ}$.

Глава 6. Взаимодействие излучения с веществом

6.1. Прохождение ионизирующих излучений через вещество. Проникающая способность излучения

Общая картина прохождения частиц высокой энергии через вещество крайне сложна. Но при прохождении заряженных частиц через вещество основную роль играют электромагнитные взаимодействия из-за их дальнодействующего характера, а также из-за того, что электронов в веществе гораздо больше ядер. Ядерные процессы преобладают только для не обладающих электрическим зарядом нейтронов во взаимодействиях с веществом. По механизму прохождения через вещество частицы можно разбить на следующие группы: тяжелые заряженные частицы, легкие заряженные частицы (электроны и позитроны), у-кванты и нейтроны.

Тяжелая заряженная частица (α – частица) массы М и высокой энергии взаимодействует с электрическими полями электронов и атомных ядер. Они либо ионизуют, либо возбуждают атомы. Осуществляется также и чисто ядерное взаимодействие частицы с атомным ядром. Но основные потери энергии заряженной частицы происходит за счет ионизационных потерь, которые характеризуются величиной — dE/dx - средней потерей энергии на единицу пути. Так как электромагнитные явления хорошо изучены, то теория позволяет рассчитать ионизационные потери заряженной частицы в среде. Первые такие расчеты были выполнены Н. Бором, а затем Бете и Блох в рамках более последовательной квантовой теории. Зная величину — dE/dx, то можно определить потери энергии частицы:

$$dE = -\frac{dE}{dx}dx,$$
 (6.1)

откуда и расстояние, пройденное частицей до остановки в веществе

$$R = \int_{E_0}^0 \frac{dE}{-dE/dx},$$
 (6.2)

где E_0 - начальная энергия частицы. Вычисление интеграла для величины R, называемой **пробегом**, приводит

$$R = \frac{M}{Z^2} f(\vartheta), \tag{6.3}$$

где f(v) - функция, зависящая от свойств среды. Таким образом, пробег заряженной частицы зависит от заряда частицы, её массы, начальной скорости, от плотности среды и её химического состава.

Механизм прохождения легкой заряженной частицы (электронов и позитронов) через вещество несколько отличается. Если в случае тяжелых частиц интенсивность пучка остается постоянной и в конце пробега R резко обрывается, то в случае пучка из легких частиц интенсивность пучка убывает плавно, непрерывно выбывают частицы из пучка. В этом случае говорят о максимальном пробеге, когда все частицы выбывают из пучка. Второе отличие в том, что электроны при торможении излучают, т.е. кроме ионизационных потерь появляются радиационные потери энергии легкой частицы.

Радиационные потери линейно растут с энергией, тогда как ионизационные потери от энергии практически не зависят. При очень высоких энергиях ионизационными потерями можно пренебречь. В этом пределе энергия пучка убывает по экспоненциальному закону с глубиной x проникновения в вещество:

$$E = E_0 e^{-x/l_r},$$
 (6.4)

где l_r- радиационная длина пробега, определяемая выражением

$$-\left(dE/dx\right)_{pag} = E/l_{r}.$$
(6.5)

В табл.6.1 сравниваются пробеги заряженных частиц в различных веществах.

Табл. 6.1. Пробег заряженных частиц в различных веществах

Заряженная	Энергия	Воздух	Биологические	Al
частица	$E(M \ni B)$	СМ	ткани см	СМ
β - частица	0.5	22	0.02	0.008
	1.7	610	0.92	0.01
α - частица	5.5	4	0.005	_

Как видно, пробег тяжелых частиц в плотных веществах весьма мал. Поэтому при внешнем облучении плотная одежда поглощает значительную часть β - и полностью α - частицы, но при попадании внутрь организма они причиняют серьёзный вред.

Совсем другие процессы наблюдаются при прохождении у-квантов через вещество. Для у-квантов не существует понятий пробега, максимального пробега, потерь энергии на единицу длины. При прохождении пучка у-квантов через вещество их энергия не меняется, но в результате столкновений постепенно ослабляется интенсивность у-пучка:

$$I(x) = I_0 e^{-\mu x}, (6.6)$$

где I_0 - начальная интенсивность. Величина μ называется коэффициентом поглощения. Часто пользуются понятием массового коэффициента поглощения, равного μ/ρ где ρ — плотность вещества. В этом случае толщину удобно измерять в единицах г/см². Коэффициент поглощения полностью характеризует процесс прохождения γ -излучения через вещество, так как зависит и от свойств среды и от энергии квантов. Таким образом, γ -кванты выбывают из пучка в результате отдельных столкновений с электронами или с атомными ядрами вещества. При этих столкновениях происходят следующие процессы: фотоэффект, комптон-эффект и при высоких энергиях - рождениие электронпозитронных пар в кулоновском поле ядра.

Фотоэффект —процесс выбивания γ -квантом электрона из электронной оболочки атома, наиболее интенсивно наблюдается для γ -квантов с энергиями E, сравнимыми с энергиями связи электронов в атомах. С увеличением энергии квантов фотоэлектрическое поглощение отходит на задний план, уступая место комптон-эффекту. При комптон-эффекте γ -кванты рассеиваются на свободных электронах, которые получают энергию отдачи, и таким образом теряется энергия γ -квантов.

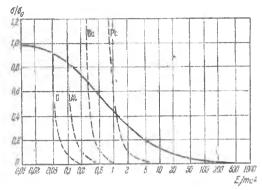


Рис. 6.1. Полные сечения комптон-эффекта (сплошная линия) и фотоэффекта (пунктирные линии) для различных веществ.

Процесс рождения электрон-позитронных пар в поле ядра состоит в том, что квант поглощается, а рождаются и вылетают электрон и позитрон.

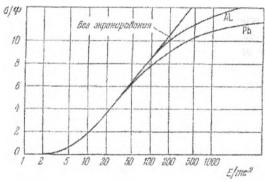


Рис. 6.2. Зависимость эффективного сечения рождения пар на свинце и алюминии от энергии E γ -кванта.

Нейтроны из-за своей электрической нейтральности не взаимодействуют с электронами атомных оболочек, а при столкновении с ядрами атомов легко поглощаются ими, вызывая ядерные реакции, или рассеиваются на них, замедляя свою скорость. В результате этого интенсивность нейтронного потока, проходя сквозь вещество, убывает в целом по такому же

закону (6.6), как в случае поглощения у-излучения. Поглощение нейтронов ядрами сильно зависит от энергии нейтронов, медленные нейтроны (E<1кэВ) сильно взаимодействуют с ядрами, а для быстрых нейтронов это взаимодействие значительно слабее. Отличаются нейтроны резонансной области (0,5 эВ<E<1кэВ), сечения реакций которых в зависимости от энергии нейтронов проявляют густой частокол острых резонансов. А процесс замедления нейтронов тем эффективнее, чем легче ядра замедлителя.

Табл.	6.2. Слой	половинного	ослабления	излучений

Вещество	γ-излучения см	Нейтронное излуче-
		ние см
Вода	23	3
Бетон	10	12
Свинец	2	9
Сталь	3	5

6.2 Единицы измерения поглощенной дозы

Падающее на вещество ионизирующее излучение теряет свою энергию, передав ее веществу. Мерой воздействия излучения на вещество является поглощенная доза излучения, которая определяется энергией, переданной единице массы вещества:

$$D = E_{\mu 3\pi} / m. \tag{6.7}$$

В СИ за единицу дозы поглощенного излучения принят грей (Гр): 1 Гр равен поглощенной дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1Дж:

$$1 \Gamma p = 1 Дж/1кг.$$
 (6.8)

Отношение поглощенной дозы ко времени облучения называют **мощностью дозы излучения**:

$$\dot{D} = D/t. \tag{6.9}$$

Единица мощности поглощенной дозы в СИ - грей в секунду (Гр/с). Физическое воздействие излучения на вещество

Рентген Вильгельм Конрад (1845-1923) - немецкий физик, родился в Леннепе, окончил Цюрихский политехнический ин-т (1868), работал в ряде ун-тов Германии: в Вюрцбургском, Страсбургском, в Гиссене, Вюрцбургском, Мюнхенском. Исследовал свойства жидкостей, газов, открыл взаимосвязь электрических и оптических явлений в кристаллах. В 1895 г. открыл X-лучи, исследовал их свойства (Нобелевская премия, 1901).

связано основном с ионизацией атомов и молекул.

Количественной мерой действия излучения служит экспозиционная доза, которая характеризует ионизирующее действие излучения на воздух. Экспозиционной дозой излучения называют величину, равную отношению суммарного заряда одного знака, образованного излучением в некотором объеме воздуха, к массе воздуха в этом объеме:

$$X = q/m$$
. (6.10)

В СИ единицей экспозиционной дозы является **кулон на килограмм** (Кл/кг). Экспозиционная доза в 1 Кл/кг равен такой дозе, при которой в сухом атмосферном воздухе в 1 кг создаются ионы, несущие электрический заряд каждого знака, равный 1 Kn. До сих пор употребляется внесистемная единица экспозиционной дозы — **рентген** (P):

$$1 P = 2,58 \cdot 10^{-4} \text{ Кл/кг}. \tag{6.11}$$

При экспозиционной дозе 1 P в 1 cm^3 сухого воздуха при нормальном давлении образуется около $2\cdot 10^9$ пар ионов. Такая доза накапливается за 1 vac на расстоянии 1 m от радиоактивного препарата радия 226 Ra массой 1 ε , имеющего активность $I_0=1$ Ки. При облучении мягких тканей человеческого организма γ -излучением поглощенная доза 1 Γ p примерно равна 100 P.

При облучении живых организмов поражающее действие излучения при одной и той же поглощенной дозе зависит от вида излучения. Поэтому вводят коэффициент относительной биологической эффективности k, показывающий, во сколько раз поражающее действие данного вида излучения выше, чем рентге-

новского, при одинаковой дозе поглощенного излучения. В табл. 6.3 приведены значения коэффициента k для разных видов излучений. Поглощенная доза, умноженная на коэффициент относительной биологической эффективности k, характеризует биологическое действие поглощенной дозы и называется эквивалентной дозой H:

$$H = k \cdot D. \tag{6.12}$$

Единицей эквивалентной дозы в СИ является зиверт (3в). Доза в 1 3в равен эквивалентной дозе, при которой поглощенная доза равна 1 Γ р и k=1. Но часто еще пользуются внесистемной единицей эквивалентной дозы бэр (биологический эквивалент рентгена): 13в \approx 100 бэр.

Табл.6.3.Коэффициент κ относительной эффективности излучений

Типы излучений	k	Типы излучений	k
γ - излучение	1	быстрые п	10
β- излучение	1	α - частица	10
медленные п	5	протоны	10

Для расчета защиты от ионизирующих излучений установлена **предельно** допустимая доза (ПДД), облучение которой безвредно для здоровья. При установлении предельно допустимой дозы исходят из того, что в естественных условиях облучение человека за счет космических лучей и радиоактивности веществ земной коры составляет примерно 0,1 бэр в год и абсолютно безвредно. Предельно допустимая доза (ПДД) облучения для лиц, профессионально занимающихся использованием радиационных источников, определена доза, равная H = 50 мЗв в год. А для населения, подвергающегося систематическому облучению, в качестве предельно допустимой дозы установлена эквивалентная доза, равная $0,1 \cdot \Pi \mathcal{I} \mathcal{I} = 5 \text{ мЗв}$ в год.

6.3. Источники радиации. Биологическое действие радиации

Жизнь с появления на Земле находится в условиях постоянного воздействия радиации. Человек постоянно подвергался и продолжает подвергаться внешнему и внутреннему облучению.

Источниками облучения являются естественный радиационный фон Земли и искусственный радиационный фон – результат деятельности самого человека.

Естественный радиационный фон представляет собой ионизирующие излучения природных источников космического и земного происхождения. Космические излучения представляют собой поток протонов (92%), ядер гелия, ядер лития и других элементов. Это первичное космическое излучение взаимодействует с атомами и молекулами атмосферы, образуя вторичное космическое излучение, состоящее в основном из электронов, нейтронов, мезонов и γ -квантов. Интенсивность излучения зависит от географической широты и высоты от уровня над морем. В атмосфере и биосфере в результате ядерных реакций под действием космических лучей постоянно образуются радионуклиды. Из 20 таких радионуклидов наиболее значимы 14 С ($T_{1/2} = 5730$ лет) и

 3 H($T_{1/2}$ =12,35 лет).

Земная радиация обусловлена естественными радионуклидами, которые содержатся в земной коре. Из нераспавшихся к настоящему времени сохранились 23 радионуклида. Сроки их жизни сопоставимы с возрастом Земли. Наибольшее значение имеют радионуклиды: ⁴⁰ К и семейства урана, тория и актиния. По мере распада последних образуется еще 40 радионуклидов.

Технологически измененный естественный радиационный фон представляет собой ионизирующие излучения природных источников, претерпевших изменения в результате деятельности человека. Радионуклиды поступают на земную поверхность вместе с извлекаемыми полезными ископаемыми, продуктами сжигания органического топлива. Они содержатся в строительных материалах, воздухе, воде, продуктах питания.

Искусственный радиационный фон Земли обусловлен в основном продуктами деления урана и плутония при испытаниях ядер-

ного оружия и выбросами радионуклидов АЭС при работе атомных реакторов.

Среднегодовые дозы, получаемые от естественного радиационного фона и различных искусственных источников излучения, приводятся в табл. 6.4.

Табл.6.4. Среднегодовые дозы от источников излучения

Источник излучения	Доза (мбэр/год)
Естественный радиационный фон	200 (23 мк бэр/час)
Стройматериалы	140
Атомная энергетика	0.2
Медицинские исследования	140
Ядерные испытания	2.5
Полеты в самолетах	0.5
Бытовые предметы	4
Телевизоры и мониторы ЭВМ	0.1
Общая доза	500

Как следует из таблицы, что радиация, связанная с нормальным состоянием ядерной энергетики, составляет лишь малую долю радиации, порождаемой деятельностью человека. Большие дозы радиации мы получаем от других источников, вызывающих меньше нареканий. Большой и возрастающий вклад в облучение человека вносит применение рентгеновских лучей в медицине для диагностики заболеваний, ядерная терапия злокачественных новообразований и вся ядерная медицина. К значительному увеличению уровня облучения приводит постоянное пребывание в закрытых помещениях из-за испускаемого строительными материалами радиоактивного газа радона.

В основе биологического действия ионизирующего излучения лежат процессы ионизации и возбуждения атомов и молекул в тканях человека. Эффект зависит от величины поглощенной дозы, ее мощности, вида излучения, радиочувствительности, физиологического состояния организма и действия многих других факторов.

Можно выделить четыре фазы в биологическом процессе воздействия радиации. Первая, физическая фаза ионизации и возбу-

ждения атомов длится 10^{-13} с. Во второй, химико-физической фазе, протекающей 10^{-10} с, образуются высокоактивные в химическом отношении радикалы, которые, взаимодействуя с различными соединениями, дают начало вторичным радикалам, имеющим значительно большие по сравнению с первичными сроки жизни. В третьей, химической фазе, длящейся 10^{-6} с, образовавшиеся радикалы, вступают в реакции с органическими молекулами клеток, что приводит к изменению биологических свойств молекул.

Описанные процессы первых трех фаз являются первичными, но они определяют дальнейшее развитие лучевого поражения. В следующей четвертой, биологической фазе химические изменения молекул преобразуются в клеточные изменения. Наиболее чувствительным к облучению является ядро клетки, наибольшие последствия вызывает повреждение ДНК, содержащей наследственную информацию. В результате облучения в зависимости от величины поглощенной дозы клетка гибнет или становится неполноценной в функциональном отношении. Время протекания четвертой фазы очень различно и в зависимости от условий может растянуться на годы или даже на всю жизнь.

Различные виды излучений характеризуются различной биологической эффективностью, что связано с отличиями в их проникающей способности и характером передачи энергии органам и тканям живого объекта, состоящего в основном из легких элементов.

Альфа-излучение имеет малую длину пробега частиц и характеризуется слабой проникающей способностью. Оно не может проникнуть сквозь кожные покровы. Пробег альфа-частиц с энергией 4 Мэв в воздухе составляет 2.5 см, а в биологической ткани лишь 31 мкм. Альфа-излучающие нуклиды представляют большую опасность при поступлении внутрь организма через органы дыхания и пищеварения

Бета-излучение обладает большей проникающей способностью. Пробег бета-частиц в воздухе может достигать нескольких метров, а в биологической ткани нескольких сантиметров. Так пробег электронов с энергией 4 Мэв в воздухе составляет 17.8 м, а в биологической ткани 2.6 см.

Гамма-излучение имеет еще более высокую проникающую способность. Под его действием происходит облучение всего организма.

Биологический эффект от действия тепловых нейтронов в основном обусловлен продуктами ядерных реакций $H(n,v)^2H$ и $^{14}N(n,p)^{14}C$, в результате которых образуются радиоактивные элементы: тритий и углерод-14. А образующиеся в реакции (n,p) протоны усиливают воздействие на биологическую ткань, теряя всю свою энергию в месте рождения

Зависимость тяжести нарушения от величины дозы облучения показана в табл. 6.5.

Табл.6.5. Воздействие различных доз облучения на человеческий организм

nn oprann.	3.11
Доза, Гр	Причина и результат воздействия
(0.7 - 2)	Доза от естественных источников в год
10 ⁻³	
0.05	Предельно допустимая доза профессионального
	облучения в год
0.1	Уровень удвоения вероятности генных мутаций
>0.25	Однократная доза оправданного риска в чрезвычай-
	ных обстоятельствах
	A Company of the Comp
>1.0	Доза возникновения острой лучевой болезни
>3- 5	Без лечения 50% облученных умирает в течение 1-
	2 месяцев вследствие нарушения деятельности кле-
	ток костного мозга
>10 - 50	Смерть вследствие поражений главным образом
	желудочно-кишечного тракта
>100	Смерть наступает через несколько часов или дней
	вследствие повреждения центральной нервной сис-
	темы

Как было заявлено, воздействие радиации на ткани живого организма происходит, в основном, через ионизацию атомов и молекул, хотя энергия радиации совсем незначительна. При облучении человека смертельной дозой γ -излучения, равной δ Γp , в его организме выделяется энергия, равная

$$E = mD = 70 \kappa z \cdot 6 \Gamma p = 420 \, \text{Дж}.$$

Такая энергия передается организму человека одной чайной ложкой горячего чая. Естественно, тепловое воздействие ионизирующей радиации не является причиной гибели человека, основная причина обусловлена химическими процессами, происходящими в живых клетках.

При облучении небольшой части тела доза, даже превышающая смертельную, может оказать сравнительно слабое действие на состояние организма в целом. Действие одной и той же дозы облучения заметно зависит от того, за какой промежуток времени эта доза получена. Если облучение сильно растянут по времени, то общее поражающее действие будет меньшим, чем при однократном облучении суммарной дозой

Радионуклиды накапливаются в органах неравномерно. В процессе обмена веществ в организме человека они замещают атомы стабильных элементов в различных структурах клеток, биологически активных соединениях, что приводит к высоким локальным дозам. При распаде радионуклида образуются изотопы химических элементов, принадлежащие соседним группам периодической системы, что может привести к разрыву химических связей и перестройке молекул. Эффект радиационного воздействия может проявиться совсем не в том месте, которое подвергалось облучению. Превышение дозы радиации может привести к угнетению иммунной системы организма и сделать его восприимчивым к различным заболеваниям. При облучении повышается также вероятность появления злокачественных опухолей.

Наиболее интенсивно облучаются органы, через которые поступили радионуклиды в организм (органы дыхания и пищеварения), а также щитовидная железа и печень. Дозы, поглощенные в них, на 1-3 порядка выше, чем в других органах и тканях. По способности концентрировать всосавшиеся продукты деления основные органы можно расположить в следующий ряд:

щитовидная железа > печень > скелет > мышцы.

Так, в щитовидной железе накапливается до 30% всосавшихся продуктов деления, преимущественно радиоизотопов йода. По концентрации радионуклидов на втором месте после щитовидной железы находится печень. Доза облучения, полученная этим органом, преимущественно обусловлена радионуклидами 99 Мо, 132 Te, 131 I, 132 I, 140 Ba, 140 La.

Среди техногенных радионуклидов особого внимания заслуживают изотопы йода. Они обладают высокой химической активностью, способны интенсивно включаться в биологический круговорот и мигрировать по биологическим цепям, одним из звеньев которых может быть человек.

Основным начальным звеном многих пищевых цепей является загрязнение поверхности почвы и растений. Продукты питания животного происхождения - один из основных источников попадания радионуклидов к человеку.

Исследования, охватившие примерно 100000 человек, переживших атомные бомбардировки Хиросимы и Нагасаки, показывают, что рак - наиболее серьезное последствие облучения человека при малых дозах. Первыми среди раковых заболеваний, поражающих население, стоят лейкозы.

Распространенными видами рака под действием радиации являются рак молочной железы и рак щитовидной железы. Обе эти разновидности рака излечимы и оценки ООН показывают, что в случае рака щитовидной железы летальный исход наблюдается у одного человека из тысячи, облученных при индивидуальной поглощенной дозе один Грей.

6.4. Стохастические эффекты малых доз радиаций

Острые лучевые поражения при внешнем облучении хорошо исследованы в наблюдениях над облученными больными и на опытах над животными.

Эффекты воздействия радиации на человека обычно делятся на две категории:

- 1) Соматические (телесные) возникающие в организме человека, который подвергался облучению.
- 2) Генетические связанные с повреждением генетического аппарата и проявляющиеся в следующем или последующих по-

колениях: это дети, внуки и более отдаленные потомки человека, подвергшегося облучению.

Соматическими последствиями радиации являются лучевая болезнь, локальные лучевые поражения, лейкозы, опухоли разных органов, а к генетическим последствиям относят генные мутации и хромосомные нарушения.

Последствия облучения могут проявиться в форме детерминированных и стохастических эффектов. Первые развиваются лишь после гибели критического числа функциональных клеток в организме и тканях, т.е. имеют порог. Потеря даже значительного числа клеток не оказывает заметного вредного воздействия на большинство органов и тканей организма. Величина порога зависит от радиочувствительности органа и для отдельных органов существенно различается. Повышенной радиочувствительностью отличается красный костный мозг, семенники, хрусталик глаза и особенно зародыш и плод. Тяжесть поражения зависит от поглощенной дозы, мощности дозы, вида излучения и физиологического состояния организма.

При неравномерном облучении тяжесть болезни меньшая. Хроническое облучение слабее действует на живой организм по сравнению с однократным облучением в той же дозе, что связано с постоянно идущими процессами восстановления радиационных повреждений. Считается, что примерно 90% радиационных повреждений восстанавливается. При облучении с низкой мощностью защитные механизмы организма могут обеспечить гомеостаз организма в течение длительного времени и даже в течение всей жизни (облучение от естественного фона).

Наиболее сложной радиобиологической проблемой остается оценка малых доз радиации. Если поврежденная клетка не погибает, то повреждение восстанавливается. В случае неполноценного восстановления оставшиеся изменения в клетке могут передаться дочерним клеткам и в конечном счете привести к развитию рака. Риск повышается с увеличением дозы облучения. Такие эффекты называются стохастическими (вероятностными).

Стохастические эффекты, такие как злокачественные новообразования, генетические нарушения, могут возникать при любых дозах облучения. С увеличением дозы повышается не тяжесть этих эффектов, а вероятность (риск) их появления. Для количест-

венной оценки частоты возможных стохастических эффектов принята консервативная гипотеза о линейной беспороговой зависимости вероятности отдаленных последствий от дозы облучения с коэффициентом риска около 7 *10⁻² /3в.

Убедительных экспериментальных данных о справедливости такой зависимости нет. Мутации в ДНК под воздействием внешней среды происходит постоянно. Большинство мутаций либо нейтральны, либо полезны, а вредные отсеиваются в каждом поколении под действием естественного отбора. В процессе эволюции у человека выработались и генетически закрепились защитные свойства от разных вредных факторов, в том числе и от радиации. Есть основания считать, что и для стохастических эффектов существует порог. Речь может идти о его величине.

Данные по **генетическим последствиям облучения** весьма неопределенны. Ионизирующее излучение может порождать жизнеспособные клетки, которые будут передавать то или иное изменение из поколения в поколение. Однако анализ этот затруднен, так как примерно 10% всех новорожденных имеют те или иные генетические дефекты и трудно выделить случаи, обусловленные действием радиации.

В последние десятилетия процессы взаимодействия ионизирующих излучений с тканями человеческого организма были детально исследованы. В результате выработаны нормы радиационной безопасности, отражающие действительную роль ионизирующих излучений с точки зрения их вреда для здоровья человека. При этом необходимо помнить, что норматив всегда является результатом компромисса между риском и выгодой.

В заключение отметим, что знание свойств радиации и ее воздействия позволяет свести к минимуму связанный с ее использованием риск и по достоинству оценить те огромные блага, которые приносит человеку применение достижений ядерной физики в различных сферах.

Вопросы для закрепления знаний

1. Энергия заряженных частиц при прохождении через вещество уменьшается, затрачиваясь на следующие процессы: а) возбуждение атомов вещества,

- б) ионизация атомов,
- в) тормозное излучение рентгеновское излучение,
- г) упругое и неупругое рассеяние частиц на ядрах среды. Поясните, как это происходит.
- **2.** Проникающая способность заряженных частиц определяется толщиной слоя вещества, называемой пробегом R. Приведите значения пробега R для α и β частиц в следующих средах: в воздухе, в воде, в бетоне и в железе.
- 3. Почему пробеги R α и β частиц не велики? Следует ли отсюда, что их воздействие на организм не велик?
- **4.** Основными видами взаимодействия γ квантов с веществом являются:
- а) фотоэффект,
- б) комптоновское рассеяние,
- в) образование электрон-позитронных пар.

Поясните, при каких энергиях γ - квантов преобладает тот или иной эффект.

5. Интенсивность пучка γ - квантов и нейтронов при прохождении через вещество убывает с расстоянием x по экспоненциальному закону $I(x) = I_0 e^{-\mu x}$, где μ - линейный коэффициент поглощения γ - квантов. Обычно в таблицах приводится значение толщины слоя вещества, при прохождении которого интенсивность γ - квантов убывает в 2 раза. Значение слоя половинного ослабления γ - излучения с энергией 5 M $\ni B$ для воды равен 22 cm, для бетона -10 cm, для свинца -1,3 cm.

Определить слой этих материалов, поглощающий интенсивность излучения в 1024 раз.

- 6. Какое излучение обладает наибольшей проникающей способностью?
- 7. Какие материалы можно применять для защиты от различных видов излучения?
- 8. Мерой воздействия излучения на вещество является поглощенная доза излучения. Как она определяется и в каких единицах измеряется?
- 9. Что такое мощность дозы излучения, и в каких единицах она измеряется?

10. Биологическое влияние различных видов излучения на организм животных и растений неодинаково при одинаковой поглощенной дозе излучения. Различие биологического действия различных излучений характеризуется коэффициентом относительной биологической эффективности \boldsymbol{k} .

Приведите значения этого коэффициента k для рентгеновского и γ -излучения, для медленных и быстрых нейтронов, для α - частиц с разной энергией.

- 11. Что такое эквивалентная доза, и в каких единицах она измеряется?
- 12. Какими процессами обусловлено биологическое действие радиационных излучений на живой организм?
- 13. Какое значение имеет естественный радиационный фон?
- 14. При облучении человека смертельная доза γ -излучения равна 6 Γp . Какую энергию при этом получает человек с массой 70 κz ? Выразите эту энергию в \mathcal{L} и κ и κ ал.

Примеры решения задач

Решение: Мощность дозы излучения

$$D = 0.05 \Gamma p / 200 = 0.05 \Gamma p / 365 \cdot 24 u = 5.7 \cdot 10^{-6} \Gamma p / u = 5.7 \text{ MK} \Gamma p / u$$

Задача 6.2. После аварии на Чернобыльской АЭС в некоторых местах до сих пор регистрируется γ - излучение с мощностью дозы D=160~мкP/ч. Определите, во сколько раз это превосходит $\Pi \Pi \Pi$ для населения.

Решение: Для населения установлена предельно допустимая доза $\Pi \square \square \square (\text{нас}) = 5 \text{ мЗв / } \text{год} = 0,57 \cdot 10^{-6} \text{ Зв / } \text{ч} = 65 \text{ мкР / ч}.$

Следовательно, мощность излучения превосходит $\Pi Д Д$ для населения $D/\Pi Д Д = 160/65 = 2,5$ раз.

Задача 6.3. По санитарным нормам допустимая плотность потока быстрых нейтронов составляет: $I_n = 20 \ n/c m^2 \cdot c$. Определить, на каком минимальном расстоянии от источника интенсивностью $S=106 \ n/c$ можно работать без дополнительной защиты. Решение. Плотность потока нейтронов $I_n(r)$ на расстоянии r от

$$I_n(r) = S / 4\pi r^2$$

Минимальное безопасное расстояние из этого соотношения:

источника определяется соотношением:

$$r_{\mbox{\scriptsize MHH}} = \sqrt{S/4\pi I_n}$$
 =109cm .

Задача 6.4. Индивидуальная доза облучения, получения в результате воздействия источника ^{60}Co в течение $10\,c$, составила $D_0=100\,\Gamma p$. При распаде $^{60}\mathrm{Co}$ образуется $2\,\gamma$ - кванта с энергией 1,33 и 1,17 МэВ. Сколько квантов γ -излучения попало при этом в организм человека, если каждый γ -квант теряет в тканях тела около 40% своей энергии?

Решение. Каждая такая пара γ -квантов выделяет в тканях человека энергию

$$E = (1,33+1,17) \cdot 0,4 = 1$$
 Mag = 1,6·10⁻¹³ \mathcal{A} ac.

Для человека весом 75 кг поглощенная доза от одной пары γ - квантов составляет

$$D = E / m = 1.6 \cdot 10^{-13} / 75 = 2.13 \cdot 10^{-15} \Gamma p$$
.

При получении организмом человека дозы 100 Γp число γ - квантов составляет

$$n = 2 \cdot D_0 / D = 2 \cdot 100 / 2,13 \cdot 10^{-15} = 9,4 \cdot 10^{16} \text{ } \gamma \text{-квантов.}$$

Задача 6.5. Найти для алюминия толщину $x_{1/2}$ слоя половинного ослабления для рентгеновских лучей некоторой длины волны. Массовый коэффициент поглощения алюминия для этой длины волны $\mu_{\scriptscriptstyle M}=5,3~{\scriptstyle M}^2/{\scriptstyle Kz}$, плотность алюминия $\rho_{Al}=2,7\cdot 10^3~{\scriptstyle Kz}/{\scriptstyle M}^3$.

Решение: Интенсивность пучка рентгеновских лучей, прошедших сквозь пластинку толщиной x определяется формулой

$$I = I_0 e^{-\mu x}, \tag{1}$$

где I_0 - интенсивность пучка, падающего на пластинку, μ - линейный коэффициент поглощения. Массовый коэффициент поглощения $\mu_{\scriptscriptstyle M}$ связан с линейным коэффициентом поглощения μ соотношением $\mu_{\scriptscriptstyle M}=\mu/\rho$, откуда

$$\mu = \mu_{\rm M} \rho \,. \tag{2}$$

Подставляя (2) в (1), получаем

$$I = I_0 e^{-\mu_M \rho x}. \tag{3}$$

Пройдя слой толщиной, равной толщине слоя половинного ослабления $x_{1/2}$, рентгеновские лучи будут иметь интенсивность

$$I = I_0/2. (4)$$

Подставляя (4) в (3), получаем

$$1/2 = \exp(-\mu_{M} \rho x_{1/2}). \tag{5}$$

Прологарифмировав выражение (5), получим искомое значение толшины слоя половинного ослабления:

$$x_{1/2} = \ln 2/(\mu_{\scriptscriptstyle M} \rho) = 0.05 \text{ MM}.$$

Задание для самостоятельной работы

Задача 6.6. Среднее значение эквивалентной дозы облучения, обусловленной естественным радиационным фоном, составляет $H \approx 2 \ \text{м3в/год}$. Переведите это значение естественного фона во внесистемную единицу *рентген в час* (P/v).

Задача 6.7. Мощность дозы γ - излучения радиоактивных элементов в зоне заражения равна D=2 $M\Gamma p/v$. Сколько часов мо-

жет работать в этой зоне человек без вреда для здоровья? В аварийной обстановке принята предельная допустимая доза $\Pi \mathcal{I} \mathcal{I} = 0.25 \ \Gamma p$.

Ответ: 125 час.

Задача 6.8. При облучении каждый грамм живой клетки поглотил 10^8 α – частиц с энергией 5,2 $M \ni B$. Определите эквивалентную дозу облучения, учитывая, что для α – частиц коэффициент относительной биологической эффективности k =20.

Ответ: H = 1,663в.

Задача 6.9. Во сколько раз уменьшится интенсивность рентгеновских лучей при прохождении слоя железа толщиной d=0,15 мм? Массовый коэффициент поглощения железа для рентгеновских лучей $\mu_{\scriptscriptstyle M}=1,1$ м²/кг, а плотность железа $\rho_{Fe}=7,8\cdot 10^3$ кг/м³.

Otbet: $I_0/I = 3,62$.

ЧАСТЬ 3

Физика элементарных частиц

Глава 7. Свойства элементарных частиц

7.1. Фундаментальные взаимодействия. Бозоны – переносчики взаимодействий и мезоны. Фермионы: лептоны и барионы. Странные и очарованные частицы

Под термином элементарные частицы первоначально понимали первичные, далее неделимые частицы, т.е. бесструктурные частицы, из которых состоит материя. В зависимости от уровня знаний под этот термин относили разные частицы. В настоящее время под этим не совсем удачным термином элементарные частицы понимают частицы ниже уровня атомного ядра — субъядерные частицы: е, n, p, π ,... Эти частицы обладают рядом характерных свойств, резко отличающихся от наших обычных понятий.

1. Основной отличительной чертой элементарных частиц является чрезвычайно малые расстояния их проявлений и вследствие этого очень высокие энергии их взаимодействий. Уже начальные эксперименты установили, что пространственные масштабы, характерные элементарным частицам, меньше $<10^{-15}\,\mathrm{m}$. Можно оценить энергии, присущие этим частицам, на основе соотношения неопределенностей $\Delta p \Delta x \approx \hbar$. Полагая неопределенность в расстояниях $\Delta x \approx 10^{-16}\,\mathrm{m}$, для ультрарелятивистской энергии $E = \mathrm{pc}$ получим неопределенность порядка

$$\Delta E = \Delta p \cdot c \approx \frac{\hbar c}{\Delta x} \approx \frac{1,05 \cdot 10^{-34} \text{Д} \times c \cdot 3 \cdot 10^8 \text{м/c}}{10^{-16} \text{M}} = 3,15 \cdot 10^{-10} \text{Д} \times = 2 \cdot 10^9 \text{ sB.} \quad (7.1)$$

Следовательно, чтобы проникнуть в масштабы элементарных частиц, необходима очень высокая энергия ~ 1 ГэВ. Для получения таких энергий построены мощные ускорители заряженных частиц. Поэтому физику элементарных частиц называют физикой высоких энергий.

2. Самым главным свойством элементарных частиц надо считать их способность рождаться при столкновениях и возможность взаимно превращаться друг в друга. После открытия большого числа элементарных частиц исследования были направлены на

то, чтобы обнаружить фундаментальные, неделимые части материи, из которых состоят элементарные частицы. Но эти надежды были тщетны. Выяснилось, что при самых разных взаимодействиях наблюдается только взаимопревращение частиц, но нет элементарных составляющих. Поэтому возникла гипотеза «демократии» частиц — все частицы превращаются друг в друга, нет самых элементарных.

3. Следующей характерной чертой элементарных частиц состоит в том, что большая часть их **нестабильна**. Частицы самопроизвольно распадаются. Среднее время жизни частиц меняется в широких пределах: от характерного времени сильного взаимодействия $\tau \approx 10^{-23}\,c$ и до бесконечного времени ∞ . Например, для протона, который согласно современной теории так же распадается, экспериментально установлено, что его время жизни $\tau > 10^{32}\,\mathrm{лет}$.

Частицы с малым временем жизни $\tau \approx 10^{-23} c$ характеризуют не временем жизни τ , а шириной резонанса в сечении столкновения $\Gamma = \hbar/\tau$ (*МэВ*). Связь энергии частицы со временем жизни следует из соотношения неопределенностей $\Delta E \Delta t \approx \hbar$, где неопределенность энергии $\Delta E \approx mc^2 \approx \Gamma$ характеризует время жизни частицы $\Delta t \approx \hbar/\Delta E \approx \tau$. Такие частицы с малым временем жизни получили название **резонансов**, т.е. они являются скорее возбужденными состояниями известной элементарной частицы.

4. Все процессы с элементарными частицами осуществляются через 4 фундаментальные взаимодействия. Квантование поля взаимодействия приводит к квантам-частицам, через обмен которыми осуществляется взаимодействие двух частиц. В таблице 7.1 приводятся типы взаимодействий с указанием кванта обмена — переносчика взаимодействия.

Гравитационное взаимодействие столь мало по интенсивности, что пока не проявляется в экспериментах с элементарными частицами.

По отношению к участию в сильном взаимодействии частицы разделяются на 2 вида: частицы не участвующие в сильном взаимодействии — их называют лептонами, и частицы, участвующие в сильном взаимодействии, которых называют адронами.

Табл. 7.1

N	Тип	I-	R-	τ-	Переносчик
	взаимодействия	интен-	радиус	время	взаимодействия
		сивность	действия		
1	Сильное	1	10 ⁻¹⁵ м	$10^{-23}c$	пи-мезоны
	взаимодействие				π^0,π^+,π^-
2	Электромагнитно	1/137	90	$10^{-18}c$	фотоны
	взаимодействие				γ
3	Слабое	10-10	10 ⁻¹⁰ м	$10^{-13}c$	промежуточные
	взаимодействие				бозоны W^{\pm}, Z^{0}
4	Гравитационное	10-38	00	?	гравитон
	взаимодейст-				G
	вие				

Лептоны участвует в слабом и электромагнитном взаимодействиях, но не участвуют в сильном взаимодействии. Перв оначально известные лептоны отличались самой малой массой (греческое leptos — легкий), но в последствие к ним были добавлены более тяжелые частицы. Современная теория предсказывает существование всего 6 лептонов: электрон, мюон и та он (e^-, μ^-, τ^-) и соответствующие им нейтрино (v_e, v_u, v_τ) .

Лептонам приписывают следующие квантовые числа - лептонные заряды:

- электрону e^- и электронному нейтрино ν_e приписывают электронно-лептонный заряд $L_e = +1$,
- мюону μ^- и мюонному нейтрино ν_μ мюонно-лептонный заряд $L_\mu = +1$,
- ullet таону au^- и таонному нейтрино $au_{ au}$ таонно-лептонный заряд $L_{ au}=+1$.

Все лептоны на современном уровне знания можно назвать истинно элементарными частицами, так как в них не обнаружена внутренняя структура. В этом смысле их называют еще фундаментальными частицами.

Адронами называют частицы, участвующие в сильном взаимодействии (греческое adros – сильный). Они также участвуют во всех других взаимодействиях - электромагнитном и слабом. Эти частицы составляют наиболее многочисленную группу элементарных частиц вместе с резонансами. Их подразделяют в зависимости от их внутренней кварковой структуры на 2 группы.

Мезоны — адроны с промежуточной массой между массой электрона и массой нуклона $m_e < m_\pi < m_N$ (греческое mesos — промежуточный). К ним относятся: $\pi^{0,\pm}$, η^0 , $K^{+,0}$, $D^{+,0}$ и др. Они состоят из кварка и антикварка.

Барионы — тяжелые адроны с массой, равной и превышающей массу нуклона $m \ge m_N$ (греческое baros — тяжесть). К ним относятся нуклоны (n, p) и гипероны $(\sum^+, B^0, u \text{ др.})$. Гиперонами называют барионов с массой, большей массы нуклона и большим временем жизни по сравнению с ядерным временем $10^{-23} c$. Они состоят из 3 кварков.

5. По величине спина все частицы (в том числе и не только элементарные) подразделяются на **бозоны** и **фермионы**.

Бозоны — это частицы с целочисленным значением спина I=0,1,... в единицах \hbar . Бозоны подчиняются статистике Бозе-Эйнштейна. К бозонам относятся: мезоны и многочисленные мезонные резонансы, фотон γ со спином 1 и гипотетический гравитон G со спином G.

Фермионы имеют полуцелый спин I = 1/2, 3/2, ... 11/2. Фермионы подчиняются статистике Ферми-Дирака и принципу запрета Паули. К фермионам относятся лептоны, барионы и барионные резонансы, а также кварки. Наибольший спин 11/2 имеет Δ_{2470} (дельта-изобар).

6. В микромире каждой частице соответствует античастица. У частицы и античастицы совпадают значения массы, спина, времени жизни, изотопические спины, но имеют противоположные по знаку электрический заряд, магнитный момент и характерные заряды: барионный, лептонный, странность, очарование, красота. (Эти понятия будут определены позже). В некоторых случаях частица совпадает со своей античастицей. Такие частицы назы-

вают **истинно нейтральными.** К ним относятся фотон γ , π^0 -мезон, η^0 -мезон, J/ψ - джей-пси мезон.

Первую античастицу – позитрон теоретически предсказал Дирак в 1931 году и в следующем году Андерсон обнаружил в космических лучах. Вскоре были открыты электронно-позитронные ливни в космических лучах. Далее была установлена возможность процесса аннигиляции электрона и позитрона в два и более у-квантов и обратного процесса образования электронпозитронной пары:

$$e^- + e^+ \leftrightarrow \gamma + \gamma$$
. (7.2)

Один γ -квант не может образоваться при аннигиляции, так как нарушался бы закон сохранения импульса. И при обратном процессе из одного γ -кванта не может образоваться такая пара по этой же причине. Для образования пары e^-e^+ необходимо не менее двух γ -квантов с суммарной энергией, больше энергии пары $2m_ec^2$, а в случае одного γ -кванта образование пары происходит в присутствии второго тела, например, атомного ядра.

Свойства антипротона были предсказаны теоретиками еще во времена открытия позитрона. Однако для того, чтобы обнаружить эту частицу, необходимо было иметь ускоренные протоны с энергией больше 6 ГэВ. Такой ускоритель был специально построен в Беркли, и начались эксперименты по обнаружению антипротона и антинейтрона. В 1955 году на этом ускорители были открыты антипротоны в реакции

$$p+p \rightarrow p+p+p+\widetilde{p}$$
. (7.3)

По закону сохранения барионного заряда антипротон может образоваться только в паре с протоном. Вскоре был открыт и антинейтрон.

В настоящее время обнаружены античастицы почти всех частиц. Сейчас ни у кого не вызывает сомнения тот факт, что каждая частица имеет "двойника" - античастицу. Схемы распада частицы и античастицы - зарядово-сопряженные, например,

$$n \to p + e^{-} + \widetilde{v}_{e}$$
$$\widetilde{n} \to \widetilde{p} + e^{+} + v_{e}$$

У истинно нейтральных частиц (γ , π^0 , η^0) частица и античастица тождественны. Даже для легких ядер были обнаружены антиядра. Первое антиядро — антидейтерий $\tilde{\mathbf{d}}$ было получено в 1965 году на ускорители в США. В 1969 году на самом мощном ускорителе того времени в Серпухове были открыты антигелий $^3\tilde{\mathbf{H}}\tilde{\mathbf{e}}$ и антитритий $^3\tilde{\mathbf{H}}$.

7. В начале шестидесятых годов был открыт еще один класс элементарных частиц, которые получили название резонансов или резонансных частиц. Они отличаются тем, что их время жизни очень мало $10^{-23}\,c$. Первый нуклонный резонанс был открыт Э. Ферми в 1952 году в реакциях рассеяния π -мезонов на нуклонах, он был назван \wedge -изобарой. Резонансы стали активно исследоваться и открываться с развитием техники водородных пузырьковых камер, в которых стало возможно наблюдать продукты распада резонансов

$$\triangle^0 \rightarrow p + \pi^- \quad M \qquad \triangle^{++} \rightarrow p + \pi^+$$

Впервые среди элементарных частиц появилась частица с зарядом +2.

8. С появлением мощных ускорителей были открыты новые частицы со странным поведением. Их странная особенность проявлялась в том, что они рождались парами, хотя не были частицей и античастицей. Вторая особенность поведения странных частиц большое время жизни. В результате распада такой частицы образуются сильно взаимодействующие частицы: протоны или пионы. Поэтому казалось, что время жизни странных частиц должно быть $\sim 10^{-23}$ сек. На самом деле их время жизни $\sim 10^{-10}$ сек, характерное для слабого взаимодействия.

Для того, чтобы объяснить такое поведение странных частиц М. Гелл-Манн и К. Нишиджима высказали предположение, что странная частица является носителем еще одного нового квантового числа, которое было названо *странностью* S (strange). Странность сохраняется в сильных взаимодействиях, но не сохраняется в слабых взаимодействиях. Это позволило сразу объяснить и парное рождение странных частиц в реакции сильного взаимодействия и большое время жизни в результате распада,

происходящего за счет слабого взаимодействия. Они рождаются парами с противоположной по знаку странностью вследствие соблюдения закона сохранения странности в сильных взаимодействиях:

$$\pi^{-} + p$$
 $K^{+} + \Sigma^{-}$
 $K^{-} + K^{+} + n$

Но при распаде этих частиц за счет слабого взаимодействия нарушается этот закон сохранения:

$$K^{+} \longrightarrow \begin{array}{c} \mu^{+} + \nu_{\mu} & (63,5\%) \\ \pi^{+} + \pi^{0} & (21\%) \\ \pi^{+} + \pi^{+} + \pi^{-} & (5,6\%) \end{array}$$

Странные частицы имеют массу покоя, большую массы покоя нуклона. Эти частицы были названы гиперонами. К ним относятся Λ , Σ^0 , Σ^+ , Σ^- , Ξ^0 , Ξ^- , Ω^- .

В 1974г была открыта новая частица, получившая двойное название J/ψ (джей-пси), так как ее одновременно открыли в двух разных лабораториях и присвоили ей такое название. Затем было открыто и целое семейство частиц, не менее странных. Их назвали очарованными частицами и приписали им новое квантовое число c - очарование (charm —шарм). Вскоре были открыты частицы, которым приписали квантовое число b — красота (beauty) и наконец, частицы с квантовым числом t — истина (truth).

7.2 Законы сохранения

В микромире значение законов сохранения значительно возрастает по сравнению с макромиром. Для описания макромира существуют динамические уравнения такие, как уравнение Ньютона, уравнения Максвелла и др., которые однозначно определяют эволюцию системы и можно проследить за всеми деталями ее изменения во времени, например, за траекторией движения системы. Законы сохранения в классической физике непосредственно вытекают из этих уравнений и играют подчиненную роль. Но

в микромире неизвестны динамические уравнения, и не возможно проследить за траекторией микрочастицы. Здесь единственным источником информации о свойствах и поведении частиц становятся законы сохранения. Законы сохранения служат для установления характеристик частиц, для классификации их и для предсказания разнообразных реакций с ними.

В микромире существуют универсальные законы сохранения и приближенные законы сохранения.

- 1. К универсальным, т.е. свойственным всем типам взаимодействий, относятся следующие законы сохранения.
- а) Закон сохранения четырехмерного вектора энергии-импульса $P_{\alpha}=(i\frac{E}{c},\vec{P})$. Для релятивистских частиц с массой покоя m инвариантной величиной является квадрат 4 импульса

$$P_{\alpha}^2 = -\frac{E^2}{c^2} + P^2 = -m^2c^2 = inv$$
 или $E^2 = P^2c^2 + m^2c^4$.

- б) Закон сохранения момента импульса $\vec{J} = \vec{L} + \vec{S}$. Примером этого закона является возможность распада нейтрона с участием антинейтрино $n \to p + e^- + \widetilde{\nu}_e$.
- в) Закон сохранения электрического заряда $\Sigma q_i = \Sigma q_i$.
- г) Закон сохранения барионного заряда В связан с массовым числом A.
- д) Закон сохранения лептонного заряда L и его компонентов $L_{\rm e}, L_{\mu}, L_{\tau}.$

Следующие законы сохранения относятся к приближенным законам, которые могут нарушаться в процессах электромагнитных взаимодействий или слабых взаимодействий.

Закон сохранения изоспина Т может нарушаться в электромагнитных и слабых взаимодействиях.

Следующие законы сохранения нарушаются только в слабых взаимодействиях:

- закон сохранения сохранение пространственной четности Р,
- закон сохранения проекции изоспина T_3 ,
- закон сохранения странности S,
- закон сохранения очарования с,

- закон сохранения красоты b,
- закон сохранения истины t.

Особо отметим, что все эти законы сохранения не нарушаются в сильных взаимодействиях.

Как известно, что законы сохранения являются следствиями свойств симметрии пространства, времени и их взаимодействий. Закон сохранения энергии связан со свойством однородности времени, сохранения импульса — однородностью пространства и закон сохранения момента импульса \vec{J} связан со свойством изотропии пространства.

А закон сохранения электрического заряда q есть следствие так называемого калибровочной инвариантности, т.е. инвариантности динамических уравнений относительно калибровочного преобразования волновой функции

$$\psi_a(\mathbf{x}) \rightarrow \psi_a'(\mathbf{x}) = e^{iq_a\alpha}\psi_a(\mathbf{x})$$
 (7.4)

Аналогичную природу имеют законы сохранения барионного заряда, лептонного заряда, странности, которую можно связать с гиперзарядом Y = B + S.

7.3. Несохранение пространственной четности в слабых взаимодействиях

Сильное взаимодействие является наиболее симметричным, т.к. при сильном взаимодействии сохраняются все квантовые числа, т.е. выполняются все законы сохранения. Электромагнитное взаимодействие является чуть менее симметричным, чем сильное, т.к. при электромагнитном взаимодействии нарушается закон сохранения изоспина T и его проекции T_3 . Слабое взаимодействие оказалось наименее симметричным, т.к. при таком взаимодействии может нарушаться закон сохранения пространственной четности.

Как известно, что закон сохранения четности является следствием свойства зеркальной симметрии пространства. Это означает $[\hat{\mathbf{H}},\hat{\mathbf{P}}]=0$, т.е. гамильтониан системы коммутирует с оператором $\hat{\mathbf{P}}$ инверсии осей координат $\vec{\mathbf{r}} \to -\vec{\mathbf{r}}$. Другими словами, сохранение четности означает, что процессы в нашем реальном мире и в

мире, который получается из него отражением в зеркале, обязаны протекать одинаково.

Со временем введения четности Θ . Вигнером в 1927 году не наблюдалось нарушение этого закона. Но в 1954-56 годах возникла проблема с частицами θ и τ , которые совпадали во всем, кроме распада

$$\theta^{+} \rightarrow \pi^{+} + \pi^{0}$$

$$\tau^{+} \rightarrow \pi^{+} + \pi^{+} + \pi^{-}$$

Внутренняя четность пи-мезонов равна P=-1. Четность первой частицы θ равна P=(-1)(-1)=+1, а четность второй частицы τ равна P=(-1)(-1)(-1)=-1. Для отождествления этих частиц необходимо допустить, что четность не сохраняется в слабых взаимодействиях. Впервые гипотезу о возможности нарушения закона сохранения четности в слабом взаимодействии выдвинули американские физики-теоретики китайского происхождения Т.Ли и Ч.Янг в 1954г. Они так же предложили эксперименты для подтверждения этого положения.

Такой опыт выполнила в 1957 году американская ученая Ц. Ву. Он состоял в измерении углового распределения электронов β -распада ориентированных ядер кобальта 60 Со .

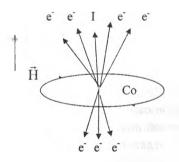


Рис.7.1. Распределение потока β -частиц в опыте Ц.Ву

Эти ядра были выбраны потому, что они обладают большим спином I=5, а значит и большим магнитным моментом μ , кото-

рый легко ориентировать сильным внешним магнитным полем. Бета-активный препарат 60 Со помещался в магнитное поле при низкой температуре $T\approx 0.1~\mathrm{K}$ для устранения теплового расстройства ориентации ядер. Измерялся поток β -частиц в направлении спина ядра и в противоположно спину. Если правое и левое в природе не различимы, то вылет β -электронов в направлении спина I и в противоположно спину I направлении должен быть равновероятным. На рис. 7.1 схематично показан результат эксперимента, который показал, что распределение потока β -частиц не одинаково. Таким образом, опыт Ву подтвердил гипотезу о не сохранении четности в слабом взаимодействии. И в 1957 году Ли и Янг были удостоены Нобелевской премии.

Вследствие этого установили, что τ - и θ -мезоны одна и та же частица, называемая теперь К-мезоном, с четностью P=-1, распад которой идет с нарушением четности $K^0 \to \pi^+ + \pi^-$.

Пространство обладает такими точными симметриями, как однородность и изотропность. Чтобы восстановить зеркальную симметрию были предложена следующая идея. При инверсии координат с помощью P - операции вектор скорости меняет знак $\bar{v} \to -\bar{v}$, а электрический заряд q не меняет знак, считается скаляром. Но при зеркальном отображении направление кругового тока меняется на обратное, что равносильно изменению знака заряда $q \to -q$. Поэтому вводится операция C - зарядового сопряжения, которая меняет знак электрического заряда электрона $e^- \to e^+$, а обобщая эту операцию на все частицы, которые не обладают зарядом, получим операцию изменения частицы на античастицу $v \to \tilde{v}$.

В 1957 году Л.Д.Ландау, А. Салам, Ли и Янг сформулировали принцип инвариантности слабого взаимодействия относительно $\hat{\mathbb{C}P}$ - комбинированной инверсии. В сильном и электромагнитном взаимодействиях в отдельности проявляется $\hat{\mathbb{P}}$ - инвариантность и $\hat{\mathbb{C}}$ - инвариантность. Но при слабом взаимодействии нарушаются в отдельности $\hat{\mathbb{P}}$ - инвариантность, но наблюдается инвариантность относительно одновременной $\hat{\mathbb{C}P}$ - инверсии. В общей теории существует $\hat{\mathbb{C}PT}$ - теорема: все процессы

Ландау Лев Лавыдович (1908-1968)советский физик-теоретик, академик, родился в Баку, окончил Ленинградский ун-т (1927), работал в Ленинградском ФТИ (1927-32), Харьковском ФТИ (1932-37), Московском ФТИ (1947-50), МГУ. Работы посвящены квантовой механике, физике твердого тела, теории фазовых переходов, теории ферми-жидкости и теории сверхтекучей жидкости (Нобелевская премия, 1962), квантовой теории поля, физике элементарных частиц. Создал вместе с Е.М. Лифшицем многотомный «Курс теоретической физики», воспитал большую теоретическую школу, Герой Соц. Труда (1954), Гос. Премии (1946, 1949, 1953)

природы инвариантны относительно $\hat{\mathbb{CPT}}$ -инверсии. Здесь операция $\hat{\mathbb{T}}$ - инверсии означает обращение времени $t \rightarrow -t$ в волновой функции частицы

$$T\Psi(\vec{r},t) = \Psi^*(\vec{r},-t)$$

Из этой $\hat{\mathbb{C}}\hat{\mathbb{P}}\hat{\mathbb{T}}$ - теоремы следуют следующие следствия:

- а) масса $\, {\rm m} \,$ и время жизни $\, {\rm t}_{\rm cp} \,$ частицы и античастицы равны,
- б) электромагнитные моменты частицы и античастицы отличаются только знаком,
- в) антигравитация в природе не существует.

В 1964 году были обнаружены распады типа $K_L^0 = \pi^+ + \pi^-$, которые запрещены по $\hat{\mathbb{CP}}$ -инвариантности. Нарушение $\hat{\mathbb{CP}}$ -инвариантности равносильно нарушению $\hat{\mathbb{T}}$ - инвариантности, так как $\hat{\mathbb{CPT}}$ - теорема строго соблюдается во всех процессах. Отсюда следует необратимость времени и, следовательно, необратимость процессов в природе.

Вопросы для закрепления знаний

1. Перечислите 4 типа фундаментальных взаимодействий элементарных частиц. Укажите, обменом каких частиц они осуществ-

ляются? Какая интенсивность, радиус действия и характерное время процессов этих взаимодействий?

- 2. Какие частицы называются адронами? Что общего и чем различаются барионы и мезоны?
- 3. Какие частицы называются лептонами? Перечислите дублеты лептонов и соответствующий им лептонный заряд.
- **4**. Чем различаются **бозоны** и **фермионы?** Чем они характеризуются?
- 5. Почему нарушается закон сохранения изоспина в электромагнитных?
- 6. Опишите результат опыта Ц. Ву по доказательству несохранения четности в слабых взаимодействиях.
- 7. В чем странность странных частиц?
- 8. Какие частицы называют гиперонами?
- 9. Какие частицы называются резонансами?
- 10.В чем заключается комбинированная СР-инвариантность?
- **11**. Объясните, в чем заключается *СРТ*-теорема? Какие следствия вытекают из нее?

Примеры решения задач

Задача 7.1. Почему не могут выполняться следующие процессы:

a)
$$\mu^- \neq e^- + \widetilde{\nu}_e$$

6)
$$p \neq e^+ + v_e + \widetilde{v}_e$$

B)
$$v_e + p \neq e^+ + n$$

Задача 7.2. Показать, что свободно движущийся электрон не может испустить фотон.

Решение: Покажем, что процесс $e^- \rightarrow e^- + \gamma$ запрещен по закону сохранения энергии и импульсов, который в 4-мерной формулировке имеет вид

$$P_{\alpha i} = P_{\alpha f} + P_{\alpha \gamma}, \tag{1}$$

где 4-мерный вектор энергии-импульса $P_{\alpha} = (iE/c, \vec{p})$ и

$$-P_{\alpha}^{2} = E^{2} - \bar{p}^{2}c^{2} = m^{2}c^{4}$$
 (2)

Из (1) находим

$$P_{\alpha f} = P_{\alpha i} - P_{\alpha \gamma} \tag{3}$$

Возведем (1) в квадрат

$$P_{\alpha i}^{2} = P_{\alpha f}^{2} + P_{\alpha \gamma}^{2} + 2(P_{\alpha f}, P_{\alpha \gamma})$$
 (4)

Используя (3), представим (4) в виде

$$P_{\alpha i}^{2} = P_{\alpha f}^{2} + P_{\alpha \gamma}^{2} + 2(P_{\alpha i} - P_{\alpha \gamma}, P_{\alpha \gamma}) = P_{\alpha f}^{2} + P_{\alpha \gamma}^{2} + 2(P_{\alpha i}, P_{\alpha \gamma}) - 2P_{\alpha \gamma}^{2}$$
(5)

Перейдем в систему отсчета, в которой начальный электрон покоится

$$\vec{p}_{ei} = 0 \quad \text{M} \quad E_i = m_e c^2 \tag{6}$$

тогда $\vec{\mathbf{p}}_{\mathbf{f}} = -\vec{\mathbf{p}}_{\gamma}$ (7)

Подставляя (2) в (5) и имея в виду (5) и (7), получим $m_e^2 c^4 = E_f^2 - \vec{p}_f^2 + 2(E_i E_\gamma - \vec{p}_i \vec{p}_\gamma) - (E_\gamma^2 - \vec{p}_\gamma^2) = \\ = m_e^2 c^4 + 2 m_e c^2 E_\gamma - m_\gamma^2 c^4$

Откуда имеем $E_{\gamma} = (m_e^2 - m_e^2 + m_{\gamma}^2)c^2 / 2m_e$.

Так как масса фотона равна нулю, то энергия фотона $E_{\gamma}=0$ равна нулю.

Задача 7.3. Процесс рассеяние фотона на свободном электроне, называемый комптон-эффектом, описывается зависимостью изменения длины волны $\Delta\lambda$ от угла рассеяния 9 фотона

$$\Delta \lambda = \Lambda (1 - \cos \vartheta),$$

где $\Lambda = h / m_e c$ - комптоновская длина волны электрона. На основе законов сохранения импульсов и энергии этого пронесса вывести формулу эффекта Комптона.

Решение. Выпищем законы сохранения импульсов и энергии для этого процесса:

$$\vec{\mathbf{p}}_{\gamma} = \vec{\mathbf{p}}_{\gamma}' + \vec{\mathbf{p}}_{e} \tag{1}$$

$$E_{\gamma} + m_{e}c^{2} = E_{\gamma}' + \sqrt{p_{e}^{2}c^{2} + m_{e}^{2}c^{4}}$$
 (2)

Здесь мы учли, что электрон до столкновения покоился и в результате столкновения приобрел импульс p_e и энергию

$$\sqrt{p_e^2c^2 + m_e^2c^4}$$
, а фотон с импульсом $\vec{p}_{\gamma} = h\vec{n}/\lambda$ (3)

и энергией

$$E_{\gamma} = p_{\gamma}c \tag{4}$$

после рассеяния изменяет энергию, импульс и направление распространения. Из (1) имеем

$$p_e^2 = p_{\gamma}^2 + p_{\gamma}'^2 - 2p_{\gamma}p_{\gamma}'\cos\vartheta$$
 (5),

где 9 - угол рассеяния фотона. Из (2) учитывая (4), получим

$$(p_{\gamma} - p'_{\gamma} + m_e c)^2 = p_e^2 + m_e^2 c^2$$
 (6).

Исключая p_e из (5) и (6), получим

$$mc(p_{\gamma} - p_{\gamma}') = p_{\gamma}p_{\gamma}'(1 - \cos \vartheta)$$
 (7).

Подставляя (3) в (7), имеем, окончательно

$$\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \varphi).$$

Задача 7.4. С точки зрения рождения антипротона энергетически наиболее выгодным является процесс $p+p \to p+p+p+\widetilde{p}$. Учитывая, что масса протона $m_p \approx 0.94~\Gamma \text{ >B}$, показать, что порог рождения антипротона достаточно высок $T_0 = 6m_p \approx 5.6~\Gamma \text{ >B}$.

Решение: Рассматривая две сталкивающиеся частицы как единую систему, выпишем следующий из закона сохранения 4-импульса инвариант

$$\begin{aligned} M_{i}^{2}c^{4} &= E_{in}^{2} - \vec{p}_{in}^{2}c^{2} = (E_{1} + E_{2})^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2}c^{2} = \\ &= (E_{1} + m_{2}c^{2})^{2} - (\vec{p}_{1} + 0)^{2}c^{2} = \\ &= E_{1}^{2} + 2E_{1}m_{2}c^{2} + m_{2}^{2}c^{4} - p_{1}^{2}c^{2} = \end{aligned}$$

$$= m_1^2 c^4 + m_2^2 c^4 + 2E_1 m_2 c^2.$$

Необходимое условие реакции $M_i \ge \sum m_f$ приводит к порогу реакции

$$T_a = [(\sum m_{out})^2 - (m_a + m_b)^2]c^2/(2m_b).$$
 (1)

Учитывая, что масса антипротона равна массе протона $m_p \approx 940$ МэВ. Подставляя это в (1) для вышеприведенной реакции рождения антипротона, получим

$$T_a = [(4m_p)^2 - (2m_p)^2]/(2m_p) = 6m_p \approx 5.6 \Gamma 3B.$$

Задание для самостоятельной работы

Задача 7.5. Объясните, почему происходят эти процессы:

a)
$$\tilde{v}_e + p \rightarrow e^+ + n$$
,

б)
$$\mu^- \rightarrow e^- + \tilde{\nu}_e + \nu_\mu$$
,

$$_{B)}\ \pi^{+}\rightarrow\mu^{+}+\nu_{\mu},$$

$$r$$
) $p + \widetilde{p} \rightarrow n + \widetilde{n}$.

Задача 7.6. Выпишем соотношение некоторого процесса $a+b \rightarrow c+d$, который допускается законами сохранения. Существует правило: если в этом соотношении какую-либо частицу перенести из одной части соотношения в другую, заменив ее на античастицу, то получится соотношение, выражающее возможный новый процесс. Используя это правило, рассмотреть все возможные процессы, которые следуют из соотношений, приведенных в задаче 7.5.

Задача 7.7. Показать, что движущийся в вакууме один фотон с любой, сколь угодно большой энергией не может превратиться в электрон-позитронную пару.

7.8. Ниже приведены законы сохранения и типы взаимодействий. Проставьте знак «+», если этот закон сохранения в данном типе взаимодействия не нарушается и знак «-», если нарушается.

	Взаимодействия					
Законы сохранения	Силь-	Электро-	Сла-			
	ное	магнитное	бое			
Электрический заряд <i>Q</i>						
4-энергия-импульс $E^2 = p^2c^2 + m^2c^4$						
Угловой момент J						
Барионный заряд В						
Лептонные заряды L_e , L_{μ} , L_{τ}						
Странность (strangeness) s						
Очарование (charm) с						
Красота (beauty) b						
Истина (truth) t						
Изоспин Т						
Проекция изоспина T_3						
Пространственная четность Р						

Задача 7.9. Определить порог рождения антипротона при соударении электрона с покоящимся электроном.

Other: $T_0 = 2m_p (m_p / m_e + 2) = 3446 \text{ } T \ni B$

Глава 8. Систематика элементарных частиц

8.1. Соотношение Гелл-Мана и Нишиджимы. Восьмеричный формализм. Октет барионов. Октет мезонов. Декуплет барионов и открытие Ω^- - гиперона

Существование большого количества элементарных частиц (>400) поднимает вопрос об их систематике. Их разнообразие вынудило физиков искать какие-то принципы, которые позволили бы упорядочить множество частиц. В особенности после экспериментов Р. Хофштадтера по рассеянию электронов на нуклонах стало известно, что нейтрон и протон в отличие от электрона имеют сложную структуру, т.е. имеют определенные составные элементы. Поиски этих составных элементов и установление систематики частиц привели, в конце концов, к фундаментальному открытию истинно элементарных частиц — кварков, из которых состоят адроны.

Первую удачную систематику элементарных частиц предложили американский физик Гелл-Манн в 1953 г. и независимо от него японский физик К. Нишиджима в 1954 г. Она основана на разбиении элементарных частиц с близкими физическими свойствами на небольшие семейства — изотопические мультиплеты (изомультиплеты). Частицы одного изомультиплета одинаково участвуют в сильных взаимодействиях, имеют примерно равные массы, один и тот же барионный заряд В, обладают одинаковыми свойствами спинами J и четностью $\eta_{\rm p}$. Они отличаются друг от друга только электромагнитными характеристиками: электрическим зарядом и магнитным моментом. Каждому мультиплету приписывают изоспин T, частица изомультиплета характеризуется проекцией изоспина T_3 , и следовательно, число частиц в изомультиплете равно N=2T+1- числу проекции изоспина T.

Так, например, протон и нейтрон объединяются в изомультиплет с барионным зарядом B=1 и спином $J^{\pi}=1/2^+$. Они составляют изодублет с изоспином T=1/2 и проекциями изоспина $T_3=+1/2$ и $T_3=-1/2$ для протона и нейтрона, соответственно. Удобно их представить графически на оси T_3 :

Таких мультиплетов можно составить множество. Ограничимся в дальнейшем рассмотрением мультиплетов, составленных из частиц, схожих протону и нейтрону с барионным зарядом $B\!=\!1$ и спином $J^\pi=\!1/2^+$.

Такой изотриплет составляют три \sum_{-}^{-} , \sum_{-}^{0} , \sum_{-}^{+1} - сигмагиперона с изоспином T=1 и проекциями $T_3=-1$, 0, +1. Их также представим на графике оси T_3 :

Барионный изодублет с B=1 и спином $J^{\pi}=1/2^+$ составляют Ξ^- , Ξ^0 - кси-гипероны с изоспином T=1/2 и проекциями $T_3=-1/2$, +1/2. Ниже они представлены на графике:

Наконец, изосинглет с B=1 и спином $J^\pi=1/2^+$ составляет один Λ^0 -лямда-гиперон. Ему приписывают изоспин T=0 с проекцией $T_3=0$ и представляют на оси T_3

$$\frac{\Lambda^0}{\widetilde{\Omega}} \longrightarrow T_3 \qquad Y = 0$$

Всем мультиплетам присваивается еще квантовое число гиперзаряд, состоящий из суммы барионного заряда и квантовых чисел странности S и очарования C:

$$Y = B + S + C$$
. (8.1)

Впоследствии к этой сумме прибавили квантовые числа красоты b и истины t после открытия частиц с этими квантовыми числами.

Гиперзаряд частицы связан с его электрическим зарядом соотношением Гелл-Манна и Нишиджимы:

$$q = T_3 + \frac{1}{2}Y (8.2)$$

Вычислим гиперзаряд для изомультиплетов и проверим соотношение Гелл-Манна и Нишиджимы.

- 1. Изодублет п, р имеет барионный заряд B=1, странность S=0 и очарование C=0. Следовательно, гиперзаряд равен Y=+1, электрические заряды q=+1/2+1/2=+1 для протона и для нейтрона q=-1/2+1/2=0.
- 2. Λ^0 -изосинглет с B=1, S=-1, C=0, T=0, T₃=0 имеет гиперзаряд Y=0 и электрический заряд $q=0+\frac{1}{2}(1-1+0)=0$.
- 3. $\sum_{}^{\pm}$, $\sum_{}^{0}$ изотриплет с B = 1, S = -1, C = 0, T = 1, T₃ = +1,0,-1 и гиперзаряд Y=0.

Следовательно, электрические заряды триплета равны q = +1 + 0 = +1, q = 0 + 0 = 0 и q = -1 + 0 = -1.

4.
$$\Xi^{\overline{0}}$$
- изодублет - B = +1,S = -2,C = 0,T = $\frac{1}{2}$, T_3 = + $\frac{1}{2}$, T_3 = - $\frac{1}{2}$ и гиперзаряд Y = -1.Электрические заряды дублета равны q = +1/2-1/2 = 0 и q = -1/2-1/2 = -1

Таким образом, изомультиплет характеризуется изоспином и гиперзарядом, а члены мультиплета различаются проекцией изоспина. Такая возможность является следствием инвариантности сильного взаимодействия относительно изо-спиновых преобразований и калибровочных преобразований, приводящих к сохранению зарядов, как электрических, так и гиперзаряда. Математическим аппаратом этой теории является теория симметрии, основанной на теории групп, которая в свое время объяснила периодическую закономерность химических элементов таблицы Менделеева.

Гелл-Манн Мюррей - американский физик-теоретик, родился в 1929 г. в Нью-Йорке, окончил Йельский ун-т (1948) и технологический Массачусетский (1951), работал в Чикагском ун-те и в Калифорнийском технологическом ин-те. Совместно с Фейнманом разработал теорию слабого взаимодействия. Разработал независимо от Ю. Неемана систематику элементарных частиц, объединив их в супермультиплеты, предсказал новую частицу – омега-минус-гиперон и ее свойства (Нобелевская премия, 1965). Автор (независимо от других) кварковой гипотезы, выдвинул гипотезу глюонов.

Математические действия с изоспинами аналогичны математике обычных спинов, которые описываются матрицами Паули. Как известно, из двух частиц со спином 1/2 можно составить состояния со спинами 1 и 0. Также волновые функции изотриплета и изосинглета можно составить через волновые функции изодублета. Отсюда следует важный вывод, что изодублет является элементарным построением, из которого можно сконструировать другие мультиплеты. Эта идея является основой построения составных моделей частиц.

После открытия множества новых частиц, в основном, резонансов, появилось много различных изомультиплетов, и их тоже следовало систематизировать. Начались поиски новых симметрий. Такую симметрию предложили в 1961 г. М. Гелл-Манн и Ю. Неман. Эта симметрия основана на представлении барионных изомультиплетов в зависимости от изоспина и гиперзаряда.

Представим выше рассмотренные изомультиплеты с одинаковым набором массового числа B и спина J^{π} на плоскости (T_3,Y) , где осями являются проекция изоспина и гиперзаряд. На графике рис.8.1 получается правильный шестиугольник, состоящий из 8 частиц. Эта группа частиц называется октет барионов. Все они в сильном взаимодействии проявляют одинаковые свойства, но их масса отличается незначительно. Это различие в массе составляет

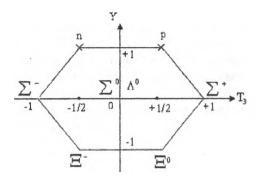


Рис. 8.1. Октет барионов

 $\Delta m \approx m_\pi$ массу пи-мезона, т.е. всего на $\frac{m_\pi}{m_N} \approx \frac{280}{2000} \approx 15\%$. Масса

 Σ -гиперонов больше массы нуклонов на m_π , так же масса Ξ -гиперонов больше массы Σ -гиперонов на эту же величину m_π . Это значит, что они могут распадаться с испусканием пи-мезона: $\Sigma^+ \to p + \pi^0$ и $\Xi^0 \to \Sigma^+ + \pi^-$.

Аналогичная картинка получается также для стабильных мезонов с массовым числом B=0 и спином $J^\eta=0^-$ (мезоны являются псевдоскалярами). Только здесь мезонные семейства включают частицы и античастицы, т.к. квантовые числа B=0 и $J^\eta=0^-$ у них одинаковы, а различаются они только значением изоспина и гиперзаряда.

Эти изомультиплеты с B=0 и $J^{\eta}=0^-$ составлены из следующих мезонов:

- 1. изотриплет $\pi^{\pm,0}$ пи-мезонов с S=0, C=0, Y=0 и T=1;
- 2. изосинглет η^0 этта-мезона с S = 0, C = 0, Y = 0 и T = 0;
- 3. изодублет странных $K^{+,0}$ ка-мезонов с S=1, C=0, Y=1 и T=1/2;
- 4. изодублет странных $\widetilde{K}^{-,0}$ -анти-ка-мезонов с S=-1, C=0, Y=-1 и T=1/2.

На графике (T₃, Y), представленном на рис.8.2, получается опять правильный шестиугольник с 8 мезонами — октет мезонов, которые имеют близкие физические свойства. Такая внешняя симметрия не может быть случайной. Она отражает свойства симметрии сильного взаимодействия. Математический анализ, проведенный Гелл-Манном и Нееманом, подтвердил существование более широкой симметрии, так называемой унитарной симметрии, а сам подход получил название восьмеричным формализмом.

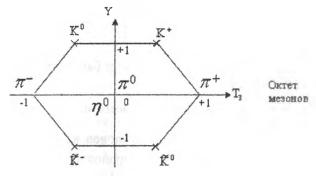


Рис. 8.2 Октет мезонов

В момент создания этой теории унитарной симметрии были известны только 7 мезонов (кроме η^0 -мезона). В соответствии с выводами теории было предсказано существование восьмого мезона с его характеристиками. В 1961 г. предсказанный η^0 -мезон был обнаружен, причем его свойства оказались в хорошем соответствии с предсказаниями теории.

Успехи унитарной симметрии многочисленны. Она установила глубокие связи между частицами с разными массами, изоспинами и гиперзарядами, разместив реально наблюдаемые адроны. Все они заполняют синглеты, октуплеты и декуплеты.

Приведем пример декуплета адронов с B=1, $J^{\eta}=3/2^{+}$. Соответствующая диаграмма изображена на рис.8.3.

В период создания этой теории Ω^- -гиперон не был известен. Вершина треугольника оставалась незаполненной. Гелл-Манн предсказал, что отвечающей ей частица должна иметь спин, равный

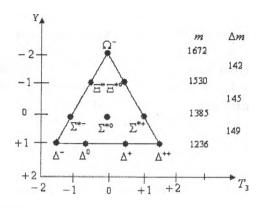


Рис.8.3. Декуплет адронов с B=1, $J^{\eta}=3/2^{+}$.

 $J^{\eta}=3/2^+$, гиперзаряд Y=-2, массу около 1675 МэВ. В 1964 г. В Брукхэвинской лаборатории был зафиксирован процесс рождения и распада Ω^- -гиперона. Ее свойства, в частности, масса в точности совпала с предсказанной теорией. Таким образом, открытие Ω^- -гиперона явилось триумфом теории унитарной симметрии.

За эти открытия, связанные с классификацией элементарных частиц, Гелл-Манн был удостоен Нобелевской премии за 1969 г.

8.2. Адроны как составные частицы. Кварки и их характеристики: аромат и цвет. Проблема пленения кварков

Как было устаноалено, что изомультиплет характеризуется одним "внутренним" квантовым числом — изоспином T, значения которого могут быть полуцелые и целые положительные числа. Размерность изомультиплета, т.е. число частиц в мультиплете, определяется изоспином N(T) = 2T + 1. Не существует никаких ограничений на число частиц в мультиплете. Изодублет является элементарной частью, из которой можно сконструировать все другие мультиплеты.

Но унитарный мультиплет характеризуется двумя "внутренними" квантовыми числами: изоспином T и гиперзарядом Y, которые обозначим через t_1 и t_2 . Размерность унитарного мультиплета T_3 и Y определяется формулой:

$$N(t_1, t_2) = (2t_1 + 1)(2t_2 + 1)(t_1 + t_2 + 1)$$
(8.3)

Согласно унитарной теории симметрии рассмотренные нами мультиплеты имеют размерность $N(1/2,1/2)=2\cdot 2\cdot 2=8$, отсюда и название восьмеричный формализм. Следующий унитарный мультиплет $N(3/2,0)=4\cdot 1\cdot 5/2=10$ имеет 10 частиц (декуплет). Но минимальный унитарный мультиплет N(0,1/2)=N(1/2,0)=3 - триплет в природе не существует, так как имеют гиперзаряд, равный дробному числу $Y=\frac{k}{3}$, где k=1,2, а также они имеют и дробный электрический заряд.

Но унитарные триплеты важны с точки зрения теории, так как, комбинируя их, можно получить все унитарные мультиплеты, которые физически допустимы. На основе их можно построить «минимальную» (составную) модель, в которой все известные частицы можно сконцентрировать из небольшого числа «фундаментальных» частии.

Несмотря на такую физическую нелепость, Гелл-Манн и Цвейг (1964 г.) допустили существование триплета частиц с дробным значением гиперзаряда Y, следовательно, и электрического заряда Q. Члены этого триплета называются кварки.

Этим частицам приписывают дробные квантовые числа, которые приведены ниже в табл. 8.1.

Табл. 8.1

Кварки	Название	J	η_3	В	T	T_3	S	Y	q
q									
u	ир	1/2	+1	1/3	1/2	+1/2	0	1/3	+2/3
d	down	1/2	+1	1/3	1/2	-1/2	0	1/3	-1/3
S	strange	1/2	+1	1/3	0	0	-1	-2/3	-1/3

Эти кварки обозначаются буквой q (не путать с q – электрическим зарядом). Кварки u и d сохранили свое английское название. Странный кварк s имеет квантовое число странность S=1. На рис. 8.4 представлен триплет кварков на плоскости (T_3, Y) .

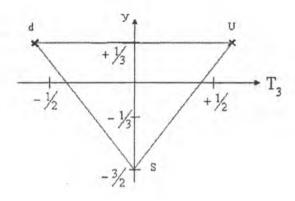


Рис. 8.4. Триплет кварков

Из этих 3 кварков были составлены все известные к тому времени частицы. Мезоны составляются из кварка и антикварка $M=q\overline{q}$, а барионы из 3 кварков B=qqq. Так, например, протон состоит из иид — кварков. Тогда электрический заряд протона будет равен сумме зарядов кварков q=2/3+2/3-1/3=+1, барионный заряд также B=1/3+1/3+1/3=1, но спин состоит из ориентации спина кварков J=+1/2-1/2+1/2=1/2.

А нейтрон состоит из udd - кварков и имеет электрический заряд q = 2/3 - 1/3 - 1/3 = 0, баринный заряд B = 1/3 + 1/3 + 1/3 = 1 и спин J = +1/2 + 1/2 - 1/2 = 1/2.

Барионный октуплет имеет следующий кварковый состав:

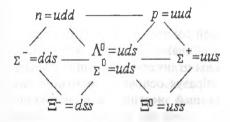


Рис. 8.5. Кварковый состав барионного октета

Пи-мезоны, имеющие раный нулю спин $J^{\eta}=0^-$, состоят из кварка и антикварка с противоположно направленными спинами J=+1/2-1/2=0. Заряженные пи-мезоны состоят из кварков: $\pi^+=\widetilde{d}u$ и $\pi^-=\widetilde{u}d$. Нейтральный пи-мезон имеет отрицательную четность, поэтому описывается антисимметричной комбинацией $\pi^0=\frac{1}{\sqrt{2}}(\widetilde{u}u-\widetilde{d}d)$. На рис.8.6 представлен кварковый состав мезонного октуплета.

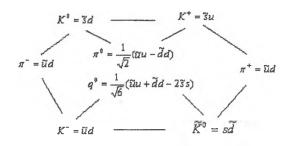


Рис. 8.6. Кварковый состав октета мезонов

Барионный декуплет, состоящий из 10 гиперонов ($\Delta^{\pm 0}$, $\Sigma^{\pm 0}$, $\Xi^{\pm 0}$, Ω^-), имеет спин J = 3/2. Следовательно, спины всех 3-х кварков направлены одинаково. Кварки подчиняются статистике Ферми-Дирака и на них распространяется принцип Паули. Все гипероны, кроме Ω^- -гиперона, состоят из разных кварков.

Но Ω^- -гиперон состоит из 3 странных кварков sss с одинаково направленными спинами. Кварки в этом гипероне, являясь фермионами, должны отличаться дополнительным квантовым числом. Эти 3 кварка, образуя основное состояние гиперона, находятся в состоянии наинизшей энергии, т.е. в состоянии с орбитальным моментом L=0. Поэтому для различения 3 кварков необходимо дополнительное квантовое число, которое принимает 3 значения.

В 1965 году ученые из ОИЯИ (Дубна): Н.Н.Боголюбов, Б.Струминский и А.Н.Тавхелидзе - ввели такое квантовое число,

называемое **цветом**, которое принимает 3 значения: R(red), G(green), B(blue). Разумеется, это квантовое число к оптическому цвету никакого отношения не имеет. Но им приписывают известные из оптики свойства: смесь 3 основных цветов дает белый цвет. Антикваркам приписывают антицвета \widetilde{R} , \widetilde{G} , \widetilde{B} . Смесь цвета и антицвета дает белый цвет, так же как в оптике смесь основного цвета и дополнительного цвета дает белый цвет. При построении адронов из кварков соблюдаются следующие правила:

- а) барионы состоят из 3 кварков с разными цветами и, следовательно, барионы имеют белый цвет;
- б) мезоны состоят из кварка и антикварка, имеющие цвет и дополнительный ему цвет так, что в итоге мезон тоже белого цвета;
- в) все реально наблюдаемые адроны имеют белый цвет, а кварки, обладающие цветом, в свободном виде не наблюдаются;
- г) все известные к 1974 г. адроны можно было описать с помощью кварков всего лишь трех типов u, d, s, при этом каждой комбинации кварков соответствовала экспериментально наблюдаемая частица.

1974 год завершился для физиков сенсацией. Одновременно две группы физиков объявили о наблюдении новой частицы. Теперь ее называют У . Масса обнаруженной частицы ~3.1 ГэВ. Причиной сенсации было необычайно большое время жизни 1/4. Оказалось, что ее время жизни почти в 1000 раз больше, чем у известных частиц такой массы. Дальнейшие исследования показали, что причиной такого долгожития является то, что в ее состав входит новый неизвестный ранее с-кварк, названный очарованным кварком. Было высказано предположение, что J/ψ - это мезон, состоящий из cкварка и с-антикварка. Так же как с s-кварком связано квантовое число s - странность, c-кварк несет новое квантовое число c, названное "очарованием". Очарованный кварк должен порождать новое семейство адронов, имеющих в своем составе с-кварк или сантикварк. Все эти частицы тяжелые, т.к. масса очарованного кварка больше массы странного кварка. Итак, кварков стало 4, но на этом открытие новых кварков не завершилось.

В 1977 году были открыты нейтральные мезоны с массами около 10 ГэВ. Они получили название Υ -ипсилон-мезонов. Так же как и $^{1/\Psi}$ -мезоны они наблюдались в реакции образования мюонных пар

в протон-ядерных столкновениях и на электронно-позитронных коллайдерах и также как J/ψ -мезоны они долго живущие (ширина распада Υ -мезона 53 кэВ). Это означало открытие 5-го кварка b (beauty-красивый). В состав Υ -мезона входят b-кварк и b-антикварк. В 1995 году был открыт шестой, самый "тяжелый" кварк -t-кварк (truth- ucmunhый).

Таким образом, на современном этапе развития наших представлений о структуре материи система кварков включает уже 6 сортов (ароматов). Идея кварков оказалась весьма плодотворной. Она позволила не только систематизировать уже известные частицы, но и предсказать ряд новых частиц, а так же объяснить многие свойства частиц и связать между собой различные процессы (см. табл. 3 Приложения).

В свободном виде кварки не обнаружены. Но эксперименты указывает на реальное существование кварков внутри адронов. Например, опыты Хофштадтера по рассеянию быстрых электронов установили внутреннюю структуру ядер и нуклонов (аналог опытов Резерфорда). Характер рассеяния свидетельствует о наличии внутри протона точечных рассеивающих центров с зарядами $\frac{2}{2}$ е и $\frac{1}{2}$ Итак, кварков, истинно элементарных частиц, имеется всего 6 и столько же лептонов $e, v_e, \mu, v_{\mu}, \tau, v_{\tau}$, которые являются также истинно элементарными частицами. Теория указывает, что число лептонов и кварков должно совпадать, т.к. между ними существует глубокая внутренняя симметрия. Их подразделяют на 3 поколения. В каждом поколении имеются верхние и нижние частицы (см. Приложение, табл.4). Массивные элементарные частицы - адроны, образованные из кварков второго и третьего поколений, отличаются коротким временем жизни, поэтому они уже не встречаются в природе, хотя могли рождаться в момент Большого взрыва и обра-Вселенной. Они были получены на ускорителях при столкновении частиц сверхвысоких энергий. В настоящее время нас окружают частицы, состоящие только из кварков и лептонов первого поколения. Материальное вещество, в конечном счете, состоит из u- и d-кварков и электронов. А из космоса нас постоянно пронизывает поток нейтрино V_e .

8.3*. Ускорители заряженных частиц

Современное достижение физики элементарных частиц обязано в первую очередь конструированию таких мощных сооружений, как синхрофазотроны и коллайдеры. Первые успехи ядерной физики были достигнуты благодаря созданию семейства ускорителей: каскадного генератора Дж. Кокрофтом и Э.Уолтоном, электростатического генератора Р. Ван-де-Граафом, циклотрона Э. Лоуренсом.

Для исследования ядра необходимо иметь пучки ускоренных частиц, длина волны которых порядка размеров ядра. А это достигается для протонов при энергиях, превышающих десятки $M \ni B$. В ускорителях частица с зарядом q = Ze ускоряется электрическим полем с напряжением U и приобретает энергию E = qU. В генераторе Ван-де-Граафа создается такое высокое электростатическое напряжение. А в остальных ускорителях используется механизм многократного действия, когда частица разгоняется переменными электрическими полями.

В циклических ускорителях это достигается с помощью магнитного поля, которое закручивает траекторию частицы, и она снова проходит через ускоряющее электрическое поле. Когда частица с массой m, зарядом q и скоростью v влетает в поперечное магнитное поле v, то она будет двигаться по окружности v с радиусом

$$R = mv/qB. (8.4)$$

При этом радиус окружности увеличивается с ростом скорости частицы. А период обращения

$$T_{II} = 2\pi m / qB \tag{8.5}$$

остается постоянным, а также постоянна частота обращения частицы по круговой орбите

$$\omega = 2\pi / T_{II} = qB/m \tag{8.6}$$

Для того, чтобы частица непрерывно ускорялась, необходимо, чтобы она попадала в ускоряющий промежуток между дуантами в тот момент, когда электрическое поле изменит свою полярность, т.е. частота изменения полярности ускоряющего электрического поля должна совпадать с частотой циклотрона.

Лоуренс Эрнест Орландо (1901-1958) — американский физик, учился в Миннесотском, Чикагском и Йельском ун-тах. Работал в Калифорнийском ун-те в Беркли, с 1936 — директор Радиационной лаб-рии (ныне им. Лоуренса). В 1931 построил ускоритель — циклотрон, с помощью которого исследовал структуру атома, получил ряд радиоизотопов, которые использовал для лечения опухолей, щитовидной железы (Нобелевская премия, 1939). Инициатор использования ускоренных частиц в медицине — терапии злокачественных опухолей потоками частиц.

При ускорении частицы до более высоких энергий проявляется релятивистский эффект зависимости массы частицы от скорости и нарушается условие синхронизации (8.6). Можно восстановить синхронизацию, изменяя частоту электрического поля $\omega = \omega(t)$ при постоянном магнитном поле B = const, что осуществляется в фазотроне, или как в синхротроне переменным магнитным полем B = B(t) при постоянной частоте $\omega = const$, а в синхрофазотроне используется одновременно переменная частота электрического поля $\omega = \omega(t)$ и переменное во времени магнитное поле B = B(t).

Такая синхронизация изменение магнитного поля или частоты с энергией разгоняемой частицы стала возможна благодаря открытию В. Векслером (Дубна) и независимо от него Э. Макмиллан в 1944-45 годах принципа автофазировки, позволяющий достигать релятивистских энергий ускоренных частиц. Открытие принципа автофазировки привело к появлению новых типов ускорителей фазотронов, синхротронов, синхрофазотронов. Разработка метода сильной фокусировки позволила получать уникальные по своим параметрам пучки (с малыми поперечными размерами, высокой интенсивностью, большими энергиями)

За счет изменения магнитного поля удается обеспечить постоянство радиуса равновесной орбиты. Это позволяет изготавливать ускорительную камеру в форме кольца, что значительно уменьшает вес магнитов и тем самым резко удешевляет конструкцию.

Для того, чтобы избежать потерь энергии ускоренных частиц на движение центра инерции, строят ускорители на встречных пучках — коллайдеры. Можно говорить об ускорителе с неподвижной мишенью, эквивалентном коллайдеру. Если кинетическая энергия каждой из сталкивающихся частиц с одинаковыми массами m равна T_k , то кинетическая энергия T_3 частицы в эквивалентном ускорителе с неподвижной мишенью определяется выражением

$$T_{9} = \frac{2}{mc^{2}} (T_{k}^{2} + 2T_{k}mc^{2}). \tag{8.7}$$

Первые ускорители высоких энергий были построены в Дубне (ОИЯИ), вблизи Женевы (CERN) и Брукхейвене (BNL). Приведем самые мощные ускорители России:

- В 1967 г. в Новосибирске в ИЯФ СО РАН был построен ускоритель на встречных электронных пучках, который в 1979 г. переконструирован на встречные электрон-позитронные пучки с энергией 5.5×5.5 ГэВ, что эквивалентно ускорителю с неподвижной мишенью в $1.2\cdot10^5$ ГэВ. В будущем планируется довести энергию до 1000×1000 ГэВ ($E_3=4\cdot10^9$ ГэВ).
- В 1967 г. ускоритель протонов ОИЯИ (Дубна) с Е = 10 ГэВ.
- В 1967 г. в Серпухове ускоритель протонов с энергией 76 ГэВ был в свое время самым мощным ускорителем в мире. Планируется довести его энергию до 3000 ГэВ с диаметром тоннеля 6000 м и сверхпроводящим электромагнитом.

В настоящее время самый мощный ускоритель протонов на 1000×1000 ГэВ действует в США (г. Батавия, 1987), запущен в 1972 г. на энергию 500 ГэВ.

А в Европе самый мощный ускоритель построен в 1976 г. в ЦЕРН (Женева) с энергией 500 ГэВ.

Крупнейшие современные центры, предназначенные для исследования физики элементарных частиц, представляют собой многоцелевые комплексы из нескольких ускорителей, связанных между собой. Примером такого ускорительного комплекса является ЦЕРН (Женева). Схема комплекса приведена на рис. 8.7.

Самым крупным ускорителем этого комплекса является Большой Адронный Коллайдер LHC (Large Hadron Collider), на котором будут сталкиваться пучки ускоренных до энергии 7 ТэВ

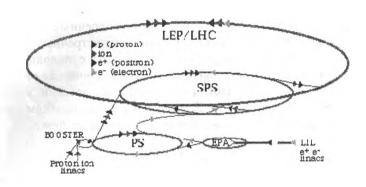


Рис. 8.7 Ускорительный комплекс ЦЕРН (Женева)

протонов, а также ядра свинца. Этот ускоритель сооружается в подземном кольцевом туннеле (его периметр 26.7 км) на месте другого недавно действовавшего крупнейшего e^+e^- - коллайдера. LEP - Large Electron Positron (Collider), ускорявшего электроны и позитроны до энергии 101 ГэВ.

Для инжекции протонов и ионов в LHC будет использоваться ускоритель SPS (Super Proton Synchrotron), на выходе которого протоны имеют энергию около 450 ГэВ. Его периметр 6.9 км и он расположен под землей на глубине 50 м. В SPS тяжелые частицы поступают от протонного синхротрона PS, в который в свою очередь протоны и ионы попадают из бустера (ускорителя-инжектора).

Вопросы для закрепления знаний

- 1. Вычислите гиперзаряд нуклона и пи-мезонов и проверьте для них соотношение Гелл-Мана-Нишиджимы.
- **2.** Из каких членов состоит барионный октет с J=1/2, B=1,C=0, b=0, t=0?
- **3.** Из каких членов состоит октет мезонов с J=0, B=0, c=0, b=0, t=0?
- **4.** Из каких членов состоит декуплет барионов с J=3/2, B=1, c=0, b=0, t=0?
- 5. Какова кварковая структура протона, нейтрона, π^+ и π^- мезонов?

- **6.** Показать, что соотношение Гелл-Мана-Нишиджимы справедливо для кварков.
- 7. Барионы состоят из 3 кварков. Некоторые барионы имеют одинаковую кварковую структуру. В основном, они относятся к резонансам. Объясните, чем же они различаются.
- 8. Показать, что существуют следующие возможности получить бесцветные состояния при смешивании цветов кварков и антикварков: RGB, $R\overline{GB}$, $R\overline{R}$, $G\overline{G}$, $B\overline{B}$ и что эти комбинации отвечают соответственно барионам, антибарионам и мезонам.
- 9. Объяснить, почему всего 8 глюонов, несмотря на то, что можно построить 9 комбинаций из цвета и антицвета глюонов?
- 10. Какие глюоны ответственны за взаимодействие зеленого и синего кварков?
- 11. Согласно современным представлениям бесструктурные частицы относят к фундаментальным частицам. Перечислите эти фундаментальные частицы.
- **12.** В чем заключается принцип автофазировки, позволяющий достигать релятивистских энергий ускоренных частиц?
- 13. В чем преимущества колайдеров на встречных пучках?

Примеры решения задач

Задача 8.1. Следующие 8 легчайших барионов с J=1/2, B=1, C=0, b=0, t=0:

N - нуклон с T=1/2 и S=0,

 Λ^{0} - лямда-гиперон с T=0, S=-1,

 $\Sigma^{\pm,0}$ - сигма-гипероны с T=1, S=-1,

 $\Xi^{-,0}$ - кси-гипероны с T=1/2, S=-2

составляют октет барионов. Вычислите для этого октета гиперзаряд и расположите все его члены на плоскости (T_3,Y) - проекции изоспина и гиперзаряда.

Задача 8.2. Найти энергию, приобретаемую протонами в электростатическом генераторе Ван-де-Граафа, если известно, что расстояние между центром заряжаемой сферы, диаметр которой d=2 м, и основанием генератора составляет L=10 м, а критическая напряженность электрического поля у поверхности сферы

 $E_{\rm kp}=8~{\rm MB/m}$. Частицы ускоряются в вертикальной разрядной трубке в пространстве между сферой и основанием генератора. Для простоты считать, что сфера заряжена равномерно, а основание является проводящей плоскостью.

Решение. Энергия, приобретаемая протонами, равна работе по разгону заряда *в* электрическим полем

$$W = e \int_{d/2}^{L} E(r) dr$$
 (1).

Напряженность электрического поля вне шара $r \ge d/2$ определяется выражением $E(r) = kq_{\text{шар}}/r^2$. Заряд шара найдем из условия

$$E_{\rm kp} = {\rm kq}_{\rm шар} / ({\rm d}/2)^2$$
 и подставим в (1)
$$W = {\rm eE}_{\rm kp} ({\rm d}/2)^2 \int_{{\rm d}/2}^L {\rm dr/r}^2 = {\rm eE}_{\rm kp} {\rm d}(2{\rm L} - {\rm d})/4{\rm L} = 7.2~{\it M}{\rm p}{\it B}$$

Как видим, максимальная энергия частиц в генераторе Ван-де-Граафа ограничена напряжением пробоя между шаром и окружающей средой.

Задача 8.3. Определить частоту f, приложенную к дуантам разности потенциалов в циклотроне для протонов, дейтронов и α -частиц. Магнитная индукция поля B = 1,26 Тл.

Решение: На заряженную частицу в циклотроне действует сила Лоренца $\mathbf{F}_{\Pi} = \operatorname{qvB} \sin \alpha$, где q - заряд частицы, B - индукция магнитного поля. Под действием этой силы, которая направлена под углом $\alpha = \pi/2$, частица движется по окружности радиуса R. Тогда сила Лоренца

$$\mathbf{F}_{\mathbf{J}\mathbf{I}} = \mathbf{q}\mathbf{v}\mathbf{B} \tag{1}.$$

Она является центростремительной силой и сообщает частице центростремительное ускорение $a_{uc}=v^2 \, / \, R$. По закону Ньютона

$$F_{II} = ma_{IIC} = mv^2 / R \tag{2}.$$

Приравнивая правые части уравнений (1) и (2), получим

$$qvB = mv^2 / R$$
,
 $R = mv/qB$

откуда имеем

- радиус окружности циклотрона увеличивается с ростом скорости вращения частицы. Период обращения циклотрона

$$T_{u} = L/v$$
,

где $L = 2\pi R = 2\pi m v / qB$ - длина окружности циклотрона. Тогда период обращения $T_{ii} = 2\pi m / qB$ и частота обращения частицы по круговой траектории

$$f = 1/T_{tt} = qB/2\pi m.$$

Подставляя числовые данные, получим $f_p = 19,2 \text{ M}\Gamma_{\text{Ц}}$, $f_d = 9.6 \text{ M}\Gamma \text{U}$, $f_\alpha = 9.6 \text{ M}\Gamma \text{U}$.

Задача 8.4. Ионный ток в циклотроне при работе с а - частицами I = 15 мкА. Во сколько раз такой циклотрон продуктивнее массы m = 1 z радия ²²⁶ Ra с периодом полураспада $T_{1/2} = 1600$ лет. Решение: По определению ионный ток в циклотроне

$$I = qn \tag{1}$$

где n - число ускоренных частиц, испускаемых циклотроном в а q = $3,2\cdot 10^{-19}$ Kn - заряд α - частицы. Активность излучения α - частиц радием равна

> $A = \lambda N$ (2)

где

$$N = mN_A / \mu \tag{3}$$

- число делящихся ядер радия, $\mu = 226\ \ensuremath{_{\textit{Z}}}\slash\,$ моль- молярная масса радия, $N_A = 6.02 \cdot 10^{23}$ моль⁻¹-число Авогадро. Постоянная распада равна

$$\lambda = \ln 2 / T_{1/2} \tag{4}$$

Подставляя (3) и (4) в (2), получим

$$A = mN_A \ln 2/\mu T_{1/2}$$
 (5)

Из формулы (1) имеем

$$n = I/q \tag{6}$$

Разделив (6) на (5), находим

$$\frac{n}{A} = \frac{IT_{1/2}\mu}{mqN_{\Delta} \ln 2} = 1270$$
.

Задача 8.5. В фазотроне увеличение массы частицы при возрастании ее скорости компенсируется уменьшением частоты ускоряющего поля, а магнитная индукция фазотрона остается не изменой. Найти конечную частоту ускоряющего поля для ускорения протонов до энергии W=300~MэB, если начальная частота f_0 =25 МГц и магнитная индукция $B=1,62~T\pi$.

Решение: Центростремительной силой в циклотроне является сила Лоренца

$$mv^2/R = qvB$$
.

Отсюда магнитная индукция поля циклотрона равна

$$B = 2\pi mf/q \tag{1}$$

Так как магнитная индукция в начале и конце ускорения остается постоянной, то

$$B = 2\pi m_0 f_0 / q = 2\pi m f / q,$$

$$m_0 f_0 = mf$$
(2)

откуда имеем

Конечная частота равна

$$f = (m_0 c^2 / mc^2) f_0$$
 (3).

Масса покоя протона $m_0c^2=938,27~M_{\rm P}B$, кинетическая энергия ускоренного протона $W=mc^2-m_0c^2$. Следовательно, конечная

частота равна

$$f = \frac{m_0 c^2}{m_0 c^2 + W} f_0 = 18,9 \text{ MFu}.$$

Задача 8.6. Крупнейшим построенным протон-антипротонным коллайдером является TEVATRON (Лаборатория им. Ферми, США). Энергия каждого из его пучков 1000 ГэВ (1 ТэВ). Определить энергию пучка протонов эквивалентного ускорителя с неподвижной мишенью.

Решение: Выпишем реакцию рождения протон-антипротон в реакции столкновения встречных пучков протонов

$$p_1 + p_2 \rightarrow p'_1 + p'_2 + p'_3 + \widetilde{p}'_4$$
 (1)

и закон сохранения энергии этой реакции

$$E_1 + E_2 = E_1' + E_2' + E_3' + E_4'$$

В релятивистском случае кинетическая энергия частицы связана с полной энергией следующим образом $T = E - mc^2$. Определим энергию реакции O:

$$Q = \sum_{i}^{2} m_{i} c^{2} - \sum_{i}^{4} m'_{i} c^{2} = \sum_{i}^{4} T'_{i} - \sum_{i}^{2} T_{i} < 0$$
 (2)

Очевидно, реакция идет с поглощением энергии и происходит при энергиях выше пороговой

$$E_{\text{nop}} = (T_1 + T_2)_{\text{min}} = (T_1' + T_2' + T_3' + T_4')_{\text{min}} - Q$$
 (3)

Величина порога зависит от системы координат. Она минимальна в системе центра инерции (СЦИ), где

$$E_{\text{nop}}(CLU) = -Q = |Q| \tag{4}$$

Действительно, в СЦИ центр инерции покоится и сумма импульсов частиц (как до, так и после реакции) равна нулю

$$\vec{p}_1 + \vec{p}_2 = \vec{p}_1' + \vec{p}_2' + \vec{p}_3' + \vec{p}_4' = 0$$

Это выполняется и в частном случае, когда $T_1' + T_2' + T_3' + T_4' = 0$, т.е. когда $T_1' = T_2' = T_3' = T_4' = 0$. Когда образовавшиеся частицы покоятся друг относительно друга, порог минимален.

Получим пороговую энергию в лабораторной системе координат (ЛСК). В ЛСК в реакции (1) частица 1 движется, а частица 2 покоится. Запишем законы сохранения импульса и энергии

$$\vec{p}_1 = \vec{p}_1' + \vec{p}_2' + \vec{p}_3' + \vec{p}_4'$$

$$E_1 = E_1' + E_2' + E_3' + E_4'$$
(5)

где полные энергии E, связаны с соответствующими импульсами релятивистскими соотношениями E^2 - p^2c^2 = m^2c^4 .

В теории относительности величина

$$\left(\sum_{i} E_{i}\right)^{2} - \left(\sum_{i} \bar{p}_{i}\right)^{2} c^{2} = \text{inv}$$
 (6)

т. е. одинакова во всех инерциальных системах координат. Теперь воспользуемся тем, что «на пороге» все частицы в конечном состоянии в СЦИ покоятся относительно друг друга, и вычислим инвариант в начальном состоянии в лабораторной системе, а в конечном состоянии - в системе центра инерции. В результате получим

$$(E_1 + m_2 c^2)^2 - \vec{p}_1^2 c^2 = \left(\sum_{i}^4 m_i'\right)^2 c^4$$
 (7)

Теперь выразим импульс первой частицы через ее полную энергию

$$\bar{p}_1^2 c^2 = E_1^2 - m_1^2 c^4 \tag{8}$$

и перейдем от полной энергии к кинетической

$$E_1 = m_1 c^2 + T_1 (9)$$

Подставим (9) в (8) и (7) и учтем, что вошедшая в левую часть соотношения (7) величина отвечает порогу в ЛСК, т. е. она является минимально возможной кинетической энергией в этой системе (T_1)_{min}, а значит это пороговая энергия E_{nop} в ЛСК. Нетрудно получить окончательную формулу для пороговой кинетической энергии налетающей частицы в ЛСК:

$$E_{\text{nop}}(\text{ЛСК}) = (T_1)_{\text{min}} = \frac{(\sum_{i=1}^{4} m_i')^2 c^4 - (\sum_{i=1}^{2} m_i)^2 c^4}{2m_2 c^2}$$
(10)

С учетом (2) выражение (10) можно представить в виде

$$E_{\text{nop}}(\text{ЛСK}) = |Q| \left(1 + \frac{m_1}{m_2} + \frac{|Q|}{2m_2c^2}\right)$$
 (11)

Из (4) имеем минимальную кинетическую энергию протонов ускорителя на встречных пучках

$$E_{\text{пор}}(CЦИ) = T_k = |Q|, \tag{12}$$

и на основании (11) обозначим эквивалентную энергию протонов ускорителя с неподвижной мишенью

$$E_{\text{nop}}(\text{JCK}) = T_{9} \tag{13}$$

получим связь между ними при $m_1 = m_2$

$$T_{9} = \frac{2}{mc^{2}} (T_{k}^{2} + 2T_{k}mc^{2})$$
 (14)

Подставляя в (14) числовые данные: $mc^2 = 938,27 \text{ MэB} \approx 10^3 \text{ МэВ}$, а кинетическая энергия ускоренных протонов коллайдером $T_k = 10^6 \text{ МэВ}$, получим

$$T_{s} = 2 \cdot 10^{-3} (10^{12} + 2 \cdot 10^{6} \cdot 10^{3}) \approx 6 \cdot 10^{9} \text{ M}_{9}\text{B}.$$

Следовательно, энергия протонов в 1 ТэВ коллайдера эквивалентна энергии 6000 ТэВ ускорителя с неподвижной мишенью.

Задание для самостоятельной работы

Задача 8.7. Следующие 8 стабильных мезонов с J=0, B=0, c=0, b=0, t=0:

 $\pi^{\pm,0}$ - пи-мезоны с T=1, S=0,

 η^0 - эта-мезон с T=0, S=0,

 $K^{+,0}$ - странные ка-мезоны с T=1/2, S=1,

 $\bar{K}^{+,0}$ - странные анти-ка мезоны с T=1/2, S=-1

составляют октет мезонов. Вычислите для них гиперзаряд и расположите их на плоскости с осями координат (T_3, Y) - проекции изоспина и гиперзаряда.

Задача 8.8. Рассмотреть взаимодействие зеленого и красного кварков. Определить цветовые характеристики глюонов, ответственные за это взаимодействие.

Задача 8.9. Максимальный радиус траектории частиц в циклотроне $R=35\,cm$, а частота приложенной к дуантам разности потенциалов $f=13.8\,$ МГц. Найти магнитную индукцию B поля, необходимую для синхронной работы циклотрона, и максимальную энергию W вылетающих протонов.

Ответ: $B = 0.9 \text{ Tл}, W = 4.8 \text{ M}_{9}B.$

Задача 8.10. Протоны ускоряются в фазотроне до энергии $W = 660~M_{\rm 9}B$. Во сколько раз необходимо увеличить период ускоряющего поля фазотрона для того, чтобы скомпенсировать увеличение массы?

OTBET: $T/T_0 = 1.7$

Задача 8.11. Крупнейшим электрон-позитронным коллайдером является LEP (CERN, Швейцария). Энергия каждого из его пучков достигает 100 ГэВ. Определить энергию пучка электронов эквивалентного ускорителя с неподвижной мишенью.

Ответ: $T_9 = 4.10^7 \Gamma 3B = 4.10^4 T 3B = 40 \Pi 3B$.

Глава 9. Великое объединение. Современное представление о структуре материи

9.1 Обменный характер фундаментальных взаимодействий

Во все времена мыслители стремились свести многообразие природы к минимальному числу фундаментальных концепций. Уже в древности поднимался вопрос о составных элементах материи, и теперь этот вопрос актуален. Существование в физике нескольких фундаментальных взаимодействий: электромагнитного, слабого, сильного и гравитационного — вызывает желание их упорядочить, объединить и построить единую теорию.

Как известно, еще исследования Фарадея и Максвелла выявили, что два разных явления: электрические и магнитные — родственны, и они были объединены одним понятием электромагнитного поля в единую теорию - электродинамику. В дальнейшем А. Эйнштейн, построив теорию гравитации, известную под названием общей теории относительности, в течение второй половины жизни пытался объединить гравитационное и электромагнитное поля, построить единую теорию этих полей, но безрезультатно. Также В. Гейзенберг посвятил свои два последних десятилетия построению единой теории материи, и безуспешно.

И только в 1967г. удалось несколько продвинуться в этом направлении — построить единую теорию электрослабого взаимодействия, объединив теории электромагнитного и слабого взаимодействий. Это стало возможным после построения квантовой электродинамики и выяснения общего механизма фундаментальных взаимодействий, что все они имеют обменный характер. Эти исследования продолжаются дальше, в направлении объединения всех взаимодействий, включая сильное взаимодействие и даже гравитационное. Это направление исследований получило название Великого объединения и Суперобъединение. Прежде чем познакомиться с этими работами необходимо знакомство с современным состоянием теории электромагнетизма — с квантовой электродинамикой.

9.2 Квантовая электродинамика. Диаграммы Фейнмана

Квантовая теория электромагнитных взаимодействий, называемая квантовой электродинамикой, была создана работами С. Томонага, Р. Фейнмана и Ю. Швингера, за что они удостоены Нобелевской премии за 1965 г.

Электромагнитное взаимодействие между электрически заряженными частицами осуществляется через электромагнитное поле этих частиц. С квантовой точки зрения электромагнитное взаимодействие осуществляется отдельными элементарными актами, состоящими из акта испускания и поглощения фотонов, т.е. обмена фотонами между заряженными частицами. Эти элементарные акты удобно представить графически диаграммами Фейнмана, которые символически представлены на рис.9.1. Сплошными линиями представлены фермионы: электроны и позитроны. Для различения частиц от античастиц указана ось времени: вдоль оси времени движутся частицы, противоположно античастицы. Бозоны, в частности фотоны, представлены волнистой линией. Так как фотон и антифотон совпадают, то волнистые линии не снабжаются стрелками направления распространения. Эти элементарные акты-процессы, имеющие только одну точку-вершину, в реальности не могут протекать, так как запрещены законами сохранения энергии и импульca.

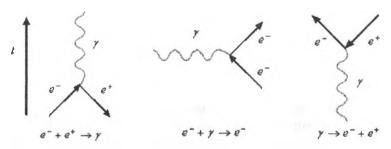
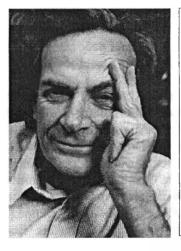



Рис. 9.1. Элементарные акты-процессы

Для доказательства этого положения рассмотрим конкретный процесс рождения пары электрона и позитрона из одного фотона:

$$\gamma = e^- + e^+$$

Фейман Ричард Филипс - американский физик-теоретик, родился в 1918 г. в Нью-Йорке, окончил Массачусетсский технологический ин-т (1939), работал в Принстонском, Корнеллском, Колифорнийском унтах, в 1943-45 - в Лос-Аламосской лаб-рии. В 1948 независимо от Ю. Швингера и С. Томанаги построил современную квантовую электродинамику (Нобелевская премия, 1965). Разработал способ объяснения возможных превращений частиц - диаграммы Фейнмана. Вместе с Гелл-Маном создал количественную теорию слабых взаимодействий. Предложил партонную модель нуклона.

Выпишем законы сохранения энергии:

$$hv = 2 \frac{m_e c^2}{\sqrt{1 - v^2/c^2}}$$
 (9.1)

и импульса

 $P_{\gamma} = P_{e} \cos \alpha + P_{e^{-}} \cos \alpha$ $\frac{hv}{c} = 2 \frac{mv \cos \alpha}{\sqrt{1 - v^{2}/c^{2}}}.$ (9.2)

или

Разделив (9.1) на (9.2), получим

$$c = \frac{c^2}{v \cos \alpha}$$
, или $c = v \cos \alpha$,

что невозможно, так как c > v. Элементарные процессы являются виртуальными процессами — они входят в качестве составных элементов во все реальные электромагнитные процессы. В реальности могут осуществляться процессы, состоящие из двух и более элементарных актов, так называемые процессы второго и выше порядков. На рис. 9.2 представлены реальные процессы второго порядка: рассеяние электрона на электроне, рассеяние фотона на электроне, аннигиляция электрона и позитрона с образованием двух фотонов и образование пары электрона и позитрона из двух фотонов. Из первого процесса явно следует, что электромагнитное

взаимодействие имеет обменный характер - рассеяние электрона на электроне происходит за счет обмена фотоном между электронами.

Диаграммы второго порядка имеют уже две вершины, в которых сходятся линии. Эти вершины соответствуют взаимодействию частиц. Линии, один из концов которых свободный, соответствуют свободным частицам. Линии, соединяющие две вершины, соответствуют виртуальным частицам. Взаимодействие двух частиц происходит через обмен виртуальным фотоном, для которого

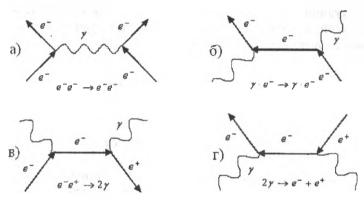


Рис. 9.2. Диаграммы Феймана для реальных процессов: а - рассеяние электрона на электроне, б - рассеяние фотона на электроне, в - аннигиляция электрона и позитрона с образованием двух фотонов и г - образование пары электрона и позитрона из двух фотонов.

может нарушаться закон сохранения энергии на величину ΔE на время $\Delta t \leq \hbar / \Delta E$, определяемое через соотношение неопределенностей $\Delta E \Delta t \leq \hbar$. За это время виртуальная частица может удалиться на расстояние

$$R = c \cdot \Delta t = \frac{\hbar}{mc},\tag{9.3}$$

которое определяет радиус действия взаимодействия. Таким образом, радиус действия взаимодействия тем больше, чем меньше мас-

са виртуальной частицы. Для фотона с нулевой массой $m_{\gamma}=0$ имеем бесконечный радиус действия электромагнитных взаимодействий $R_{\text{эл. M}}\approx\infty$.

Из элементарных графов можно построить более сложные диаграммы Фейнмана. Из множества диаграмм рассмотрим лишь следующие. На рис.9.3 приведена диаграмма, соответствующая флуктуациям вакуума, в котором постоянно происходят виртуальные процессы рождения электрон-позитронной пары и ее аннигиляция. Эти флуктуации указывают на то, что физический вакуум не является пустотой, а в ней происходят виртуальные процессы, которые обуславливают поляризацию вакуума.

Рис. 9.3. Поляризация вакуума

На рис 9.4. представлена диаграмма, соответствующая распространению электрона, который испускает виртуальный фотон, из фотона рождается электрон-позитронная пара, затем происходит ее аннигиляция с рождением фотона, который поглощается электроном. Такие виртуальные процессы одевают «голый» электрон в «шубу».

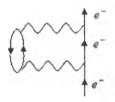


Рис. 9.4. Одевание электрона в «шубу»

Эти виртуальные процессы определяют размер области локализации электрона. Действительно, задавая неопределенность энергии электрона порядка его энергии покоя $\Delta E \approx mc^2$, имеем неопреде-

ленность в импульсе порядка $\Delta p \approx \Delta E/c \approx mc$. Из соотношения неопределенность покализации электрона $\Delta r \approx \hbar/\Delta p \approx \hbar/mc$, а это есть комптоновская длина волны электрона

$$\lambda_{\rm e} = \frac{\hbar}{\rm m_{\rm e}c}.\tag{9.4}$$

Т.е. электрон не может быть локализован с точностью, превышающей комптоновской длины волны, в пределах которого электрон, испуская и поглощая фотон, «дрожит», перескакивая из одной точки в пространстве в другую.

Диаграммы Фейнмана не только наглядно представляют возможный процесс, но и позволяет рассчитать вероятность любого процесса в рамках квантовой электродинамики. В квантовой электродинамике исходят из гамильтониана системы электронов, которые взаимодействуют через электромагнитное поле

$$\hat{H} = \hat{H}_0 + \hat{H}_{B3}, \tag{9.5}$$

где \hat{H}_0 - гамильтониан свободных электронов и фотонов, $\hat{H}_{\text{вз}} = e \left\langle \psi^+ \Gamma_\mu \psi \right\rangle \hat{A}_\mu$ - взаимодействие 4-мерного тока $\hat{j}_\mu = e \left\langle \psi^+ \Gamma_\mu \psi \right\rangle$ с электромагнитным полем $A^\mu = \left(\mathrm{ic} \phi, \bar{A} \right)$. Каждой вершине диаграммы соответствует оператор взаимодействия. Например, процесс поглощения и излучения фотона электроном, показанный на рис.9.1, описывается оператором взаимодействия

$$\hat{H}_{_{B3}}=e\Big\langle \psi^{+}\Gamma_{\!\mu}\psi\Big\rangle \hat{A}_{\mu}\,, \label{eq:HB3}$$

где оператор \hat{A}_{μ} рождает (поглощает) фотон, оператор ψ уничтожает электрон в начальном состоянии, ψ^+ - рождает электрон в конечном состоянии, оператор Γ_{μ} - спинорная матрица, действующая на спиновые переменные, а множитель е- электрический заряд рассматривают как интенсивность взаимодействия. Так как последняя мала (точнее безразмерный параметр $\alpha=e^2/\hbar c=1/137$ - постоянная тонкой структуры), то гамильтониан взаимодействия $\hat{H}_{\rm B3}$ рассматривают как возмущение, т.е. можно воспользоваться теорией возмущения, и решение задачи значительно упрощается.

Для релятивистского электрона уравнение Шредингера заменяется уравнением Дирака

$$i\gamma_{\mu} \frac{\partial \Psi}{\partial x_{\mu}} - \kappa \Psi = 0, \qquad (9.6)$$

где γ_{μ} - 4-мерная матрица Дирака, параметр $\kappa = mc/\hbar$ связан с массой частицы.

В микромире не возможно проследить за распространением отдельной частицы, большей частью определяют вероятность определенного процесса. В качестве примера рассмотрим сечение комптоновского рассеяние фотона на электроне, представленное на рис.9.2.б. Сечение рассеяния определяется квадратом матричного элемента оператора возмущения $\hat{H}_{\rm B3}$. Впервые расчет сечения комптоновского рассеяния фотона на электроне провели О. Клей и У. Нишина (1929 г.) и И. Е. Тамм (1930 г.). Здесь не приводим полученное ими громоздкое выражение, а только оценим значение сечения. Сечение рассеяния на электроне пропорционально квадрату его размера. Характерным размером электрона может служить комптоновская длина волны электрона λ_{ϵ} . Рассматриваемая диаграмма имеет две вершины, каждая вершина дает вклад, пропорциональный интенсивности взаимодействия α . В итоге получаем оценочное значение сечения рассеяния фотона на электроне:

$$\sigma_{\rm c} \approx \alpha^2 \lambda^2_{\rm e} = \left(\frac{{\rm e}^2}{\hbar {\rm c}}\right)^2 \left(\frac{\hbar}{{\rm mc}}\right)^2 = \left(\frac{{\rm e}^2}{{\rm mc}^2}\right)^2 = {\rm r_e}^2,$$
 (9.7)

где $r_e = \frac{e^2}{mc^2}$ - классический радиус электрона.

Благодаря достижениям экспериментальной физики были обнаружены новые явления, которые не укладывались в прежнюю теорию Дирака. Было обнаружено небольшое смещение в уровнях атома водорода (лэмбовский сдвиг) и небольшое отличие магнитного момента электрона от боровского значения. Для теоретического описания этих явлений необходимо было учитывать высшие порядки теории возмущения, т.е. учитывать вклад более сложных диаграмм с большим числом узлов. Но их учет приводил к бесконечным значениям, так называемым расходимостям. Эту пробле-

му можно сравнить с ультрафилетовой катастрофой, с которой встретились в оптике при описании излучения абсолютно черного тела. Для устранения расходимостей была разработана специальная методика (проблема перенормировки) и создана современная квантовая электродинамика, которая позволяет рассчитать любой процесс с электромагнитным взаимодействием со сколь угодно высокой точностью.

Аномальный магнитный момент электрона объяснили взаимодействием электрона с поляризацией вакуума, и результат теоретических вычислений магнитного момента электрона совпадает с экспериментальным значением до 10 значащих цифр. При этом точность ограничена не точностью вычислений, а ошибками измерений. К настоящему времени справедливость квантовой электродинамики проверена на экспериментах с ускорителями электронов до расстояний $10^{-18} \, M$. Эта теория служит эталоном, по которому сейчас строятся теории всех других фундаментальных взаимодействий.

9.3 Электрослабое взаимодействие и промежуточные бозоны

Слабое взаимодействие характеризуется очень малым радиусом действия, малой интенсивностью и относительно большими временами протекания этих процессов и, следовательно, большими в рамках микромира временами жизни частиц, участвующих в этих взаимодействиях. Как известно, отличительной чертой слабого взаимодействия является явление несохранения пространственной четности. Оказалось, что не сохраняются в процессах слабого взаимодействия и новые квантовые числа, как странность и др.

Первоначальная теория β -распада нуклонов была построена итальянским физиком-теоретиком Э. Ферми в 1934 г. по аналогии с квантовой электродинамикой. Но впоследствии были открыты новые слабые процессы с участием е, μ , τ - лептонов и оказалось, что нейтрино, участвующие в этих процессах, различны ν_e , ν_{μ} , ν_{τ} . Теория Ферми была обобщена и превратилась в теорию слабого взаимодействия элементарных частиц. А затем с установлением представлений о кварковой структуре адронов эта теория была совершенствована. Было выяснено, что в слабом взаимодействии уча-

ствуют не сами нуклоны, а отдельные составляющие кварки, и число кварков и лептонов должно совпадать. Далее, теория Ферми рассматривала слабый процесс, как контактный процесс, на диаграмме Фейнмана имеющий одну вершину. Эта теория встретилась с непреодолимой проблемой неперенормируемости, приводящей к расходимостям.

Важным шагом на этом пути была теория, предложенная Ю. Швингером в 1957 г., в которой постулировалось существование новых частиц, играющих роль фотонов в электромагнитных взаимодействиях, именуемых промежуточными бозонами W^+ ,

 W^- и Z^0 . Элементарными актами слабого взаимодействия являются процессы испускания и поглощения промежуточных бозонов фермионами: лептонами и кварками. Как и фотоны, промежуточные бозоны являются векторными частицами со спином J=1 (четность не приписывается, так как она не сохраняется). Но в отличие от фотонов, они отличаются короткодействием, следовательно, обладают большой массой, и для обеспечения закона сохранения электрического заряда могут обладать и электрическим зарядом.

Приведем диаграмму Фейнмана для распада нейтрона

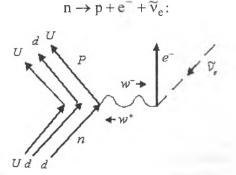


Рис. 9.5. Распад нейтрона в кварковой схеме

Распад нейтрона происходит через две стадии и описывается двухвершинной диаграммой Фейнмана. На первой стадии испускается W^- (или поглощается W^+) - промежуточный бозон по схеме

$$d(q = -1/3) \rightarrow u(q = +2/3) + W^{-},$$
 (9.8)

где d-кварк превращается в u-кварк с испусканием W^- - бозона (или поглощением W^+ - бозона, если смотреть в противоположном направлении). Затем W^- - бозон распадается с испусканием электрона и антинейтрино:

$$W^{-} \rightarrow e^{-} + \widetilde{v}_{e}. \tag{9.9}$$

При этом промежуточный бозон может менять сорт (аромат) кварка, но не цвет кварка, т.е. промежуточный бозон не обладает цветом.

Теория предсказывала очень большие массы промежуточных бозонов $m_w \approx 80 \, \Gamma_{\rm 9} B, \; m_z \approx 90 \, \Gamma_{\rm 9} B, \;$ для сравнения напомним массу протона $m_p \approx 980 \, {\rm M}_{\rm 9} B \approx 1 \, \Gamma_{\rm 9} B$. Поэтому для генерации промежуточных бозонов требуются огромные энергии. Специально для открытия промежуточных бозонов был построен в ЦЕРНе коллайдер со встречными $p-\widetilde{p}$ - пучками с энергией $270x270 \, \Gamma_{\rm 9} B$. Коллайдер был запущен в 1983 г. и были зарегистрированы первые промежуточные бозоны. За это открытие Нобелевской премии удостоились в 1984 году К. Руббиа — руководитель научного проекта и С. Ван дер Меер — создатель метода стохастического охлаждения антипротонов. Экспериментальные значения масс промежуточных бозонов оказались равными $m_w \approx 81 \pm 2 \, \Gamma_{\rm 9} B$, $m_z \approx 94 \pm 2 \, \Gamma_{\rm 9} B$, полностью согласующимися с предсказаниями теории.

Таким образом, выяснилось, что электромагнитное взаимодействие и слабое взаимодействие имеют много общих черт. Главное сходство в том, что они имеют обменный характер. Переносчиками этих взаимодействий являются векторные частицы со спином J=1: фотоны в электромагнитном взаимодействии и промежуточные бозоны в слабом взаимодействии. Это сходство указывало на то, что их можно объединить на единой основе.

Такое единое описание слабого и электромагнитного взаимодействий предложили в 1967 году С. Вайнберг и А. Салам. Но эта теория не сразу была принята физиками. Общее признание она получила после подтверждения на опыте многочисленных предсказаний. И только в 1979 г. они удостоились Нобелевской премии. Теория Вайнберга и Салама в математическом отношении очень сложна для общедоступного изложения. Поэтому ограничимся указанием основных концепций этой теории, которыми являются: а) локальная калибровочная инвариантность, б) спонтанное нарушение симметрии и в) перенормируемость теории.

Требование калибровочной инвариантности основного уравнения поля означает, что уравнение Дирака не должно изменяться при глобальном калибровочном преобразовании операторов поля:

$$\Psi(X) = e^{-iq\alpha}\Psi(X). \tag{9.10}$$

Из этого требования следует закон сохранения параметра q - электрического заряда. Но в релятивистской теории глобальное калибровочное преобразование заменяется локальным калибровочным преобразованием

$$\Psi(X) = e^{-iq\alpha(X)}\Psi(X), \qquad (9.11)$$

где фаза $\alpha(X)$ зависит от локальной точки X. Требование локальной калибровочной инвариантности приводит к необходимости введении векторной функции A(X), называемой калибровочными полями. При наложении на эти функции необходимых требований таких, как релятивистской инвариантности и градиентной инвариантности, функции A(X) оказываются 4-мерным потенциалом электромагнитного поля и подчиняются уравнениям Максвелла.

В теории Вайнберга и Салама идея локальной калибровочной инвариантности обобщается на изоспиновое преобразование, и в результате требования инвариатности возникают четыре безмассовые векторные калибровочные поля: триплет $\bar{A}=\left(A_1,A_2,A_3\right)$ и синглет В. Затем по идеологии спонтанного нарушения симметрии смешивают калибровочные поля в следующие комбинации:

$$W^{\pm} = \frac{1}{\sqrt{2}} (A_1 \pm iA_2), \tag{9.12}$$

$$Z^{0} = -B\sin\theta_{w} + A_{3}\cos\theta_{w}, \qquad (9.13)$$

$$\gamma = B\cos\theta_{w} + A_{3}\sin\theta_{w}. \tag{9.14}$$

Здесь θ_w - угол Вайнберга является параметром, значение которого эксперименты с участием нейтрино дают $\theta_w \approx 30^0$. Частицы W^\pm и Z^0 за счет механизма Хиггса обретают массы и отождествляются с промежуточными бозонами, частица γ остается безмассовой и отождествляется с фотоном. Массы промежуточных бозонов выражаются через угол Вайнберга θ_w , постоянную Ферми G и постоянную тонкой структуры α :

$$m_{\rm W} = \frac{1}{\sin \theta_{\rm W}} \left(\frac{\pi \alpha}{\sqrt{2}G} \right) \approx 80 \, \text{FpB},$$
 (9.15)

$$m_{z} = \frac{m_{w}}{\cos \theta_{w}} \approx 90 \,\Gamma \ni B. \tag{9.16}$$

Теория оказывается перенормируемой только тогда, число ароматов кварков (6) равно общему числу лептонов, то есть когда имеет место кварк – лептонная симметрия.

Одно из крупнейших достижений теории Вайнберга и Салама — единое описание слабого и электромагнитного взаимодействий. Переносчики этих взаимодействий — промежуточные бозоны и фотоны — имеют общее происхождение и тесно связаны друг с другом. Интенсивность их взаимодействий характеризуется одной и той же фундаментальной константой е. Причиной малой интенсивности слабого взаимодействия является то, что массы промежуточных бозонов очень большие. Это взаимодействие слабо при малых энергиях, но в области $E > m_w c^2$ его интенсивность сравнивается с интенсивностью электромагнитного взаимодействия.

9.4 Сильное взаимодействие. Квантовая хромодинамика

В сильном взаимодействии участвуют адроны: барионы и мезоны. Лептоны и фотоны в нем не участвуют. Первоначально, когда были известны из адронов только нуклоны и пионы, пытались построить теорию сильного взаимодействия по образцу квантовой электродинамики: нуклоны рассматривались как аналоги электрона, а пионы как аналог фотона. При таком подходе ядерные силы возникают как результат обмена нуклонов пионами. Такая теория

встретилась с трудностью - константа сильного взаимодействия $g/\hbar c > 1$ оказалась не малой, и не применима теория возмущений. Только после успехов теории электрослабого взаимодействия, когда выяснилась плодотворность концепции кварков, были заложены основы новой теории сильного взаимодействия — квантовой хромодинамики. Квантовая хромодинамика исходит из следующих основных положений:

- 1. Адроны состоят из кварков, которые имеют 6 ароматов (u,d,s,c,b,t) и 3 цвета (R,G,B).
- 2. Барионы состоят из 3 кварков разных цветов, а мезоны из кварка и антикварка с одинаковым цветом.
- 3. Переносчиками сильного взаимодействия являются глюоны g (glue-клей), которые имеют следующие характеристики:

$$J^{\pi} = 1^{-}$$
, $m = 0$, $L = 0$, $B = 0$, $T = 0$, $S = 0$, $C = 0$, $q = 0$.

4.Глюоны состоят из цвета и антицвета:

$$g_{1} = \widetilde{R}G, \quad g_{2} = \widetilde{R}B, \quad g_{3} = \widetilde{G}R,$$

$$g_{4} = \widetilde{G}B, \quad g_{5} = \widetilde{B}R, \quad g_{6} = \widetilde{B}G,$$

$$g_{7} = \frac{1}{\sqrt{2}} (\widetilde{R}R - \widetilde{G}G), \quad g_{8} = \frac{1}{\sqrt{6}} (\widetilde{R}R + \widetilde{G}G - 2\widetilde{B}B),$$

$$g_{9} = \frac{1}{\sqrt{3}} (\widetilde{R}R + \widetilde{G}G + \widetilde{B}B).$$
(9.17)

Последняя комбинация g_9 является цветовым синглетом и к глюонам не относится. Таким образом, кварков всего 8, из которых 6 недиагональных, изменяющих цвет кварков, и 2 диагональных — не меняющих цвет кварков. Недиагональные глюоны изменяют цвет кварка по следующей схеме:

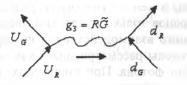


Рис. 9.6. Диаграмма Фейнмана для взаимодействия кварков

Красный и-кварк превращается в зеленый и-кварк, испуская $g_3 = \widetilde{G}R$ глюон, который поглощается зеленым d-кварком, и последний превращается в красный d-кварк. В результате обмена глюоном u- и d-кварки рассеиваются друг на друге. Следовательно, ядерные силы осуществляются испусканием и поглощением цветными кварками глюонов, несущих цвет и антицвет.

Известное взаимодействие нуклонов через обмен пионами на кварковом уровне выглядит так:

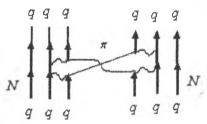


Рис. 9.7. Взаимодействие нуклонов через обмен пионами

Как видно, во взаимодействии нуклоны участвуют не целиком, а только частью — кварками.

Аналогично тому, как электрон за счет виртуальных процессов покрывается облаком виртуальных фотонов, электронов и позитронов, так же и кварк в адроне покрывается облаком глюонов и кваркантикварковых пар. Такие «одетые» кварки имеют массу порядка 350 МэВ и входят в состав адронов. Таким образом, адроны состоят из большого числа точечных объектов, которые объединяют общим названием партон (рагт — часть). Еще до появления кварковой концепции такие точечные образования в нуклонах обнаружил Хофштадтер в экспериментах по рассеянию высокоэнергичных электронов. В этих реакциях выявлено, что партоны в адронах ведут себя совершенно независимо, свободно. Отсюда приходят к представлению об асимптотической свободе партонов.

Многочисленные опыты по обнаружению кварков в свободном виде не увенчались успехом. Поэтому пришли к выводу, что в природе не наблюдаются цветные кварки и глюоны в свободном

виде, наблюдаются только бесцветные адроны, лептоны и фотоны. Объяснение этому находят в том, что силы между кварками с удалением друг от друга не уменьшаются, как в случае кулоновского взаимодействия, а наоборот увеличиваются. Кварки оказываются запертыми внутри адронов, такое представление известно как конфайнмент (пленение, удержание).

Для описания механизма удержания кварков внутри адронов предложен ряд феноменологических моделей, основанных на предположении, что интенсивность сильного взаимодействия растет беспредельно с увеличением расстояния между кварками. При разнесении на большое расстояние двух кварков глюонное поле между ними сжимается в тонкую трубку (струну). Дальнейшее разнесение кварков приводит к увеличению энергии струны, и она обрывается, и на ее свободных концах образуется кварк и антикварк, которые вместе составляют мезон. Таким образом, рождаются мезоны. Можно сказать, что кварки и антикварки в адроне ведут себя подобно полюсам магнита. Если разделить магнит на две части, то не образуется отдельно северный и южный полюсы, а получится два новых магнита.

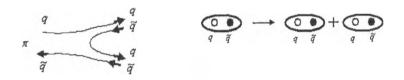


Рис. 9. 8. Аналогия между попытками разделить пион или магнит на части

В этих моделях для описания взаимодействия между кварками предлагается феноменологический потенциал следующего типа

$$U(r) = -\frac{a}{r} + br,$$

где a > 0 и b > 0 подгоночные параметры, первый член описывает квазикулоновское взаимодействие, а второй - плоское поле струны. С помощью такого потенциала удалось рассчитать спектры масс целого семейства мезонов, получившее название **чармония**,

так как состоят из двух с \tilde{c} кварков. Основным состоянием этого семейства является J/ϕ - мезон, а десяток близких к нему по свойствам частиц — резонансов рассматриваются как его возбужденные состояния. Изучение спектра масс этого семейства, подобно изучению спектра водорода в квантовой механике, позволило получить информацию о природе сильного взаимодействия.

Квантовая хромодинамика коренным образом изменила взгляды на природу сильного взаимодействия. Теперь истинно сильным взаимодействием считается взаимодействие между кварками путем обмена глюонами. Но в отличие от фотонов, которые электрически нейтральны, глюоны имеют цветовой заряд, поэтому должны сами испускать и поглощать глюоны. Это приводит к принципиально новому поведению системы кварков и глюонов. При увеличении расстояния между кварками их энергия взаимодействия возрастает. В результате не наблюдается свободных кварков и глюонов, они "заперты" внутри бесцветных адронов. А ядерное взаимодействие между нуклонами является производным от истинно сильного взаимодействия, по аналогии с силами Ван-дер-Ваальса, связывающими атомы в молекулы и являющимися производными от истинно электромагнитных взаимодействий, действующих между заряженными частицами.

В настоящее время квантовая хромодинамика, как теория сильного взаимодействия, полностью еще не завершена, но имеет многочисленные экспериментальные подтверждения, и получила признание среди физиков. Существующие проблемы теории считаются не принципиального характера, а трудности, которые в большей частью являются вычислительного характера, в скором будущем будут решены.

9.5 Великое объединение. Проблема нестабильности протона

Успех теории электрослабого взаимодействия стимулировал работы по объединению сильного взаимодействия с электрослабым взаимодействием в единую теорию электроядерного взаимодействия. Такое построение получило название великого объединения. Было предложено много вариантов такой теории, но основные надежды возлагаются на теорию X. Джорджи и С. Глешоу, предложенную в 1974 году. Она основана на тех же известных принципах.

Размещают все лептоны и кварки в мультиплеты, преобразования симметрии переводят эти частицы друг в друга, так что различие между ними как бы стираются. Требование локальной калибровочной симметрии приводит к появлению безмассовых калибровочных полей — прообразов фотона, промежуточных бозонов и глюонов. Через механизм Хиггса исходные калибровочные частицы перемешиваются, и некоторые из них обретают массы. В итоге возникают 24 векторных бозона: 8 глюонов g, 3 промежуточных бозона W^+ , W^- , Z^0 , 1 фотон γ и 12 новых X и Y частиц с необычными свойствами, роль которых полностью еще не выяснена. Но, тем не менее, эта теория уже имеет определенные достижения, и из нее вытекает ряд важных следствий.

Электрический заряд q появляется как квантовое число, и, наконец, теоретически устанавливается факт квантованности электрического заряда. А сумма электрических зарядов любого мультиплета оказывается равной нулю, отсюда получает объяснение дробность заряда кварков.

Модель Джорджи-Глешоу также позволяет вычислить угол Вайнберга, который был в теории электрослабого взаимодействия параметром. Теория предсказала значение $\sin^2\theta_w=0.2$, поразительно близкое к опытному значению.

Особый интерес вызвало предсказание теории о нестабильности протона. Согласно этой теории, протон, до этого считавшийся стабильным, может распасться по каналу $p \to \pi^0 + e^+$. Оценки времени распада протона дают очень большую величину $\tau_p \approx 10^{30\pm3}$ лет, во много превосходящую время существования самой Вселенной. Тем не менее, экспериментаторы во многих странах бросились проверять этот вывод, и к настоящему установлено, что если протон распадается, то его время жизни должно быть выше $\tau_p > 6.5 \cdot 10^{31}$ лет — предела экспериментальной возможности наших лней.

Следующее достижение теории связано с анализом зависимости эффективных констант фундаментальных взаимодействий от пере-

даваемого импульса ϱ частиц. Эта зависимость представлена на рис. 9.9, где показано, что

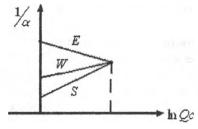


Рис. 9.9. Зависимость констант взаимодействий от передаваемого импульса

с увеличением передаваемого импульса Q константы взаимодействий: α_w слабого, α_E электромагнитного и α_s сильного - сходятся в одну точку, то есть сила взаимодействий становится одинаковой, и взаимодействия - неразличимы. Координаты этой точки равны

$$Q_0 c \equiv E_0 \approx 5 \cdot 10^{14} \Gamma_9 B$$
 μ $\alpha_0 \approx 0.02$.

Этим энергиям E_0 соответствуют расстояния порядка $r_0 \approx 4 \cdot 10^{-31}$ м. Величины E_0 и r_0 задают энергетический и пространственный масштабы великого объединения. Масштаб E_0 практически совпадает с массой бозонов X и Y. А пространственный масштаб r_0 приближается к так называемой длине Планка

$$l_P = \sqrt{\hbar G/c^2} \propto 1,6 \cdot 10^{-35}$$
 м,

где G –гравитационная постоянная. На расстояниях $r \sim l_P$ должны сказываться квантовые эффекты, не учтенные великим объединением.

Эти масштабы энергии и пространства не достигаемы эксперименту, даже в далеком будущем. Такие масштабы энергии и пространства имела Вселенная в первые мгновения после сотворения Мира, т.е. Большого Взрыва. Тогда вся материя находилась в чрезвычайно сжатом состоянии на сверхмалом расстоянии и при предельно высоких энергиях. Именно в этой области проявляются

основные следствия великого объединения, следы которых должны сохраняться до сих пор. Таким образом, объектом исследований физики элементарных частиц стали астрофизические объекты.

9.6. Супергравитация и суперобъединение

На самом деле великое объединение является не столь великим, так как не включает гравитационное взаимодействие. Дело в том, что общая теория относительности, описывающая гравитацию, является классической теорией, и долгое время попытки создания квантовой теории гравитации оставались безуспешными. Но в последние годы стала успешно развиваться так называемая теория супергравитации. Она основана на тех же стандартных принципах: локальной калибровочной инвариантности, спонтанного нарушения симметрии и суперсимметрии. Если до сих пор рассматриваемые мультиплеты состояли только из фермионов, либо только из бозонов, то суперсимметричные мультиплеты включают фермионы и бозоны, которые переходят друг в друга при соответствующих преобразованиях.

В процессе локализации преобразований Пуанкаре возникают разные поля. Одно из них описывает безмассовые тензорные частицы со спином $J^{\eta}=2^+$ - гравитоны G. Другое поле порождается локализацией преобразований, связывающих фермионы с бозонами, в результате чего возникает новая частица со спином J=3/2, названная гравитино V_G . Она первоначально — безмассовая, но за счет механизма Хиггса может иметь массу и более интенсивное взаимодействие, что позволяет надеяться на экспериментальное обнаружение.

На этом направлении можно в принципе построить унифицированную теорию, объединяющую гравитацию с остальными взаимодействиями - суперобъединение. Такие исследования ведутся интенсивно и привели к обнадеживающим результатам. Пока супергравитация дает единственное предсказание существование гравитино, которое можно пытаться проверить на опыте. Теперь можно утверждать, что, наконец открыт прямой путь к той цели единого описания физических явлений, к которому стремились все крупные мыслители.

9.7. Современное представление о структуре материи

В заключение резюмируем современные взгляды на структуру материи.

- 1. Вещество состоит из атомов, каждый из которых включает массивное положительно заряженное ядро, окруженное электронной оболочкой.
- 2. Электронная оболочка атома ответственна за химические и физические свойства вещества.
- 3. Атомное ядро состоит из нейтронов и протонов, связанных ядерными силами. Ядра могут претерпевать ряд спонтанных (самопроизвольных) превращений и участвовать в большом количестве ядерных реакциях.
- 4. Основными кирпичиками, из которых состоит вещество, являются протоны, нейтроны и электроны. В свободном виде еще наблюдаются фотоны и нейтрино, которые рождаются в ядерных реакциях. Остальные частицы являются нестабильными и получаются в космических излучениях или в лаборатории.
- 5. Основное свойство элементарных частиц способность претерпевать самые разные взаимопревращения. Все эти процессы управляются тремя фундаментальными взаимодействиями: сильным, электромагнитным и слабым. Существует четвертое взаимодействие гравитационное, но оно непосредственно в мире элементарных частиц не проявляется.
- 6. Все частицы подразделяют на тех, которые участвуют в сильном взаимодействии, их называют адронами, на тех, которые не могут участвовать в сильных взаимодействиях это фотоны, промежуточные бозоны и лептоны. В адроны входят барионы, мезоны и резонансы.
- 7. В экспериментах по упругому рассеянию адроны проявляют внутреннюю, зернистую структуру. Они состоят из кварков: барионы из 3 кварков, а мезоны из кварка и антикварка. А фотоны и лептоны не проявляют внутреннюю структуру. Они считаются бесструктурными, истинно элементарными частицами фундаментальными частицами.
- 8. По динамике взаимодействий частицы подразделяются на участников и переносчиков взаимодействий. Участниками взаимодействий являются фермионы: в гравитационном взаимодействии все частицы, наделенные массами, в электромагнитном и слабом взаи-

модействиях — электрически заряженные лептоны, в сильном взаимодействии — кварки, наделенные цветом.

- 9. Переносчиками взаимодействий являются бозоны с $J''=1^-$: g-глюоны в сильном взаимодействии, W^\pm,Z^0 промежуточные бозоны в слабом взаимодействии, γ фотоны в электромагнитном взаимодействии, $G(J''=2^+)$ гравитоны в гравитационном взаимодействии.
- 10. Кварк имеет 3 цвета: R,G,B и соответствующие им антицвета (в оптике дополнительные цвета). Мезоны состоят из кварка и антикварка $q\overline{q}$, а барионы состоят из 3 кварков qqq разных цветов так, что они становятся бесцветными (белыми). В природе наблюдаются в свободном виде только бесцветные частицы, а цветные кварки не наблюдаемы.
- 11. В настоящее время известно 3 дублета лептонов, в каждый из которых входит заряженная частица и нейтрино (e^-, v_e) , (μ^-, v_μ) и (τ^-, v_τ) . У каждого лептона есть свой антилептон. Существует так же 3 дублета (поколения) кварков: (u, d), (c, s) и (t, b). Из теории

следует эта кварк-лептонная симметрия.

- 12. Обменный характер взаимодействий дает надежду на построение единой теории, объединяющей все фундаментальные взаимодействия. Практически завершенной считается теория электрослабого взаимодействия, имеющая на своем счету большое количество результатов и подтвержденных предсказаний.
- 13. Довольно успешны попытки великого объединения электрослабого и сильного взаимодействий. Такая теория предсказывает очень малую нестабильность протона, которую ждет экспериментальное подтверждение.
- 14. Предпринимаются попытки объединить все 4 фундаментальные взаимодействия, включая и гравитационное взаимодействие. При этом возникает расширенная супергравитация, находящаяся пока в самой начальной стадии развития.

Вопросы для закрепления знаний

1. Почему при аннигиляции электрона и позитрона возникает не один фотон, а больше фотонов?

- 2. Как из соотношений неопределенностей следует масса переносчика взаимодействия и радиус действия взаимодействия?
- 3. Что такое «голый» электрон и как происходит «одевание» электрона в шубу?
- 4. Что такое поляризация вакуума?
- 5. Выпишите уравнение Дирака для релятивистского электрона и поясните физические величины, входящие в это уравнение.
- 6. Почему магнитный момент электрона отличается от Боровского значения?
- 7. Оцените значение сечения рассеяния фотона на электроне?
- 8. Перечислить процессы с участием электрона, соответствующие диаграммам Фейнмана первого порядка.
- 9. Перечислить процессы с участием электрона, соответствующие диаграммам Фейнмана второго порядка.
- 10. Составьте диаграмму Фейнмана для β распада нейтрона по теории Ферми, как одновершинный контактный процесс.
- 11. Приведите диаграмму Фейнмана для β распада нейтрона по кварковой схеме с участием промежуточного бозона.
- 12. Приведите диаграмму Фейнмана для взаимодействия двух кварков через обмен цветом.
- 13. Приведите диаграмму Фейнмана для взаимодействия нуклонов через обмен пионами, используя кварковую схему.
- 14. Константы фундаментальных взаимодействий зависят от передаваемого импульса и при некотором его значении они совпадают. Какое следствие вытекает из этого?
- 15. Что такое супергравитация и суперобъединение?
- 16. Чем отличается гравитон от гравитино?

приложения

Таблица 1. Значения некоторых физических величин

Универсальные физические постоянные

Скорость света $c = 2,9979 \cdot 10^8 \, \text{м/c}$

Гравитационная постоянная $G = 6,6726 \cdot 10^{-11} \ H \cdot M^2 / \kappa z^2$ Эпектрическая постоянная $\varepsilon_0 = 1/\mu_0 c^2 = 8.8542 \cdot 10^{-12} \ \Phi / M$

Электрическая постоянная $\varepsilon_0 = 1/\mu_0 c^2 = 8.8542 \cdot 10^{-12} \, \Phi/M$ Постоянная Авогадро $N_A = 6.0221 \cdot 10^{23} \, Monb^{-1}$

Газовая постоянная $R = 8,3145 \ Дж/ моль \cdot K$

Постоянная Больцмана $k = R/N_A = 1,3807 \cdot 10^{-23} \, \text{Дж} / K$

Элементарный заряд $e = 1,6022 \cdot 10^{-19} \ Kn$ Постоянная Планка $h = 6.6262 \cdot 10^{-34} \ \mathcal{L}$ жс $\cdot c$

 $\hbar = h/2\pi = 1,0546 \cdot 10^{-34} \ \text{Дж} \cdot c$

Масса электрона $m_e = 9,1094 \cdot 10^{-31} \ кг$

 $m_e = 0.5110 \ M_{\rm B}B/c^2$

 $m_e = 5,4858 \cdot 10^{-4} \text{ a.e.m.}$

Масса протона $m_p = 1,6726 \cdot 10^{-27} \, \text{кг}$

 $m_p = 938,2723 \text{ M}_{\odot}B/c^2$

 $m_p = 1,0072$ a.e.m.

Масса нейтрона $m_n = 1,6749 \cdot 10^{-27} \ \kappa z$

 $m_n = 939,5656 \, M_{\rm B} B / c^2$

 $m_n = 1,0087$ a.e.m.

Магнетон Бора $\mu_{\scriptscriptstyle E} = e\hbar/2m_{\scriptscriptstyle e}c = 9,2740\cdot 10^{-24}$ Джс/Тл

Ядерный магнетон $\mu_N = e\hbar/2m_p c = 5,0508 \cdot 10^{-27}$ Джс / Тл

Единицы измерения некоторых величин

Атомная единица массы, m = 1 а.е.м. = $m(^{12}C)/12 = 1,6605 \cdot 10^{-27}$ кг

1 a.e.m. = $m(^{12}C)/12 = 931,4943 \text{ M} \ni B/c^2$

Длина, r 1 $\Phi_M(\phi e p_M u) = 10^{-15} M$

Энергия, E 1 э $B = 1,6 \cdot 10^{-19}$ Дже

 $1 \ni B = 7.7 \cdot 10^3 K^0$

Эффективное сечение, σ 1 $\delta(\delta aph) = 10^{-28} \text{ м}^2$

Активность изотопа, A 1 $E\kappa(\delta \epsilon \kappa \epsilon p \epsilon \pi b) = 1 pacnad/c$

1 $Б\kappa(беккерель) = 2,7 \cdot 10^{-11} Ku$

1 $Ku(κωρu) = 3,7 \cdot 10^{10}$ Εκ

Поглощенная доза, D 1 $\Gamma p(zpe\check{u}) = 1$ Дж / кг

1 $\Gamma p(zpe\bar{u}) = 100 pad$

1 $pad = 10^{-2} Дж/кг$

 $1 pad = 10^{-2} \Gamma p$

Поглощенная доза рентгеновского и

гамма-излучения, X 1 $P(peнmzeh) = 2,58 \cdot 10^{-4} \, Kn/\kappa z$

Эквивалентная доза, H 1 $3e(3uepm) = 1 \Gamma p / \kappa$

1 бэp=1 рад/к

Значения κ - коэффициента качества для излучений:

Рентгеновское и у - излучение1	Нейтроны <i>E</i> ≤ 10 <i>М</i> э <i>В</i> 10
β — излучение1	Протоны $E \le 10 \ MэB \dots 10$
Нейтроны с $E \le 20$ кэ B 3	$lpha$ -излучение $E \le 10$ Мэ B 20

Приставки для десятичных кратных и дольных единиц

Множи- тель	Обозначе- ние		Наиме- нование
101	да	da	дека
10 ²	г	h	гекто
10³	к	k	кило
10 ⁶	М	М	мега
10°	Γ	G	гига
1012	T	T	тера
1015	П	Р	nema

Множи- тель		значе- ие	Наиме- нование
10-1	ð	d	деци
10-2	С	с	санти
10-3	м	m	милли
10-6	мк	μ	микро
10-9	н	n	нано
10 ⁻¹²	n	р	пико
10-15	ф	f	фемто

Таблица 2. Характеристики атомных ядер

В таблице собраны известные к настоящему времени изотопы химических элементов с их свойствами. Таблица составлена О.Ю. Панищевым на основе данных, взятых из интернет-сайта http://cdfe.sinp.msu.ru/services/gsp.en.htm1.

В первой графе таблицы приведены химические элементы в порядке возрастания атомного номера Z, названия которых утверждены рещением Генеральной Ассамблеи чистой и прикладной химии от 1997 года.

Во второй графе расположены изотопы химического элемента в порядке возрастания массового числа с указанием атомного номера Z, символа элемента и массового числа A.

В третьей графе указаны периоды полураспада $T_{1/2}$ для радиоактивных изотопов или процентное содержание в естественной смеси для стабильных изотопов и для изотопов с очень большими периодами распада. В случае очень коротких периодов полураспада приводятся ширины состояний Γ в $M \ni B$.

В четвертой графе — спин и четность основного состояния ядра J^p .

В пятой графе дается масса атома в а.е.м. - атомных единицах массы.

1 а.е.м. соответствует 1/12 части массы атома углерода ^{12}C .

В шестой графе приведен дефект массы $\Delta = M - A$ в $M \ni B$.

В седьмой графе дана энергия связи ядра в МэВ.

Работа частично поддержана грантом РНП.2.1.1.741.

		<i>Т</i> _{1/2} или Г	Спин-		Дефект	Энергия
Название	Z-сим-	или относит.	четность	Macca,	массы	связи
хим.	вол-А	распростра-	основного		$\Delta = M - A$	МэВ
элемента	B031-71	ненность	состояния	а.е.м.	Mэ B	771325
	0-N-1	10.24 мин	1/2+	1,009	8,071	0,0000
Водород	1-H-1	99.985%	1/2+	1,008	7,289	0,0000
	1-H-2	0.015%	1+	2,014	13,136	2,2246
	1-H-3	12.33 лет	1/2+	3,016	14,950	8,4818
i	1-H-4	4,6 MaB	2-	4,028	25,928	5.5752
	1-H-5	5.7 MaB		5,040	36,834	2,7403
	1-H-6	1.4 MaB		6,045	41,864	5,7818
Гелий	2-He-3	0.000137%	1/2+	3,016	14,931	7,7181
	2-He-4	99.999863%	0+	4,003	2,425	28,2957
	2-He-5	0.60 МэВ	3/2-	5.012	11,386	27,4057
	2-He-6	806.7 мс	0+	6,019	17,594	29,2691
	2-He-7	160 кэВ	(3/2)-	7,028	26,110	28,8243
	2-He-8	119.0 мс	0+	8,034	31,598	31,4079
ı	2-He-9	65 кэВ	(1/2-)	9,044	40,818	30,2588
	2-He-10	0.17 MaB	0+	10,052	48,810	30,3385
Литий	3-Li-4	6.03 МэВ	2-	4,027	25,320	4,6181
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3-Li-5	1.5 MaB	3/2-	5,013	11,679	26,3307
	3-Li-6	7.59%	1+	6,015	14,086	31,9946
	3-Li-7	92.41%	3/2-	7,016	14,908	39,2445
	3-Li-8	838 MC	2+	8,022	20,946	41,2773
1	3-Li-9	178.3 мс	3/2-	9.027	24,954	45,3409
	3-Li-10	1.2 M ₂ B	(1-,2-)	10,035	33,050	45,3159
	3-Li-11	8.5 MC	3/2-	11,044	40,796	45,6416
	3-Li-12	10 нс		12,054	50,096	44,4130
Бериллий	4-Be-5		(1/2+)	5.041	37,996	-0,7680
P	4-Be-6	92 кэВ	0+	6,020	18,374	26,9241
	4-Be-7	53.29 дн.	3/2-	7,017	15,769	37,6004
	4-Be-8	6,8 aB	0+	8,005	4,942	56,4995
	4-Be-9	100%	3/2-	9,012	11,348	58,1649
	4-Be-10	1.51е+6 лет	0+	10,014	12,607	64,9772
	4-Be-11	13.81 c	1/2+	11,022	20,174	65,4812
	4-Be-12	21.3 мс	0+	12,027	25,076	68,6501
	4-Be-13	0.17 МэВ	(1/2-)	13,036	33,658	68,1393
	4-Be-14	4.35 мс	0+	14,043	39,882	69,9867
Бор	5-B-7	1.4 МэВ	(3/2-)	7,030	27,868	24,7196
	5-B-8	770 мс	2+	8,025	22,921	37,7378
	5-B-9	0.54 кэВ	3/2-	9,013	12,416	56,3144
	5-B-10	19.8%	3+	10,013	12,051	64,7507
	5-B-11	80.2%	3/2-	11,009	8,668	76,2048
	5-B-12	20.20 мс	1+	12,014	13,369	79,5752
1	5-B-13	17.36 мс	3/2-	13,018	16,562	84,4532
	5-B-14	12.3 мс	2-	14,025	23,664	85,4230
1	5-B-15	9.87 мс		15,031	28,967	88,1911
	5-B-16	190 пс	0-	16,040	37,082	88,1477
	5-B-17	5.08 мс	(3/2-)	17,047	43,716	89,5844
	5-B-18	26 нс	(4-)	18,056	52,322	89,0500
	5-B-19	200 нс	(3/2-)	19,064	59,364	90,0790
Углерод	6-C-8	230 кэВ	0+	8,038	35,094	24,7824

	6-C-9	126.5 мс	(3/2-)	9,031	28,914	39,0341
	6-C-10	19.255 c	0+	10,017	15,699	60,3205
Î	6-C-11	20,39 мин	3/2-	11,011	10,651	73,4399
	6-C-12	98.89%	0+	12,000	0,000	92,1618
	6-C-13	1.11%	1/2-	13,003	3,125	97,1081
	6-C-14	5730 лет	0+	14,003	3,020	105,2845
	6-C-15	2.449 c	1/2+	15,011	9,873	106,5026
	6-C-16	0.747 c	0+	16,015	13,694	110,7529
	6-C-17	193 мс		17,023	21,037	111,4818
	6-C-18	95 мс	0+	18,027	24,924	115,6657
i	6-C-19	49 мс		19,035	32,833	115,8276
	6-C-20	14 мс	0+	20,040	37,560	119,1723
l i	6-C-21	30 нс	(1/2+)	21,049	45,960	118,8440
	6-C-22	200 нс	0+	22,056	52,583	120,2920
Азот	7-N-10	200 110	(1-)	10,043	39,699	35,5380
7301	7-N-12	11.000 мс	1+	12,019	17,338	74,0413
	7-N-13	9.965 мин	1/2-	13,006	5,345	94,1053
	7-N-13	99.634%	1+	14,003	2,863	104,6586
	7-N-14 7-N-15	0.366%	1/2-	15,000	0,101	115,4919
i	7-N-16	7.13 c	2-	16,006	5,683	117,9813
	7-N-17	4.173 c	1/2-	17,008	7,871	123,8652
	7-N-17	624 MC	1-	18,014	13,117	126,6902
1	7-N-18	290 мс	1-	19,017	15,860	132,0182
ĺ	7-N-19 7-N-20	142 MC		20,023	21,766	134,1835
	7-N-20 7-N-21	87 MC	(1/2-)	21,027	25,232	138,7894
	7-N-21 7-N-22	18 MC	(1/2-)	22,034	32,081	140,0117
	7-N-22 7-N-23	200 нс	(1/2-)	23,041	37,735	142,4290
1	7-N-23	52 HC	(1/2-)	24,051	47,040	141,1950
Кислород	8-O-12	0.40 MaB	0+	12,034	32,048	58,5492
Кислород	8-O-12	8.58 MC	(3/2-)	13,025	23,111	75,5576
Į.	8-O-14	70.606 c	0+	14.009	8,006	98,7332
#	8-O-15	122.24 c	1/2-	15,003	2,855	111,9556
	8-O-16	99.762%	0+	15,995	-4,737	127,6193
1	8-O-17	0.038%	5/2+	16,999	-0,809	131,7627
i i	8-O-18	0.200%	0+	17,999	-0,782	139,8070
	8-O-19	26.91 c	5/2+	19,004	3.334	143,7627
	8-O-20	13.51 c	0+	20,004	3,797	151,3707
	8-O-21	3.42 c	(1/2,3/2,5/2)+	21,009	8,062	155,1772
	8-0-22	2.25 c	0+	22,010	9,284	162,0259
	8-O-23	82 MC	(1/2+)	23,016	14,616	164,7652
i	8-0-23	61 MC	0+	24,020	18,974	168,4785
1	8-O-25	50 HC	(3/2+)	25,029	27,144	168,3810
	8-O-26	40 HC	0+	26,038	35,164	168,4320
Фтор	9-F-14	-to no	(2-)	14,036	33,608	72,3490
Фтор	9-F-15	1.0 МэВ	(1/2+)	15,018	16,777	97,2517
	9-F-15	40 кэB	0-	16,011	10,680	111,4197
	9-F-10 9-F-17	64.49 c	5/2+	17,002	1,952	128,2196
	9-F-17 9-F-18	109,77 мин	1+	18,001	0,873	137,3692
	9-F-18 9-F-19	109.77 мин	1/2+	18,998	-1.487	147,8014
	9-F-19 9-F-20	11.163 c	2+	20,000	-0,017	154,4027
	9-F-20 9-F-21	4.158 c	5/2+	21,000	-0,017	162,5042
		1	1		2,794	167,7341
	9-F-22	4.23 c	4+,(3+)	22,003	2,794	10/,/341

	9-F-23	2.23 c	(3/2,5/2)+	23,004	3,330	175,2697
	9-F-24	0.34 c	(1,2,3)+	24,008	7,545	179,1261
	9-F-25	59 мс	(5/2+)	25,012	11,266	183,4755
	9-F-26	190 мс		26,020	18,288	184,5250
	9-F-27	200 нс	(5/2+)	27,027	25,050	185,8345
	9-F-28	40 нс	, ,	28,036	33,226	185,7290
	9-F-29	200 нс	(5/2+)	29,043	40,296	186,7310
Неон	10-Ne-16	122 кэВ	0+	16,026	23,992	97,3252
	10-Ne-17	109.2 мс	1/2-	17,018	16,485	112,9038
	10-Ne-18	1672 мс	0+	18,006	5,307	132,1535
	10-Ne-19	17.22 c	1/2+	19,002	1,751	143,7805
	10-Ne-20	90.48%	0+	19,992	-7,042	160,6449
	10-Ne-21	0.27%	3/2+	20,994	-5,732	167,4060
	10-Ne-22	9.25%	0+	21,991	-8,024	177,7699
	10-Ne-23	37.24 c	5/2+	22,994	-5,154	182,9705
	10-Ne-24	3.38 мин	0+	23,994	-5,948	191,8357
	10-Ne-25	602 мс	(1/2,3/2)+	24,998	-2,059	196,0182
	10-Ne-26	0.197 c	0+	26,000	0,430	201,6010
	10-Ne-27	32 мс	(3/2+)	27,008	7,094	203,0087
	10-Ne-28	17 MC	0+	28,012	11,279	206,8949
	10-Ne-29	200 мс	(3/2+)	29,019	18,021	208,2242
	10-Ne-30	200 мс	0+	30,024	22,237	212,0795
	10-Ne-31	260 нс	(7/2-)	31,033	30,842	211,5460
	10-Ne-31	200 нс	0+	32,040	37,176	213,2830
Натрий	11-Na-18	200 AC	(1-)	18,027	25,318	111,3600
патрии	11-Na-19	40 нс	(5/2+)	19,014	12,929	131,8206
	11-Na-19	447.9 мс	2+		6,845	
	11-Na-20	22,49 c	3/2+	20,007	-2,184	145,9757
	11-Na-21 11-Na-22	2.6019 лет		20,998		163,0762
	11-Na-22	100%	3+ 3/2+	21,994	-5,182	174,1453
		14.9512 ч	3/2+ 4+	22,990	-9,529	186,5640
	11-Na-24			23,991	-8,418	193,5235
	11-Na-25	59.1 c	5/2+	24,990	-9,357	202,5346
	11-Na-26	1.072 c	3+	25,993	-6,902	208,1510
	11-Na-27	301 мс	5/2+	26,994	-5,581	214,9007
	11-Na-28	30.5 MC	1+	27,999	-1,034	218,4247
	11-Na-29	44.9 MC	38778	29,003	2,619	222,8438
	11-Na-30	48 MC	2+	30,009	8,594	224,9394
	11-Na-31	17.0 мс	3/2+	31,014	12,664	228,9414
	11-Na-32	13.2 мс	(3-,4-)	32,020	18,304	231,3728
	11-Na-33	8.2 мс		33,027	25,510	232,2379
	11-Na-34	5.5 MC		34,035	32,509	233,3100
* · · ·	11-Na-35	1,5 мс	2.	35,044	41,153	232,7370
Магний	12-Mg-20	90.8 мс	0+	20,019	17,571	134,4677
	12-Mg-21	122 мс	(3/2,5/2)+	21,012	10,912	149,1979
	12-Mg-22	3.857 c	0+	22,000	-0,397	168,5776
	12-Mg-23	11.317 c	3/2+	22,994	-5,473	181,7249
	12-Mg-24	78.99%	0+	23,985	-13,933	198,2569
	12-Mg-25	10.00%	5/2+	24,986	-13,193	205,5876
	12-Mg-26	11.01%	0+	25,983	-16,214	216,6806
	12-Mg-27	9,458 мин	1/2+	26,984	-14,587	223,1240
	12-Mg-28	20.915 ч	0+	27,984	-15,019	231,6276
	12-Mg-29	1.30 c	3/2+	28,989	-10,661	235,3413

	12-Mg-30	335 мс	0+	29,990	-8,882	241,6337
	12-Mg-31	230 мс		30,997	-3,215	244,0379
- 1	12-Mg-32	120 мс	0+	31,999	-0,796	249,6897
	12-Mg-33	90 мс		33,006	5,204	251,7612
1	12-Mg-34	20 мс	0+	34,009	8,451	256,5858
	12-Mg-35	70 MC	(7/2-)	35,017	16,292	256,8160
	12-Mg-36	200 нс	0+	36,022	20,912	260,2670
		260 нс	(7/2-)	37,031	29,100	260,1510
4 ×	12-Mg-37	35 HC	(1/2+)	21,028	26,119	133,2080
Алюминий	13-Al-21	1 1	(1/2+)	22,020	18,183	149,2160
	13-Al-22	59 MC	(5/24)		6,767	168,702
i	13-AI-23	0.47 c	(5/2+)	23,007		11 '
1	13-A1-24	2.053 c	4+	24,000	-0,055	183,596
	13-Al-25	7.183 c	5/2+	24,990	-8,916	200,528
	13-Al-26	7.17е+5 лет	5+	25,987	-12,210	211,894
	13-Al-27	100%	5/2+	26,982	-17,197	224,9520
	13-A1-28	2.2414 мин	3+	27,982	-16,851	232,677
	13-Al-29	6.56 мин	5/2+	28,980	-18,216	242,113
	13-A1-30	3.60 c	3+	29,983	-15,872	247,841
	13-Al-31	644 мс	(3/2,5/2)+	30,984	-14,954	254,994
	13-Al-32	33 мс	1+	31,988	-11,062	259,173
	13-Al-33	1 мкс		32,991	-8,505	264,688
	13-Al-34	60 мс		33,997	-2,862	267,116
	13-Al-35	150 мс		35,000	-0,058	272,383
	13-Al-36	90 мс		36,006	5,916	274,480
	13-Al-37			37,010	9,604	278,864
	13-A1-38	200 нс		38,017	15,742	280,797
	13-Al-39	200 нс	(3/2+)	39,022	20,400	284,211
	13-AI-40	260 нс	` ′		0,000	
Кремний	14-Si-22	29 мс	0+	22,035	32,164	134,452
	14-Si-23	200 нс	(3/2+)	23,026	23,772	150,916
	14-Si-24	102 мс	0+	24,012	10,755	172,004
	14-Si-25	220 мс	5/2+	25,004	3,825	187,004
	14-Si-26	2.234 c	0+	25,992	-7,145	206,046
	14-Si-27	4.16 c	5/2+	26,987	-12,384	219,357
	14-Si-28	92.230%	0+	27,977	-21,493	236,536
	14-Si-29	4,683%	1/2+	28,976	-21,895	245,010
	14-Si-30	3.087%	0+	29,974	-24,433	255,619
	14-Si-31	157.3 мин	3/2+	30,975	-22,949	262,207
	14-Si-32	172 лет	0+	31,974	-24,081	271,410
	14-Si-33	6.332 c		32,978	-20,492	275,893
	14-Si-34	2.77 c	0+	33,979	-19,957	283,428
	14-Si-35	0.78 c	0.	34,985	-14,360	285,903
	14-Si-35	0.78 c	0+	35,987	-12,401	292,015
	14-Si-30	90 MC	(7/2-)	36,993	-6,524	294,210
		90 MC	0+	37,996	-3,745	299,501
	14-Si-38				2,142	301,686
	14-Si-39	1 MKC	(7/2-)	39,002	,	301,686
	14-Si-40	200 нс	0+	40,006	5,403	
	14-Si-41	200 нс	0.	41,013	11,830	308,141
	14-Si-42	200 нс	0+	42,016	14,997	313,046
Фосфор	15-P-24		(1+)	24,034	31,997	149,980
	15-P-25	30 нс	(1/2+)	25,020	18,872	171,176
	15-P-26	20 MC +35-15	(3+)	26,012	10,973	187,146

	15-P-27	260 мс	(1/2+)	26,999	-0,753	206,9434
	15-P-28	270.3 мс	3+	27,992	-7,161	221,4228
	15-P-29	4.142 c	1/2+	28,982	-16,952	239,2850
	15-P-30	2.498 мин	1+	29,978	-20,201	250,6049
	15-P-31	100%	1/2+	30,974	-24,441	262,9167
	15-P-32	14.262 дн.	1+	31,974	-24,305	270,8523
	15-P-33	25.34 дн.	1/2+	32,972	-26,338	280,9561
	15-P-34	12.43 с	1+	33,974	-24,558	287,2472
	15-P-35	47.3 c	1/2+	34,973	-24,858	295,6186
	15-P-36	5.6 c	1,2	35,978	-20,251	299,0832
	15-P-37	2.31 c		36,980	-18,995	305,8984
	15-P-38	0.64 c		37,984	-14,466	309,4411
	15-P-39	0.16 c+30-10		38,986	-12,650	315,6960
	15-P-40	260 мс		39,991	-8,337	319,4545
	15-P-41	120 мс		40,995	-4,844	324,0327
	15-P-42	110 MC		42,000	0,084	327,1760
	15-P-43	33 MC		43,003	3,083	332,2480
	15-P-44	200 нс		44,010	9,203	334,2000
	15-P-45	200 нс		45,015	14,103	337,3710
	15-P-46	200 нс		46,024	22,197	337,3480
Сера	16-S-26	10 MC	0+	26,028	25,970	171,3670
Сера	16-S-27	21 MC	(5/2+)	27,019	17,507	187,9010
	16-S-28	125 MC	0+	28,004	4,073	209,4063
	16-S-29	187 MC	5/2+	28,997	-3,159	224,7096
	16-S-30	1.178 c	0+	29,985	-14,063	243,6848
	16-S-31	2.572 c	1/2+	30,980	-19.045	256,7383
	16-S-32	95.02%	0+	31,972	-26,016	271,7807
	16-S-33	0.75%	3/2+	32,971	-26,586	280,4222
	16-S-34	4.21%	0+	33,968	-29,932	291,8392
	16-S-35	87.38 дн.	3/2+	34,969	-28,846	298,8250
	16-S-36	0.02%	0+	35,967	-30,664	308,7139
	16-S-37	5.05 мин	7/2-	36,971	-26,896	313,0175
	16-S-38	170.3 мин	0+	37,971	-26,861	321,0537
	16-S-39	11.5 c	(3/2,5/2,7/2)-	38,975	-23,161	325,4253
	16-S-40	8.8 c	0+	39,975	-22,850	333,1848
	16-S-41	2.6 c	(7/2-)	40,980	-18,602	337,0085
	16-S-42	0.56 c	0+	41,981	-17,242	343,7199
	16-S-43	220 мс		42,987	-12,482	347,0312
	16-S-44	123 мс	0+	43,988	-10,880	353,5000
	16-S-45	82 MC		44,995	-4,825	355,5170
	16-S-46	200 нс	0+	46,000	-0,401	359,1640
	16-S-47	200 нс		47,008	7,098	359,7370
	16-S-48	200 нс	0+	48,013	12,100	362,8060
	16-S-49	200 нс		49,022	20,502	362,4750
Хлор	17-Cl-28	200 110	(1+)	28,029	26,557	186,1400
Ziop	17-Cl-29	20 нс	(3/2+)	29,014	13,143	207,6250
	17-CI-30	30 нс	(3+)	30,005	4,443	224,3960
	17-CI-31	150 MC		30,992	-7,064	243,9754
	17-Cl-32	298 мс	1+	31,986	-13,331	258,3130
	17-CI-33	2.511 c	3/2+	32,977	-21,004	274,0572
	17-C1-34	1.5264 c	0+	33,974	-24,441	285,5655
	17-Cl-35	75.77%	3/2+	34,969	-29,014	298,2098

N.	17-C1-36	3.01е+5 лет	2+	35,968	-29,522	306,7895
	17-C1-37	24.23%	3/2+	36,966	-31,762	317,1005
	17-CI-37	37.24 мин	2-	37,968	-29,798	323,2082
	17-CI-38	55.6 мин	3/2+	38,968	-29,801	331,2822
1	17-CI-39	1.35 мин	2-	39,970	-27,558	337,1106
	17-C1-40 17-C1-41	38.4 c	(1/2,3/2)+	40,971	-27,339	344,9634
	17-C1-42	6.8 c	(1/2,5/2)	41,973	-24,987	350,6829
	17-CI-42	3.3 c		42,974	-24,029	357,7963
	17-CI-43	0.56 c		43,979	-19,991	361,8293
	17-CI-45	400 MC		44,980	-18,909	368,8188
P	17-Cl-46	223 мс		45,984	-14,792	372,7730
	17-C1-47	200 нс		46,988	-11,225	377,2770
	17-C1-48	200 нс		47,995	-4,797	378,9210
	17-CI-49	170 нс		49,000	-0,102	382,2970
	17-Cl-51	200 нс	(3/2+)	51,014	12,603	385,7340
A = 5027	18-Ar-30	200 нс	0+	30,022	20,083	207,9740
Аргон	18-Ar-31	15.1 MC	(5/2+,3/2+)	31,012	11,296	224,8330
	18-Ar-32	98 MC	0+	31,998	-2,179	246,3790
	18-Ar-33	173.0 мс	1/2+	32,990	-9,381	261,6526
	18-Ar-34	844.5 MC	0+	33,980	-18,378	278,7209
	18-Ar-35	1.775 c	3/2+	34,975	-23,048	291,4621
	18-Ar-36	0.3365%	0+	35,968	-30,230	306,7157
	18-Ar-37	35.04 дн.	3/2+	36,967	-30,230	315,5046
	18-Ar-38	0.0632%	0+	37,963	-34,715	327,3427
		269 лет	7/2-	38,964	-33,242	333,9411
	18-Ar-39	99.6003%	0+	39,962	-35,040	343,8104
	18-Ar-40	109.34 мин	7/2-	40,965	-33,040	349,9091
	18-Ar-41 18-Ar-42	32.9 лет	0+	41,963	-34,422	359,3353
	l l	5.37 мин	(3/2,5/2)	42,966	-31,978	364,9621
	18-Ar-43 18-Ar-44	11.87 мин	(3/2,3/2)	43,965	-32,262	373,3179
	18-Ar-45	21.48 c	01	44,968	-29,719	378,8465
	18-Ar-46	8.4 c	0+	45,968	-29,721	386,9192
	u .	700 MC	0+	46,972	-25,721	391,1782
	18-Ar-47	700 MC	0+	47,975	-23,222	396,5630
	18-Ar-48	170 нс	07	48,982	-16,599	398,0120
	18-Ar-49		0+	. ,	-13,097	402,5810
	18-Ar-50	170 нс	0+	49,986 50,993	-6,297	402,3810
	18-Ar-51	200 нс	0+		-1,705	407,3310
	18-Ar-52	10 мс	(5/2-)	51,998	5,800	407,3310
70	18-Ar-53	3 мс	(3/2-)	53,006	20,418	222,9990
Калий	19-K-32	25	(2/21)	32,022	6,763	244,7260
	19-K-33	25 нс	(3/2+)	33,007	l	
	19-K-34	25 нс	(1+)	33,998	-1,481	261,0410
	19-K-35	190 мс	3/2+	34,988	-11,167	278,7987
	19-K-36	342 MC	2+	35,981	-17,425	293,1280
	19-K-37	1.226 c	3/2+	36,973	-24,799	308,5735
	19-K-38	7.636 мин	3+	37,969	-28,802	320,6472
	19-K-39	93.2581%	3/2+	38,964	-33,807	333,7237
	10 77 40	0.0117%		20.064	22.525	241 5222
	19-K-40	1.277е+9 лет	4-	39,964	-33,535	341,5232
	19-K-41	6.7302%	3/2+	40,962	-35,559	351,6184
	19-K-42	12.360 ч	2-	41,962	-35,021	359,1522
	19-K-43	22.3 ч	3/2+	42,961	-36,593	368,7952

	19-K-44	22.13 мин	2-	43,962	-35,810	376,0837
	19-K-45	17.3 мин	3/2+	44,961	-36,608	384,9528
	19-K-46	105 c	(2-)	45,962	-35,419	391,8351
	19-K-47	17.50 c	1/2+	46,962	-35,697	400,1843
	19-K-48	6.8 c	(2-)	47,966	-32,124	404,6833
	19-K-49	1.26 c	(3/2+)	48,967	-30,320	410,9502
	19-K-50	472 MC	(0-,1,2-)	49,973	-25,353	414,0541
	19-K-51	365 MC	(1/2+,3/2+)	50,976	-22,002	418,7750
	19-K-52	105 MC	2-	51,983	-16,199	421,0430
	19-K-52	30 MC	(3/2+)	52,987	-11,998	424,9130
	19-K-53	8	(3/2+)	53,994	-5,598	,
TC		10 MC	0+			426,5850
Кальций	20-Ca-34	35 нс	0+	34,014	13,153	245,6250
	20-Ca-35	25.7 мс		35,005	4,439	262,4110
	20-Ca-36	102 мс	0+	35,993	-6,439	281,3598
	20-Ca-37	181.1 мс	3/2+	36,986	-13,161	296,1525
	20-Ca-38	440 мс	0+	37,976	-22,059	313,1222
	20-Ca-39	859.6 мс	3/2+	38,971	-27,276	326,4108
	20-Ca-40	96.94%	0+	39,963	-34,846	342,0520
	20-Ca-41	1.03е+5 лет	7/2-	40,962	-35,137	350,4147
	20-Ca-42	0.647%	0+	41,959	-38,547	361,8953
	20-Ca-43	0.135%	7/2-	42,959	-38,408	369,8283
	20-Ca-44	2.09%	0+	43,955	-41,469	380,9602
	20-Ca-45	162.61 дн.	7/2-	44,956	-40,813	388,3750
		0.004%		,		<u> </u>
	20-Ca-46	0.28е+16 лет	0+	45,954	-43,135	398,7687
	20-Ca-47	4,536 дн.	7/2-	46,955	-42,340	406,0448
		0.187% 4e+19	l .		1	
	20-Ca-48	лет	0+	47,953	-44,215	415,9912
	20-Ca-49	8.718 мин	3/2-	48,956	-41,290	421,1378
	20-Ca-50	13.9 c	0+	49,958	-39,571	427,4905
	20-Ca-51	10.0 c	(3/2-)	50,961	-35,887	431,8769
	20-Ca-52	4.6 c	0+	51,965	-32,509	436,5709
	20-Ca-53	90 MC	(3/2-,5/2-)	52,970	-27,898	440,0310
	20-Ca-54	H JO ME	0+	53,975	-23,585	443,7900
	20-Ca-54 20-Ca-56	10 мс	0+	55,986	-13,237	449,5840
C		TO MC	UT	37,003	2,841	279,3680
Скандий	21-Sc-37	200	(2.)		, ,	
	21-Sc-38	300 нс	(2-)	37,995	-4,937	295,2180
	21-Sc-39	300 нс		38,985	-14,168	312,5202
	21-Sc-40	182.3 мс	4-	39,978	-20,526	326,9499
	21-Sc-41	596.3 мс	7/2-	40,969	-28,642	343,1370
	21-Sc-42	680.67 мс	0+	41,966	-32,121	354,6871
	21-Sc-43	3.891 ч	7/2-	42,961	-36,188	366,8251
	21-Sc-44	3.97 ч	2+	43,959	-37,816	376,5246
	21-Sc-45	100%	7/2-	44,956	-41,069	387,8494
	21-Sc-46	83.79 дн.	4+	45,955	-41,759	396,6101
	21-Sc-47	3.3492 дн.	7/2-	46,952	-44,332	407,2544
	21-Sc-48	43.67 ч	6+	47,952	-44,493	415,4869
	21-Sc-49	57.2 мин	7/2-	48,950	-46,552	425,6177
	21-Sc-50	102.5 c	5+	49,952	-44,538	431,6742
	21-Sc-51	12.4 c	(7/2)-	50,954	-43,219	438,4268
	21-Sc-52	8.2 c	3+	51,957	-40,380	443,6596
	21-Sc-52 21-Sc-53	3 c	(7/2-)	52,959	-37,968	449,3180

í	21-Sc-54	225 мс		53,963	-34,465	453,8873
l	21-Sc-55	120 мс	(7/2-)	54,967	-30,339	457,8320
	21-Sc-56	80 MC	3+	55,973	-25,467	461,0320
	21-Sc-57	00 1.10		56,977	-21,387	465,0230
Титан	22-Ti-38	120 нс	0+	38,010	9,101	280,3980
Intan	22-Ti-39	26 MC	0.	39,001	1,232	296,3380
	22-Ti-40	50 MC	0+	39,990	-8,850	314,4913
	22-Ti-40 22-Ti-41	80 MC	3/2+	40,983	-15,713	329,4260
	22-Ti-42	199 мс	0+	41,973	-25,121	346,9047
	22-Ti-42 22-Ti-43	509 MC	7/2-	42,969	-29,320	359,1754
	22-Ti-43	60.0 лет	0+	43,960	-37,548	375,4747
	22-Ti-45	184.8 мин	7/2-	44,958	-39,007	385,0047
	22-Ti-45 22-Ti-46	8.25%	0+	45,953	-44,125	398,1944
	22-11-46 22-Ti-47	7.44%	5/2-	46,952	-44,932	407,0721
		73.72%	0+	47,948	-48,487	418,6987
	22-Ti-48			11 '	,	'
	22-Ti-49	5.41%	7/2-	48,948	-48,558	426,8411
	22-Ti-50	5.18%	0+	49,945	-51,426	437,7802
	22-Ti-51	5.76 мин	3/2-	50,947	-49,727	444,1525
	22-Ti-52	1.7 мин	0+	51,947	-49,464	451,9610
	22-Ti-53	32.7 c	(3/2)-	52,950	-46,825	457,3929
i i	22-Ti-54	1 MKC	0+	53,951	-45,764	464,4040
	22-Ti-55	0.32 c	(3/2-)	54,955	-41,805	468,5164
1	22-Ti-56	0.19 c	0+	55,958	-39,132	473,9144
	22-Ti-57	0.18 c		56,963	-34,558	477,4120
	22-Ti-58	150 нс	0+	57,966	-31,568	482,4930
	22-Ti-61	10 мс		60,982	-16,750	491,8890
Ванадий	23-V-40	į		40,011	10,330	294,5290
	23-V-41	ļ l		41,000	-0,242	313,1720
	23-V-42	55 нс	(2-)	41,991	-8,169	329,1710
	23-V-43	800 мс		42,981	-18,024	347,0970
	23-V-44	111 MC	(2+)	43,974	-23,846	360,9900
	23-V-45	547 мс	7/2-	44,966	-31,874	377,0890
	23-V-46	422.50 мс	0+	45,960	-37,074	390,3607
	23-V-47	32.6 мин	3/2-	46,955	-42,004	403,3620
	23-V-48	15.9735 дн.	4+	47,952	-44,475	413,9040
	23-V-49	330 дн. 0.250%	7/2-	48,949	-47,956	425,4569
	23-V-50	1.4е+17 лет	6+	49,947	-49,218	434,7895
	23-V-51	99.750%	7/2-	50,944	-52,198	445,8408
	23-V-52	3.743 мин	3+	51,945	-51,437	453,1521
	23-V-53	1.60 мин	7/2-	52,944	-51,845	461,6306
	23-V-54	49.8 c	3+	53,946	-49,887	467,7440
	23-V-55	6.54 c	(7/2-)	54,947	-49.147	475,0759
	23-V-56	0.24 c	3+	55,950	-46,239	480,2393
	23-V-57	0.34 c	(7/2-)	56,952	-44,376	486,4476
	23-V-58	205 MC	()	57,957	-40,380	490,5229
	23-V-59	118 MC		58,959	-37,912	496,1257
	23-V-60	0.20 c	(3+)	59,965	-33,068	499,3533
	ZJ- V-00		(3.)			
	23-1/-61	150 220				1 704 / 140
1	23-V-61 23-V-62	150 HC	(3+)	60,967	-30,357 -25,020	504,7140
	23-V-61 23-V-62 23-V-63	150 нс 150 нс 150 нс	(3+) (7/2-)	61,973 62,977	-30,337 -25,020 -21,657	504,7140 507,4480 512,1560

Хром	24-Cr-42	350 нс	0+	42,006	5,990	314,2300
	24-Cr-43	21 мс +4-3	(3/2+)	42,998	-2,136	330,4260
	24-Cr-44	53 MC +4-3	0+	43,985	-13,535	349,8960
	24-Ст-45	50 мс		44,979	-19,412	363,8450
	24-Cr-46	0.26 c	0+	45,968	-29,471	381,9753
	24-Cr-47	500 мс	3/2-	46,963	-34,552	395,1280
	24-Cr-48	21.56 ч	0+	47,954	-42,815	411,4623
	24-Cr-49	42.3 мин 4.345%	5/2-	48,951	-45,325	422,0438
	24-Cr-50	1.8е+17 лет	0+	49,946	-50,255	435,0441
	24-Cr-51	27,7025 дн.	7/2-	50,945	-51,445	444,3057
	24-Cr-52	83.789%	0+	51,941	-55,413	456,3451
	24-Cr-53	9.501%	3/2-	52,941	-55,281	464,2843
	24-Cr-54	2.365%	0+-	53,939	-56,928	474,0033
	24-Cr-55	3.497 мин	3/2-	54,941	-55,103	480,2496
	24-Cr-56	5,94 мин	0+	55,941	-55,289	488,5062
	24-Cr-57	21.1 c	3/2-,5/2-,7/2-	56,944	-52,393	493,6819
	24-Cr-58	7.0 c	0+	57,944	-51,931	501,2910
	24-Cr-59	0.74 c		58,949	-47,851	505,2824
	24-Cr-60	0.57 c	0+	59,950	-46,826	512,3291
	24-Cr-61	0.27 c	_	60,954	-42,765	516,3391
	24-Cr-62	0.19 c	0+	61,956	-41,172	522,8176
	24-Cr-63	0.11 c	1	62,962	-35,527	525,2440
	24-Cr-64	1 мкс	0+	63,964	-33,347	531,1360
	24-Cr-65	150 нс	(1/2-)	64,970	-27,600	533,4600
	24-Cr-66	150 нс	0+	,	0,000	
	24-Cr-67	50 мс			0,000	
Марганец	25-Mn-44	105 нс	(2-)	44.007	6,399	329,1800
	25-Mn-45	70 нс	(7/2-)	44,995	-5,114	348,7650
	25-Mn-46	41 MC +7-6	(4+)	45,987	-12,370	364,0920
	25-Mn-47	100 мс	` ′	46,976	-22,263	382,0560
	25-Mn-48	158.1 мс	4+	47,969	-28,997	396,8620
	25-Mn-49	382 мс	5/2-	48,960	-37,611	413,5465
	25-Mn-50	283.29 мс	0+	49,954	-42,622	426,6288
	25-Mn-51	46.2 мин	5/2-	50,948	-48,237	440,3156
	25-Mn-52	5.591 дн.	6+	51,946	-50,701	450,8511
	25-Mn-53	3,74е+6 лет	7/2-	52,941	-54,684	462,9049
	25-Mn-54	312.11 дн.	3+	53,940	-55,551	471,8439
	25-Mn-55	100%	5/2-	54,938	-57,706	482,0703
	25-Mn-56	2.5789 ч	3+	55,939	-56,906	489,3408
	25-Mn-57	85.4 c	5/2-	56,938	-57,485	497,9914
	25-Mn-58	3.0 c	1+	57,940	-55,902	504,4801
	25-Mn-59	4.6 ¢	3/2-,5/2-	58,940	-55,473	512,1223
	25-Mn-60	51 c	0+	59,943	-52,914	517,6350
	25-Mn-61	0.67 c	(5/2)-	60,944	-51,735	524,5270
	25-Mn-62	671 мс	(3+)	61,948	-48,466	529,3288
	25-Mn-63	275 мс	` ′	62,950	-46,752	535,6862
	25-Mn-64	89 мс		63,954	-43,100	540,1060
	25-Mn-65	88 MC		64,956	-40,893	545,9697
	25-Mn-66	66 мс		65,961	-36,496	549,6440
	25-Mn-67	42 MC	(5/2-)	66,964	-33,701	554,9210
		_ 28 мс	, ,	1	0,000	R.

1	25-Mn-69	14 мс	5/2-		0,000	
Железо	26-Fe-45	350 нс	(3/2+)	45,015	13,563	329,3060
	26-Fe-46	20 мс +20-8	0+	46,001	0,755	350,1850
- 1	26-Fe-47	27 MC +32-10		46,993	-6,623	365,6340
- 1	26-Fe-48	44 MC	0+	47,981	-18,108	385,1910
1	26-Fe-49	70 мс	(7/2-)	48,974	-24,582	399,7360
- 1	26-Fe-50	155 мс	0+	49,963	-34,472	417,6965
1	26-Fe-51	305 мс	5/2-	50,957	-40,217	431,5136
	26-Fe-52	8.275 ч	0+	51,948	-48,329	447,6967
	26-Fe-53	8.51 мин	7/2-	52,945	-50,941	458,3802
1	20-1 0-33	5.845%	//2	32,545	30,511	150,5002
	26-Fe-54	3.1е+22 лет	0+	53,940	-56,248	471,7587
	26-Fe-55	2.73 лет	3/2-	54,938	-57,475	481,0566
ľ	26-Fe-56	91.754%	0+	55,935	-60,601	492,2539
	26-Fe-57	2,119%	1/2-	56,935	-60,176	499,8999
Ī	26-Fe-58	0.282%	0+	57,933	-62,149	509,9444
l	26-Fe-59	44.472 дн.	3/2-	58,935	-60,658	516,5253
P	26-Fe-60	1.5е+6 лет	0+	59,934	-61,407	525,3451
:	26-Fe-61	5.98 мин	3/2-,5/2-	60,937	-58,918	530,9270
	26-Fe-62	68 c	0+	61,937	-58,898	538,9787
	26-Fe-63	6.1 c	(5/2)-	62,940	-55,779	543,9315
1	26-Fe-64	2.0 c	0+	63,941	-55,079	551,3027
	26-Fe-65	0.4 c	0 1	64,945	-51,288	555,5828
H	26-Fe-66	0.44 c	0+	65,946	-50,319	562,6854
}		0.44 C	0	66,950	-46,575	567,0121
	26-Fe-67		0+	H	-44,237	572,7450
i	26-Fe-68	0.10 c	1	67,953	-39,402	575,9820
	26-Fe-69	0.17 c	1/2-	68,958		373,9620
	26-Fe-70	150 нс	0+		0,000	
ĺ	26-Fe-71	150 нс	(7/2+)		0,000	
	26-Fe-72	150 нс	0+	10.000	0,000	264 6610
Кобальт	27-Co-48			48,002	1,639	364,6610
ļ.	27-Co-49	35 нс	44.1	48,990	-9,576	383,9470
ŀ	27-Co-50	44 мс	(6+)	49,982	-17,195	399,6380
Į.	27-Co-51	200 нс	(7/2-)	50,971	-27,274	417,7880
1	27-Co-52	115 мс	6+	51,964	-33,916	432,5010
	27-Co-53	240 мс	(7/2-)	52,954	-42,639	449,2957
	27-Co-54	193.28 мс	0+	53,948	-48,005	462,7332
4	27-Co-55	17.53 ч	7/2-	54,942	-54,024	476,8229
	27-Co-56	77.233 дн.	4+	55,940	-56,035	486,9055
	27-Co-57	271.74 дн.	7/2-	56,936	-59,340	498,2815
	27-Co-58	70.86 дн.	2+	57,936	-59,841	506,8546
	27-Co-59	100%	7/2-	58,933	-62,224	517,3081
i	27-Co-60	1925.1 дн.	5+	59,934	-61,644	524,8000
	27-Co-61	1.650 ч	7/2-	60,932	-62,895	534,1222
		1)	2+	61,934	-61,428	540,7266
	27-Co-62	1.50 мин				
		II .		62,934	-61,837	549,2068
	27-Co-63	27.4 c	(7/2)-	62,934	-61,837	549,2068
	27-Co-63 27-Co-64	27.4 c 0.30 c	(7/2)- 1+	62,934 63,936	-61,837 -59,789	549,2068 555,2304
	27-Co-63 27-Co-64 27-Co-65	27.4 c 0.30 c 1.20 c	(7/2)- 1+ (7/2)-	62,934 63,936 64,936	-61,837 -59,789 -59,164	549,2068 555,2304 562,6767
	27-Co-63 27-Co-64 27-Co-65 27-Co-66	27.4 c 0.30 c 1.20 c 0.233 c	(7/2)- 1+ (7/2)- (3+)	62,934 63,936 64,936 65,940	-61,837 -59,789 -59,164 -56,052	549,2068 555,2304 562,6767 567,6360
	27-Co-63 27-Co-64 27-Co-65	27.4 c 0.30 c 1.20 c	(7/2)- 1+ (7/2)-	62,934 63,936 64,936	-61,837 -59,789 -59,164	549,2068 555,2304 562,6767

	27-Co-70	0.15 c		69,950	-46,752	590,6210
	27-Co-71	0.21 c		70,952	-44,963	596,9040
	27-Co-72	0.09 c		71,956	-40,604	600,6160
	27-Co-73	150 нс	(7/2-)	Î '	0,000	
	27-Co-74	150 нс	0+		0,000	
	27-Co-75	150 нс	(7/2-)		0,000	
Никель	28-Ni-49	350 нс			0,000	
	28-Ni-50	300 нс	0+	49,996	-3,791	385,4510
	28-Ni-51	200 нс	(7/2-)	50,988	-11,439	401,1700
	28-Ni-52	38 мс	0+	51,976	-22,654	420,4570
	28-Ni-53	45 MC	(7/2-)	52,968	-29,379	435,2540
	28-Ni-54	143 мс	0+	53,958	-39,206	453,1516
	28-Ni-55	204 мс	7/2-	54,951	-45,330	467,3468
	28-Ni-56	6.075 дн.	0+	55,942	-53,900	483,9878
	28-Ni-57	35.60 ч	3/2-	56,940	-56,076	494,2350
	28-Ni-58	68.077%	0+	57,935	-60,223	506,4538
	28-Ni-59	7.6е+4 лет	3/2-	58,934	-61,151	515,4533
	28-Ni-60	26.223%	0+	59,931	-64,468	526,8416
	28-Ni-61	1.140%	3/2-	60,931	-64,217	534,6616
	28-Ni-62	3.634%	0+	61,928	-66,743	545,2588
	28-Ni-63	100.1 лет	1/2-	62,930	-65,509	552,0967
	28-Ni-64	0.926%	0+	63,928	-67,096	561,7547
	28-Ni-65	2.5172 ч	5/2-	64,930	-65,123	567,8527
	28-Ni-66	54.6 ч	0+	65,929	-66,029	576,8301
	28-Ni-67	21 c	(1/2-)	66,932	-63,743	582,6152
	28-Ni-68	29 c	0+	67,932	-63,486	590,430
	28-Ni-69	11.4 c	9/2+	68,935	-60,378	595,393
	28-Ni-70	6.0 c	0+	69,936	-59,485	602,5719
	28-Ni-71	2.56 c	· ·	70,940	-55,890	607,0477
	28-Ni-72	1.57 c	0+	71,941	-54,679	613,9080
	28-Ni-73	0.84 c	0,	72,946	-50,226	617,5270
	28-Ni-74	0.9 c	0+	73,948	-48,522	623,8940
	28-Ni-75	0.6 c	(7/2+)	74,953	-43,808	627,2510
	28-Ni-76	0.24 c +55-24	0+	75,955	-41,610	633,1240
	28-Ni-77	150 нс	0.	76,961	-36,487	636,073
	28-Ni-78	150 нс	0+	77,964	-33,720	641,377
Медь	29-Cu-52	150 AC	3+	51,997	-2,627	399,6470
тутедь	29-Cu-53	300 нс	(3/2-)	52,986	-13.460	418,5520
	29-Cu-53	75 HC	(3+)	53,977	-21,694	434,858
	29-Cu-55	200 нс	(37)	54,966	-31,624	452,859
	29-Cu-56	78 MC	4+	55,959	-38,601	467,907
	29-Cu-57	196.3 мс	3/2-	56,949	-47,305	484,682
	29-Cu-58	3.204 c	1+	57,945	-51,660	497,1084
	29-Cu-59	81.5 c	3/2-	58,940	-56,352	509,871
			2+	59,937	-58,341	519,932
	29-Cu-60	23.7 мин 3.333 ч	3/2-	60,933	-58,341	531,6420
	29-Cu-61		3/2-		-62,795	540,528
	29-Cu-62	9.67 мин 69.17%	3/2-	61,933	-65,576	551,381
	29-Cu-63		3/2- 1+		N '	559,297
	29-Cu-64	12.700 ч	3/2-	63,930	-65,421	569,207
	29-Cu-65	30.83%	l .	64,928	-67,260	
	29-Cu-66	5.120 мин	1+	65,929	-66,254	576,273 585,390
	29-Cu-67	~ 61.83 ч	3/2-	66,928	-67,300	1 202,390

						50+ 500 C
	29-Cu-68	31.1 c	1+	67,930	-65,542	591,7036
	29-Cu-69	2.85 мин	3/2-	68,929	-65,740	599,9729
	29-Cu-70	4.5 c	1+	69,932	-62,960	605,2647
	29-Cu-71	19.5 c	(3/2-)	70,933	-62,764	613,1399
	29-Cu-72	6.6 c	(1+)	71,936	-60,063	618,5100
	29-Cu-73	3.9 c	(1 . 2 .)	72,936	-59,159	625,6770
Ī	29-Cu-74	1.594 c	(1+,3+)	73,940	-55,703	630,2930
	29-Cu-75	1.224 c	(3/2-)	74,942	-54,306	636,9670
	29-Cu-77	0.469 c		76,948	-48,484	647,2880
	29-Cu-78	342 мс		77,953	-43,957	650,8320
	29-Cu-79	188 MC		78,955	-41,656	656,6030
	29-Cu-80	150 нс		79,962	-35,499	658,5170
Цинк	30-Zn-54		0+	53,993	-6,567	418,9480
-	30-Zn-55	0.5		54,984	-14,923	435,3750
	30-Zn-56	36 мс	0+	55,972	-25,728	454,2510
	30-Zn-57	40 мс	(7/2-)	56,965	-32,686	469,2810
	30-Zn-58	86 мс	0+	57,955	-42,293	486,9592
	30-Zn-59	182.0 мс	3/2-	58,949	-47,257	499,9949
	30-Zn-60	2.38 мин	0+	59,942	-54,183	514,9919
	30-Zn-61	89.1 c	3/2-	60,940	-56,342	525,2225
	30-Zn-62	9.186 ч	0+	61,934	-61,167	538,1188
	30-Zn-63	38.47 мин	3/2-	62,933	-62,209	547,2320
	30-Zn-64	48.63%	0+	63,929	-66,000	559,0936
	30-Zn-65	244.26 дн.	5/2-	64,929	-65,908	567,0732
Î	30-Zn-66	27.90%	0+	65,926	-68,896	578,1330
	30-Zn-67	4.10%	5/2-	66,927	-67,877	585,1852
	30-Zn-68	18.75%	0+	67,925	-70,004	595,3834
	30-Zn-69	56.4 мин	1/2-	68,927	-68,415	601,8656
}		0.62% 5e+14	0.1	(0.005	60.550	<11.0014
	30-Zn-70	лет	0+	69,925	-69,559	611,0814
	30-Zn-71	2.45 мин	1/2-	70,928	-67,322	616,9150
	30-Zn-72	46.5 ч	0+	71,927	-68,128	625,7931
	30-Zn-73	23.5 c	(1/2)-	72,930	-65,410	631,1460
	30-Zn-74	95.6 c	0+	73,929	-65,709	639,5165
	30-Zn-75	10.2 c	(7/2+)	74,933	-62,468	644,3470
	30-Zn-76	5.7 c	0+	75,933	-62,043	651,9928
	30-Zn-77	2.08 c	(7/2+)	76,937	-58,604	656,6254
	30-Zn-78	1.47 c	0+	77,939	-57,222	663,3146
	30-Zn-79	0.995 с	(9/2+)	78,943	-53,398	667,5620
	30-Zn-80	0.545 c	0+	79,944	-51,777	674,0126
	30-Zn-81	0.29 с		80,950	-46,128	676,4340
	30-Zn-82	150 нс	0+	81,955	-42,066	680,4440
	30-Zn-83	150 нс	(5/2+)		0,000	
Галлий	31-Ga-56		. 41	55,995	-4,741	432,4820
I .	31-Ga-57			56,983	-15,901	451,7130
	31-Ga-58			57,974	-23,986	467,8700
	31-Ga-59			58,963	-34,121	486,0760
	31-Ga-60	1.2 мкс		59,957	-39,998	500,0250
	31-Ga-61	0.15 c	3/2-	60,949	-47,348	515,4460
	31-Ga-62	116.12 мс	0+	61,944	-51,996	528,1654
1	31-Ga-63	32.4 c	3/2-,5/2-	62,939	-56,689	540,9297
	31-Ga-64	2.627 мин	0+	63,937	-58,835	551,1464

	31-Ga-65	15.2 мин	3/2-	64,933	-62,653	563,0359
1	31-Ga-66	9.49 ч	0+	65,932	-63,721	572,1757
i l	31-Ga-67	3.2612 дн.	3/2-	66,928	-66,877	583,4024
	31-Ga-68	67.629 мин	1+	67,928	-67,083	591,6799
	31-Ga-69	60.108%	3/2-	68,926	-69,321	601,9892
	31-Ga-70	21.14 мин	1+	69,926	-68,905	609,6443
	31-Ga-71	39.892%	3/2-	70,925	-70,137	618,9478
1	31-Ga-72	14.10 ч	3-	71,926	-68,587	625,4688
	31-Ga-73	4.86 ч	3/2-	72,925	-69,704	634,6575
	31-Ga-74	8.12 мин	(3-)	73,927	-68,054	641,0789
	31-Ga-75	126 c	(3/2)-	74,927	-68,464	649,5605
	31-Ga-76	32.6 c	(2+,3+)	75,929	-66,203	655,3705
	31-Ga-77	13.2 c	(3/2-)	76,929	-65,874	663,1130
	31-Ga-78	5.09 c	(3+)	77,932	-63,662	668,9723
	31-Ga-79	2.847 c	(3/2-)	78,933	-62,488	675,8695
	31-Ga-80	1.697 c	-3	79,937	-59,068	680,5206
	31-Ga-81	1.217 c	(5/2-)	80,938	-57,983	687,5069
	31-Ga-82	0.599 с	(1,2,3)	81,943	-52,946	690,5420
	31-Ga-83	0.31 c	(-,-,-)	82,947	-49,490	695,1570
	31-Ga-84	0.085 c		83,952	-44,395	698,1330
	31-Ga-85	150 нс	(3/2-)		0,000	
	31-Ga-86	150 нс	(5.2)		0,000	
Германий	32-Gr-58		0+	57,991	-8,374	451,4760
	32-Gr-59			58,982	-17,000	468,1720
	32-Gr-60	- 30 мс	0+	59,970	-27,768	487,0120
	32-Gr-61	40 мс	(3/2-)	60,964	-33,729	501,0450
	32-Gr-62	150 нс	0+	61,955	-42,243	517,6300
	32-Gr-63	95 мс +23-20		62,950	-46,910	530,3680
1	32-Gr-64	63.7 c	0+	63,942	-54,425	545,9541
	32-Gr-65	30.9 с	(3/2)-	64,939	-56,411	556,0112
	32-Gr-66	2.26 ч	0+	65,934	-61,621	569,2933
	32-Gr-67	18.9 мин	1/2-	66,933	-62,654	578,3971
	32-Gr-68	270.8 дн.	0+	67,928	-66,977	590,7916
	32-Gr-69	39.05 ч	5/2-	68,928	-67,094	598,9796
	32-Gr-70	20.37%	0+	69,924	-70,560	610,5176
	32-Gr-71	11.43 дн.	1/2-	70,925	-69,905	617,9335
{ i	32-Gr-72	27.31%	0+	71,922	-72,586	628,6855
1	32-Gr-73	7.76%	9/2+	72,923	-71,297	635,4684
	32-Gr-74	36.73%	0+	73,921	-73,422	645,6646
	32-Gr-75	82.78 мин 7.83%	1/2-	74,923	-71,856	652,1698
	32-Gr-76	0.8е+25 лет	0+	75,921	-73,213	661,5981
	32-Gr-77	11.30 ч	7/2+	76,924	-71,214	667,6707
	32-Gr-78	88.0 мин	0+	77,923	-71,862	676,3899
	32-Gr-79	18.98 c	(1/2)-	78,925	-69,488	682,0872
	32-Gr-80	29.5 с	0+	79,925	-69,448	690,1183
	32-Gr-81	7.6 c	(9/2+)	80,929	-66,303	695,0446
	32-Gr-82	4.60 c	0+	81,930	-65,623	702,4366
	32-Gr-83	1.85 c	(5/2+)	82,935	-61,004	705,8880
	32-Gr-84	0.947 c	0+	83,937	-58,395	711,3510
	32-Gr-85	_ 535 мс		84,943	-53,384	714,4110
	32-Gr-86	150 нс	0+	85,946	-50,049	719,1480

	32-Gr-87 32-Gr-88	150 нс 150 нс	(5/2+) 0+		0,000	
	32-Gr-89	150 нс		70.000	0,000	464.0610
Мышьяк	33-As-60			59,993	-6,399	464,8610
	33-As-61			60,981	-18,052	484,5850
	33-As-62			61,973	-24,964	499,5680
	33-As-63			62,964	-33,823	516,4980
	33-As-64	1.2 мкс		63,958	-39,521	530,2680
	33-As-65	0.19 c+11-7		64,949	-47,056	545,8740
	33-As-66	95.77 мс		65,944	-51,821	558,7110
	33-As-67	42.5 c	(5/2-)	66,939	-56,644	571,6047
	33-As-68	151.6 c	3+	67,937	-58,877	581,9092
	33-As-69	15.2 мин	5/2-	68,932	-63,081	594,1842
4	33-As-70	52.6 мин	4(+)	69,931	-64,340	603,5153
	33-As-71	65.28 ч	5/2-	70,927	-67,892	615,1384
	33-As-72	26.0 ч	2-	71,927	-68,230	623,5470
	33-As-73	80.30 дн.	3/2-	72,924	-70,956	634,3452
	33-As-74	17,77 дн.	2-	73,924	-70,860	642,3198
	33-As-75	100%	3/2-	74,922	-73,033	652,5640
	33-As-76	1.0778 дн.	2-	75,922	-72,290	659,8924
	33-As-77	38.83 ч	3/2-	76,921	-73,916	669,5904
	33-As-78	90.7 мин	2-	77,922	-72,816	676,5617
	33-As-79	9.01 мин	3/2-	78,921	-73,636	685,4528
	33-As-80	15.2 c	1+	79,923	-72,118	692,0061
	33-As-81	33.3 c	3/2-	80,922	-72,533	700,4922
	33-As-82	19.1 c	(1+)	81,925	-70,323	706,3542
	33-As-83	13.4 c	(5/2-,3/2-)	82,925	-69,880	713,9822
	33-As-84	3.24 c	(3-)	83,929	-66,080	718,2540
	33-As-85	2.021 c	(3/2-)	84,932	-63,519	723,7630
	33-As-86	0.945 c		85,936	-59,401	727,7170
	33-As-87	0.48 c	(3/2-)	86,940	-56,281	732,6680
	33-As-88	150 нс	` ′	87,945	-51,642	736,1010
	33-As-89			88,949	-47,292	739,8220
	33-As-90	150 нс			0,000	
	33-As-91	150 нс		- 3	0,000	
	33-As-92	150 нс			0,000	
Селен	34-Se-65	50 мс	1 1	64,965	-32,919	530,9550
	34-Se-66	1.2 мкс	0+	65,955	-41,722	547,8290
	34-Se-67	60 мс +17-11		66,950	-46,491	560,6690
	34-Se-68	35.5 c	0+	67,942	-54,148	576,3980
	34-Se-69	27.4 c	(1/2-,3/2-)	68,940	-56,298	586,6187
	34-Se-70	41.1 мин	0+	69,934	-61,940	600,3330
	34-Se-71	4.74 мин	5/2-	70,932	-63,092	609,5560
	34-Se-72	8,40 дн.	0+	71,927	-67,894	622,4297
	34-Se-73	7.15 ч	9/2+	72,927	-68,216	630,8228
	34-Se-74	0.89%	0+	73,922	-72,213	642,8905
	34-Se-75	119.779 дн.	5/2+	74,923	-72,169	650,9180
	34-Se-76	9.37%	0+	75,919	-75,252	662,0721
	34-Se-77	7.63%	1/2-	76,920	-74,599	669,4909
	34-Se-78	23.77%	0+	77,917	-77,026	679,9888
	34-Se-79	1.1е+6 лет	7/2+	78,918	-75,917	686,9514
	34-Se-79 34-Se-80	49.61%	0+	79,917	-77,759	696,8652
	1 24-20-00	47.0170	, ,	12,211	-11,133	0,0002

	34-Se-81	18.45 мин 8.73%	1/2-	80,918	-76,389	703,5662
	34-Se-82	0.83е+20 лет	0+	81,917	-77,593	712,8419
	34-Se-83	22.3 мин	9/2+	82,919	-75,340	718,6599
	34-Se-84	3.10 мин	0+	83,918	-75,950	727,3409
	34-Se-85	31.7 c	(5/2+)	84,922	-72,429	731,8910
	34-Se-86	15.3 c	0+	85,924	-70,541	738,0747
	34-Se-87	5.29 c	(5/2+)	86,929	-66,583	742,1876
	34-Se-88	1.53 c	0+	87,931	-63,878	747,5545
	34-Se-89	0.41 c	(5/2+)	88,936	-59,597	751,3450
	34-Se-90	150 нс	0+	89,939	-56,430	756,2490
	34-Se-91	0.27 c	01	90,945	-50,888	758,7780
	34-Se-92	150 нс	0+	91,949	-47,199	763,1600
				91,549	,	703,1000
	34-Se-93	150 нс	(1/2+)		0,000	
77	34-Se-94	150 нс	0+	66.065	0,000	546 1040
Бром	35-Br-67			66,965	-32,798	546,1940
	35-Br-68	1.2 мкс		67,958	-38,892	560,3590
	35-Br-69	24 нс		68,950	-46,409	575,9480
	35-Br-70	79.1 мс		69,945	-51,590	589,2010
	35-Br-71	21.4 c	(5/2)-	70,939	-56,592	602,2740
	35-Br-72	78.6 c	3+	71,936	-59,153	612,9056
	35-Br-73	3.4 мин	1/2-	72,932	-63,533	625,3568
	35-Br-74	25.4 мин	(0-)	73,930	-65,306	635,2015
	35-Br-75	96.7 мин	3/2-	74,926	-69,139	647,1057
	35-Br-76	16.2 ч	1-	75,925	-70,289	656,3269
	35-Br-77	57.036 ч	3/2-	76,921	-73,234	667,3434
	35-Br-78	6.46 мин	1+	77,921	-73,452	675,6327
	35-Br-79	50.69%	3/2-	78,918	-76,068	686,3201
	35-Br-80	17.68 мин	1+	79,919	-75,889	694,2123
	35-Br-81	49.31%	3/2-	80,916	-77,974	704,3691
	35-Br-82	35.30 ч	5-	81,917	-77,496	711,9620
	35-Br-83	2.40 ч	3/2-	82,915	-79,009	721,5465
	35-Br-84	31.80 мин	2-	83,917	-77,776	728,3851
	35-Br-85	2.90 мин	3/2-	84,916	-78,611	737,2907
	35-Br-86	55.1 c	(2-)	85,919	-75,640	742,3913
	35-Br-87	55,60 c	3/2-	86,921	-73,858	748,6802
	35-Br-88	16.29 c	(1,2-)	87,924	-70,732	753,6262
	35-Br-89	4.40 c	(3/2-,5/2-)	88,926	-68,570	759,5352
	35-Br-90	1.91 c	(312+,312-)	89,931	-64,613	763,6498
	35-Br-91	0.541 c		90,934	-61,511	768,6189
		0.341 c	(2.)	91,939	-56,583	771,7627
	35-Br-92		(2-)		-53,002	776,2530
	35-Br-93	102 мс	(5/2-)	92,943		
	35-Br-94	70 мс	(2/2)	93,949	-47,804	779,1260
	35-Br-95	150 нс	(3/2-)		0,000	
	35-Br-96	150 нс	(2 (2)		0,000	
	35-Br-97	150 нс	(3/2-)	10.015	0,000	561.0610
Криптон	36-Kr-69	32 мс		68,965	-32,304	561,0610
	36-Кл-70	1.2 мкс	0+	69,956	-40,976	577,8040
	36-Kr-71	100 мс	(5/2)-	70,951	-46,100	590,9990
	36-Kr-72	- 17.2 c	0+	71,942	-54,113	607,0833
	36-Kr-73	27.0 с	5/2-	72,939	-56,885	617,9271
	36-Kr-74	11.50 мин	0+	73,933	-62,170	631,2827

1	36-Kr-75	4.29 мин	5/2+	74,931	-64,242	641,4261
	36-Kr-76	14.8 ч	0+	75,926	-68,979	654,2345
	36-Kr-77	74.4 мин 0.35%	5/2+	76,925	-70,171	663,4985
	36-Kr-78	0.9е+20 лет	0+	77,920	-74,160	675,5582
	36-Kr-79	35.04 4	1/2-	78,920	-74,442	683,9120
	36-Kr-80	2.28%	0+	79,916	-77,893	695,4344
	36-Kr-81	2.29е+5 лет	7/2+	80,917	-77,694	703,3061
	36-Kr-82	11.58%	0+	81,913	-80,589	714,2723
	36-Kr-83	11.49%	9/2+	82,914	-79,982	721,7369
	36-Kr-84	57.00%	0+	83,912	-82,431	732,2574
	36-Kr-85	3934.4 дн.	9/2+	84,913	-81,481	739,3783
	36-Kr-86	17.30%	0+	85,911	-83,266	749,2350
	36-Kr-87	76.3 мин	5/2+	86,913	-80,710	754,7503
	36-Kr-88	70.3 мин 2.84 ч	0+	87,914	-79,692	761,8038
	36-Kr-89	3.15 мин	3/2(+)	88,918	-76,725	766,9078
	36-Kr-90	32.32 c	0+	89,920	-74,963	773,2174
		8,57 c	5/2(+)	90,923	-71,313	777,6386
!	36-Kr-91 36-Kr-92	1.840 c	0+	91,926	-68,788	783,1852
		1.286 c	1/2+	92,931	-64,026	786,4943
	36-Kr-93	0.20 c	0+	93,934	-61,141	791,6810
1	36-Kr-94	0.20 c	38719	94,940	-56,039	794,6500
	36-Kr-95	N .	0+		-53,030	799,7120
	36-Kr-96	50 мс 150 нс	0+	95,943 96,949	-47.916	802,6700
	36-Kr-97	150 нс	0+	90,949	0,000	802,0700
	36-Kr-98		(3/2+)		0,000	
	36-Kr-99	150 нс 150 нс	0+		0,000	
D. 6	36-Kr-100 37-Rb-71	130 HC	UT UT	70,965	-32,304	576,4210
Рубидий		1.2 мкс	(3+)	71,959	-38,117	590,3050
	37-Rb-72 37-Rb-73	30 Hc	(5/2-)	72,950	-46,234	606,4930
		64.9 мс	(0+)	73,944	-51,726	620,0563
	37-Rb-74	19.0 c	(3/2-)	74,939	-57,222	633,6245
	37-Rb-75	36.5 c	1(-)	75,935	-60,481	644,9540
	37-Rb-76 37-Rb-77	3.77 мин	3/2-	76,930	-64,826	657,3706
	4	17.66 мин	0(+)	77,928	-66,936	667,5519
	37-Rb-78	22.9 мин	5/2+	78,924	-70,797	679,4840
	37-Rb-79	33,4 c	1+	79,923	-72,173	688,9315
	37-Rb-80	4.576 ч	3/2-	80,919	-75,456	700,2865
	37-Rb-81	1.273 мин	1+	81,918	-76,189	709,0904
	37-Rb-82	1	5/2-		-79,073	720,0454
	37-Rb-83	86.2 дн.	2-	82,915	,	
	37-Rb-84	32.77 дн.	5/2-	83,914	-79,750	728,7942 739,2831
	37-Rb-85	72.17%	2-	84,912	-82,168	
	37-Rb-86	18.631 дн. 27.83%	2-	85,911	-82,747	747,9340
1	37-Rb-87	4.75е+10 лет	3/2-	86,909	-84,595	757,8531
	37-Rb-88	17.78 мин	2-	87,911	-82,606	763,9356
	37-Rb-89	15.15 мин	3/2-	88,912	-81,711	771,1114
	37-Rb-90	158 c	0-	89,915	-79,355	776,8269
	37-Rb-91	58.4 c	3/2(-)	90,917	-77,748	783,2912
	37-Rb-92	4.492 c	0-	91,920	-74,775	788,3899
	37-Rb-93	5.84 c	5/2-	92,922	-72,626	794,3119
	37-Rb-94	2.702 c	3(-)	93,926	-68,551	798,3084

	37-Rb-95	377.5 мс	5/2-	94,929	-65,839	803,6673
	37-Rb-96	202.8 мс	2+	95,934	-61,214	807,1140
	37-Rb-97	169.9 мс	3/2+	96,937	-58,365	812,3360
	37-Rb-98	114 мс	(1,0)	97,942	-54,303	816,3453
	37-Rb-99	50.3 мс	(5/2+)	98,945	-50,840	820,9542
	37-Rb-100	51 MC	(5/21)	99,950	-46,696	824,8810
	37-Rb-101	32 MC	(3/2+)	100,953	-43,598	829,8542
Стронций	38-Sr-73		(5.5)	72,966	-31,699	591,1760
Строндии	38-Sr-74	1.2 мкс	0+	73,956	-40,697	608,2450
	38-Sr-75	71 MC +71-24	(3/2-)	74,950	-46,649	622,269
	38-Sr-76	8.9 c	0+	75,942	-54,390	638,081
	38-Sr-77	9.0 c	5/2+	76,938	-57,975	649,737
	38-Sr-78	2.5 мин	0+	77,932	-63,175	663,008
	38-Sr-79	2.25 мин	3/2(-)	78,930	-65,477	673,382
	38-Sr-80	106.3 мин	0+	n -	-70,305	686,281
		11 11		79,925		
	38-Sr-81	22.3 мин	1/2-	80,923	-71,527	695,574
1	38-Sr-82	25.55 дн.	0+	81,918	-76,009	708,127
	38-Sr-83	32.41 ч	7/2+	82,918	-76,797	716,987
	38-Sr-84	0.56%	0+	83,913	-80,644	728,906
	38-Sr-85	64.84 дн.	9/2+	84,913	-81,103	737,435
	38-Sr-86	9.86%	0+	85,909	-84,522	748,925
	38-Sr-87	7.00%	9/2+	86,909	-84,878	757,354
	38-Sr-88	82.58%	0+	87,906	-87,920	768,466
	38-Sr-89	50.53 дн.	5/2+	88,907	-86,207	774,825
	38-Sr-90	28.79 лет	0+	89,908	-85,942	782,631
	38-Sr-91	9.63 ч	5/2+	90,910	-83,639	788,399
	38-Sr-92	2.71 ч	0+	91,911	-82,875	795,707
	38-Sr-93	7.423 мин	5/2+	92,914	-80,088	800,991
	38-Sr-94	75.3 c	0+	93,915	-78,842	807,816
	38-Sr-95	23.90 с	1/2+	94,919	-75,117	812,163
	38-Sr-96	1.07 c	0+	95,922	-72,954	818,071
	38-Sr-97	429 мс	1/2+	96,926	-68,792	821,980
	38-Sr-98	0.653 c	0+	97,928	-66,629	827,888
1	38-Sr-99	0.269 c	3/2+	98,933	-62,117	831,448
	38-Sr-100	202 мс	0+	99,935	-60,220	837,622
	38-Sr-101	118 мс	(5/2-)	100,941	-55,408	840,881
	38-Sr-102	69 мс	0+	101,943	-53,078	846,623
	38-Sr-103	150 нс		102,949	-47,553	849,170
	38-Sr-104	150 нс	0+	103,952	-44,404	854,092
	38-Sr-105	150 нс			0,000	
Иттрий	39-Y-77	1.2 мкс		76,950	-46,929	637,909
	39-Y-78	55 MC	(0+)	77,944	-52,629	651,681
į	39-Y-79	14.8 c	(5/2+)	78,937	-58,357	665,480
	39-Y-80	30.1 c	4-	79,934	-61,165	676,359
	39-Y-81	70.4 c	(5/2+)	80,929	-66,016	689,281
	39-Y-82	8.3 c	1+	81,927	-68,193	699,529
	39-Y-83	7.08 мин	(9/2+)	82,922	-72,328	711,736
	39-Y-84	4.6 c	1+	83,920	-74,158	721,637
	39-Y-85	2.68 4	(1/2)-	84,916	-77,848	733,398
	39-Y-86	14.74 4	4-	85,915	-79,282	742,903
	39-Y-87	79.8 ч	1/2-	86,911	-83,017	754,710
	37-1-01	12.0%	112-	87,910	-84,297	764,061

11 (1 20 32 00 1	1000/	1/2	1 00000	97 702	775 5390
1	39-Y-89	100%	1/2-	88,906	-87,702	775,5380
1	39-Y-90	64.00 ч	2-	89,907	-86,488	782,3951
	39-Y-91	58.51 дн.	1/2-	90,907	-86,346	790,3249
	39-Y-92	3.54 ч	2-	91,909	-84,816	796,8654
-	39-Y-93	10.18 ч	1/2-	92,910	-84,224	804,3454
	39-Y-94	18.7 мин	2-	93,912	-82,350	810,5422
	39-Y-95	10.3 мин	1/2-	94,913	-81,204	817,4681
1	39-Y-96	5.34 c	0-	95,916	-78,341	822,6759
-	39-Y-97	3.75 c	(1/2-)	96,918	-76,261	828,6670
	39-Y-98	0.548 c	(0)-	97,922	-72,452	832,9299
	39-Y-99	1.470 c	(5/2+)	98,925	-70,202	838,7515
i	39-Y-100	735 мс	1-,2-	99,928	-67,295	843,9150
	39-Y-101	0.45 c	(5/2+)	100,930	-64,913	849,6045
	39-Y-103	0.19 c	(5/2+)	102,937	-58,740	859,5740
	39-Y-104	180 мс		103,941	-54,539	863,4450
	39-Y-105	150 нс		104,945	-51,148	868,1250
	39-Y-106	150 нс		105,950	-46,370	871,4180
	39-Y-107	30 мс	(5/2+)		0,000	
j	39-Y-108	150 нс	` '		0,000	
Цирконий	40-Zr-79	56 мс		78,949	-47,357	653,6980
	40-Zr-80	3.9 c	0+	79,941	-55,377	669,7890
	40-Zr-81	5.3 c	(3/2-)	80,937	-58,856	681,3392
	40-Zr-82	32 c	0+	81,931	-64,193	694,7471
	40-Zr-83	44 c	(1/2-)	82,929	-66,460	705,0858
	40-Zr-84	25.9 мин	0+	83,923	-71,492	718,1890
	40-Zr-85	7.86 мин	7/2+	84,921	-73,155	727,9230
A	40-Zr-86	16.5 ч	0+	85,916	-77,805	740,6447
	40-Zr-87	1,68 ч	(9/2)+	86,915	-79,348	750,2588
	40-Zr-88	83.4 дн.	0+	87,910	-83,624	762,6060
	40-Zr-89	78.41 ч	9/2+	88,909	-84,869	771,9230
	40-Zr-90	51.45%	0+	89,905	-88,768	783,8929
	40-Zr-91	11.22%	5/2+	90,906	-87,891	791,0874
i i	40-Zr-92	17.15%	0+	91,905	-88,455	799,7221
	40-Zr-93	1.53е+6 лет	5/2+	92,906	-87,117	806,4563
	40-Zr-94	17.38%	0+	93,906	-87,266	814,6765
	40-Zr-95	64.02 дн.	5/2+	94,908	-85,658	821,1392
	10 21 70	2.80%	0.1	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,
	40-Zr-96	2.2е+19 лет	0+	95,908	-85,441	828,9935
	40-Zr-97	16.744 4	1/2+	96,911	-82,949	834,5730
	40-Zr-98	30.7 c	0+	97,913	-81,276	840,9717
	40-Zr-99	2.1 c	(1/2+)	98,917	-77,769	845,5362
	40-Zr-100	7.1 c	0+	99,918	-76,605	852,4426
	40-Zr-101	2.3 c	(3/2+)	100,921	-73,458	857,3671
	40-Zr-102	2.9 c	0+	101,923	-71,743	863,7234
	40-Zr-103	1.3 c	(5/2-)	102,927	-68,374	868,4265
	40-Zr-103 40-Zr-104	1.2 c	0+	103,929	-66,341	874,4640
	40-Zr-104 40-Zr-105	0.6 c	,	104,933	-62,364	878,5580
	40-Zr-106	150 нс	0+	105,936	-59,699	883,9660
	40-Zr-107	150 MC	0,	106,941	-55,089	887,4260
	40-Zr-107	150 мс	0+	107,944	-51,903	892,3120
	40-Zr-109	150 нс	0.	107,544	0,000	3,2,3,20
			0+			
	40-Zr-110	150 нс	0+		0,000	

Ниобий	41-Nb-81	0.8 c		80,949	-47,460	669,1600
1	41-Nb-82	50 MC		81,943	-52,974	682,7460
	41-Nb-83	4.1 c	(5/2+)	82,937	-58,960	696,8034
	41-Nb-84	12 c	3+	83,934	-61,879	707,7940
	41-Nb-85	20.9 c	(9/2+)	84,928	-67,155	721,1406
	41-Nb-86	88 c	(5+)	85,925	-69,827	731.8843
	41-Nb-87	2.6 мин	(9/2+)	86,920	-74,183	744,3114
	41-Nb-88	14.5 мин	(8+)	87,918	-76,424	754,6240
	41-Nb-89	2.03 ч	(9/2+)	88,913	-80,578	766,8496
	41-Nb-90	14.60 9	8+	89,911	-82,657	776,9995
1	41-Nb-91	6.8е+2 лет	9/2+	90,907	-86,638	789,0516
	41-Nb-92	3.47е+7 лет	(7)+	91,907	-86,449	796,9342
	41-Nb-93	100%	9/2+	92,906	-87,209	805,7653
	41-Nb-94	2.03е+4 лет	(6)+	93,907	-86,365	812,9927
	41-Nb-95	34.997 дн.	9/2+	94,907	-86,782	821,4816
	41-Nb-96	23.35 ч	6+	95,908	-85,604	828,3747
		72.1 мин	9/2+	96,908	-85,607	836,4488
	41-Nb-97		9/2+ I+	y ,	-83,526	842,4396
	41-Nb-98	2.86 c	9/2+	97,910 98,912	-82,327	849,3119
	41-Nb-99	15.0 c			-79,939	n '
	41-Nb-100	1.5 c	1+	99,914	, , ,	854,9953
	41-Nb-101	7.1 c	(5/2+)	100,915	-78,943 75,310	862,0698
	41-Nb-103	1.5 c	(5/2+)	102,919	-75,319	874,5891
	41-Nb-104	4.9 c	(1+)	103,922	-72,229	879,5696
	41-Nb-105	2.95 c	(5/2+)	104,924	-70,855	886,2674
	41-Nb-106	1.02 c		105,928	-66,891	890,3740
	41-Nb-107	330 мс	(21)	106,930	-64,916	896,4710
	41-Nb-108	0.193 c	(2+)	107,935	-60,538	900,1640
	41-Nb-109	0.19 c	(5/2)	108,938	-58,097	905,7950
	41-Nb-110	0.17 c	(5 (0))	109,943	-53,393	909,1620
	41-Nb-111	150 нс	(5/2+)		0,000	
	41-Nb-112	150 нс	(2+)		0,000	
	41-Nb-113	150 нс		92.040	0,000	694.9000
Молибден	42-Mo-83	0.4 c	0.5	82,949	-47,748	684,8090
	42-Mo-84	150 нс	0+	83,940	-55,806	700,9380
	42-Mo-85	3.2 c	(1/2-)	84,937	-59,066	712,2700
	42-Mo-86	19.6 c	0+	85,931	-64,557	725,8319
	42-Mo-87	13.6 c	(7/2+)	86,927	-67,695	737,0409
	42-Mo-88	8.0 мин	0+	87,922	-72,701	750,1181
	42 - Mo-89	2.11 мин	(9/2+)	88,919	-75,003	760,4922
	42-Mo-90	5.56 ч	0+	89,914	-80,168	773,7281
	42-Mo-91	15.49 мин 14.84%	9/2+	90,912	-82,204	783,8352
	42-Mo-92	1.9е+20 лет	0+	91,907	-86,805	796,5083
	42-Mo-93	4.0е+3 лет	5/2+	92,907	-86,804	804,5780
	42-Mo-94	9.25%	0+	93,905	-88,410	814,2558
	42-Mo-95	15.92%	5/2+	94,906	-87,708	821,6249
	42-Mo-96	16.68%	0+	95,905	-88,791	830,7792
	42-Mo-97	9.55%	5/2+	96,906	-87,541	837,6003
	42-Mo-98	24.13%	0+	97,905	-88,112	846,2428
	42-Mo-99	65.94 ч	1/2+	98,908	-85,966	852,1682
		9.63%			0.38	
	42-Mo-100	0.95е+19 лет	0+	99,907	-86,184	860,4579

	42-Mo-101	14.61 мин	1/2+	100,910	-83,512	865,8564
	42-Mo-102	11.3 мин	0+	101,910	-83,558	873,9737
	42-Mo-103	67.5 c	(3/2+)	102,913	-80,849	879,3368
	42-Mo-104	60 c	0+	103,914	-80,334	886,8923
	42-Mo-105	35.6 c	(3/2+)	104,917	-77,340	891,9700
	42-Mo-106	8.4 c	0+	105,918	-76,257	898,9588
	42-Mo-107	3.5 c	(7/2-)	106,922	-72,941	903,7136
	42-Mo-108	1.09 c	0+	107,924	-71,185	910,0290
	42-Mo-109	0.53 c	(7/2-)	108,928	-67,245	914,1600
	42-Mo-110	0.30 c	0+	109,930	-65,456	920,4430
,	42-Mo-111	150 нс		110,935	-61,004	924,0620
	42-Mo-112	150 нс	0+	111,937	-58,833	929,9620
	42-Mo-113	150 нс	0	112,942	-53,999	933,1990
	1	150 нс	0+	112,942	0,000	933,1990
	42-Mo-114		07			
	42-Mo-115	150 нс		04.040	0,000	(00.0070
Технеций	43-Tc-85	0.5 c		84,949	-47,562	699,9830
}	43-Tc-86	47 мс	(0 (0)	85,943	-53,207	713,6990
	43-Tc-87	150 нс	(9/2+)	86,937	-59,122	727,6860
l	43-Tc-88	5.8 c	(3+)	87,933	-62,568	739,2040
	43-Tc-89	12.8 c	(9/2+)	88,928	-67,493	752,1999
	43-Tc-91	3.14 мин	(9/2)+	90,918	-75,984	776,8328
	43-Tc-92	4.23 мин	(8)+	91,915	-78,935	787,8556
1	43-Tc-93	2.75 ч	9/2+	92,910	-83,603	800,5948
	43-Tc-94	293 мин	7+	93,910	-84,155	809,2177
	43-Tc-95	20.0 ч	9/2+	94,908	-86,017	819,1519
	43-Tc-96	4.28 дн.	7+	95,908	-85,818	827,0236
	43-Tc-97	4.21е+6 лет	9/2+	96,906	-87,221	836,4977
	43-Tc-98	4.2е+6 лет	(6)+	97,907	-86,428	843,7765
	43-Tc-99	2.111е+5 лет	9/2+	98,906	-87,323	852,7431
	43-Tc-100	15.8 c	1+	99,908	-86,016	859,5075
	43-Tc-101	14.22 мин	9/2+	100,907	-86,336	867,8985
	43-Tc-102	5.28 c	1+	101,909	-84,568	874,2013
	43-Tc-103	54.2 c	5/2+	102,909	-84,599	882,3044
	43-Tc-104	18.3 мин	(3+)	103.911	-82,489	888,2649
}	43-Tc-105	7.6 мин	(5/2+)	104,912	-82,290	896,1377
i.	43-Tc-106	35.6 c	(1,2)	105,914	-79,777	901,6964
	43-Tc-107	21.2 c	(3/2-)	106,915	-79,101	909,0912
	43-Tc-108	5,17 c	(2)+	107,918	-75,935	913,9971
	43-Tc-109	0.86 c	(5/2+)	108,920	-74,867	921.0000
	43-Tc-110	0.92 c	(1+,2+)	109,923	-71,362	925,5660
	43-Tc-111	0.30 c	(- ',- ')	110,925	-69,815	932,0910
	43-Tc-112	0.29 c		111,929	-65,913	936,2590
	43-Tc-113	0.17 c		112,931	-63,966	942,3840
	43-Tc-114	0.17 c		113,936	-59,727	946,2170
	43-Tc-115	150 нс		114,938	-57,492	952,0530
	43-Tc-116	150 нс		117,236	0,000	752,0550
	43-Tc-116 43-Tc-117	150 нс	(5/2+)		0,000	
		150 нс	(3147)		0,000	
Dr.m	43-Tc-118	1.5 MKC		86,949	-47,339	715,1200
Рутений	44-Ru-87	1.5 мкс	0+	87,949	-55,498	731,3510
	44-Ru-88	130 HC	Į · ∪⊤	11 '	-59,513	743,4370
	44-Ru-89	11.0	0+	88,936	1 1	757,4050
ll .	44-Ru-90	11 c	U+	89,930	-65,409	137,4030

-	44-Ru-91	9 c	(9/2+)	90,926	-68,579	768,6458
	44-Ru-92	3.65 мин	0+	91,920	-74,408	782,5460
- 1	44-Ru-93	59.7 с	(9/2)+	92,917	-77,266	793,4755
	44-Ru-94	51.8 мин	0+	93,911	-82,568	806,8488
- 1	44-Ru-95	1.643 ч	5/2+	94,910	-83,450	815,8021
	44-Ru-96	5.54%	0+	95,908	-86,072	826,4956
i	44-Ru-97	2.791 дн.	5/2+	96,908	-86,112	834,6071
	44-Ru-98	1.87%	0+	97,905	-88,224	844,7906
	44-Ru-99	12.76%	5/2+	98,906	-87,617	852,2544
	44-Ru-100	12.60%	0+	99,904	-89,219	861,9275
	44-Ru-101	17.06%	5/2+	100,906	-87,950	868,7296
i	44-Ru-102	31.55%	0+	101,904	-89,098	877,9492
1	44-Ru-103	39.26 дн.	3/2+	102,906	-87,259	884,1816
	44-Ru-104	18.62%	0+	103,905	-88,091	893,0853
	44-Ru-105	4.44 ч	3/2+	104,908	-85,930	898,9953
ļ.	44-Ru-106	373,59 дн.	0+	105,907	-86,324	907,4611
ì	44-Ru-107	3.75 мин	(5/2)+	106,910	-83,921	913,1289
	44-Ru-108	4.55 мин	0+	107,910	-83,655	920,9347
	44-Ru-109	34.5 c	(5/2+)	108,913	-80,852	926,2028
	44-Ru-110	14.6 c	0+	109,914	-80,140	933,5619
1	44-Ru-111	2.12 c		110,918	-76,792	938,2860
	44-Ru-112	1.75 c	0+	111,919	-75,867	945,4320
Į	44-Ru-113	0.80 c		112,923	-72,154	949,7890
1	44-Ru-114	0.53 c	0+	113,924	-70,794	956,5010
	44-Ru-115	740 мс		114,928	-66,779	960,5570
	44-Ru-116	150 нс	0+	115,930	-65,056	966,9050
	44-Ru-117	150 нс		116,935	-60,743	970,6640
	44-Ru-118	150 нс	0+	117,937	-58,656	976,6490
İ	44-Ru-119	150 нс	_		0,000	
	44-Ru-120	150 нс	0+		0,000	
-	45-Rh-89	1.5 мкс		88,949	-47,152	730,2940
	45-Rh-90	150 нс		89,943	-53,216	744,4290
1	45-Rh - 91	0.1 мкс		90,937	-59,103	758,3880
	45-Rh - 92	100 нс		91,932	-63,360	770,7160
	45-Rh-93		(9/2+)	92,926	-69,173	784,6000
ı	45-Rh-95	5.02 мин	(9/2)+	94,916	-78,340	809,9098
	45-Rh-96	9,90 мин	(6+)	95,915	-79,626	819,2668
	45-Rh-97	30.7 мин	9/2+	96,911	-82,589	830,3018
	45-Rh-98	8.7 мин	(2)+	97,911	-83,167	838,9508
	45-Rh-99	16.1 дн.	1/2-	98,908	-85,574	849,4294
-	45-Rh-100	20.8 ч	1-	99,908	-85,589	857,5152
- 1	45-Rh-101	3.3 лет	1/2-	100,906	-87,408	867,4058
	45-Rh-102	207 дн.	(1-,2-)	101,907	-86,775	874,8443
	45-Rh-103	100%	1/2-	102,906	-88,022	884,1626
	45-Rh-104	42.3 c	1+	103,907	-86,950	891,1617
	45-Rh-105	35.36 ч	7/2+	104,906	-87,847	900,1299
	45-Rh-106	29.80 c	1+	105,907	-86,364	906,7181
	45-Rh-107	21.7 мин	7/2+	106,907	-86,861	915,2869
	45-Rh-108	16.8 c	1+	107,909	-85,017	921,5137
	45-Rh-109	80 c	7/2+	108,909	-85,012	929,5805
	45-Rh-111	- II c	(7/2+)	110,912	-82,288	942,9990
	45-Rh-113	2.80 c	(7/2+)	112,915	-78,786	955,6390

Родий

14	45-Rh-114	1.85 c	1+	113,919	-75,594	960,5190
	45-Rh-115	0.99 c	(7/2+)	114,920	-74,403	967,3996
	45-Rh-117	0.44 c	(7/2+)	116,925	-69,536	978,6750
	45-Rh-118	150 нс	0+	117,929	-65,736	982,9460
	45-Rh-119	150 нс		118,931	-63,938	989,2190
	45-Rh-120	150 нс		119,936	-59,821	993,1730
	45-Rh-121	150 нс		120,938	-57,678	999,1020
	45-Rh-122	50 мс		İ	0,000	
Палладий	46-Pd-91	1 мкс		90,949	-47,059	745,5610
	46-Pd-92	150 нс	0+	91,940	-55,498	762,0720
	46-Pd-93	60 c		92,936	-59,699	774,3440
	46-Pd-94	9.0 c	0+	93,929	-66,350	789,0660
	46-Pd-95	10 c		94,925	-70,151	800,9380
	46-Pd-96	122 c	0+	95,918	-76,176	815,0345
	46-Pd-97	3.10 мин	(5/2+)	96,916	-77,799	824,7294
	46-Pd-98	17.7 мин	0+	97,913	-81,300	836,3015
	46-Pd-99	21.4 мин	(5/2)+	98,912	-82,188	845,2605
	46-Pd-100	3.63 дн.	0+	99,909	-85,227	856,3714
	46-Pd-101	8.47 q	5/2+	100,908	-85,428	864,6434
	46-Pd-102	1.02%	0+	101,906	-87,926	875,2125
	46-Pd-103	16.991 дн.	5/2+	102,906	-87,479	882,8372
ļ	46-Pd-104	11.14%	0+	103,904	-89,391	892,8202
	46-Pd-105	22.33%	5/2+	104,905	-88,414	899,9143
	46-Pd-106	27.33%	0+	105,903	-89,905	909,4769
	46-Pd-107	6.5е+6 лет	5/2+	106,905	-88,372	916,0155
	46-Pd-108	26.46%	0+	107,904	-89,522	925,2363
	46-Pd-109	13.7012 ч	5/2+	108,906	-87,604	931,3896
	46-Pd-110	11.72%	0+	109,905	-88,350	940,2072
	46-Pd-111	23.4 мин	5/2+	110,908	-86,029	945,9577
ļ	46-Pd-112	21.03 ч	0+	111,907	-86,337	954,3370
	46-Pd-113	93 с	(5/2+)	112,910	-83,693	959,7647
	46-Pd-114	2.42 мин	0+	113,910	-83,494	967,6367
I	46-Pd-115	25 c	(5/2+)	114,914	-80,403	972,6172
	46-Pd-116	11.8 c	0+	115,914	-79,961	980,2462
	46-Pd-117	4.3 c	(5/2+)	116,918	-76,532	984,8880
l	46-Pd-118	1.9 c	0+	117,919	-75,466	991,8938
	46-Pd-119	0.92 c		118,923	-72,023	996,5220
	46-Pd-120	0.5 с	0+	119,924	-70,766	1003,3360
	46-Pd-121	150 нс		120,928	-66,900	1007,5420
	46-Pd-122	150 нс	0+	121,930	-65,391	1014,1040
	46-Pd-123	150 нс		122,934	-61,236	1018,0210
İ	46-Pd-124	0.2 c	0+		0,000	
Серебро	47-Ag-93		<u>.</u>		0,000	
	47-Ag-94	15 мс	0+	93,943	-53,300	775,2340
	47-Ag-95	2.0 c		94,935	-60,100	790,1050
	47-Ag-96	5.1 c	(8+,9+)	95,931	-64,571	802,6480
	47-Ag-97	25.3 c	(9/2+)	96,924	-70,794	816,9410
	47-Ag-98	46.7 c	(6+)	97,922	-72,880	827,0991
	47-Ag-99	124 c	(9/2)+	98,918	-76,758	839,0481
	47-Ag-100	2.01 мин	(5)+	99,916	-78,181	848,5425
	47-Ag-101	11.1 мин	9/2+	100,913	-81,224	859,6573
	47-Ag-102	12.9 мин	5+	101,912	-81,971	868,4758

1	47 A = 102	65.7	7/2+	102000	94702	970.2672
	47-Ag-103	65.7 мин	5+	102,909 103,909	-84,792 -85,112	879,3672
	47-Ag-104	69.2 мин 41.29 дн.	1/2-	103,909	-83,112 -87,068	887,7592 897,7867
1	47-Ag-105	23.96 мин	1/2-	104,907	-86,940	
	47-Ag-106	51,839%	1/2-	105,907	-88,405	905,7293 915,2662
	47-Ag-107 47-Ag-108	2.37 мин	1+	100,905	-87,604	922,5358
	47-Ag-108	48.161%	1/2-	108,905	-88,720	931,7232
	47-Ag-109	24.6 c	1+	109,906	-87,458	938,5324
i i	47-Ag-111	7.45 дн.	1/2-	110,905	-88,217	947,3636
1	47-Ag-112	3.130 ч	2(-)	111,907	-86,625	953,8426
	47-Ag-113	5.37 ч	1/2-	112,907	-87,033	962,3223
	47-Ag-114	4.6 c	1+	113,909	-84,945	968,3051
1	47-Ag-115	20.0 мин	1/2-	114,909	-84,987	976,4189
-	47-Ag-116	2.68 мин	(2)-	115,911	-82,568	982,0709
	47-Ag-117	72.8 c +20-7	(1/2-)	116,912	-82,266	989,8398
	47-Ag-118	3.76 c	1(-)	117,915	-79,566	995,2115
	47-Ag-120	1.23 c	3(+)	119,919	-75,648	1007,4360
	47-Ag-121	0.78 c	(7/2+)	120,920	-74,658	1014,5177
i i	47-Ag-122	0.520 c	(3+)	121,923	-71,427	1019,3580
	47-Ag-123	0.293 c	(7/2+)	122,925	-69,955	1025,9570
	47-Ag-124	0.172 c	(,,2.)	123,929	-66,574	1030,6470
	47-Ag-125	166 мс	(7/2+)	124,931	-64,702	1036,8460
- 1	47-Ag-126	107 мс	()	125,935	-61,013	1041,2290
	47-Ag-127	79 мс	(1/2-)	126,937	-58,796	1047,0830
	47-Ag-128	58 MC	(112)	,	0,000	
	47-Ag-129	46 мс			0,000	
Кадмий	48-Cd-96	1 c	0+	95,940	-56,104	793,3980
	48-Cd-97	2.8 c		96,935	-60,603	805,9680
	48-Cd-98	9.2 c	0+	97,928	-67,460	820,8970
ĺ.	48-Cd-99	16 c	(5/2+)	98,925	-69,853	831,3610
	48-Cd-100	49.1 c	0+	99,920	-74,305	843,8844
	48-Cd-101	1.36 мин	(5/2+)	100,919	-75,748	853,3984
	48-Cd-102	5.5 мин	0+	101,915	-79,384	865,1064
	48-Cd-103	7.3 мин	(5/2)+	102,913	-80,650	874,4430
	48-Cd-104	57.7 мин	0+	103,910	-83,976	885,8406
	48-Cd-105	55.5 мин	5/2+	104,909	-84,330	894,2661
	10 04 100	1.25% 2.6e+17 лет	0+	105,906	-87,134	905,1410
LI LI	48-Cd-106				-86,988	913,0668
ll ll	48-Cd-107	6.50 ч 0.89%	5/2+ 0+	106,907 107,904	-89,253	923,4025
	48-Cd-108 48-Cd-109	0.89% 461.4 дн.	5/2+	108,905	-88,505	930,7266
	48-Cd-109 48-Cd-110	12.49%	0+	109,903	-90,350	940,6423
a a	48-Cd-111	12.49%	1/2+	110,904	-89,254	947,6181
il.	48-Cd-111	24.13%	0+	111,903	-90,581	957,0162
	40-Cu-112	12.22%	01	111,505	-70,501	757,0102
	48-Cd-113	7.7е+15 лет	1/2+	112,904	-89,050	963,5564
	48-Cd-114	28.73%	0+	113,903	-90,021	972,5992
	48-Cd-115	53.46 ч 7.49%	1/2+	114,905	-88,091	978,7400
	48-Cd-116	3.75е+19 лет	0+	115,905	-88,720	987,4402
	48-Cd-117	2.49 ч	1/2+	116,907	-86,426	993,2174
ž.	48-Cd-118	50.3 мин	0+	117,907	-86,709	1001,5720

1	48-Cd-119	2.69 мин	3/2+	118,910	-83,907	1006,8410
1	48-Cd-120	50.80 c	0+	119,910	-83,973	1014,9787
	48-Cd-121	13.5 c	(3/2+)	120,913	-81,058	1020,1353
	48-Cd-122	5.24 c	0+	121,914	-80,574	1027,7230
	48-Cd-123	2.10 c	(3/2)+	122,917	-77,311	1032,5303
	48-Cd-124	1.25 c	0+	123,918	-76,710	1040,0012
	48-Cd-125	0.65 c	(3/2+)	124,921	-73,358	1044,7202
	48-Cd-126	0.506 c	0+	125,922	-72,327	1051,7605
	48-Cd-127	0.37 c	(3/2+)	126,926	-68,526	1056,0305
	48-Cd-128	0.34 c	0+	127,928	-67,291	1062,8669
	48-Cd-129	0.27 c	(3/2+)	128,932	-63,099	1066,7470
	48-Cd-130	0.20 c	0+	129,934	-61,497	1073,2160
	48-Cd-131	0.18 c	٠.	127,737	0,000	1075,2100
Индий	49-In-98	0.100		97,942	-53,803	806,4570
ипдии	49-In-99	150 нс	(9/2+)	98,935	-60,910	821,6360
	49-In-100	7.0 c	(7/21)	99,931	-64.134	832,9312
	49-In-101	15,1 c		100,927	-68,409	845,2770
	49-In-102	22 c	(6+)	101,925	-70,134	855,0741
	49-In-103	60 c	(9/2)+	102,920	-74,600	867,6106
	49-In-103	1.80 мин	5(+)	103,918	-76,067	877,1495
	49-In-105	5.07 мин	(9/2+)	104,915	-79,481	888,6348
	49-In-105	6.2 мин	7+	105,913	-80,610	897,8353
	49-In-107	32.4 мин	9/2+	106,910	-83,562	908,8585
	49-In-108	58.0 мин	7+	107,910	-84,096	917,4631
	49-In-109	4.2 ч	9/2+	108,907	-86,485	927,9243
	49-In-110	4.9 u	7+	109,907	-86,472	935,9819
	49-In-111	2.8047 дн.	9/2+	110,905	-88,389	945,9703
	49-In-112	14.97 мин	I+	111,906	-87,995	953,6480
	49-In-113	4.29%	9/2+	112,904	-89,366	963,0905
	49-In-113	71.9 c	1+	113,905	-88,569	970,3649
	47-111-114	95.71%	1.	115,705	-00,507	370,3043
	49-In-115	4.41е+14 лет	9/2+	114,904	-89,537	979,4036
	49-In-116	14.10 c	1+	115,905	-88,250	986,1879
	49-In-117	43.2 мин	9/2+	116,905	-88,943	994,9525
	49-In-118	5.0 c	1+	117,906	-87,230	1001,3109
	49-In-119	2.4 мин	9/2+	118,906	-87,704	1009,8557
	49-In-120	3.08 c	1+	119,908	-85,733	1015,9567
	49-In-120	47.3 c	(8-)	119,908	-85,733	1015,9567
V	49-In-121	23.1 c	9/2+	120,908	-85,838	1024,1330
	49-In-122	1.5 c	1+	121,910	-83,576	1029,9424
	49-In-123	5.98 c	9/2+	122,910	-83,426	1037,8630
	49-In-124	3.11 c	3+	123,913	-80,876	1043,3848
	49-In-125	2.36 c	9/2+	124,914	-80,480	1051,0598
:	49-In-126	1.60 c	3(+)	125,916	-77,813	1056,4641
	49-In-127	1.09 c	(9/2+)	126,917	-76,994	1063,7162
	49-In-128	0.84 c	(3+)	127,920	-74,361	1069,1545
	49-In-129	0.61 c	(9/2+)	128,922	-72,975	1075,8405
	49-In-130	0.32 c	1(-)	129,925	-69,997	1080,9338
	49-In-131	0.28 c	(9/2+)	130,927	-68,216	1087,2237
	49-In-132	0.201 c	(7-)	131,933	-62,486	1089,5648
	49-In-133	180 мс	(9/2+)	132,938	-57,436	1092,5870
	49-In-134	138 мс		133,945	-51,549	1094,7710

l .	49-In-135	0.1 c	9		0,000	
Олово	50-Sn-100	0.94 c +54-27	0+	99,939	-56,864	824,8790
	50-Sn-101	3 c		100,936	-59,560	835,6460
	50-Sn-102	4.5 c	0+	101,930	-64,748	848,9050
	50-Sn-103	7 c		102,928	-66,946	859,1750
	50-Sn-104	20,8 c	0+	103,923	-71,552	871,8522
	50-Sn-105	31 c		104,921	-73,224	881,5956
	50-Sn-106	115 c	0+	105,917	-77,425	893,8679
ľ	50-Sn-107	2.90 мин	(5/2+)	106,916	-78,556	903,0698
	50-Sn-108	10.30 мин	0+	107,912	-82,004	914,5889
	50-Sn-109	18.0 мин	5/2(+)	108,911	-82,636	923,2922
	50-Sn-110	4.11 ч	0+	109,908	-85,835	934,5625
	50-Sn-111	35.3 мин	7/2+	110,908	-85,944	942,7431
	50-Sn-112	0.97%	0+	111,905	-88,659	953,5293
i	50-Sn-113	115.09 дн.	1/2+	112,905	-88,330	961,2722
	50-Sn-114	0.66%	0+	113,903	-90,558	971,5713
	50-Sn-115	0.34%	1/2+	114,903	-90,033	979,1171
	50-Sn-116	14.54%	0+	115,902	-91,525	988,6805
<u> </u>	50-Sn-117	7.68%	1/2+	116,903	-90,398	995,6251
	50-Sn-118	24.22%	0+	117,902	-91,653	1004,9515
	50-Sn-119	8.59%	1/2+	118,903	-90,067	1011,4369
	50-Sn-120	32.58%	0+	119,902	-91,103	1020,5444
	50-Sn-121	27.06 ч	3/2+	120,904	-89,203	1026,7152
	50-Sn-122	4.63%	0+	121,903	-89,945	1035,5286
	50-Sn-123	129.2 дн.	11/2-	122,906	-87,819	1041,4745
	50-Sn-124	5.79%	0+	123,905	-88,236	1049,9625
	50-Sn-125	9.64 дн.	11/2-	124,908	-85,898	1055,6955
	50-Sn-126	1е+5 лет	0+	125,908	-86,020	1063,8888
	50-Sn-127	2.10 ч	(11/2-)	126,910	-83,508	1069,4478
	50-Sn-128	59.07 мин	0+	127,911	-83,336	1077,3478
	50-Sn-129	2.23 мин	(3/2+)	128,913	-80,630	1082,7131
	50-Sn-130	3.72 мин	0+	129,914	-80,246	1090,4005
	50-Sn-131	56.0 c	(3/2+)	130,917	-77,389	1095,6149
	50-Sn-132	39.7 c	0+	131,918	-76,621	1102,9175
	50-Sn-133	1.45 c	(7/2-)	132,924	-70,967	1105,3350
	50-Sn-134	1.12 c	0+	133,928	-66,636	1109,0753
	50-Sn-135	150 нс		134,935	-60,799	1111,3100
	50-Sn-136	150 нс	0+	135,939	-56,504	1115,0870
	50-Sn-137	150 нс		136,946	-50,496	1117,1500
Сурьма	51-Sb-103	1.5 мкс		102,940	-55,778	847,2240
	51-Sb-104	0.44 c+15-11		103,936	-59,348	858,8660
	51-Sb-105	1.12 c		104,932	-63,781	871,3696
	51-Sb-106	0.6 c	(4+)	105,929	-66,357	882,0170
	51-Sb-107	4.6 c	(5/2+)	106,924	-70,654	894,3850
	51-Sb-108	7.4 c	(4+)	107,922	-72,507	904,3100
	51-Sb-109	17.0 c	(5/2+)	108,918	-76,256	916,1299
1	51-Sb-110	23.0 c	(4+)	109,917	-77,535	925,4800
	51-Sb-111	75 c	(5/2+)	110,913	-80,844	936,8610
	51-Sb-112	51.4 c	3+	111,912	-81,604	945,6920
	51-Sb-113	6.67 мин	5/2+	112,909	-84,414	956,5733
	51-Sb-114	3.49 мин	3+	113,909	-84,677	964,9074
	51-Sb-115	32.1 мин	5/2+	114,907	-87,003	975,3047

51-Sb-116 15.8 мин 3+ 115,907 -86,818 983,1912 51-Sb-I17 2.80 ч 5/2+ 116.905 -88.641 993.0861 51-Sb-118 3.6 мин 1+ 117,906 -87,996 1000.5125 51-Sb-119 38.19 ч 5/2+ 118,904 -89.473 1010,0607 51-Sb-120 15.89 мин 1+ 119,905 -88.423 1017,0814 -89,593 51-Sb-121 57.21% 5/2 +120,904 1026,3229 51-Sb-122 2.7238 дн. 2-121,905 -88,329 1033,1299 51-Sb-123 42.79% 7/2 +122,904 -89,222 1042,0952 51-Sb-124 60.20 дн. 3-123,906 -87,619 1048,5626 51-Sb-125 2.75856 лет 7/2 +124,905 -88,261 1057,2764 -86,398 51-Sb-126 12.46 дн. (8)-125,907 1063,4844 51-Sb-127 3.85 дн. 7/2 +126,907 -86,709 1071,8665 51-Sb-128 9.01 ч 8-127,909 -84.610 1077,8394 51-Sb-129 4.40 ч 7/2 +128.909 -84.626 1085.9268 -82,394 51-Sb-130 39.5 мин (8-)129,912 1091,7659 -82,021 51-Sb-131 23.03 мин (7/2+)130,912 1099,4646 51-Sb-132 2.79 мин (4+)131,914 -79,7241105,2381 51-Sb-133 2.5 мин (7/2+)132,915 -78,957 1112,5426 51-Sb-135 1.68 c (7/2+)134,925 -69,706 1119,4341 51-Sb-136 0.82 c 135,931 -64,590 1122,3900 51-Sb-137 150 нс 136,935 -60.2581126,1300 -54,995 51-Sb-138 150 нс 137,941 1128,9380 52-Te-106 60 MKC +30-10 0+105,938 -58,030 872,9080 52-Te-107 3.1 мс -60,513 883,4620 106,935 52-Te-108 2.1 c 0+107,929 -65.683 896,7031 4.6 c 52-Te-109 (5/2+)108,927 -67,574 906,6656 52-Te-110 18.6 c 0 +109,922 -72,277 919,4404 52-Te-111 19.3 c (5/2+)110,921 -73,476 928,7101 940,5624 52-Te-112 2.0 мин 0+ 111,917 -77,257 52-Te-113 1.7 мин (7/2+)112,916 -78.314 949,6910 52-Te-114 15.2 мин 0 +-81.919 961.3670 113.912 52-Te-115 5.8 мин 7/2+ 114.912 -82.364 969.8837 2.49 ч 0 +-85,306 52-Te-116 115,908 980,8970 52-Te-117 62 мин 1/2 +116,909 -85,107 988,7691 52-Te-118 6.00 лн. 0+117,906 -87,723 999,4570 52-Te-119 16.03 ч 1/2 +118,906 -87,180 1006,9853 52-Te-120 0.09% 0+119.904 -89,405 1017,2812 52-Te-121 1/2 +19.16 дн. 120,905 -88,557 1024,5050 52-Te-122 2.55% 0 +121,903 -90,311 1034,3301 0.89% 6e+14 52-Te-123 1/2 +122,904 -89,169 1041,2595 лет 52-Te-124 0 +-90,523 1050,6847 4.74% 123,903 52-Te-125 7.07% 1/2 +124,904 -89,028 1057,2608 0+ 52-Te-126 18.84% 125,903 -90,070 1066,3746 52-Te-127 9.35 4 3/2 +126,905 -88,290 1072,6651 31.74% 1081,4406 52-Te-128 7.7е+24 лет 0+127,904 -88,994 52-Te-129 69.6 мин 3/2 +128,907 -87,006 1087,5239 34.08% 52-Te-130 5.6е+22 лет 0 +129,906 -87,353 1095,9425 25.0 мин 3/2+ 1101.8722 52-Te-131 130,909 -85,211 52-Te-132 3.204 дн. 0+ 131,909 -85,210 1109,9418

Теллур

026

	52-Te-133	12.5 мин	(3/2+)	132,911	-82,960	1115,7633
	52-Te-134	41.8 мин	0+	133,912	-82,399	1123,2743
	52-Te-135	19.0 c	(7/2-)	134,916	-77,826	1126,7718
	52-Te-136	17.5 c	0+	135,920	-74,423	1131,4409
	52-Te-137	2,49 c	(7/2-)	136,925	-69,560	1134,6484
	52-Te-138	1.4 c	0+	137,929	-65,931	1139,0910
	52-Te-139	150 нс		138,935	-60,799	1142,0300
	52-Te-140	150 нс	0+	139,939	-57,101	1146,4030
	52-Te-141	150 нс		140,944	-51,800	1149,1750
	52-Te-142		0+	141,949	-47,972	1153,4170
Иод	53-I-108	36 мс	-1	107,943	-52,824	883,0620
1104	53-I-109	100 мкс	(5/2+)	108,938	-57,574	895,8835
	53-I-110	0.65 c	(5.2)	109,935	-60,348	906,7290
	53-I-111	2.5 c	(5/2+)	110,930	-64,947	919.3990
	53-I-112	3.42 c	(5/2)	111,928	-67,096	929,6190
	53-I-113	6.6 c	(5/2+)	112,924	-71,125	941,7197
	53-I-114	2.1 c	1+	113,922	-72,796	951,4620
	53-I-115	1.3 мин	(5/2+)	114,918	-76,459	963,1960
	53-I-116	2.91 c	1+	115,917	-77,561	972,3695
	53-I-117	2.22 мин	(5/2)+	116,914	-80,437	983,3167
	53-I-118	13.7 мин	2-	117,913	-80,690	991,6418
	53-I-119	19.1 мин	5/2+	118,910	-83,666	1002,6887
	53-I-120	81.0 мин	2-	119,910	-83,790	1010,8839
	53-I-121	2.12 ч	5/2+	120,907	-86,288	1021,4533
	53-I-122	3.63 мин	1+	121,908	-86,077	1029,3137
	53-I-123	13.27 ч	5/2+	122,906	-87,935	1039,2429
	53-I-124	4.1760 дн.	2-	123,906	-87,363	1046,7428
	53-I-125	59.400 дн.	5/2+	124,905	-88,842	1056,2926
	53-I-126	13.11 дн.	2-	125,906	-87,915	1063,4369
	53-I-127	100%	5/2+	126,904	-88,987	1072,5803
	53-I-128	24.99 мин	1+	127,906	-87,742	1079,4064
	53-I-129	1.57е+7 лет	7/2+	128,905	-88,504	1088,2395
	53-I-130	12.36 ч	5+	129,907	-86,933	1094,7398
	53-I-131	8.02070 дн.	7/2+	130,906	-87,445	1103,3233
	53-I-132	2.295 ч	4+	131,908	-85,703	1109,6524
	53-1-133	20.8 ч	7/2+	132,908	-85,878	1117,8989
	53-I-134	52.5 мин	(4)+	133,910	-83,949	1124,0420
	53-I-135	6.57 ч	7/2+	134,910	-83,788	1131,9514
	53-I-136	83.4 c	(1-)	135,915	-79,498	1135,7334
	53-I-137	24.5 с	(7/2+)	136,918	-76,501	1140,8076
	53-I-138	6.49 c	(2-)	137,922	-72,299	1144,6770
	53-I-139	2.280 c	(7/2+)	138,926	-68,844	1149,2927
	53-I-140	0.86 c	-3	139,931	-64,077	1152,5980
	53-I-141	0.43 c		140,935	-60,705	1157,2970
	53-I-142	0.2 c		141,940	-55,722	1160,3850
	53-I-143	150 нс		142,944	-52,098	1164,8330
	53-I-144	150 нс		143,950	-46,938	1167,7440
Ксенон	54-Xe-110	0.2 c	0+	109,944	-51,721	897,3190
	54-Xe-111	0.74 c		110,942	-54,369	908,0390
	54-Xe-112	2.7 c	0+	111,936	-59,927	921,6684
	54-Xe-113	2.74 c		112,933	-62,053	931,8659
	54-Xe-114	10.0 c	0+	113,928	-66,932	944,8160

	54-Xe-115	18 c	(5/2+)	114,927	-68,430	954,3850
	54-Xe-116	59 c	0+	115,922	-72,901	966,9270
	54-Xe-117	61 c	5/2(+)	116,921	-73,994	976,0915
	54-Xe-118	3.8 мин	0+	117,917	-77,714	987,8827
	54-Xe-119	5.8 мин	(5/2+)	118,916	-78,661	996,9010
	54-Xe-120	40 мин	0+	119,912	-81,830	1008,1415
	54-Xe-121	40.1 мин	5/2(+)	120,911	-82,543	1016,9259
	54-Xe-122	20.1 ч	0+	121,909	-85,187	1027,6409
	54-Xe-123	2.08 ч	(1/2)+	122,908	-85,259	1035,7846
		0.095%	` ′			
	54-Xe-124	1.1е+17 лет	0+	123,906	-87,658	1046,2545
	54-Xe-125	16.9 ч	1/2(+)	124,906	-87,189	1053,8577
	54-Xe-126	0.089%	0+	125,904	-89,173	1063,9126
	54-Xe-127	36.4 дн.	1/2+	126,905	-88,325	1071,1356
	54-Xe-128	1.910%	0+	127,904	-89,861	1080,7430
	54-Xe-129	26.40%	1/2+	128,905	-88,697	1087,6509
	54-Xe-130	4.071%	0+	129,904	-89,882	1096,9067
	54-Xe-131	21.232%	3/2+	130,905	-88,416	1103,5118
	54-Xe-131	26.909%	0+	131,904	-89,280	1112,4471
	54-Xe-133	5.243 дн.	3/2+	132,906	-87,648	1118,8872
			0+	H '		8 - 1
	54-Xe-134	10.436%	3/2+	133,905	-88,124	1127,4346
	54-Xe-135	9.14 ч	3/∠⊤	134,907	-86,436	1133,8171
	54 Vo 126	8.857%		125 007	96 171	1141 9772
	54-Xe-136	3.6е+20 лет	0+	135,907	-86,424 -82,379	1141,8773
	54-Xe-137	3.818 мин	7/2-	136,912	-82,379	1145,9027
	54-Xe-138	14.08 мин	0+	137,914	-80,119	1151,7146
	54-Xe-139	39.68 c	3/2-	138,919	-75,650	1155,3163
	54-Xe-140	13.60 c	0+	139,922	-72,996	1160,7340
	54-Xe-141	1.73 c	5/2(-)	140,927	-68,329	1164,1380
	54-Xe-142	1.22 c	0+	141,930	-65,481	1169,3620
	54-Xe-143	0.30 c	5/2-	142,935	-60,650	1172,6020
	54-Xe-144	1.15 c	0+	143,938	-57,538	1177,5620
	54-Xe-145	900 мс	(3/2-)	144,944	-52,471	1180,5660
	54-Xe-145	0.9 c		144,944	-52,471	1180,5660
	54-Xe-146	,	0+	145,947	-49,090	1185,2560
	54-Xe-147	150 нс		146,953	-43,771	1188,0080
Цезий	55-Cs-112	500 мкс		111,950	-46,266	907,2250
	55-Cs-113	16.7 мкс	(5/2+)	112,945	-51,665	920,6949
	55-Cs-114	0.57 c	(1+)	113,941	-54,566	931,6670
	55-Cs-115	1.4 c		114,936	-59,672	944,8450
	55-Cs-117	8.4 c	(9/2+)	116,929	-66,472	967,7872
	55-Cs-118	14 c	2	117,927	-68,414	977,8003
	55-Cs-119	43.0 c	9/2+	118,922	-72,311	989,7690
	55-Cs-120	64 c	2	119,921	-73,888	999,4171
	55-Cs-121	155 c	3/2(+)	120,917	-77,143	1010,7436
	55-Cs-122	21.0 c	1+	121,916	-78,132	1019,8038
	55-Cs-123	5.87 мин	1/2+	122,913	-81,049	1030,7924
	55-Cs-124	30.8 c	1+	123,912	-81,743	1039,5572
	55-Cs-125	46.7 мин	1/2(+)	124,910	-84,091	1049,9766
	55-Cs-126	1.63 мин	1+	125,909	-84,349	1058,3059
	55-Cs-127	6.25 ч	1/2+	126,907	-86,240	1068,2685
	55-Cs-128	3.66 мин	1+	127,908	-85,932	1076,0321
	"	4		4		

	55-Cs-129	32.06 ч	1/2+	128,906	-87,501	1085,6726
	55-Cs-129 55-Cs-130	29.21 мин	1+	129,907	-86,903	1093,1452
	55-Cs-131	9.689 дн.	5/2+	130,905	-88,063	1102,3771
	55-Cs-131	6.479 дн.	2+	131,906	-87,160	1109.5452
	55-Cs-133	100%	7/2+	132,905	-88,076	1118,5322
	55-Cs-134	754.5 дн.	4+	133,907	-86,896	1125,4237
	55-Cs-135	2.3e+6 лет	7/2+	134,906	-87,587	1134,1857
	55-Cs-136	13.16 дн.	5+	135,907	-86,344	1141,0146
	55-Cs-137	30.07 лет	7/2+	136,907	-86,551	1149,2929
	55-Cs-138	33.41 мин	3-	137,911	-82,893	1153,7062
	55-Cs-139	9.27 мин	7/2+	138,913	-80,707	1159,5910
	55-Cs-140	63.7 c	1-	139,917	-77,056	1164,0117
	55-Cs-141	24.94 c	7/2+	140,920	-74,479	1169,5056
	55-Cs-142	1.684 c	0-	141,924	-70,521	1173,6196
	55-Cs-143	1.78 c	3/2+	142,927	-67,691	1178,8611
	55-Cs-144	1.01 c	1	143,932	-63,316	1182,5571
	55-Cs-145	0.594 c	3/2+	144,935	-60,185	1187,4978
	55-Cs-146	0.321 c	1-	145,940	-55,739	1191,1224
	55-Cs-147	0.235 c	(3/2+)	146,944	-52,290	1195,7449
	55-Cs-148	158 мс	(3/21)	147,949	-47,600	1199,1261
	55-Cs-149	50 MC		148,953	-44,041	1203,6390
	55-Cs-150	50 MC		149,958	-39,151	1206,8200
	55-Cs-151	50 MC		150,962	-35,397	1211,1370
Барий	56-Ba-114	0.43 c +30-15	0+	113,951	-45,698	922,0170
Барин	56-Ba-115	0.45 c	(3/2-)	114,948	-48,708	933,0980
	56-Ba-116	1.3 c	0+	115,942	-54,325	946,7860
	56-Ba-117	1.75 c	3/2+	116,939	-56,952	957,4850
	56-Ba-118	5.2 c	0+	117,933	-62,000	970,6050
	56-Ba-119	5.4 c	(5/2+)	118,931	-64,225	980,9003
ļ	56-Ba-120	24 c	0+	119,926	-68,888	993,6347
	56-Ba-121	29.7 c	5/2(+)	120,924	-70,341	1003,1592
	56-Ba-122	1.95 мин	0+	121,920	-74,277	1015,1670
	56-Ba-123	2.7 мин	5/2+	122,919	-75,591	1024,5520
	56-Ba-124	11.0 мин	0+	123,915	-79,095	1036,1268
	56-Ba-125	3.5 мин	1/2(+)	124,915	-79,531	1044,6343
	56-Ba-126	100 мин	0+	125,911	-82,676	1055,8504
	56-Ba-127	12.7 мин	1/2+	126,911	-82,790	1064,0361
	56-Ba-128	2.43 дн.	0+	127,908	-85,410	1074,7273
i	56-Ba-129	2.23 ч	1/2+	128,909	-85,070	1082,4587
	30 24 12	0.106%		,	, , , , ,	
	56-Ba-130	3.5е+14 лет	0+	129,906	-87,271	1092,7314
	56-Ba-131	11.50 дн.	1/2+	130,907	-86,693	1100,2249
	56-Ba-132	0.101%	0+	131,905	-88,440	1110,0424
	56-Ba-133	3848.9 дн.	1/2+	132,906	-87,558	1117,2324
	56-Ba-134	2.417%	0+	133,905	-88,955	1126,7000
	56-Ba-135	6.592%	3/2+	134,906	-87,856	1133,6727
	56-Ba-136	7.854%	0+	135,905	-88,892	1142,7805
	56-Ba-137	11.232%	3/2+	136,906	-87,727	1149,6862
	56-Ba-138	71.698%	0+	137,905	-88,267	1158,2979
	56-Ba-139	83.06 мин	7/2-	138,909	-84,919	1163,0214
	56-Ba-140	12.752 дн.	0+	139,911	-83,276	1169,4494
	56-Ba-141	18.27 мин	3/2-	140,914	-79,730	1173,9746

	56-Ba-142	10.6 мин	0+	141,916	-77,828	1180,1441
	56-Ba-143	14.33 c	5/2-	142,921	-73,945	1184,3320
	56-Ba-144	11.5 c	0+	143,923	-71,780	1190,2392
	56-Ba-145	4.31 c	5/2-	144,927	-68,070	1194,6000
	56-Ba-146	2.22 c	0+	145,930	-65,105	1199,7066
	56-Ba-147	0.893 с	(3/2+)	146,934	-61,486	1204,1582
	56-Ba-148	0.607 c	`0+´	147,938	-58,048	1208,7925
	56-Ba-149	0.344 c		148,942	-53,598	1212,4130
	56-Ba-150	0.3 с	0+	149,946	-50,655	1217,5410
	56-Ba-151	150 мс		150,951	-45,923	1220,8810
	56-Ba-152	0.1 c	0+	151,954	-42,700	1225,7290
	56-Ba-153	0.08 c		152,960	-37,623	1228,7240
Лантан	57-La-117	0.5 c		116,950	-46,565	946,3160
	57-La-118	1 c		117,947	-49,770	957,5920
	57-La-119	2 c		118,941	-54,967	970,8610
	57-La-120	2.8 ¢		119,938	-57,687	981,6520
	57-La-121	5.3 c		120,933	-62,401	994,4370
	57-La-122	8.7 c		121,931	-64,543	1004,6500
	57-La-123	17 c		122,926	-68,707	1016,8860
	57-La-125	64.8 c		124,921	-73,895	1038,2170
	57-La-126	50 c	low	125,919	-75,106	1047,4990
	57-La-126	54 c	high	125,919	-75,106	1047,4990
	57-La-127	5.1 мин	(11/2-)	126,916	-78,096	1058,5600
	57-La-128	5.23 мин	(5+)	127,915	-78,760	1067,2949
	57-La-129	11.6 мин	3/2+	128,913	-81,350	1077,9563
	57-La-130	8.7 мин	3(+)	129,912	-81,673	1086,3510
	57-La-131	59 мин	3/2+	130,910	-83,733	1096,4825
	57-La-132	4.8 ч	2-	131,910	-83,732	1104,5521
	57-La-133	3.912 ч	5/2+	132,908	-85,328	1114,2200
	57-La-134	6.45 мин	1+	133,908	-85,241	1122,2045
	57-La-135	19.5 ч	5/2+	134,907	-86,656	1131,6904
	57-La-136	9.87 мин	1+	135,908	-86,022	1139,1281
	57-La-137	6e+4 лет	7/2+	136,906	-87,127	1148,3037
		0.090%				i i
	57-La-138	1.05e+11 лет	5+	137,907	-86,529	1155,7778
	57-La-139	99.910%	7/2+	138,906	-87,236	1164,5558
	57-La-140	1.6781 дн.	3-	139,909	-84,326	1169,7168
	57-La-141	3.92 ч	(7/2+)	140,911	-82,943	1176,4054
	57-La-142	91,1 мин	2-	141,914	-80,039	1181,5728
	57-La-143	14.2 мин	(7/2)+	142,916	-78,191	1187,7959
	57-La-144	40.8 c	(3-)	143,920	-74,900	1192,5762
	57-La-145	24.8 c	(5/2+)	144,922	-72,993	1198,7410
	57-La-146	6.27 c	2-	145,926	-69,210	1203,0288
	57-La-147	4.015 c	(5/2+)	146,928	-67,236	1209,1259
	57-La-148	1.05 c	(2-)	147,932	-63,163	1213,1251
	57-La-149	1.05 c		148,934	-61,134	1219,1670
	57-La-150	0.51 c	(3-)	149,939	-57,222	1223,3260
	57-La-151	150 нс		150,942	-54,437	1228,6120
	57-La-152	150 нс		151,946	-50,198	1232,4450
	57-La-153	150 нс		152,949	-47,087	1237,4050
	57-La-154	0.1 c		153,954	-42,476	1240,8660
	57-La-155	0.06 c		154,958	-39,002	1245,4630

Церий	58-Ce-119	0.2 c		118,953	-44,004	959,1150
	58-Ce-120	0.25 c	0+	119,947	-49,705	972,8870
	58-Ce-121	1.1 c		120,944	-52,471	983,7250
	58-Ce-122	2 c	0+	121,938	-57,743	997,0680
	58-Ce-123	3.8 c	(5/2)	122,936	-60,072	1007,4680
	58-Ce-124	6 c	0+	123,931	-64,720	1020,1880
	58-Ce-125	10.2 c	(5/2+)	124,929	-66,565	1030,1030
	58-Ce-126	50 c	0+	125,924	-70,700	1042,3110
	58-Ce-127	31 c	(5/2+)	126,923	-71,958	1051,6390
	58-Ce-128	3.93 мин	0+	127,919	-75,572	1063,3250
	58-Ce-129	3.5 мин	5/2+	128,918	-76,300	1072,1240
	58-Ce-130	25 мин	0+	129,915	-79,462	1083,3580
	58-Ce-131	10.2 мин	(7/2+)	130,914	-79,713	1091,6802
	58-Ce-132	3.51 ч	0+	131,911	-82,447	1102,4850
	58-Ce-133	97 мин	1/2+	132,912	-82,391	1110,5000
	58-Ce-134	3.16 дн.	0+	133,909	-84,741	1120,9221
	58-Ce-135	17.7 ч	1/2(+)	134,909	-84,630	1128,8824
	58-Ce-136	0.185%	0÷	135,907	-86,495	1138,8186
	58-Ce-137	9.0 ч	3/2+	136,908	-85,905	1146,2993
	58-Ce-138	0.251%	0+	137,906	-87,574	1156,0399
į	58-Ce-139	137.640 дн.	3/2+	138,907	-86,958	1163,4955
	58-Ce-140	88.450%	0+	139,905	-88,088	1172,6963
	58-Ce-141	32,501 дн.	7/2-	140,908	-85,445	1178,1249
		11.114%		,		
	58-Ce-142	5е+16 лет	0+	141,909	-84,543	1185,2940
	58-Ce-143	33.039 ч	3/2-	142,912	-81,616	1190,4391
	58-Ce-144	284.893 дн.	0+	143,914	-80,441	1197,3353
	58-Ce-145	3.01 мин	(3/2-)	144,917	-77,102	1202,0670
	58-Ce-146	13.52 мин	0+	145,919	-75,740	1208,7767
	58-Ce-147	56.4 c	(5/2-)	146,923	-72,181	1213,2885
	58-Ce-148	56 c	0+	147,924	-70,426	1219,6051
]	58-Ce-149	5.3 c	(3/2-)	148,928	-66,798	1224,0488
	58-Ce-150	4.0 c	0+	149,930	-64,994	1230,3156
	58-Ce-151	1.02 c		150,934	-61,441	1234,8350
	58-Ce-152	1.4 c	0+	151,936	-59,262	1240,7260
	58-Ce-153	150 нс		152,941	-55,349	1244,8850
,	58-Ce-154	150 нс	0+	153,943	-52,797	1250,4040
	58-Ce-155	150 нс		154,948	-48,400	1254,0790
	58-Ce-156	0.15 c	0+	155,951	-45,401	1259,1510
	58-Ce-157	0.05 с		156,956	-40,669	1262,4900
Празеодим	59-Pr-121	1.4 c		120,955	-41,579	972,0500
	59-Pr-122	0.5 c		121,952	-45,038	983,5800
	59-Pr-123	0.8 €		122,946	-50,338	996,9520
	59-Pr-124	1.2 c		123,943	-53,132	1007,8180
	59-Pr-125	3.3 c		124,938	-57,911	1020,6670
	59-Pr-126	3.14 c	(3,4,5)	125,935	-60,258	1031,0860
	59-Pr-127	4.2 c		126,931	-64,431	1043,3310
	59-Pr-128	3.1 c	4,5,6	127,929	-66,322	1053,2930
= = =	59-Pr-129	32 c	(11/2-)	128,925	-69,992	1065,0340
	59-Рг-130	40.0 c		129,923	-71,371	1074,4840
	59-Pr-131	94 c	(3/2+)	130,920	-74,463	1085,6478
	59-Pr-132	1.6 мин		131,919	-75,339	1094,5950

1	59-Pr-133	6.5 мин	(3/2+)	132,916	-78,059	1105,3860
	59-Pr-134	17 мин	2-	133,916	-78,551	1113,9500
	59-Pr-135	24 мин	3/2(+)	134,913	-80,910	1124,3801
	59-Pr-136	13.1 мин	2+	135,913	-81,369	1132,9099
1	59-Pr-137	1.28 ч	5/2+	136,911	-83,203	1142,8149
1	59-Pr-138	1.45 мин	1+	137,911	-83,137	1150,8206
i	59-Pr-139	4.41 ч	5/2+	138,909	-84,829	1160,5841
Į.	59-Pr-140	3.39 мин	1+	139,909	-84,700	1168,5260
	59-Pr-141	100%	5/2+	140,908	-86,026	1177,9232
	59-Pr-142	19.12 ч	2-	141,910	-83,797	1183,7663
	59-Pr-143	13.57 дн.	7/2+	142,911	-83,078	1191,1182
	59-Pr-144	17.28 мин	0-	143,913	-80,760	1196,8716
	59-Pr-145	5.984 ч	7/2+	144,915	-79,636	1203,8193
	59-Pr-146	24.15 мин	(2)-	145,918	-76,766	1209,0205
	59-Pr-147	13.4 мин	(3/2+)	146,919	-75,471	1215,7962
	59-Pr-148	2.29 мин	1-	147,922	-72,486	1220,8828
	59-Pr-149	2.26 мин	(5/2+)	148,924	-70,988	1227,4564
	59-Pr-150	6.19 c	(1)-	149,927	-68,004	1232,5433
1		18.90 c	` '	150,928	-66,855	1232,3433
ŧ.	59-Pr-151	3.63 c	(3/2-)	151,932	-63,714	1244,3960
	59-Pr-152	d I	(4-)	1 -	,	1250,5580
	59-Pr-153	4.28 c 2.3 c	(21 21)	152,934	-61,805 -58,321	1255,1460
1	59-Pr-154		(3+,2+)	153,937	-55,899	
	59-Pr-155	300 нс		154,940	, ,	1260,7950
	59-Pr-156	300 нс		155,944	-52,052	1265,0190
	59-Pr-157	0.3 c		156,947	-49,211	1270,2500
1	59-Pr-158	0.2 c		157,952	-44,917	1274,0270
	59-Pr-159	0.1 c		158,955	-41,703	1278,8840
Неодим	60-Nd-126	1 c	0+	125,943	-53,030	1023,0750
i i	60-Nd-127	1.8 c		126,941	-55,424	1033,5410
	60-Nd-128	_	0+	127,935	-60,184	1046,3720
	60-Nd-129	7 c	(5/2+)	128,933	-62,173	1056,4330
	60-Nd-130	28 c	0+	129,929	-66,341	1068,6720
	60-Nd-131	33 c	(5/2)	130,927	-67,903	1078,3055
	60-Nd-132	80 c	0+	131,923	-71,613	1090,0870
1	60-Nd-133	70 c	(7/2+)	132,922	-72,461	1099,0060
	60-Nd-134	8.5 мин	0+	133,919	-75,781	1110,3970
	60-Nd-135	12.4 мин	9/2(-)	134,918	-76,159	1118,8460
	60-Nd-136	50.65 мин	0+	135,915	-79,158	1129,9165
Į.	60-Nd-137	38.5 мин	1/2+	136,915	-79,513	1138,3426
	60-Nd-138	5.04 ч	0+	137,912	-82,037	1148,9380
	60-Nd-139	29.7 мин	3/2+	138,912	-82,042	1157,0148
į.	60-Nd-140	3.37 дн.	0+	139,909	-84,477	1167,5213
	60-Nd-141	2.49 ч	3/2+	140,910	-84,203	1175,3179
ľ	60-Nd-142	27.2%	0+	141,908	-85,960	1185,1462
	60-Nd-143	12.2% 23.8%	7/2-	142,910	-84,012	1191,2697
	60-Nd-144	2.29е+15 лет	0+	143,910	-83,757	1199,0868
	60-Nd-145	8.3%	7/2-	144,913	-81,442	1204,8422
	60-Nd-146	17.2%	0+	145,913	-80,936	1212,4074
				,	00,000	,
			5/2-	146.916	-78,156	1217.6995
	60-Nd-147 60-Nd-148	10.98 дн. 5.7%	5/2- 0+	146,916 147,917	-78,156 -77,418	1217,6995 1225,0324

	1	5.6% 6.8e+18	1		1	
	60-Nd-150	лет	0+	149,921	-73,694	1237,4509
	60-Nd-151	12,44 мин	3/2+	150,924	-70,957	1242,7853
	60-Nd-152	11.4 мин	0+	151,925	-70,158	1250,0577
	60-Nd-153	31.6 c	(3/2)-	152,928	-67,352	1255,3233
	60-Nd-154	25.9 с	0+	153,929	-65,686	1261,7284
	60-Nd-155	8.9 c		154,933	-62,755	1266,8690
	60-Nd-156	5.49 c	0+	155,935	-60,361	1272,5460
	60-Nd-157	2 c		156,939	-56,570	1276,8260
	60-Nd-158	0.7 c	0+	157,942	-54,148	1282,4760
	60-Nd-159	0.7 c		158,946	-49,937	1286,3370
	60-Nd-160	0.3 с	0+	159,949	-47,143	1291,6130
	60-Nd-161	0.2 c		160,954	-42,541	1295,0830
Прометий	61-Pm-128	0.8 c		127,948	-48,195	1033,6010
44	61-Pm-129	1 c		128,943	-52,946	1046,4230
	61-Pm-130	2.2 c		129,940	-55,470	1057,0190
	61-Pm-131	4 c		130,936	-59,802	1069,4220
	61-Pm-132	6.3 c	(3+)	131,934	-61,711	1079,4030
	61-Pm-133	15 c	(11/2-)	132,930	-65,465	1091,2280
	61-Pm-134	5 c	(2+)	133,928	-66,611	1100,4450
	61-Pm-136	47 c	(2+)	135,923	-71,308	1121,2842
	61-Pm-136	107 c	5(+),6-	135,923	-71,308	1121,2842
	61-Pm-137	2.4 мин	11/2-	136,921	-73,856	1131,9030
	61-Pm-138	10 c	1+	137,919	-75,037	1141,1560
	61-Pm-139	4.15 мин	(5/2)+	138,917	-77,538	1151,7280
	61-Pm-140	9.2 c	1+	139,916	-78,430	1160,6919
		20.90 мин	5/2+		-80,475	1170,8078
	61-Pm-141		1+	140,914	4	1170,8078
	61-Pm-142	40.5 c	5/2+	141,913	-81,086	1189,4460
	61-Pm-143	265 дн.		142,911	-82,970	a ·
	61-Pm-144	363 дн.	5-	143,913	-81,426	1195,9727
	61-Pm-145	17.7 лет	5/2+	144,913	-81,279	1203,8968
	61-Pm-146	5.53 лет	3-	145,915	-79,464	1210,1533
	61-Pm-147	2.6234 лет	7/2+	146,915	-79,052	1217,8131
	61-Pm-148	5.370 дн.	1-	147,917	-76,878	1223,7105
	61-Pm-149	53.08 ч	7/2+	148,918	-76,076	1230,9794
	61-Pm-150	2.68 ч	(1-)	149,921	-73,607	1236,5820
	61-Pm-151	28.40 ч	5/2+	150,921	-73,399	1244,4454
	61-Pm-152	4.12 мин	1+	151,923	-71,268	1250,3856
	61-Pm-153	5.25 мин	5/2-	152,924	-70,688	1257,8769
	61-Pm-154	2.68 мин	(3,4)	153,927	-68,421	1263,6812
	61-Pm-155	41.5 c	(5/2-)	154,928	-66,977	1270,3086
	61-Pm-156	26.70 с	4(-)	155,931	-64,217	1275,6197
	61-Pm-157	10.56 c	(5/2-)	156,933	-62,224	1281,6980
	61-Pm-158	4.8 c		157,937	-58,973	1286,5180
	61-Pm-159	2 c		158,939	-56,700	1292,3170
	61-Pm-160	2 c		159,943	-53,104	1296,7930
	61-Pm-161	0.7 c		160,946	-50,431	1302,1900
	61-Pm-162	0.5 c		161,950	-46,305	1306,1350
	61-Pm-163	0.2 c		162,954	-43,296	1311,1980
Самарий	62-Sm-130	0.5 с	0+	129,949	-47,851	1048,6170
	62-Sm-131	1.2 c		130,946	-50,403	1059,2410
	62-Sm-132	4.0 c	0+	131,941	-55,126	1072,0350

	62-Sm-133	3.7 c		132,939	-57,073	1082,0530
	62-Sm-134	10 c	0+	133,934	-61,460	1094,5110
	62-Sm-135	10.3 c	(3/2+,5/2+)	134,932	-63,016	1104,1380
1	62-Sm-136	47 c	0+	135,928	-66,788	1115,9820
	62-Sm-137	45 c	(9/2-)	136,927	-67,956	1125,2209
	62-Sm-138	3.1 мин	0+	137,924	-71,222	1136,5590
	62-Sm-139	2.57 мин	(1/2)+	138,922	-72,375	1145,7832
	62-Sm-140	14.82 мин	0+	139,919	-75,459	1156,9387
	62-Sm-141	10.2 мин	1/2+	140,918	-75,946	1165,4967
	62-Sm-142	72.49 мин	0+	141,915	-78,997	1176,6189
	62-Sm-143	8.83 мин	3/2+	142,915	-79,528	1185,2209
	62-Sm-144	3.07%	0+	143,912	-81,976	1195,7409
	62-Sm-145	340 лн.	7/2-	144,913	-80,662	1202,4980
	62-Sm-146	10,3e+7 лет 14,99%	0+	145,913	-81,006	1210,9129
	62-Sm-147	1.06e+11 лет 11.24% 7e+15	7/2-	146,915	-79,276	1217,2549
	62-Sm-148	лет 13.82% 2e+15	0+	147,915	-79,347	1225,3965
	62-Sm-149	лет	7/2-	148,917	-77,147	1231,2680
	62-Sm-150	7.38%	0+	149,917	-77,061	1239,2536
	62-Sm-151	90 лет	5/2-	150,920	-74,586	1244,8501
	62-Sm-152	26.75%	0+	151,920	-74,773	1253,1078
	62-Sm-153	46.284 ч 22.75%	3/2+	152,922	-72,569	1258,9755
	62-Sm-154	2.3е+18 лет	0+	153,922	-72,465	1266,9431
	62-Sm-155	22.3 мин	3/2-	154,925	-70,201	1272,7503
	62-Sm-156	9,4 ч	0+	155,926	-69,372	1279,9923
	62-Sm-157	482 c	(3/2-)	156,928	-66,737	1285,4291
	62-Sm-158	5.30 мин	0+	157,930	-65,216	1291,9789
	62-Sm-159	11.37 c	(5/2-)	158,933	-62,224	1297,0580
	62-Sm-160	9.6 c	0+	159,935	-60,417	1303,3220
	62-Sm-161	4.8 c		160,939	-56,979	1307,9570
	62-Sm-162	2 c	0+	161,941	-54,753	1313,8020
	62-Sm-163	1 c	İ	162,945	-50,897	1318,0170
6"-	62-Sm-164	0.5 c	0+	163,948	-48,177	1323,3680
	62-Sm-165	0.2 c		164,953	-43,799	1327,0610
Европий	63-Eu-131	26 MC	(3/2)+	101,500	0,000	
Европии	63-Eu-132	0.4 c	(3/2)	131,954	-42,700	1058,8260
	63-Eu-132	I c		132,949	-47,599	1071,7970
	63-Eu-133	0.5 c		133,946	-50,003	1082,2720
	63-Eu-135	1.5 c		134,942	-54,287	1094,6280
	63-Eu-137	11 c	(11/2-)	136,935	-60,351	1116,8340
	63-Eu-137	12.1 c	(6-)	137,933	-61,991	1126,5450
			(11/2)-	138,930	-65,355	1137,9810
	63-Eu-139	17.9 c 1.51 c	1+	139,928	-66,989	1147,6863
	63-Eu-140	40.7 c	5/2+	140,925	-69,968	1158,7366
11/1	63-Eu-141	2.34 c	3/2+ 1+	140,923	-71,352	1168,1920
	63-Eu-142	2.54 с 2.59 мин	5/2+	141,923	-71,332 -74,253	1179,1634
	63-Eu-143	10.2 с	1+	142,920	-74,233 -75,661	1188,6436
L	63-Eu-144	5.93 дн.	5/2+	143,919	-78,001 -78,002	1199,0556
i	63-Eu-145	3.93 дн. 4.61 дн.	3/2+ 4-	144,916	-78,002 -77,128	1206,2528
9	63-Eu-146	4.01 дп.	1	143,717	2/1,120	1200,2320

1	63-Eu-147	24.1 дн.	5/2+	146,917	-77,555	1214,7512
	63-Eu-148	54.5 дн.	5-	147,918	-76,239	1221,5068
	63-Eu-149	93.1 дн.	5/2+	148,918	-76,452	1229,7903
	63-Eu-150	36.9 лет	5(-)	149,920	-74,801	1236,2107
1	63-Eu-151	47.81%	5/2+	150,920	-74,663	1244,1444
1	63-Eu-152	13.516 лет	3-	151,922	-72,898	1250,4511
	63-Eu-153	52.19%	5/2+	152,921	-73,377	1259,0014
	63-Eu-154	8.592 лет	3-	153,923	-71,748	1265,4434
	63-Eu-155	4.7611 лет	5/2+	154,923	-71,828	1273,5948
	63-Eu-156	15.19 дн.	0+	155,925	-70,094	1279,9322
	63-Eu-157	15.18 ч	5/2+	156,925	-69,471	1287,3808
	63-Eu-158	45.9 мин	(1-)	157,928	-67,215	1293,1955
1	63-Eu-159	18.1 мин	5/2+	158,929	-66,057	1300,1094
	63-Eu-160	38 c	1(-)	159,932	-63,372	1305,4950
	63-Eu-161	26 c	/	160,934	-61,777	1311,9710
	63-Eu-162	10.6 c		161,937	-58,647	1316,9130
	63-Eu-163	}		162,939	-56,626	1322,9630
	63-Eu-164	2 c		163,943	-53,104	1327,5130
	63-Eu-165	1 c		164,946	-50,561	1333,0410
1	63-Eu-166	0.4 c		165,950	-46,603	1337,1540
	63-Eu-167	0.2 c		166,953	-43,734	1342,3560
Гадолиний	64-Gd-135	1.1 c		100,700	0,000	15 12,0000
	64-Gd-136	1 c	0+	135,947	-49,304	1096,9330
	64-Gd-137	7 c		136,945	-51,558	1107,2590
	64-Gd-138	5 c	0+	137,940	-55,918	1119,6900
1	64-Gd-139	4.9 c		138,938	-57,678	1129,5210
	64-Gd-140	15.8 c	0+	139,934	-61,529	1141,4440
	64-Gd-141	14 c	(1/2+)	140,932	-63,146	1151,1320
	64-Gd-142	70.2 c	0+	141,928	-66,852	1162,9100
	64-Gd-143	39 c	(1/2)+	142,927	-68,243	1172,3711
La constitution of	64-Gd-144	4.5 мин	0+	143,923	-71,921	1184,1210
000000111	64-Gd-145	23.0 мин	1/2+	144,922	-72,948	1193,2188
PRE-1611	64-Gd-146	48.27 дн.	0+	145,918	-76,098	1204,4406
Ti 110 4	64-Gd-147	38.06 ч	7/2-	146,919	-75,368	1211,7815
1	64-Gd-148	74.6 лет	0+	147,918	-76,280	1220,7654
	64-Gd-149	9.28 дн.	7/2-	148,919	-75,138	1227,6941
	64-Gd-150	1.79е+6 лет	0+	149,919	-75,772	1236,3997
	64-Gd-151	124 дн.	7/2-	150,920	-74,199	1242,8979
		0.20%			, , , ,	
111	64-Gd-152	1.08е+14 лет	0+	151,920	-74,717	1251,4875
	64-Gd-153	240.4 дн.	3/2-	152,922	-72,893	1257,7346
1111111111	64-Gd-154	2.18%	0+	153,921	-73,716	1266,6294
115	64-Gd-155	14.80%	3/2-	154,923	-72,080	1273,0645
-3000	64-Gd-156	20.47%	0+	155,922	-72,545	1281,6009
11000111	64-Gd-157	15.65%	3/2-	156,924	-70,834	1287,9609
	64-Gd-158	24.84%	0+	157,924	-70,700	1295,8983
(- EE ()	64-Gd-159	18.479 ч	3/2-	158,926	-68,572	1301,8416
		21.86%			,	
10 10 10 10	64-Gd-160	1.3е+21 лет	0+	159,927	-67,952	1309,2929
PRINCIPAL	64-Gd-161	3.66 мин	5/2-	160,930	-65,516	1314,9283
	64-Gd-162	8.4 мин	0+	161,931	-64,291	1321,7743
	64-Gd-163	68 c	(5/2-,7/2+)	162,934	-61,488	1327,0430

	64-Gd-164	45 c	0+	163,936	-59,746	1333,3720
	64-Gd-165	10.3 c		164,939	-56,467	1338,1650
	64-Gd-166	7 c	0+	165,942	-54,399	1344,1680
	64-Gd-167	3 c		166,946	-50,701	1348,5420
	64-Gd-168	0.3 c	0+	167,948	-48,102	1354,0140
	64-Gd-169	1 c		168,953	-43,901	1357,8840
Тербий	65-Tb-138	0.4 c		137,953	-43,901	1106,8910
-	65-Tb-139	0.7 €		138,948	-48,410	1119,4710
	65-Tb-140	2.4 c	5	139,946	-50,729	1129,8620
	65-Tb-141	3.5 c	(5/2-)	140,941	-54,809	1142,0130
	65-Tb-142	597 мс	1+	141,939	-56,952	1152,2270
	65-Tb-143	12 c	(11/2-)	142,935	-60,780	1164,1260
	65-Tb-144	l c	(1+)	143,933	-62,848	1174,2650
	65-Tb-145	20 мин	(3/2+)	144,929	-66,248	1185,7360
	65-Tb-146	8 c	1+	145,927	-67,831	1195,3910
	65-Tb-147	1.7 ਥ	(1/2+)	146,924	-70,759	1206,3904
	65-Tb-148	60 мин	2-	147,924	-70,515	1214,2182
	65-ТЬ-149	4.118 ч	1/2+	148,923	-71,500	1223,2741
	65-ТЬ-150	3.48 ч	(2-)	149,924	-71,116	1230,9611
	65-Tb-151	17.609 ч	1/2(+)	150,923	-71,634	1239,5504
	65-Tb-152	17.5 ч	2-	151,924	-70,727	1246,7152
	65-Tb-153	2.34 дн.	5/2+	152,923	-71,324	1255,3831
	65-Tb-154	21.5 ч	0	153,925	-70,154	1262,2851
	65-Tb-155	5.32 дн.	3/2+	154,924	-71,259	1271,4610
	65-Tb-156	5.35 дн.	3-	155,925	-70,101	1278,3741
	65-Tb-157	71 лет	3/2+	156,924	-70,774	1287,1185
	65-Tb-158	180 лет	3-	157,925	-69,480	1293,8959
	65-Tb-159	100%	3/2+	158,925	-69,542	1302,0298
	65-Tb-160	72.3 дн.	3-	159,927	-67,846	1308,4049
	65-Tb-161	6.88 дн.	3/2+	160,928	-67,472	1316,1016
	65-Tb-162	7.60 мин	1-	161,929	-65,684	1322,3858
	65-Tb-163	19.5 мин	3/2+	162,931	-64,605	1329,3774
	65-Tb-164	3.0 мин	(5+)	163,933	-62,087	1334,9306
	65-Tb-165	2.11 мин	(3/2+)	164,935	-60,659	1341,5740
	65-Tb-166	21 c	` ′	165,938	-57,706	1346,6930
	65-Tb-167	19.4 c		166,940	-55,843	1352,9010
	65-ТЬ-168	8.2 c	(4-)	167,944	-52,499	1357,6280
	65-Tb-169	2 c	` ´	168,946	-50,096	1363,2960
	65-Tb-170	3 c		169,950	-46,342	1367,6140
	65-Tb-171	0.5 c		170,953	-43,501	1372,8440
Диспрозий	66-Dy-139	0.2 c			0,000	
Димирозии	66-Dy-141	0.9 c	(9/2-)	140,951	-45,466	1131,8870
	66-Dy-142	2.3 c	0+	141,946	-50,052	1144,5450
	66-Dy-143	3.9 c		142,944	-52,322	1154,8860
	66-Dy-144	9.1 c	0+	143,939	-56,756	1167,3910
	66-Dy-145	10.5 c	(1/2+)	144,937	-58,728	1177,4340
	66-Dy-146	29 с	0+	145,933	-62,671	1189,4486
	66-Dy-147	40 c	1/2+	146,931	-64,386	1199,2354
	66-Dy-148	3.1 мин	0+	147,927	-67,833	1210,7538
	66-Dy-149	4.20 мин	(7/2-)	148,927	-67,688	1218,6797
	66-Dy-150	7.17 мин	0+	149,926	-69,322	1228,3851
	66-Dy-151	17.9 мин	7/2(-)	150,926	-68,763	1235,8976

1	66-Dy-152	2.38 ч	0+	151,925	-70,129	1245,3343
	66-Dy-153	6.4 ч	7/2(-)	152,926	-69,153	1252,4304
	66-Dy-154	3.0е+6 лет	0+	153,924	-70,400	1261,7488
	66-Dy-155	9.9 ч	3/2-	154,926	-69,164	1268,5841
	66-Dy-156	0.06%	0+	155,924	-70,534	1278,0254
	66-Dy-157	8.14 ч	3/2-	156,925	-69,432	1284,9947
	66-Dy-158	0.10%	0+	157,924	-70,417	1294,0503
	66-Dy-159	144.4 дн.	3/2-	158,926	-69,177	1300,8818
	66-Dy-160	2.34%	0+	159,925	-69,682	1309,4579
	66-Dy-161	18.91%	5/2+	160,927	-68,065	1315,9123
	66-Dy-162	25.51%	0+	161,927	-68,190	1324,1092
	66-Dy-163	24.90%	5/2-	162,929	-66,390	1330,3802
	66-Dy-164	28.18%	0+	163,929	-65,977	1338,0382
	66-Dy-165	2.334 ч	7/2+	164,932	-63,621	1343,7541
	66-Dy-166	81.6 ч	0+	165,933	-62,593	1350,7976
	66-Dy-167	6.20 мин	(1/2-)	166,936	-59,943	1356,2181
	66-Dy-168	8.7 мин	0+	167,937	-58,470	1362,8170
	66-Dy-169	39 c	(5/2-)	168,940	-55,607	1368,0250
	1 -	39 c	0+		,	1 ' 1
	66-Dy-170	6 c	0+	169,943	-53,403	1373,8920
	66-Dy-171	3 c	0+	170,946	-49,854	1378,4140
	66-Dy-172	l l	0+	171,949	-47,404	1384,0360
r. v	66-Dy-173	2 c		172,953	-43,370	1388,0740
Гольмий	67-Ho-140	6 мс	(7/0)	1	0,000	
	67-Ho-141	4.1 мс	(7/2-)	141.000	0,000	1121 1000
	67-Ho-142	0.3 c		141,960	-37,390	1131,1000
	67-Ho-143	0.3 c		142,955	-42,206	1143,9870
	67-Ho-144	0.7 c		143,952	-45,047	1154,9000
	67-Ho-145	2.4 c	(101)	144,947	-49,481	1167,4050
	67-Ho-146	3.6 c	(10+)	145,944	-52,071	1178,0660
	67-Ho-147	5.8 c	(11/2-)	146,940	-56,039	1190,1050
	67-Ho-148	2.2 c	1+	147,937	-58,433	1200,5710
	67-Ho-149	21.1 c	(11/2-)	148,934	-61,674	1211,8837
	67-Ho-150	72 c	2-	149,933	-62,082	1220,3630
	67-Ho-151	35.2 c	(11/2-)	150,932	-63,639	1229,9910
	67-Ho-152	161.8 c	2-	151,932	-63,583	1238,0066
	67-Ho-153	2.01 мин	11/2-	152,930	-65,023	1247,5181
	67-Ho-154	11.76 мин	2-	153,931	-64,649	1255,2152
	67-Ho-155	48 мин	5/2+	154,929	-66,062	1264,6998
	67-Ho-156	56 мин	(5+)	155,930	-65,474	1272,1830
	67-Ho-157	12.6 мин	7/2-	156,928	-66,892	1281,6724
	67-Ho-158	11.3 мин	5+	157,929	-66,187	1289,0379
	67-Ho-159	33.05 мин	7/2-	158,928	-67,339	1298,2617
	67-Ho-160	25.6 мин	5+	159,929	-66,392	1305,3856
	67-Ho-161	2.48 ч	7/2-	160,928	-67,206	1314,2710
11,0217	67-Ho-162	15.0 мин	1+	161,929	-66,050	1321,1866
100 DEC 1	67-Ho-163	4570 лет	7/2-	162,929	-66,387	1329,5952
0.01(9)	67-Ho-164	29 мин	1+	163,930	-64,990	1336,2691
- str 1 3	67-Ho-165	100%	7/2-	164,930	-64,907	1344,2579
OF REEL BOOK	67-Ho-166	26.763 ч	0-	165,932	-63,080	1350,5015
1441 8	67-Ho-167	3.1 ч	7/2-	166,933	-62,293	1357,7858
17 1	67-Ho-168	2.99 мин	3+	167,935	-60,085	1363,6492
	67-Ho-169	4.7 мин	7/2-	168,937	-58,807	1370,4427

	67-Ho-170	2.76 мин	(6+)	169,940	-56,248	1375,9555
	67-Ho-170	2.70 мин 53 с	(7/2-)	170,941	-54,529	1382,3070
	1	25 c	(112-)	171,945	-51,400	1387,2500
	67-Ho-172	10 c		172,947	- 49,099	1393,0200
İ	67-Ho-173 67-Ho-174	8 c		173,951	-45,503	1397,4960
	. 1	5 c		174,954	-42,802	1402,8660
2500	67-Ho-175 68-Er-144	0.4 c	0+	143,961	-36,710	1145,7810
Эрбий	68-Er-145	0.4 c	(11/2-)	144,957	-39,626	1156,7680
	68-Er-146	1.7 c	0+	145,952	-44,600	1169,8130
	68-Er-147	2.5 c	(11/2-)	146,949	-47,217	1180,5020
	68-Er-148	4.6 c	0+	147,944	-51,754	1193,1100
	68-Er-149	4.0 C	(1/2+)	148,942	-53,864	1203,2910
	68-Er-150	18.5 c	0+	149,938	-57,974	1215,4720
	68-Er-151	23.5 c	(7/2-)	150,937	-58,256	1223,8250
	68-Er-152	10.3 c	0+	151,935	-60,474	1234,1151
	68-Er-153	37.1 c	(7/2-)	151,935	-60,460	1242,1727
	68-Er-154		0+	153,933	-62,618	1252,4012
1	68-Er-155	3.73 мин 5.3 мин	7/2-	154,933	-62,220	1260,0748
ì		19.5 мин	0+	155,931	-64,259	1270,1854
	68-Er-156 68-Er-157	19.5 мин	3/2-	156,932	-63,392	1277,3900
	H	2.29 ч	0+	157,930	-65,287	1287,3560
	68-Er-158 68-Er-159	2.29 ч 36 мин	3/2-	158,931	-64,570	1294,7108
	68-Er-160	28.58 ч	0+	159,929	-66,063	1304,2742
		26.36 ч 3.21 ч	3/2-	160,930	-65,203	1311,4863
	68-Er-161	0.139%	0+	161,929	-66,346	1320,7000
	68-Er-162 68-Er-163	75.0 мин	5/2-	162,930	-65,177	1327,6029
Í	68-Er-164	1.601%	0+	163,929	-65,953	1336,4495
	68-Er-165	10.36 ч	5/2-	164,931	-64,531	1343,0995
ļ	68-Er-166	33.503%	0+	165,930	-64,934	1351,5740
	68-Er-167	22.869%	7/2+	166,932	-63,299	1358,0101
	68-Er-168	26.978%	0+	167,932	-62,999	1365,7812
	68-Er-169	9.40 дн.	1/2-	168,935	-60,931	1371,7843
	00-E1-109	14.910%	1/2-	100,755	-00,551	15/1,/045
	68-Er-170	3.2е+17 лет	0+	169,935	-60,118	1379,0431
	68-Er-171	7.516 ч	5/2-	170,938	-57,729	1384,7247
	68-Er-172	49.3 ч	0+	171,939	-56,493	1391,5606
	68-Er-173	1.4 мин	(7/2-)	172,942	-53,654	1396,7930
	68-Er-174	3.2 мин	0+	173,944	-51,847	1403,0570
	68-Er-175	1.2 мин	(9/2+)	174,948	-48,503	1407,7840
	68-Er-176	20 c	0+	175,950	-46,305	1413,6570
	68-Er-177	3 c		176,954	-42,504	1417,9280
Тулий	69-Tm-145	3.5 мкс	(11/2-)		0,000	
-	69-Tm-146	62 мс +19-14	(5-,6-)	145,966	-31,210	1155,6410
	69-Tm-147	0.559 с	(11/2-)	146,961	-36,253	1168,7550
	69-Tm-149	0.9 с	(11/2-)	148,953	-44,106	1192,7510
	69-Tm-150	2.2 c	(6-)	149,950	-46,882	1203,5980
	69-Tm-151	4.17 c	(11/2-)	150,945	-50,828	1215,6160
	69-Tm-152	8.0 c	(2)-	151,944	-51,884	1224,7430
	69-Tm-153	1.48 c	(11/2-)	152,942	-54,001	1234,9309
	69-Tm-154	8.1 c	(2-)	153,941	-54,564	1243,5650
	69-Tm-155	21.6 c	(11/2-)	154,939	-56,643	1253,7153
	69-Tm-156	83.8 c	2-	155,939	-56,815	1261,9587

r	69-Tm-157	3.63 мин	1/2+	156,937	-58,911	1272,1266
	69-Tm-158	3.98 мин	2-	157,937	-58,687	1279,9740
	69-Tm-159	9.13 мин	5/2+	158,935	-60,725	1290,0830
	69-Tm-160	9.4 мин	1-	159,935	-60.463	1297,8918
	69-Tm-161	33 мин	7/2+	160,933	-62,039	1307,5399
	69-Tm-162	21.70 мин	1-	161,934	-61,506	1315,0783
	69-Tm-163	1.810 ч	1/2+	162,933	-62,738	1324,3815
	69-Tm-164	2.0 мин	1+	163,933	-61,990	1331,7046
	69-Tm-164	5.1 мин	6-	163,933	-61,990	1331,7046
	69-Tm-165	30.06 ч	1/2+	164,932	-62,939	1340,7246
	69-Tm-166	7.70 ч	2+	165,934	-61,895	1347,7521
	69-Tm-167	9.25 дн.	1/2+	166,933	-62,551	1356,4794
	69-Tm-168	93.1 дн.	3+	167,934	-61,320	1363,3197
	69-Tm-169	100%	1/2+	168,934	-61,282	1371,3531
	69-Tm-170	128.6 дн.	1-	169,936	-59,804	1377,9464
	69-Tm-171	1.92 лет	1/2+	170,936	-59,219	1385,4328
	69-Tm-172	63.6 ч	2-	171,938	-57,384	1391,6688
	69-Tm-173	8.24 ч	(1/2+)	172,940	-56,262	1398,6184
	69-Tm-174	5.4 мин	(4)-	173,942	-53,873	1404,3011
	69-Tm-175	15.2 мин	1/2+	174,944	-52,319	1410,8184
	69-Tm-176	1.9 мин	(4+)	175,947	-49,377	1415,9476
	69-Tm-177	85 c +10-15	(1/2+)	176,949	-47,469	1422,1110
	69-Tm-178	30 c	(/	177,953	-44,116	1426,8290
(4)	69-Tm-179	20 c		178,955	-41,601	1432,3850
Иттербий	70-Yb-148	0.25 c	0+	147,967	-30,963	1170,7540
	70-ҮЬ-149	0.6 c		148,963	-34,018	1181,8810
	70-Yb-150	0.7 с	0+	149,958	-39,132	1195,0660
	70-Yb-151	1.6 c	(1/2+)	150,955	-41,685	1205,6900
	70-Yb-152	3.04 c	0+	151,950	-46,419	1218,4960
	70-Yb-153	4.2 c	7/2-	152,949	-47,311	1227,4580
	70-Yb-154	0.409 c	0+	153,946	-50,075	1238,2940
	70-Yb-155	1.800 c	(7/2-)	154,946	-50,494	1246,7840
	70-ҰЪ-156	26.1 c	0+	155,943	-53,238	1257,5992
	70-Yb-157	38.6 c	7/2-	156,943	-53,413	1265,8461
	70-Yb-158	1.49 мин	0+	157,940	-56,022	1276,5263
	70-Yb-159	1.58 мин	5/2(-)	158,940	-55,746	1284,3220
	70-Yb-160	4.8 мин	0+	159,938	-58,163	1294,8090
	70-Yb-161	4.2 мин	3/2-	160,938	-57,889	1302,6080
	70-Yb-162	18.87 мин	0+	161,936	-59,848	1312,6380
	70-Yb-163	11.05 мин	3/2-	162,936	-59,368	1320,2292
	70-Yb-164	75.8 мин	0÷	163,935	-60,994	1329,9260
	70-Yb-165	9.9 мин	5/2-	164,935	-60,177	1337,1803
	70-Yb-166	56.7 ч	0+	165,934	-61,591	1346,6656
	70-Yb-167	17.5 мин	5/2-	166,935	-60,597	1353,7428
	70-Yb-168	0.13%	0+	167,934	-61,577	1362,7944
	70-Yb-169	32.026 дн. 3.04%	7/2+	168,935	-60,373	1369,6616
1	70-Yb-170	1.6е+17 лет	0+	169,935	-60,772	1378,1321
	70-Yb-171	14.28%	1/2-	170,936	-59,315	1384,7469
CHEET	70-Yb-172	21.83%	0+	171,936	-59,264	1392,7666
	70-Yb-173	16.13%	5/2-	172,938	-57,560	1399,1341
	70-Yb-174	31.83%	0+	173,939	-56,953	1406,5987

70-Yb-176 70-Yb-177 70-Yb-177 70-Yb-178 70-Yb-179 70-Yb-179 70-Yb-179 70-Yb-180 70-Yb-180 70-Yb-180 70-Yb-181 Лин Лиотеций Лиотеции Лиотеции Лиотеции Лиотеций Лиотеций Лиотеций Лиот		70-ҰЪ-175	4.185 дн.	7/2-	174,941	-54,704	1412,4211
70-Yb-177				0+		-53,497	1419,2853
70-Yb-178 74 мин 70-Yb-180 0+ 2.4 мин 179-Yb-181 177,947 148,041 44,9701 143,1632 1431,632 Лютеций 70-Yb-180 2.4 мин 70-Yb-181 1 мин 180,956 -46,416 1442,471 70-Yb-181 1 мин 71-Lu-151 35 мс 71-Lu-152 149,973 -25,460 1180,61: 1446,997 71-Lu-153 0.9 с 71-Lu-154 2 с (2-) 151,964 -33,897 1205,19 71-Lu-155 70 мс 71-Lu-155 10.9 с 71-Lu-157 11/2- 153,957 -39,661 1227,391 71-Lu-155 70 мс 71-Lu-158 10.6 с 71-Lu-159 11/2- 154,954 -42,632 1238,144 71-Lu-159 12.1 с 71-Lu-160 156,950 -46,480 125,813 71-Lu-160 36.1 с 71-Lu-161 159,946 -50,283 1286,527 71-Lu-162 1.37 мин 71-Lu-163 172 мин 71-Lu-164 162,941 -54,768 134,894 71-Lu-165 1.0.74 мин 71-Lu-166 2.65 мин 71-Lu-166 165,940 -56,257 1332,47 71-Lu-166 2.65 мин 71-Lu-169 40- 168,938 -57,631				(9/2+)	176,945	-50,993	1424,8521
Потеций Потеции Пот						-49,701	1431,6321
Лютеций По-Yb-180 2.4 мин 0+ 179,952 -44,404 1442,971 140,956 -40,846 1446,991 140,956 -40,846 1446,991 140,973 -25,460 1180,612 171,Lu-152 0.7 c (5-,6-) 151,964 -33,897 1205,193 171,Lu-153 0.9 c 11/2 152,959 -38,480 1217,842 171,Lu-154 2 c (2-) 153,957 -39,961 1227,391 171,Lu-155 70 мс (11/2-) 154,954 -42,632 1238,144 171,Lu-158 10.6 c (1/2+,3/2+) 156,950 -46,480 1217,842 1277,522 128,141 128,141 128,141 128,141 139,945 -50,283 1206,522 171,Lu-160 36.1 c 157,949 -47,349 1267,070 158,947 -49,728 1277,522 159,946 -50,283 1304,891 171,Lu-163 3.97 мин 1/2(+) 161,943 -52,888 1304,891 171,Lu-164 3.14 мин 1/2(+) 161,943 -52,888 1304,891 171,Lu-165 10.74 мин 1/2(+) 162,941 -54,758 1322,901 171,Lu-166 2.65 мин (6-) 165,940 -56,111 1340,401 171,Lu-168 5.5 мин (7/2+) 166,938 -57,467 1349,831 171,Lu-169 34,06 ч 7/2+ 168,938 -57,467 1349,831 171,Lu-170 2.012 дн. 0+ 169,938 -57,837 1332,371 171,Lu-171 8.24 дн. 7/2+ 170,938 -57,837 1382,481 171,Lu-172 6.70 дн. 4- 171,3940 -55,799 171,Lu-173 3.37 лет 7/2+ 172,939 -56,888 1397,68 171,Lu-174 3.31 лет 7/2+ 172,939 -56,6745 1389,468 171,Lu-175 97,41% 7/2+ 172,939 -56,6745 1389,468 171,Lu-175 97,41% 7/2+ 174,941 -55,774 1412,101 173,940 -55,579 1404,447 171,Lu-175 97,41% 7/2+ 174,941 -55,174 1412,101 173,940 -55,399 140,444 171,144 -56,334 143,499 171,Lu-180 5.7 мин 3.5 мин	1		1	(1/2-)	178,950	-46,416	1436,4180
Лютеций 71-Lu-151 1 мин 180,956 -40,846 1446,991 1180,612 11						-44,404	1442,4780
Лютеций 71-Lu-150 35 мс (11/2-) 149,973 -25,460 1180,61: 71-Lu-152 0.7 с (5-6-) 151,964 -33,827 139,82: 71-Lu-153 0.9 с 11/2- 152,959 -38,480 1217,84: 71-Lu-155 70 мс (11/2-) 154,954 -42,632 1227,39! 71-Lu-157 6.8 с (1/2+,3/2+) 156,950 -46,480 1258,143 71-Lu-158 10.6 с 157,949 -47,349 1267,070 71-Lu-160 36.1 с 158,947 -49,728 1277,524 71-Lu-160 36.1 с 159,946 -50,283 1286,14* 71-Lu-160 36.1 с 159,946 -50,283 1286,14* 71-Lu-163 3.77 мин 1/2(+) 160,944 -52,789 1296,52* 71-Lu-163 3.77 мин 1/2(+) 162,941 -54,768 1314,84 71-Lu-164 3.14 мин 163,941 -54,758 1322,90* 71-Lu-165 10.74 мин 1/2+			1			-40,846	1446,9910
71-Lu-151 80 мс (11/2-) 150,967 -30,602 1193,82: 71-Lu-153 0.7 с (5-,6-) 151,964 -33,897 1205,19 71-Lu-153 0.9 с 11/2- 152,959 -38,480 1217,844 71-Lu-154 2 с (2-) 153,957 -39,961 1227,393 71-Lu-157 6.8 c (1/2+,3/2+) 156,950 -46,480 1258,134 71-Lu-158 10.6 c 157,949 -47,349 1266,147 71-Lu-160 36.1 c 158,947 -49,728 1277,526 71-Lu-160 36.1 c 159,946 -50,283 1286,147 71-Lu-163 3.97 мин (1-) 161,943 -52,888 1304,890 71-Lu-164 3.14 мин 162,941 -54,768 1314,844 71-Lu-165 10.74 мин 1/2+ 164,940 -56,257 1332,477 71-Lu-166 2.65 мин (6-) 165,940 -56,111 1340,400 71-Lu-167 51.5 мин 7/2+ 166,	Лютелий					-25,460	1180,6110
71-Lu-152 0.7 с (5-,6-) 151,964 -33,897 1205,19-17-120,19-153 1205,19-17-120,19-153 1217,84-154 1217,84-154 1217,84-154 1217,84-154 1217,84-154 1217,84-154 1217,84-154 1217,84-154 121,84-154 121,84-154 1227,39-154 1238,144 1227,39-154 1238,144 1227,39-154 1238,144 1227,39-154 1238,144 1228,131 1238,144 1248,137 124,79-14 124,84-16 1258,131 1277,524 1266,147 126,147 126,147 126,147 126,147 126,147 1277,524 1276,248 1296,522 1278,444 1296,522 1278,444 1296,522 1298,522 1296,522 1298,522 1298,522 1298,522	120174	ł	B I	(11/2-)		'	1193,8250
71-Lu-153 71-Lu-154 71-Lu-155 71-Lu-155 70 мс (11/2-) 153,957 -39,961 1227,391 1238,140 1217,842 171-Lu-158 10.6 с 11/2-) 154,954 -42,632 1238,140 1258,131 171-Lu-158 10.6 с 1157,949 -47,349 1267,070 171-Lu-160 171-Lu-160 171-Lu-161 172 с (5/2+) 160,944 -52,589 1296,522 171-Lu-162 1.37 мин 1/2(+) 161,943 -52,888 1304,890 171-Lu-164 171-Lu-165 10.74 мин 171-Lu-166 10.74 мин 171-Lu-166 10.74 мин 171-Lu-168 10.74 мин 171-Lu-168 10.74 мин 171-Lu-168 10.74 мин 171-Lu-168 10.74 мин 171-Lu-169 10.74 мин 171-Lu-170 11-Lu-170 11-Lu-170 11-Lu-170 11-Lu-170 11-Lu-171 11-Lu-171 11-Lu-172 11-Lu-173 11-Iu-173 11-Iu-174 11-Lu-175 11-Lu-175 11-Lu-175 11-Lu-176 11-Lu-176 11-Lu-177 11-Lu-177 11-Lu-178 11-Iu-178 11-Iu-178 11-Iu-179 11-Lu-179 11-Lu-179 11-Lu-179 11-Lu-179 11-Lu-170 11-Lu-170 11-Lu-170 11-Lu-170 11-Lu-170 11-Lu-170 11-Lu-171 11-Lu-171 11-Lu-172 11-Lu-173 11-Iu-173 11-Iu-174 11-Lu-174 11-Iu-175 11-Iu-175 11-Iu-178 11-Iu-178 11-Iu-179 11-Lu-179 11-Lu-179 11-Lu-179 11-Lu-170 11-Iu-170 11-Lu-170 11						1 '	1205,1910
71-Lu-154 2 с (2-) 153,957 -39,961 1227,394 71-Lu-155 70 мс (11/2-) 154,954 -42,632 1238,144 71-Lu-158 10.6 с 157,949 -46,480 1258,133 71-Lu-159 12.1 с 158,947 -49,728 1277,520 71-Lu-160 36.1 с 159,946 -50,283 1286,14* 71-Lu-161 72 с (5/2+) 160,944 -52,589 1296,52* 71-Lu-163 3.97 мин (1-) 161,943 -52,888 1304,894 71-Lu-164 1.34 мин 1/2(+) 162,941 -54,768 1314,844 71-Lu-165 10.74 мин 1/2+ 164,940 -56,257 1332,47* 71-Lu-166 2.65 мин (6-) 165,940 -56,111 1340,400 71-Lu-167 51.5 мин 7/2+ 166,938 -57,167 1349,834 71-Lu-169 34.06 ч 7/2+ 168,938 -57,313 1373,890 71-Lu-170 2.012 дн. 0+ <td></td> <td></td> <td></td> <td></td> <td></td> <td>-38,480</td> <td>1217,8450</td>						-38,480	1217,8450
71-Lu-155 70 мс (11/2-) 154,954 -42,632 1238,144 71-Lu-157 6.8 с (1/2+,3/2+) 156,950 -46,480 1258,133 71-Lu-159 12.1 с 157,949 -47,349 1267,076 71-Lu-160 36.1 с 159,946 -50,283 1286,147 71-Lu-161 72 с (5/2+) 160,944 -52,589 1296,522 71-Lu-162 1.37 мин (1-) 161,943 -52,888 1304,894 71-Lu-163 3.97 мин 1/2(+) 162,941 -54,758 1322,907 71-Lu-164 3.14 мин 1/2+ 164,940 -56,257 1332,477 71-Lu-165 71-Muh 1/2+ 166,938 -57,467 1349,834 71-Lu-167 51.5 мин 7/2+ 166,938 -57,102 1357,537 71-Lu-169 34.06 ч 7/2+ 168,938 -57,313 1366,584 71-Lu-170 6.70 дн. 4- 171,939 -56,745 1389,46 71-Lu-173 1.37		i .				1 '	1227,3980
71-Lu-157 6.8 с (1/2+,3/2+) 156,950 -46,480 1258,130 71-Lu-158 10.6 с 157,949 -47,349 1267,077 71-Lu-160 36.1 с 158,947 -49,728 1277,520 71-Lu-161 72 с (5/2+) 160,944 -50,283 1286,14* 71-Lu-162 1.37 мин (1-) 161,943 -52,888 1304,890 71-Lu-163 3.97 мин 1/2(+) 162,941 -54,768 1314,844 71-Lu-164 3.14 мин 163,941 -54,768 1312,890 71-Lu-165 10.74 мин 1/2+ 166,940 -56,111 1340,400 71-Lu-166 2.65 мин (6-) 165,940 -56,111 1340,400 71-Lu-167 51.5 мин 7/2+ 168,938 -57,467 1349,831 71-Lu-167 51.5 мин 7/2+ 166,938 -57,467 1349,831 71-Lu-167 51.5 мин 7/2+ 168,938 -57,467 1349,831 71-Lu-170 2.012 дн.			li I	(11/2-)			1238,1400
71-Lu-158 10.6 с 157,949 -47,349 1267,077 71-Lu-160 36.1 с 158,947 -49,728 1277,520 71-Lu-161 72 с (5/2+) 160,944 -52,889 1286,147 71-Lu-162 1.37 мин (1-) 161,943 -52,888 1304,890 71-Lu-163 3.97 мин 1/2(+) 162,941 -54,768 1314,844 71-Lu-164 3.14 мин 1/2+ 164,940 -56,257 1332,477 71-Lu-166 2.65 мин (6-) 165,940 -56,111 1340,400 71-Lu-167 51.5 мин 7/2+ 166,938 -57,467 1349,830 71-Lu-167 51.5 мин 7/2+ 166,938 -57,467 1349,830 71-Lu-168 5.5 мин (6-) 167,939 -57,102 1357,53° 71-Lu-170 2.012 дн. 0+ 169,938 -57,313 1373,890 71-Lu-171 8.24 дн. 7/2+ 170,938 -57,837 1382,48 71-Lu-173 3.31 л	i .					,	1258,1307
71-Lu-159 12.1 с 158,947 -49,728 1277,526 71-Lu-160 36.1 с 159,946 -50,283 1286,14° 71-Lu-161 72 с (5/2+) 160,944 -52,589 1296,52: 71-Lu-163 3.97 мин 1/2(+) 161,943 -52,888 1304,896 71-Lu-164 3.14 мин 1/2(+) 162,941 -54,758 1312,890 71-Lu-165 10.74 мин 1/2+ 164,940 -56,257 1332,47° 71-Lu-166 2.65 мин (6-) 165,940 -56,111 1340,40 71-Lu-168 5.5 мин (6-) 167,939 -57,102 1337,53° 71-Lu-170 34.06 ч 7/2+ 168,938 -58,080 1366,58 71-Lu-171 8.24 дн. 7/2+ 170,938 -57,333 1373,89 71-Lu-171 8.24 дн. 7/2+ 170,938 -57,333 1373,89 71-Lu-172 6.70 дн. 4- 171,939 -56,745 1389,46 71-Lu-173 1.37 лет<		1	8	(,)	K , I		1267,0700
71-Lu-160 36.1 с 159,946 -50,283 1286,14° 71-Lu-161 72 с (5/2+) 160,944 -52,589 1296,52° 71-Lu-162 1.37 мин (1-) 161,943 -52,888 1304,890 71-Lu-164 3.14 мин 1/2(+) 162,941 -54,768 1314,840 71-Lu-165 10.74 мин 1/2+ 164,940 -56,257 1332,47° 71-Lu-166 2.65 мин (6-) 165,940 -56,111 1340,40° 71-Lu-167 51.5 мин (6-) 167,939 -57,102 1357,53° 71-Lu-169 34.06 ч 7/2+ 168,938 -58,080 1366,584 71-Lu-170 2.012 дн. 0+ 169,938 -57,313 1373,890 71-Lu-171 8.24 дн. 7/2+ 170,938 -57,331 1373,890 71-Lu-171 8.24 дн. 7/2+ 170,938 -57,451 1389,46 71-Lu-172 6.70 дн. 4- 171,939 -56,889 1397,68 71-Lu-173 </td <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1277,5209</td>			1				1277,5209
71-Lu-161 72 с (5/2+) 160,944 -52,589 1296,52:1304,894 71-Lu-163 3.97 мин 1/2(+) 161,943 -52,888 1304,894 71-Lu-164 3.97 мин 1/2(+) 162,941 -54,768 1314,844 71-Lu-165 10.74 мин 1/2+ 164,940 -56,257 1332,47° 71-Lu-166 2.65 мин (6-) 165,940 -56,111 1340,400 71-Lu-168 5.5 мин 7/2+ 166,938 -57,467 1349,830 71-Lu-169 34,06 ч 7/2+ 168,938 -58,800 1366,58 71-Lu-170 2.012 дн. 0+ 169,938 -57,313 1373,890 71-Lu-170 2.012 дн. 0+ 169,938 -57,313 1373,890 71-Lu-171 8.24 дн. 7/2+ 170,938 -57,837 1389,460 71-Lu-172 6.70 дн. 4- 171,939 -56,745 1389,460 71-Lu-173 1.37 лет 7/2+ 172,939 -56,889 1397,68							1286,1470
71-Lu-162 1.37 мин (1-) 161,943 -52,888 1304,896 71-Lu-163 3.97 мин 1/2(+) 162,941 -54,768 1314,846 71-Lu-164 3.14 мин 1/2(+) 163,941 -54,758 1322,90° 71-Lu-165 10.74 мин 1/2+ 164,940 -56,257 1332,47° 71-Lu-166 2.65 мин (6-) 165,940 -56,111 1340,400 71-Lu-167 51.5 мин 7/2+ 166,938 -57,467 1349,834 71-Lu-169 34.06 ч 7/2+ 168,938 -58,080 1366,58 71-Lu-170 2.012 дн. 0+ 169,938 -57,313 1373,890 71-Lu-171 8.24 дн. 7/2+ 170,938 -57,837 1382,48 71-Lu-172 6.70 дн. 4- 171,939 -56,745 1389,46 71-Lu-173 1.37 лет 7/2+ 172,939 -56,889 1397,68 71-Lu-174 3.31 лет (1)- 173,940 -55,579 1404,44 <tr< td=""><td></td><td></td><td></td><td>(5/2+)</td><td></td><td>4</td><td>1296,5250</td></tr<>				(5/2+)		4	1296,5250
71-Lu-163					11 '		1304,8960
71-Lu-164 71-Lu-165 71-Lu-165 71-Lu-166 71-Lu-166 71-Lu-167 71-Lu-168 71-Lu-168 71-Lu-169 71-Lu-169 71-Lu-170 71-Lu-170 71-Lu-171 8.24 дн. 7/2+ 170,938 -57,837 1382,488 71-Lu-172 71-Lu-173 71-Lu-174 71-Lu-175 71-Lu-175 71-Lu-176 71-Lu-177 71-Lu-177 71-Lu-178 71-Lu-178 71-Lu-179 71-Lu-179 71-Lu-170 71-Lu-170 71-Lu-171 8.24 дн. 7/2+ 170,938 -57,837 1382,488 71-Lu-172 71-Lu-173 71-Lu-174 71-Lu-175 71-Lu-175 71-Lu-176 71-Lu-177 71-Lu-177 71-Lu-178 71-Lu-178 71-Lu-179 71-Lu-179 71-Lu-179 71-Lu-179 71-Lu-179 71-Lu-179 71-Lu-179 71-Lu-179 71-Lu-180 71-Lu-180 71-Lu-181 71-Lu-181 71-Lu-182 71-Lu-182 71-Lu-183 71-Lu-184 71-Lu-184 71-Lu-184 71-Lu-185 71-Lu-186 71-Lu-187 71-Lu-187 71-Lu-180 71-Lu-180 71-Lu-181 71-Lu-181 71-Lu-182 71-Lu-183 71-Lu-184 71-Lu-184 71-Lu-185 71-Lu-186 71-Lu-187 71-Lu-188 71-Lu-188 71-Lu-188 71-Lu-189 71-Lu-180 71-Lu-180 71-Lu-181 71-Lu-181 71-Lu-182 71-Lu-184 71-Lu-184 71-Lu-185 71-Lu-186 71-Lu-186 71-Lu-187 71-Lu-188 71-Lu-188 71-Lu-189 71-Lu-189 71-Lu-180 71-Lu-180 71-Lu-180 71-Lu-181 71-Lu-181 71-Lu-182 71-Lu-184 71-Lu-184 71-Lu-185 71-Lu-186 71-Lu-186 71-Lu-186 71-Lu-186 71-Lu-187 71-Lu-188 71-Lu-188 71-Lu-189 71-Lu-180 71-Lu-1		1		1/2(+)			1314,8468
71-Lu-165 10.74 мин 1/2+ 164,940 -56,257 1332,47* 71-Lu-166 2.65 мин (6-) 165,940 -56,111 1340,40* 71-Lu-167 51.5 мин 7/2+ 166,938 -57,467 1349,83 71-Lu-169 34.06 ч 7/2+ 168,938 -58,080 1357,53* 71-Lu-170 2.012 дн. 0+ 169,938 -57,313 1373,896 71-Lu-171 8.24 дн. 7/2+ 170,938 -57,837 1382,48 71-Lu-172 6.70 дн. 4- 171,939 -56,745 1389,46 71-Lu-173 1.37 лет 7/2+ 172,939 -56,889 1397,68 71-Lu-174 3.31 лет (1)- 173,940 -55,579 1404,44* 71-Lu-175 97.41% 7/2+ 176,944 -52,392 1425,46* 71-Lu-177 6.734 дн. 7/2+ 176,944 -52,392 1425,46* 71-Lu-178 28.4 мин 1(+) 177,946 -50,346 1431,49*				1/2(1)			, , II
71-Lu-166 71-Lu-167 71-Lu-168 71-Lu-168 71-Lu-169 71-Lu-169 71-Lu-169 71-Lu-170 71-Lu-170 71-Lu-171 8.24 дн. 7/2+ 168,938 71-Lu-171 71-Lu-172 71-Lu-173 71-Lu-173 71-Lu-174 71-Lu-175 71-Lu-175 71-Lu-176 71-Lu-177 71-Lu-177 71-Lu-178 28.4 мин 7/2+ 174,941 71-Lu-175 71-Lu-176 71-Lu-177 71-Lu-177 71-Lu-178 71-Lu-178 71-Lu-179 71-Lu-179 71-Lu-170 71-Lu-170 71-Lu-170 71-Lu-171 71-Lu-172 71-Lu-173 71-Lu-174 71-Lu-175 71-Lu-175 71-Lu-176 71-Lu-177 71-Lu-177 71-Lu-178 71-Lu-178 71-Lu-179 71-Lu-179 71-Lu-180 71-Lu-180 71-Lu-181 71-Lu-181 71-Lu-182 71-Lu-182 71-Lu-183 71-Lu-184 71-Lu-184 71-Lu-185 71-Lu-185 71-Lu-186 71-Lu-186 71-Lu-187 71-Lu-187 71-Lu-188 71-Lu-188 71-Lu-188 71-Lu-188 71-Lu-188 71-Lu-189 71-Lu-180 71-Lu-180 71-Lu-180 71-Lu-181 71-Lu-181 71-Lu-182 71-Lu-183 71-Lu-184 71-Lu-184 71-Lu-185 71-Lu-185 71-Lu-186 71-Lu-186 71-Lu-187 71-Lu-188 71-Lu-188 71-Lu-188 71-Lu-188 71-Lu-189 71-Lu-180 71-Lu-180 71-Lu-180 71-Lu-180 71-Lu-181 71-Lu-181 71-Lu-182 71-Lu-183 71-Lu-184 71-Lu-184 71-Lu-185 71-Lu-185 71-Lu-186 71-Lu-186 71-Lu-187 71-Lu-188 71-Lu-188 71-Lu-188 71-Lu-189 71-Lu-189 71-Lu-180 7			H	1/2+) '		, II
71-Lu-167 51.5 мин 7/2+ 166,938 -57,467 1349,836 71-Lu-168 5.5 мин (6-) 167,939 -57,102 1357,53° 71-Lu-169 34.06 ч 7/2+ 168,938 -58,080 1366,58 71-Lu-170 2.012 дн. 0+ 169,938 -57,313 1373,890 71-Lu-171 8.24 дн. 7/2+ 170,938 -57,837 1382,48 71-Lu-172 6.70 дн. 4- 171,939 -56,745 1389,46 71-Lu-173 1.37 лет 7/2+ 172,939 -56,889 1397,68 71-Lu-175 97,41% 7/2+ 174,941 -55,579 1404,44 71-Lu-175 97,41% 7/2+ 174,941 -55,174 1412,100 2.59% 3.73e+10 лет 7/2+ 176,944 -52,392 1425,46 71-Lu-176 6.734 дн. 7/2+ 176,944 -52,392 1425,46 71-Lu-178 2.5 мин 1(+) 177,946 -50,346 1431,49 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
71-Lu-168							
71-Lu-169 71-Lu-170 71-Lu-171 8.24 дн. 71-Lu-172 6.70 дн. 4- 171-gray -56,889 71-Lu-173 71-Lu-174 71-Lu-175 71-Lu-175 71-Lu-175 71-Lu-176 71-Lu-176 71-Lu-177 71-Lu-177 71-Lu-178 71-Lu-178 71-Lu-179 71-Lu-179 71-Lu-179 71-Lu-178 71-Lu-179 71-Lu-179 71-Lu-179 71-Lu-179 71-Lu-179 71-Lu-180 71-Lu-180 71-Lu-181 71-Lu-181 71-Lu-182 71-Lu-183 71-Lu-184 71-Lu-184 71-Lu-185 71-Lu-185 71-Lu-186 71-Lu-186 71-Lu-187 71-Lu-188 71-Lu-189 71-Lu-189 71-Lu-180 71-Lu-180 71-Lu-180 71-Lu-181 71-Lu-181 71-Lu-182 71-Lu-183 71-Lu-184 71-Lu-184 71-Lu-185 71-Lu-185 71-Lu-186 71-Lu-186 71-Lu-187 71-Lu-188 71-Lu-188 71-Lu-188 71-Lu-188 71-Lu-188 71-Lu-188 71-Lu-189 71-Lu-189 71-Lu-189 71-Lu-180 71-Lu-1		I)	П		11 '		
71-Lu-170 2.012 дн. 0+ 169,938 -57,313 1373,896 71-Lu-171 8.24 дн. 7/2+ 170,938 -57,837 1382,48. 71-Lu-172 6.70 дн. 1.37 лет 7/2+ 172,939 -56,745 1389,46. 71-Lu-174 3.31 лет (1)- 173,940 -55,579 1404,44. 71-Lu-175 97,41% 7/2+ 174,941 -55,174 1412,101 2.59% 71-Lu-176 3.73e+10 лет 7- 175,943 -53,391 1418,399 71-Lu-177 6.734 дн. 7/2+ 176,944 -52,392 1425,46. 71-Lu-179 4.59 ч 7/2(+) 178,947 -49,067 1438,286 71-Lu-180 5.7 мин (3)+ 179,950 -46,687 1443,97 71-Lu-181 3.5 мин (7/2+) 180,952 -44,740 1450,101 71-Lu-182 2.0 мин (0,1,2) 181,955 -41,722 1455,15. 71-Lu-184 20 с (3+) 183,961 -36,170 1465,74 72-Hf-155 0.89 с 154,963 -34,689 1229,41 72-Hf-155 0.89 с 72-Hf-157 115 мс 7/2- 156,958 -39,004 1249,87.	i i	li .	13		1 '		8 ' 1
71-Lu-171 8.24 дн. 7/2+ 170,938 -57,837 1382,48. 71-Lu-172 6.70 дн. 4- 171,939 -56,745 1389,46. 71-Lu-173 1.37 лет 7/2+ 172,939 -56,889 1397,68 71-Lu-174 3.31 лет (1)- 173,940 -55,579 1404,44. 71-Lu-175 97.41% 7/2+ 174,941 -55,174 1412,100 2.59% 3.73e+10 лет 7- 175,943 -53,391 1418,390 71-Lu-177 6.734 дн. 7/2+ 176,944 -52,392 1425,46 71-Lu-178 28.4 мин 1(+) 177,946 -50,346 1431,494 71-Lu-179 4.59 ч 7/2(+) 178,947 -49,067 1438,286 71-Lu-180 5.7 мин (3)+ 179,950 -46,687 1443,97 71-Lu-181 3.5 мин (7/2+) 180,952 -44,740 1450,10 71-Lu-182 2.0 мин (0,1,2) 181,955 -41,722 1455,15							
71-Lu-172 6.70 дн. 1.37 лет 7/2+ 172,939 197,68 -56,745 1389,46. 1397,68 1397,68 1397,68 1397,68 1397,68 1397,68 1397,68 1397,68 1397,68 1404,44: 173,940 197,24 174,941 197,940 197,24 174,941 197,940 197,24 174,941 197,940 197,24 174,941 197,940 197,24 197,940 197,24 197,940 197,24 176,944 197,940		.1			11		11 / 11
71-Lu-173		li .					H ' II
71-Lu-174 3.31 лет (1)- 173,940 -55,579 1404,442 71-Lu-175 97,41% 7/2+ 174,941 -55,174 1412,103 2.59% 3.73e+10 лет 7- 175,943 -53,391 1418,396 71-Lu-177 6.734 дн. 7/2+ 176,944 -52,392 1425,466 71-Lu-178 28.4 мин 1(+) 177,946 -50,346 1431,496 71-Lu-179 4.59 ч 7/2(+) 178,947 -49,067 1438,286 71-Lu-180 5.7 мин (3)+ 179,950 -46,687 1443,97 71-Lu-181 3.5 мин (7/2+) 180,952 -44,740 1450,100 71-Lu-182 2.0 мин (0,1,2) 181,955 -41,722 1455,15 71-Lu-183 58 с (7/2+) 182,958 -39,523 1461,02 71-Lu-184 20 с (3+) 183,961 -36,170 1465,74 72-Hf-154 2 с 0+ 153,964 -33,301 1219,95 72-Hf-156 23 мс 0+ 155,959 -37,961 1240,75 72-Hf-157 115 мс 7/2- 156,958 -39,004 1249,87		N .					8 " 11
71-Lu-175 97.41% 7/2+ 174,941 -55,174 1412,108 2.59% 3.73e+10 лет 7- 175,943 -53,391 1418,396 171-Lu-177 6.734 дн. 7/2+ 176,944 -52,392 1425,466 1431,496 1		II.	B -				
71-Lu-176 71-Lu-177 71-Lu-177 71-Lu-178 71-Lu-178 71-Lu-179 71-Lu-179 71-Lu-180 71-Lu-180 71-Lu-180 71-Lu-181 71-Lu-181 71-Lu-182 71-Lu-182 71-Lu-183 71-Lu-183 71-Lu-183 71-Lu-184 71-Lu-184 71-Lu-184 71-Lu-185 71-Lu-185 71-Lu-186 71-Lu-187 71-Lu-187 71-Lu-188 71-Lu	1	1	0				
71-Lu-177 6.734 дн. 7/2+ 176,944 -52,392 1425,466 71-Lu-178 28.4 мин 1(+) 177,946 -50,346 1431,499 71-Lu-179 4.59 ч 7/2(+) 178,947 -49,067 1438,286 71-Lu-180 5.7 мин (3)+ 179,950 -46,687 1443,97 71-Lu-181 3.5 мин (7/2+) 180,952 -44,740 1455,15 71-Lu-182 2.0 мин (0,1,2) 181,955 -41,722 1455,15 71-Lu-183 58 с (7/2+) 182,958 -39,523 1461,02 71-Lu-184 20 с (3+) 183,961 -36,170 1465,74 16-72-Hf-154 2 с 0+ 153,964 -33,301 1219,95 72-Hf-155 0.89 с 154,963 -34,689 1229,41 72-Hf-156 23 мс 0+ 155,959 -37,961 1240,75 72-Hf-157 115 мс 7/2- 156,958 -39,004 1249,87		/1-Lu-1/3	H		174,541		
71-Lu-178 28.4 мин 1(+) 177,946 -50,346 1431,494 71-Lu-179 4.59 ч 7/2(+) 178,947 -49,067 1438,286 71-Lu-180 5.7 мин (3)+ 179,950 -46,687 1443,97 71-Lu-181 3.5 мин (7/2+) 180,952 -44,740 1450,10 71-Lu-182 2.0 мин (0,1,2) 181,955 -41,722 1455,15 71-Lu-183 58 с (7/2+) 182,958 -39,523 1461,02 71-Lu-184 20 с (3+) 183,961 -36,170 1465,74 72-Hf-154 2 с 0+ 153,964 -33,301 1219,95 72-Hf-155 0.89 с 154,963 -34,689 1229,41 72-Hf-156 23 мс 0+ 155,959 -37,961 1240,75 72-Hf-157 115 мс 7/2- 156,958 -39,004 1249,87	ŀ	71-Lu-176	3.73е+10 лет	7-		-53,391	1418,3967
71-Lu-179		71-Lu-177	6.734 дн.		176,944	-52,392	1425,4689
71-Lu-180 5.7 мин (3)+ 179,950 -46,687 1443,97' 71-Lu-181 3.5 мин (7/2+) 180,952 -44,740 1450,10 71-Lu-182 2.0 мин (0,1,2) 181,955 -41,722 1455,15 71-Lu-183 58 с (7/2+) 182,958 -39,523 1461,02 71-Lu-184 20 с (3+) 183,961 -36,170 1465,74 Гафний 72-Hf-154 2 с 0+ 153,964 -33,301 1219,95 72-Hf-155 0.89 с 154,963 -34,689 1229,41 72-Hf-156 23 мс 0+ 155,959 -37,961 1240,75 72-Hf-157 115 мс 7/2- 156,958 -39,004 1249,87		71-Lu-178	28.4 мин	1(+)	177,946	-50,346	1431,4943
71-Lu-181 3.5 мин (7/2+) 180,952 -44,740 1450,100 71-Lu-182 2.0 мин (0,1,2) 181,955 -41,722 1455,15 71-Lu-183 58 c (7/2+) 182,958 -39,523 1461,02 71-Lu-184 20 c (3+) 183,961 -36,170 1465,74 72-Hf-154 2 c 0+ 153,964 -33,301 1219,95 72-Hf-155 0.89 c 154,963 -34,689 1229,41 72-Hf-156 23 мс 0+ 155,959 -37,961 1240,75 72-Hf-157 115 мс 7/2- 156,958 -39,004 1249,87		71-Lu-179	4.59 ч	7/2(+)	178,947	-49,067	1438,2869
71-Lu-181 3.5 мин (7/2+) 180,952 -44,740 1450,100 71-Lu-182 2.0 мин (0,1,2) 181,955 -41,722 1455,15 71-Lu-183 58 c (7/2+) 182,958 -39,523 1461,02 71-Lu-184 20 c (3+) 183,961 -36,170 1465,74 72-Hf-154 2 c 0+ 153,964 -33,301 1219,95 72-Hf-155 0.89 c 154,963 -34,689 1229,41 72-Hf-156 23 мс 0+ 155,959 -37,961 1240,75 72-Hf-157 115 мс 7/2- 156,958 -39,004 1249,87		71-Lu-180	5.7 мин	(3)+	179,950	-46,687	1443,9775
71-Lu-183 58 с (7/2+) 182,958 -39,523 1461,02 71-Lu-184 20 с (3+) 183,961 -36,170 1465,74 72-Hf-155 0.89 с 154,963 -34,689 1229,41-72-Hf-156 23 мс 0+ 155,959 -37,961 1240,75 72-Hf-157 115 мс 7/2- 156,958 -39,004 1249,87.		71-Lu-181	3.5 мин		180,952	-44,740	1450,1020
71-Lu-183 58 с (7/2+) 182,958 -39,523 1461,02 71-Lu-184 20 с (3+) 183,961 -36,170 1465,74 72-Hf-154 2 с 0+ 153,964 -33,301 1219,95 72-Hf-155 0.89 с 154,963 -34,689 1229,41 72-Hf-156 23 мс 0+ 155,959 -37,961 1240,75 72-Hf-157 115 мс 7/2- 156,958 -39,004 1249,87	Į.	71-Lu-182	2.0 мин	(0,1,2)	181,955	-41,722	1455,1550
Гафний 72-Hf-154 2 с 0+ 153,964 -33,301 1219,95 72-Hf-155 0.89 с 154,963 -34,689 1229,41 72-Hf-156 23 мс 0+ 155,959 -37,961 1240,75 72-Hf-157 115 мс 7/2- 156,958 -39,004 1249,87	i	71-Lu-183	58 c		182,958	-39,523	1461,0280
72-Hf-155 0.89 c 154,963 -34,689 1229,41-72-Hf-156 23 MC 0+ 155,959 -37,961 1240,75 72-Hf-157 115 MC 7/2- 156,958 -39,004 1249,87.		71-Lu-184	20 c	(3+)	183,961	-36,170	1465,7460
72-Hf-155 0.89 c 154,963 -34,689 1229,41 72-Hf-156 23 MC 0+ 155,959 -37,961 1240,75 72-Hf-157 115 MC 7/2- 156,958 -39,004 1249,87.	Гафний	72-Hf-154	2 c	0+	153,964	-33,301	1219,9550
72-Hf-156 23 MC 0+ 155,959 -37,961 1240,75 72-Hf-157 115 MC 7/2- 156,958 -39,004 1249,87.		72-Hf-155	0.89 c		154,963	-34,689	1229,4140
	1	72-Hf-156		0+	155,959	-37,961	1240,7580
		4		7/2-		-39,004	1249,8730
		72-Hf-158	2.85 c	0+	157,955	-42,246	1261,1860
72-Hf-159 5.2 c 158,954 -42,846 1269,85		11	5.2 c			-42,846	1269,8570
		72-Hf-160	13.6 c	0+	159,951	-45,910	1280,9922
72-Hf-161 18.7 c 160,950 -46,267 1289,42				ų.	160,950	-46,267	1289,4200
				0+	161,947	-49,180	1300,4050
72-Hf-163 40.0 c 162,947 -49,316 1308,61		72-Hf-163	40.0 c		162,947	-49,316	1308,6120

	72-Hf-164	111 c	0+	163,944	-51,770	1319,1380
	72-Hf-165	76 c	(5/2-)	164,945	-51,661	1327,1000
	72-Hf-166	6.77 мин	0+	165,942	-53,794	1337,3040
	72-Hf-167	2.05 мин	(5/2)-	166,943	-53,468	1345,0490
	72-Hf-168	25.95 мин	0+	167,941	-55,303	1354,9560
	72-Hf-169	3.24 мин	(5/2)-	168,941	-54,810	1362,5345
	72-Hf-170	16.01 ч	0+	169,940	-56,216	1372,0110
	72-Hf-171	12.1 ч	(7/2+)	170,940	-55,433	1379,3000
	72-Hf-172	1.87 лет	0+	171,939	-56,395	1388,3326
	72-Hf-173	23.6 ч	1/2-	172,941	-55,284	1395,2940
	/2 111 1/3	0.16%	1.2	1,2,,,,,,	00,201	1070,0710
	72-Hf-174	2.0е+15 лет	0+	173,940	-55,852	1403,9329
	72-Hf-175	70 дн.	5/2-	174,942	-54,490	1410,6417
	72-Hf-176	5.26%	0+	175,941	-54,584	1418,8072
	72-Hf-177	18.60%	7/2-	176,943	-52,890	1425,1849
	72-Hf-178	27.28%	0+	177,944	-52,445	1432,8112
	72-Hf-179	13.62%	9/2+	178,946	-50,473	1438,9103
	72-Hf-180	35.08%	0+	179,947	-49,790	1446,2982
	72-Hf-181	42.39 дн.	1/2-	180,949	-47,414	1451,9938
	72-Hf-182	9е+6 лет	0+	181,951	-46,060	1458,7110
	72-Hf-183	1.067 ч	(3/2-)	182,954	-43,286	1464,0082
	72-Hf-184	4.12 ч	0+	183,955	-41,500	1470,2940
	72-Hf-185	3.5 мин		184,959	-38,396	1475,2610
	72-Hf-186	2.6 мин	0+	185,961	-36,403	1481,3390
Тантал	73-Ta-155	12 мкс +4-3	(11/2-)		0,000	
	73-Ta-156	144 мс	(2-)	155,972	-26,371	1228,3860
	73-Ta-157	10.1 мс	(1/2+)	156,968	-29,673	1239,7590
	73-Ta-158	72 мс	(2-)	157,966	-31,328	1249,4850
	73-Ta-159	0.544 c	(1/2+)	158,963	-34,545	1260,7740
	73-Ta-160	1.55 c		159,961	-35,995	1270,2950
	73-Ta-161	4.9 c		160,958	-38,775	1281,1465
	73-Ta-162	3.57 c		161,957	-39,917	1290,3590
	73-Ta-163	10.6 c		162,954	-42,554	1301,0676
	73-Ta-164	14.2 c	(3+)	163,954	-43,249	1309,8340
	73-Ta-165	31.0 с		164,951	-45,813	1320,4700
	73-Ta-166	34.4 c	(2)+	165,950	-46,137	1328,8650
	73-Ta-167	80 c	(3/2+)	166,948	-48,463	1339,2620
	73-Ta-168	2.0 мин	(2-,3+)	167,948	-48,636	1347,5070
	73-Ta-169	4.9 мин	(5/2-)	168,946	-50,375	1357,3170
	73-Ta-170	6.76 мин	(3+)	169,946	-50,217	1365,2300
	73-Ta-171	23,3 мин	(5/2-)	170,944	-51,735	1374,8200
	73-Ta-172	36.8 мин	(3+)	171,945	-51,475	1382,6302
	73-Ta-173	3.14 ч	5/2-	172,944	-52,594	1391,8210
	73-Ta-174	1.14 प	3+	173,944	-52,007	1399,3056
	73-Ta-175	10.5 ч	7/2+	174,944	-52,490	1407,8590
	73-Ta-176	8.09 ч	(1)-	175,945	-51,474	1414,9149
	73-Ta-177	56.56 ч	7/2+	176,944	-51,724	1423,2365
	73-Ta-178	9.31 мин	1+	177,946	-50,533	1430,1169
	73-Ta-178	2.36 ч	(7)-	177,946	-50,533	1430,1169
	73-Ta-179	1.82 лет	7/2+	178,946	-50,362	1438,0170
	73-Ta-180	8.152 ਖ	1+	179,947	-48,935	1444,6617

	-					
	73-Ta-181	99.988%	7/2+	180,948	-48,441	1452,2387
	73-Ta-182	114.43 дн.	3-	181,950	-46,433	1458,3017
	73-Ta-183	5.1 дн.	7/2+	182,951	-45,296	1465,2359
	73-Ta-184	8.7 ч	(5-)	183,954	-42,840	1470,8516
	73-Ta-185	49.4 мин	(7/2+)	184,956	-41,396	1477,4794
	73-Ta-186	-10.5 мин	(2-,3-)	185,959	-38,610	1482,7646
	73-Ta-187	2 мин		186,960	-36,878	1489,1030
	73-Ta-188	20 c		187,964	-33,804	1494,1010
Вольфрам	74-W-158	0.9 мс	0+	157,974	-24,276	1241,6510
	74-W-159	8.2 мс		158,972	-25,821	1251,2670
	74-W-160	91 мс	0+	159,968	-29,464	1262,9820
	74-W-161	409 мс		160,967	-30,656	1272,2450
	74-W-162	1.36 c	0+	161,963	-34,147	1283,8070
	74-W-163	2.8 c		162,963	-34,901	1292,6330
	74-W-164	6.0 c	0+	163,959	-38,206	1304,0091
	74-W-165	5.1 c	(5/2-)	164,958	-38,810	1312,6839
	74-W-166	18.8 c	0+	165,955	-41,899	1323,8441
	74-W-167	19.9 с	(+)	166,955	-42,223	1332,2400
	74-W-168	53 c	0+	167,952	-44,839	1342,9270
	74-W-169	80 c	(5/2-)	168,952	-44,936	1351,0960
	74-W-170	2.42 мин	0+	169,949	-47,236	1361,4670
	74-W-171	2.38 мин	(5/2-)	170,949	-47,078	1369,3800
	74-W-172	6.6 мин	0+	171,947	-48,975	1379,3480
	74-W-173	7.6 мин	5/2-	172,948	-48,594	1387,0390
	74-W-174	33.2 мин	0+	173,946	-50,152	1396,6680
	74-W-175	35.2 мин	(1/2-)	174,947	-49,583	1404,1710
	74-W-176	2.5 ч	0+	175,946	-50,683	1413,3410
	74-W-177	135 мин	(1/2-)	176,947	-49,723	1420,4530
	74-W-178	21.6 дн.	0+	177,946	-50,442	1429,2432
	74-W-179	37.05 мин 0.12%	(7/2)-	178,947	-49,302	1436,1750
	74-W-180	7.4е+16 лет	0+	179,947	-49,643	1444,5872
	74-W-181	121.2 дн. 26.50%	9/2+	180,948	-48,253	1451,2685
	74-W-182	8.3e+18 лет 14.31%	0+	181,948	-48,246	1459,3328
	74-W-183	1.9e+18 лет 30.64% 4e+18	1/2-	182,950	-46,366	1465,5235
	74-W-184	лет	0+	183,951	-45,706	1472,9353
	74-W-185	75.1 дн. 28.43%	3/2-	184,953	-43,388	1478,6890
	74-W-186	6.5е+18 лет	0+	185,954	-42,511	1485,8832
	74-W-187	23.72 ч	3/2-	186,957	-39,907	1491,3499
	74-W-188	69.4 дн.	0+	187,958	-38,669	1498,1837
	74-W-189	10.8 мин	(3/2-)	188,962	-35,479	1503,0644
	74-W-190	30.0 мин	0+	189,963	-34,298	1509,9552
Рений	75-Re-160	0.79 мс		159,981	-17,247	1249,9820
	75-Re-161	0.37 мс	(1/2+)	160,978	-20,809	1261,6150
	75-Re-162	107 мс	(2-)	161,976	-22,629	1271,5060
	75-Re-163	390 мс	(1/2+)	162,972	-26,112	1283,0620

1	75 D. 164	0.20 -	li 1	162 070	27.647	1202 6690 1
	75-Re-164	0.38 c	(1/0.)	163,970	-27,647	1292,6680
	75-Re-165	1 c	(1/2+)	164,967	-30,692	1303,7842
	75-Re-166	2.8 c	(0.00)	165,966	-31,855	1313,0180
	75-Re-167	5.9 c	(9/2-)	166,963	-34,872	1324,1060
	75-Re-168	4.4 c	(5+,6+,7+)	167,962	-35,761	1333,0670
	75-Re-169	8.1 c		168,959	-38,350	1343,7270
	75-Re-170	9.2 c	(5+)	169,958	-38,971	1352,4190
	75-Re-171	15.2 c	(9/2-)	170,956	-41,408	1362,9270
	75-Re-173	1.98 мин	(5/2-)	172,953	-43,722	1381,3840
	75-Re-174	2.40 мин		173,953	-43,676	1389,4090
	75-Re-175	5.89 мин	(5/2-)	174,951	-45,277	1399,0820
	75-Re-176	5.3 мин	3+	175,952	-45,112	1406,9890
	75-Re-177	14 мин	(5/2-)	176,950	-46,323	1416,2710
	75-Re-178	13.2 мин	(3+)	177,951	-45,782	1423,8009
	75-Re-179	19.5 мин	(5/2)+	178,950	-46,592	1432,6826
	75-Re-180	2.44 мин	(1)-	179,951	-45,841	1440,0026
	75-Re-181	19.9 ч	5/2+	180,950	-46,515	1448,7474
	75-Re-182	64.0 ч	7+	181,951	-45,446	1455,7505
	75-Re-183	70.0 дн.	5/2+	182,951	-45,810	1464,1852
	75-Re-184	38.0 дн.	3(-)	183,953	-44,223	1470,6702
	75-Re-185	37.40%	5/2+	184,953	-43,821	1478,3396
	75-Re-186	3.7183 дн.	1-	185,955	-41,930	1484,5193
	/3-100	62.60%		105,555	12,200	,
	75-Re-187	4.35е+10 лет	5/2+	186,956	-41,218	1491,8787
	75-Re-188	17.005 ч	1-	187,958	-39,018	1497,7503
	75-Re-189	24.3 प	5/2+	188,959	-37,979	1504,7820
	75-Re-190	3.1 мин	(2)-	189,962	-35,568	1510,4429
	75-Re-190 75-Re-191	9.8 мин	(3/2+,1/2+)	190,963	-34,350	1517,2963
	17	16 c	(3/21,1/21)	191,966	-31,708	1522,7260
Осмий	75-Re-192	1,7 MC	0+	161,984	-15,072	1263,1680
Осмии	76-Os-162	5.5 MC	"	162,982	-16,722	1272,8890
	76-Os-163	N .	0+	163,978	-20,561	1284,7990
	76-Os-164	27 мс	(7/2-)	· '	-21,914	1294,7330
	76-Os-165	71 MC		164,976	-25,592	1305,9720
	76-Os-166	220 мс	0+	165,973	-25,392	1314,9490
	76-Os-167	0.81 c		166,972	,	
	76-Os-168	2.1 c	0+	167,968	-29,963	1326,4868
	76-Os-169	3.6 c		168,967	-30,668	1335,2630
	76-Os-170	7.3 c	0+	169,964	-33,935	1346,6006
	76-Os-171	8.3 c	(5/2-)	170,963	-34,428	1355,1660
	76-Os-172	19.2 c	0+	171,960	-37,187	1365,9960
	76-Os-173	22.4 c	(5/2-)	172,960	-37,454	1374,3340
	76-Os-174	44 c	0+	173,957	-39,939	1384,8900
1,	76-Os-175	1.4 мин	(5/2-)	174,957	-39,980	1393,0030
FTCE),(DCE)	76-Os-176	3.6 мин	0+	175,955	-41,964	1403,0580
LARKE L	76-Os-177	2.8 мин	(1/2-)	176,955	-41,875	1411,0410
THE TAXABLE	76-Os-178	5.0 мин	0+	177,953	-43,456	1420,6924
1000,6800	76-Os-179	6.5 мин	(1/2-)	178,954	-42,894	1428,2020
1,007,000	76-Os-180	21.5 мин	0+	179,952	-44,385	1437,7640
1540,0533	76-Os-181	105 мин	1/2-	180,953	-43,525	1444,9751
	76-Os-182	22.10 ч	0+	181,952	-44,538	1454,0601
	76-Os-183	13.0 ч	9/2+	182,953	-43,678	1461,2710
	76-Os-184	0.02%	0+	183,952	-44,255	1469,9191

1			ı	u i	1	1
	76-Os-185	5.6e+13 лет 93.6 дн.	1/2-	184,954	-42,809	1476,5445
	/b-US-183	1.59%	1/2-	104,734	-42,609	1470,5445
	76-Os-186	2.0е+15 лет	0+	185,954	-42,999	1484,8065
	76-Os-187	1.6%	1/2-	186,956	-41,221	1491,0990
	76-Os-188	13.29%	0+	187,956	-41,139	1499.0883
	76-Os-189	16.21%	3/2-	188,958	-38,988	1505,0090
	76-Os-190	26.36%	0+	189,958	-38,708	1512,8005
	76-Os-191	15.4 дн.	9/2-	190,961	-36,395	1518,5592
	76-Os-192	40.93%	0+	191,961	-35,882	1526,1172
	76-Os-193	30.11 ч	3/2-	192,964	-33,396	1531,7023
	76-Os-194	6.0 лет	0+	193,965	-32,435	1538,8130
	76-Os-195	9 мин		194,968	-29,692	1544,1415
	76-Os-196	34.9 мин	0+	195,970	-28,296	1550,8168
Иридий	77-Ir-164	1 MC		155,5.0	0,000	1000,0100
иридии	77-Ir-165	1 MKC		164,988	-11,569	1283,0960
	77-II-103	10.5 мс	(2-)	165,986	-13,501	1293,0990
	77-II-100 77-Ir-167	35.2 мс	(1/2+)	166,982	-17,193	1304,8620
	77-Ir-168	0,161 мс	(1/2-)	167,980	-18,662	1314,4030
	77-II-168 77-Ir-169	0.6 Mc +5-2	(1/2+)	168,976	-21,992	1325,8041
	77-II-103	0.83 c	(1/2.)	169,975	-23,257	1335,1400
	77-Ir-171	1.46 c	(11/2-)	170,972	-26,288	1346,2430
	77-Ir-172	4.4 c	(3+)	171,971	-27,346	1355,3720
	77-Ir-174	7.9 c	(3+)	173,967	-30,922	1375,0910
	77-Ir-175	9 c	(5/2-)	174,964	-33,274	1385,5140
	77-Ir-176	8.3 c	(3/2)	175,964	-33,989	1394,3010
	77-Ir-177	30 c	(5/2-)	176,961	-36,170	1404,5530
	77-Ir-178	12 c	(5.2)	177,961	-36,251	1412,7050
	77-Ir-179	79 c	(5/2)-	178,959	-38,052	1422,5780
	77-Ir-180	1.5 мин	(/	179,959	-37,955	1430,5520
	77-Ir-181	4.90 мин	(5/2)-	180,958	-39,456	1440,1243
	77-Ir-182	15 мин	(5+)	181,958	-39,004	1447,7433
	77-Ir-183	57 мин	5/2-	182,957	-40,228	1457,0390
	77-Ir-184	3.09 ч	5-	183,957	-39,693	1464,5747
	77-Ir-185	14.4 ч	5/2-	184,957	-40,436	1473,3900
	77-Ir-186	16.64 ч	5+	185,958	-39,168	1480,1931
	77-Ir-187	10.5 ч	3/2+	186,957	-39,718	1488.8143
	77-Ir-188	41.5 ч	1-	187,959	-38,329	1495,4966
	77-Ir-189	13.2 дн.	3/2+	188,959	-38,455	1503,6942
	77-Ir-190	11.78 дн.	(4-)	189,961	-36,708	1510,0182
	77-Ir-191	37.3%	3/2+	190,961	-36,709	1518,0905
	77-Ir-192	73.827 дн.	4+	191,963	-34,836	1524,2886
	77-Ir-193	62.7%	3/2+	192,963	-34,536	1532,0604
	77-Ir-194	19.28 ч	1-	193,965	-32,532	1538,1273
	77-Ir-195	2.5 ч	3/2+	194,966	-31,692	1545,3591
	77-lr-196	52 c	(0-)	195,968	-29,454	1551,1920
	77-Ir-197	5.8 мин	3/2+	196,970	-28,283	1558,0928
	77-Ir-198	8 c		197,972	-25,821	1563,7020
	77-Ir-199	20 c		198,974	-24,417	1570,3691
Платина	78-Pt-166	0.3 мс	0+		0,000	
	78-Pt-167	0.7 мс	(7/2-)		0,000	
	78-Pt-168	2.0 мс	0+	167,988	-11,146	1306,1040

1	78-Pt-169	5 мс	9	168,986	-12,649	1315,6790
	11	13.8 мс	0+		11 '	
f	78-Pt-170	ii .	∪⊤	169,982	-16,463 -17,465	1327,5640
ŀ	78-Pt-171	34 MC	0+	170,981	1	1336,6370
	78-Pt-172	0.096 c	0+	171,977	-21,074	1348,3179
	78-Pt-173	376 мс		172,976	-21,890	1357,2057
	78-Pt-174	0.889 c	0+	173,973	-25,326	1368,7127
	78-Pt-175	2.4 c		174,972	-25,825	1377,2830
	78-Pt-176	6.7 c	0+	175,969	-28,876	1388,4060
	78-Pt-177	11 c	(5/2-)	176,968	-29,386	1396,9860
u II	78-Pt-178	21,1 c	0+	177,966	-31,941	1407,6130
	78-Pt-179	21.2 c	1/2-	178,965	-32,160	1415,9030
	78-Pt-180	52 c	0+	179,963	-34,265	1426,0790
	78-Pt-181	52.0 c	1/2-	180,963	-34,300	1434,1860
	78-Pt-182	3.0 мин	0+	181,961	-36,079	1444,0361
	78-Pt-183	6,5 мин	1/2-	182,962	-35,650	1451,6780
	78-Pt-184	17.3 мин	0+	183,960	-37,358	1461,4580
ŀ	78-Pt-185	70.9 мин	9/2+	184,961	-36,558	1468,7288
	78-Pt-186	2.08 ч	0+	185,959	-37,789	1478,0310
	78-Pt-187	2,35 ч	3/2-	186,961	-36,740	1485,0540
ĺ	78-Pt-188	10.2 дн.	0+	187,959	-37,823	1494,2078
	78-Pt-189	10.87 ч 0.014%	3/2-	188,961	-36,485	1500,9413
	78-Pt-190	6.5е+11 лет	0+	189,960	-37,325	1509,8527
	78-Pt-191	2.802 дн.	3/2-	190,962	-35,691	1516,2896
	78-Pt-192	0.782%	0+	191,961	-36,296	1524,9659
	78-Pt-193	50 лет	1/2-	192,963	-34,480	1531,2214
li .	78-Pt-194	32.967%	0+	193,963	-34,779	1539,5917
	78-Pt-195	33.832%	1/2-	194,965	-32,812	1545,6968
:	78-Pt-196	25.242%	0+	195,965	-32,663	1553,6186
	78-Pt-197	19.8915 ч	1/2-	196,967	-30,438	1559,4651
	78-Pt-198	7.163%	0+	197,968	-29,923	1567,0217
	78-Pt-199	30.80 мин	5/2-	198,971	-27,408	1572,5778
	78-Pt-200	12.5 ч	0+	199,971	-26,618	1579,8595
	78-Pt-201	2.5 мин	(5/2-)	200,974	-23,756	1585,0687
	78-Pt-201	2.5 мин 44 ч	0+	200,974	-22,598	1591,9820
Золото	79-Au-171	17 MKC +9-5	(1/2+)	170,992	-7,662	1326,0530
30,1010	79-Au-171 79-Au-172	6.3 MC	(1/21)	171,990	-9,213	1335,6750
	1	20 MC +9-6	(1/2+)	172,986	-12,670	1347,2030
	79-Au-173	í	(1/2+)		-14,050	1356,6540
	79-Au-174	120 мс		173,985	1 '	R -
	79-Au-175	185 MC	ļ.	174,982	-17,185	1367,8600
	79-Au-176	1.08 c		175,980	-18,379	
	79-Au-177	1.3 c	į	176,977	-21,224	1388,0420
i	79-Au-178	2.6 c	<u>.</u>	177,976	-22,379	1397,2690
	79-Au-179	3.3 c		178,973	-24,767	1407,7280
	79-Au-180	8.1 c	(20)	179,972	-25,713	1416,7460
	79-Au-181	13.7 c	(3/2-)	180,970	-27,993	1427,0970
	79-Au-182	15.6 c	(8.45)	181,970	-28,299	1435,4740
	79-Au-183	42.8 c	(5/2)-	182,968	-30,161	1445,4080
	79-Au-184	21 c	5+	183,967	-30,298	1453,6150
	79-Au-185	4.25 мин	5/2-	184,966	-31,851	1463,2394
	79-Au-186	10.7 мин	3-	185,966	-31,673	1471,1331
d .	∥ 79-Au-187	8.4 мин	1/2+	186,965	-33,010	1480,5420

				n		
	79-Au-188	8.84 мин	1(-)	187,965	-32,523	1488,1250
}	79-Au-189	28.7 мин	1/2+	188,964	-33,635	1497,3090
	79-Au-190	42.8 мин	1-	189,965	-32,883	1504,6283
	79-Au-191	3.18 ч	3/2+	190,964	-33,861	1513,6772
	79-Au-192	4.94 ч	1-	191,965	-32,779	1520,6672
	79-Au-193	17.65 ч	3/2+	192,964	-33,411	1529,3704
	79-Au-194	38.02 ч	1-	193,965	-32,287	1536,3173
;	79-Au-195	186.098 дн.	3/2+	194,965	-32,586	1544,6876
i	79-Au-196	6.183 дн.	2-	195,967	-31,157	1551,3306
1	79-Au-197	100%	3/2+	196,967	-31,157	1559,4016
	79-Au-198	2.69517 дн.	2-	197,968	-29,598	1565,9140
	79-Au-199	3.139 дн.	3/2+	198,969	-29,111	1573,4984
	79-Au-200	48.4 мин	1(-)	199,971	-27,276	1579,7348
	79-Au-201	26 мин	3/2+	200,972	-26,416	1586,9464
	79-Au-202	28.8 c	(1-)	201,974	-24,416	1593,0172
Ì	79-Au-203	60 c	3/2+	202,975	-23,159	1599,8321
1	79-Au-204	39.8 c	(2-)	203,978	-20,767	1605,5110
	79-Au-205	31 c	3/2+	204,980	-18,993	1611,8080
Ртуть	80-Hg-172	0.25 MC+35-9	0+		0,000	
11,12	0011511	0.93 мс +57-	-	ř l	1	
	80-Hg-173	36			0,000	Ì
	80-Hg-174	2.1 MC +18-7	0+		0,000	i
	80-Hg-175	8 мс		174,991	-8,000	1357,8940
1	80-Hg-176	34 mc +18-9	0+	175,987	-11,724	1369,6890
	80-Hg-177	0.114 c	Ť	176,986	-12,727	1378,7630
	80-Hg-178	0.287 c	0+	177,982	-16,323	1390,4304
	80-Hg-179	0.93 c		178,982	-16,969	1399,1480
	80-Hg-180	2.6 c	0+	179,978	-20,193	1410,4430
	80-Hg-181	3.6 c	1/2(-)	180,978	-20,674	1418,9950
1	80-Hg-182	10.83 c	0+	181,975	-23,519	1429,9110
	80-Hg-183	9.4 c	1/2-	182,975	-23,696	1438,1600
1	80-Hg-184	30.9 c	0+	183,972	-26,178	1448,7130
	80-Hg-185	49.1 c	1/2-	184,972	-26,098	1456,7040
	80-Hg-186	1.38 мин	0+	185,969	-28,448	1467,1256
	80-Hg-187	2.4 мин	13/2+	186,970	-28,145	1474,8940
	80-Hg-188	3.25 мин	0+	187,968	-30,223	1485,0430
	80-Hg-189	7.6 мин	3/2-	188,968	-29,685	1492,5770
46	80-Hg-190	20.0 мин	0+	189,966	-31,413	1502,3760
	80-Hg-191	49 мин	(3/2-)	190,967	-30,681	1509,7149
1	80-Hg-192	4.85 ч	0+	191,966	-32,069	1519,1750
i	80-Hg-193	3.80 ч	3/2-	192,967	-31,071	1526,2478
	80-Hg-194	444 лет	0+	193,965	-32,247	1535,4950
	80-Hg-195	9.9 ч	1/2-	194,967	-31,076	1542,3953
	80-Hg-196	0.15%	0+	195,966	-31,843	1551,2343
	80-Hg-197	64.14 4	1/2-	196,967	-30,557	1558,0197
	80-Hg-198	9.97%	0+	197,967	-30,970	1566,5041
	80-Hg-199	16.87%	1/2-	198,968	-29,563	1573,1683
	80-Hg-200	23.10%	0+	199,968	-29,520	1581,1965
	80-Hg-201	13.18%	3/2-	200,970	-27,679	1587,4267
1	80-Hg-202	29.86%	0+	201,971	-27,362	1595,1810
	80-Hg-203	46.612 дн.	5/2-	202,973	-25,283	1601,1737
	80-Hg-204	6.87%	0+	203,973	-24,707	1608,6689
)	1 20-118 204	. 0.0770	11	,,	,,,	,

	80-Hg-205	5.2 мин	1/2-	204,976	-22,304	1614,3365
	80-Hg-206	8.15 мин	0+	205,977	-20,960	1621,0641
	80-Hg-207	2.9 мин	(9/2+)	206,983	-16.229	1624,4049
	80-Hg-208	41 мин +5-4	0+	207,986	-13,097	1629,3440
Таллий	81-TI-177	18 мс	(1/2+)	176,997	-2,905	1368,1590
	81-T1-178	60 мс	` ′ 19	177,995	-4,445	1377,7700
	81-T1-179	0.43 c	(11/2-)	178,991	-7,949	1389,3460
	81-T1-180	1.5 c	` ′	179,990	-9,135	1398,6020
	81-Tl-181	3.2 c	(1/2+)	180,987	-12,199	1409,7380
	81-T1-182	3.1 c	(7+)	181,986	-13,404	1419,0140
	81-T1-183	6.9 c	(1/2+)	182,983	-16,118	1429,7990
	81-Tl-184	11 c	(2+)	183,982	-16,990	1438,7430
	81-TI-185	19.5 с	(Ì/2+)	184,979	-19,468	1449,2920
	81-Tl-187	51 c	(1/2+)	186,976	-22,197	1468,1640
	81-Tl-189	2.3 мин	(1/2+)	188,974	-24,508	1486,6180
	81-Tl-191	?	(1/2+)	190,972	-26,188	1504,4400
	81-TI-192	9.6 мин	(2-)	191,972	-25,949	1512,2730
	81-TI-193	21,6 мин	1/2+	192,971	-27,434	1521,8290
	81-TI-194	33.0 мин	2-	193,971	-26,964	1529,4300
	81-T1-195	1.16 ч	1/2+	194,970	-28,271	1538,8080
	81-T1-196	1.84 ч	2-	195,971	-27,466	1546,0740
	81-Tl-197	2.84 ч	1/2+	196,970	-28,377	1555,0568
	81-T1-198	5.3 4	2-	197,970	-27,510	1562,2618
	81-TI-199	7.42 ч	1/2+	198,970	-28,118	1570,9408
	81-T1-200	26.1 ч	2-	199,971	-27,064	1577,9581
	81-T1-201	72.912 ч	1/2+	200,971	-27,196	1586,1614
	81-TI-202	12.23 дн.	2-	201,972	-25,997	1593,0340
	81-T1-203	29,524%	1/2+	202,972	-25,775	1600,8832
	81-T1-204	3.78 лет	2-	203,974	-24,360	1607,5391
	81-T1-205	70.476%	1/2+	204,974	-23,835	1615,0854
	81-TI-206	4.200 мин	0-	205,976	-22,267	1621,5889
	81-T1-207	4.77 мин	1/2+	206,977	-21,044	1628,4376
	81-T1-208	3.053 мин	5(+)	207,982	-16,763	1632,2271
	81-T1-209	2.161 мин	(1/2+)	208,985	-13,647	1637,1830
	81-TI-210	1.30 мин	(5+)	209,990	-9,254	1640,8610
Свинец	82-Pb-180	4 c +4-2	0+		0,000	
	82-Pb-181	45 мс	(13/2+)	180,997	-3,061	1399,8180
	82-Pb-182	55 MC +40-35	0+	181,993	-6,822	1411,6499
	82-Pb-183	300 мс	(1/2-)	182,992	-7,517	1420,4160
	82-Pb-184	0.55 c	0+	183,988	-10,993	1431,9640
	82-Pb-185	4.1 c		184,988	-11,569	1440,6110
	82-Pb-186	4.82 c	0+	185,984	-14,623	1451,7360
	82-Pb-188	24 c	0+	187,981	-17,642	1470,8980
	82-Pb-190	1.2 мин	0+	189,978	-20,325	1489,7235
	82-Pb-191	1.33 мин	(3/2-)	190,978	-20.307	1497,7760
	82-Pb-192	3.5 мин	0+	191,976	-22,577	1508,1180
	82-Pb-193		(3/2-)	192,976	-22,281	1515,8940
	82-Pb-194	12.0 мин	0+	193,974	-24,250	1525,9340
	82-Pb-195	15 мин	3/2-	194,974	-23,780	1533,5350
	82-Pb-196	37 мин	0+	195,973	-25,420	1543,2470
	82-Pb-197	8 мин	3/2-	196,973	-24,796	1550,6940
	82-Pb-198	2.40 ч	0+	197,972	-26,100	1560,0690

	82-Pb-199	90 мин	3/2-	198,973	-25,235	1567,2750
	82-Pb-200	21.5 ч	0+	199,972	-26,254	1576,3652
	82-Pb-201	9.33 ч	5/2-	200,973	-25,293	1583,4761
	82-Pb-202	52.5е+3 лет	0+	201,972	-25,948	1592,2021
	82-Pb-203	51.873 ч 1.4% 1.4e+17	5/2-	202,973	-24,801	1599,1261
	82-Pb-204	лет	0+	203,973	-25,124	1607,5204
	82-Pb-205	1.53е+7 лет	5/2-	204,974	-23,784	1614,2519
Ĭ	82-Pb-206	24.1%	0+	205,974	-23,801	1622,3401
	82-Pb-207	22.1%	1/2-	206,976	-22,467	1629,0779
	82-Pb-208	52.4%	0+	207,977	-21,764	1636,4457
	82-Pb-209	3.253 ч	9/2+	208,981	-17,629	1640,3822
	82-Pb-210	22.3 лет	0+	209,984	-14,743	1645,5674
	82-Pb-211	36.1 мин	9/2+	210,989	-10,497	1649,3927
1	82-Pb-212	10.64 ч	0+	211,992	-7,557	1654,5242
l l	82-Pb-213	10.2 мин	(9/2+)	212,997	-3,260	1658,2990
	82-Pb-214	26.8 мин	0+	214,000	-0,188	1663,2981
Висмут	83-Bi-186	15.0 мс	(3+)	185,996	-3.279	1439,6100
Brienly 1	83-Bi-187	32 MC	(9/2-)	186,993	-6,094	1450,4960
	83-Bi-189	728 мс	(9/2-)	188,990	-9,776	1470,3210
	83-Bi-191	12.3 c	(9/2-)	190,986	-12,991	1489,6790
	83-Bi-192	34.6 c	(3+)	191,985	-13,629	1498,3880
	83-Bi-193	67 c	(9/2-)	192,983	-15,779	1508,6090
	83-Bi-194	95 c	(3+)	193,983	-16,070	1516,9710
	83-Bi-195	183 c	(9/2-)	194,981	-17,930	1526,9030
	83-Bi-196	308 c	(3+)	195,981	-18,064	1535,1080
	83-Bi-197	9.33 мин	(9/2-)	196,979	-19,623	1544,7378
1	83-Bi-198	10.3 мин	(2+,3+)	197,979	-19,539	1552,7252
	83-Bi-199	27 мин	9/2-	198,978	-20,887	1562,1448
	83-Bi-200	36.4 мин	7+	199,978	-20,361	1569,6898
	83-Bi-201	108 мин	9/2-	200,977	-21,452	1578,8522
	83-Bi-202	1.72 प	5+	201,978	-20,796	1586,2679
	83-Bi-203	11.76 ч	9/2-	202,977	-21,547	1595,0904
	83-Bi-204	11.22 ч	6+	203,978	-20,674	1602,2889
	83-Bi-205	15,31 дн.	9/2-	204,977	-21,075	1610,7612
	83-Bi-206	6.243 дн.	6(+)	205,978	-20,043	1617,8003
	83-Bi-207	31.55 лет	9/2-	206,978	-20,069	1625,8973
Î	83-Bi-208	3.68е+5 лет	(5)+	207,980	-18,884	1632,7843
:	83-Bi-209	100%	9/2-	208,980	-18,273	1640,2440
	83-Bi-210	5.013 дн.	1-	209,984	-14,806	1644,8486
	83-Bi-211	2.14 мин	9/2-	210,987	-11,869	1649,9827
	83-Bi-212	60.55 мин	1(-)	211,991	-8,131	1654,3156
	83-Bi-213	45.59 мин	9/2-	212,994	-5,240	1659,4962
	83-Bi-213	19.9 мин	1-	213,999	-1,212	1663,5399
	83-Bi-214	7,6 мин	1-	215,002	1,707	1668,6923
	83-Bi-215	2.17 мин	(1-)	215,002	5,775	1672,6960
	TI.	N i	(1-)	210,000	0,000	1072,0900
77	83-Bi-217	97 с 2.53 мс	0+	189,995	-4,555	1472,3890
Полоний	84-Po-190	2.53 MC	(3/2-)	190,995	-4,333 -4,980	1480,8850
	84-Po-191	33,2 MC	0+	190,993	-4,980 -7,897	1491,8730
1	84-Po-192	0.392 c	0+	191,992	-10,913	1511,0322
Pl .	84-Po-194	U.374 C	Д U¬	173,700	-10,713	1 1311,0322

1	84-Po-196	5.8 c	0+	195,986	-13,495	1529,7570
	84-Po-197	1.4 мин	(3/2-)	196,986	-13,445	1537,7780
	84-Po-198	1.4 мин	0+	197,983	-15,516	1547,9200
	1	4.58 мин	(3/2-)	198,984	-15,281	1555,7570
	84-Po-199 84-Po-200	10.9 мин	0+	199,982	-17,014	1565,5610
	84-Po-201	15.3 мин	3/2-	200,982	-16,572	1573,1910
	84-Po-201	44.7 мин	0+	200,982	-17,975	1582,6640
	84-Po-203	36.7 мин	5/2-	202,981	-17,314	1590,0746
	84-Po-204	3.53 ч	0+	203,980	-18,344	1599,1760
	84-Po-205	1.66 ч	5/2-	204,981	-17,544	1606,4478
	84-Po-206	8.8 дн.	0+	205,980	-18,197	1615,1713
	84-Po-207	5.80 ч	5/2-	206,982	-17,160	1622,2059
	84-Po-208	2.898 лет	0+	207,981	-17,100	1630,6006
	84-Po-209	102 лет	1/2-	208,982	-16,380	1637,5684
	84-Po-210	138.376 дн.	0+	209,983	-15,968	1645,2283
	84-Po-211	0,516 с	9/2+	210,987	-12,448	1649,7791
I	84-Po-212	0.299 мкс	0+	211,989	-10,385	1655,7873
	84-Po-213	3.65 мкс	9/2+	212,993	-6,667	1660,1412
	84-Po-214	164.3 мкс	0+	213,995	-4,484	1666,0297
1.0	84-Po-215	1.781 MC	9/2+	214,999	-0,545	1670,1620
	84-Po-216	0.145 c	0+	216,002	1.775	1675,9134
	84-Po-217	1.47 c	01	217,006	5,825	1679,9340
	84-Po-218	3.10 мин	0+	218,009	8,352	1685,4791
	84-Po-219	2 мин	0 1	210,000	0,000	1005,1751
Астат	85-At-193	40 MC		193,000	0,175	1491,0900
Actai	85-At-195	146 MC +21-17		194,997	-3,210	1510,6180
	85-At-196	0.253 c		195,996	-4,003	1519,4830
	85-At-197	0.37 c +9-6	(9/2-)	196,993	-6,250	1529,8010
	85-At-198	4.6 c+18-10	(3+)	197,993	-6,751	1538,3730
	85-At-199	7.2 c	(9/2-)	198,991	-8,725	1548,4190
	85-At-200	43 c	(3+)	199,990	-9,042	1556,8070
Ä	85-At-201	89 c	(9/2-)	200,988	-10,724	1566,5602
	85-At-202	184 c	(2,3)+	201,988	-10,760	1574,6672
	85-At-203	7.4 мин	9/2-	202,987	-12,252	1584,2302
ļ	85-At-204	9.2 мин	7+	203,987	-11,866	1591,9156
	85-At-205	26.2 мин	9/2-	204,986	-13,007	1601,1282
}	85-At-206	30.6 мин	(5)+	205,987	-12,483	1608,6752
Ī	85-At-207	1.80 ч	9/2-	206,986	-13,250	1617,5135
	85-At-208	1.63 ч	6+	207,987	-12,498	1624,8334
	85-At-209	5.41 ч	9/2-	208,986	-12,893	1633,2995
	85-At-210	8.1 प	(5)+	209,987	-11,987	1640,4649
	85-At-211	7.214 ч	9/2-	210,987	-11,662	1648,2106
	85-At-212	0.314 c	(1-)	211,991	-8,631	1653,2510
	85-At-213	125 нс	9/2-	212,993	-6,594	1659,2856
	85-At-214	558 нс	1-	213,996	-3,394	1664,1570
	85-At-215	0.10 мс	9/2-	214,999	-1,266	1670,1000
	85-At-216	0.30 мс	1-	216,002	2,244	1674,6619
	85-At-217	32.3 мс	9/2-	217,005	4,387	1680,5900
	85-At-218	1.5 c		218,009	8,087	1684,9616
E .	85-At-219	56 c		219,011	10,523	1690,5971
1	85-At-220	3.71 мин	3	220,015	14,253	1694,9380
1	85-At-221	2.3 мин		221,018	16,897	1700,3650

	85-At-222	54 c	i	222,022	20,800	1704,5330
	85-At-223	50 c		223,025	23,604	1709,8010
Радон	86-Rn-197	65 мс +25-14	(3/2-)	197,002	1,547	1521,2210
1 4,4011	86-Rn-198	84 mc +16-12	0+	197,999	-1,136	1531,9760
	86-Rn-199	0.62 c	(3/2-)	198,998	-1,575	1540,4860
	86-Rn-200	0.96 с	0+	199,996	-4,027	1551,0090
	86-Rn-201	7.1 c	(3/2-)	200,996	-4,159	1559,2120
	86-Rn-202	10.0 c	0+	201,993	-6,318	1569,4430
	86-Rn-203	42 c	(3/2,5/2)-	202,993	-6,226	1577,4220
	86-Rn-204	1.17 мин	0+	203,991	-8,044	1587,3110
	86-Rn-205	2.8 мин	5/2-	204,992	-7,761	1595,1000
	86-Rn-206	5.67 мин	0+	205,990	-9,166	1604,5760
	86-Rn-207	9.25 мин	5/2-	206,991	-8,638	1612,1193
	86-Rn-208	24.35 мин	0+	207,990	-9,658	1621,2112
	86-Rn-209	28.5 мин	5/2-	208,990	-8,964	1628,5882
	86-Rn-210	2.4 ч	0+	209,990	-9,613	1637,3085
		14.6 ч	1/2-	210,991	-8,770	1644,5364
	86-Rn-211	H	0+	210,991	-8,673	1652,5113
	86-Rn-212	23.9 мин	0	g r	-5,712	
	86-Rn-213	25.0 мс	(9/2+)	212,994		1657,6210
	86-Rn-214	0.27 мкс	0+	213,995	-4,335	1664,3156
	86-Rn-215	2.30 мкс	9/2+	214,999	-1,184	1669,2358
	86-Rn-216	45 мкс	0+	216,000	0,240	1675,8829
	86-Rn-217	0.54 мс	9/2+	217,004	3,646	1680,5483
	86-Rn-218	35 мс	0+	218,006	5,204	1687,0624
	86-Rn-219	3.96 c	5/2+	219,009	8,826	1691,5116
	86-Rn-220	55.6 c	0+	220,011	10,604	1697,8044
	86-Rn-221	25.7 мин	7/2(+)	221,015	14,396	1702,0840
	86-Rn-222	3.8235 дн.	0+	222,018	16,367	1708,1845
	86-Rn-223	23.2 мин	38900	223,022	20,297	1712,3250
	86-Rn-224	107 мин	0+	224,024	22,440	1718,2540
	86-Rn-225	4.66 мин	7/2-	225,028	26,492	1722,2740
	86-Rn-226	7.4 мин	0+	226,031	28,774	1728,0630
	86-Rn-227	22.5 c	38839	227,035	32,981	1731,9270
	86-Rn-228	65 c	0+	228,038	35,475	1737,5040
Франций	87-Fr-199	12 мс +10-4			0,000	i
	87-Fr-200	19 мс +13-6	(3+)	200,006	6,054	1540,1460
	87-Fr-201	69 мс +16-11	(9/2-)	201,004	3,713	1550,5580
	87-Fr-202	0.23 c+8-4	(3+)	202,003	3,062	1559,2810
	87-Fr-203	0.55 c	(9/2-)	203,001	0,976	1569,4370
	87-Fr-204	1.7 c	(3+)	204,001	0,552	1577,9330
	87-Fr-205	3.85 c	(9/2-)	204,999	-1,245	1587,8009
	87-Fr-206	16 c	(2+,3+)	205,998	-1,409	1596,0372
	87-Fr-207	14.8 c	9/2-	206,997	-2,925	1605,6245
	87-Fr-208	59.1 c	7+	207,997	-2,670	1613,4402
	87-Fr-209	50.0 c	9/2-	208,996	-3,805	1622,6465
	87-Fr-210	3.18 мин	6+	209,996	-3,355	1630,2680
	87-Fr-211	3.10 мин	9/2-	210,996	-4,164	1639,1488
	87-Fr-212	20.0 мин	5+	211,996	-3,544	1646,6000
	87-Fr-213	34.6 c	9/2-	212,996	-3,563	1654,6901
	87-Fr-214	5.0 мс	(1-)	213,999	-0,974	1660,1720
	87-Fr-215	86 нс	9/2-	215,000	0,304	1666,9660

	87-Fr-217	22 мкс	9/2-	217,005	4,300	1679,1121
	87-Fr-218	1.0 мс	1-	218,008	7,045	1684,4384
	87-Fr-219	20 мс	9/2-	219,009	8,608	1690,9472
	87-Fr-220	27.4 c	1+	220,012	11,469	1696,1568
	87-Fr-221	4.9 мин	5/2-	221,014	13,270	1702,4279
	87-Fr-222	14.2 мин	2-	222,014	16,342	1707,4268
	87-Fr-223	22.00 мин	3/2(-)	223,020	18,379	1713,4612
	87-Fr-224	3.33 мин	1-	224,023	21,644	1718,2678
	87-Fr-225	4.0 мин	3/2-	225,026	23,853	1724,1302
	87-Fr-226	49 c	1-	226,029	27,333	1728,7210
	87-Fr-227	2.47 мин	1/2+	227,032	29,652	1734,4731
	87-Fr-228	38 c	2-		33,276	1738,9210
	87-Fr-229	50.2 c	(1/2+)	228,036	35,793	1744,4750
	87-Fr-230	19.1 c	(1/2+)	229,038	39,598	1748,7410
	87-Fr-231	17.5 c		230,043	39,396	
	87-Fr-232			231,045	42,296	1754,1140
Радий	88-Ra-202	5 c	0+	232,050	46,253	1758,2290
1 адин	88-Ra-203	0.7 mc +33-3 1.1 mc +50-5		202 200	0,000	1561 0500
	88-Ra-204	59 MC +12-9	(3/2-)	203,009	8,579	1561,0520
	88-Ra-205	1	0+	204,006	6,034	1571,6690
	В	0.21 c+6-4	(3/2-)	205,006	5,763	1580,0110
	88-Ra-206	0.24 c	0+	206,004	3,523	1590,3220
	88-Ra-207 88-Ra-208	1.3 c	(5/2-,3/2-)	207,004	3,472	1598,4450
		1.3 c	0+	208,002	1,654	1608,3340
	88-Ra-209	4.6 c	5/2-	209,002	1,811	1616,2490
	88-Ra-210	3.7 c	0+	210,000	0,416	1625,7150
	88-Ra-211	13 c	5/2(-)	211,001	0,833	1633,3693
	88-Ra-212	13.0 c	0+	212,000	-0,202	1642,4750
	88-Ra-213	2.74 мин	1/2-	213,000	0,322	1650,0225
	88-Ra-214	2.46 с	0+	214,000	0,085	1658,3311
	88-Ra-215	1.59 мс	(9/2+)	215,003	2,519	1663,9684
	88-Ra-216	182 нс	0+	216,004	3,277	1671,2813
	88-Ra-217	1.6 мкс	(9/2+)	217,006	5,874	1676,7559
	88-Ra-218	25.6 мкс	0+	218,007	6,636	1684,0654
	88-Ra-219	10 мс	(7/2)+	219,010	9,379	1689,3936
	88-Ra-220	18 мс	0+	220,011	10,260	1696,5838
	88-Ra-221	28 c	5/2+	221,014	12,955	1701,9602
	88-Ra-222	38.0 c	0+	222,015	14,309	1708,6771
	88-Ra-223	11.435 дн.	3/2+	223,018	17,230	1713,8279
	88-Ra-224	3.66 дн.	0+	224,020	18,818	1720,3112
	88-Ra-225	14.9 дн.	1/2+	225,024	21,987	1725,2131
	88-Ra-226	1600 лет	0+	226,025	23,662	1731,6095
	88-Ra-227	42.2 мин	3/2+	227,029	27,172	1736,1709
	88-Ra-228	5.75 лет	0+	228,031	28,936	1742,4785
	88-Ra-229	4.0 мин	5/2(+)	229,035	32,435	1747,0509
	88-Ra-230	93 мин	0+	230,037	34,544	1753,0129
	88-Ra-231	103 c	(7/2-,1/2+)	231,041	38,396	1757,2320
	88-Ra-232	250 с	0+	232,044	40,700	1763,0000
	88-Ra-233	30 c	(1/2+)	233,048	44,707	1767,0640
	88-Ra-234	30 c	0+	234,051	47.085	1772,7580
Актиний	89-Ac-207	27 мс +11-6	(9/2-)	207,012	11,265	1589,8690
	89-Ac-208	95 мс +24-16	(3+)	208,011	10,698	1598,5080
	89-Ac-209	0.10 c	(9/2-)	209,010	8,913	1608,3638

	89-Ac-210	0.35 c		210,009	8,623	1616,7257
	89-Ac-211	0.25 c		211,008	7,124	1626,2954
	89-Ac-212	0.93 с		212,008	7,276	1634,2147
	89-Ac-213	0.80 c		213,007	6,123	1643,4390
	89-Ac-214	8.2 c		214,007	6,421	1651,2128
	89-Ac-215	0.17 c	9/2-	215,006	6,009	1659,6960
	89-Ac-216	0.33 мс	(1-)	216,009	8,124	1665,6525
1	89-Ac-217	69 нс	9/2-	217,009	8,693	1673,1543
	89-Ac-218	1.08 мкс	(1-)	218,012	10,829	1679,0903
	89-Ac-219	11.8 мкс	9/2-	219,012	11,555	1686,4351
	89-Ac-220	26.4 мс	(3-)	220,015	13,741	1692,3201
	89-Ac-221	52 MC		221,016	14,509	1699,6242
	89-Ac-222	5.0 c	1-	222,018	16,607	1705,5967
	89-Ac-223	2.10 мин	(5/2-)	223,019	17,816	1712,4598
	89-Ac-224	2.78 ч	0-	224,022	20,221	1718,1256
	89-Ac-225	10.0 дн.	(3/2-)	225,023	21,630	1724,7884
	89-Ac-225	29.37 q	-1	226,026	24,303	1730,1870
		29.37 ч	3/2-	227,028	25,846	1736,7147
	89-Ac-227	6.15 u	3+	228,031	28,890	1741,7420
	89-Ac-228	1 .		229,033	30,675	1741,7420
	89-Ac-229	62.7 мин	(3/2+)	230,036	33,557	1748,0280
	89-Ac-230	122 c	(1+)	0 -	35,910	1 1
	89-Ac-231	7.5 мин	(1/2+)	231,039	1 '	1758,9356
	89-Ac-232	119 c	(1+)	232,042	39,144	1763,7738
	89-Ac-233	145 c	(1/2+)	233,045	41,498	1769,4910
	89-Ac-234	44 c		234,048	45,103	1773,9570
	89-Ac-235	40 c		235,051	47,601	1779,5300
	89-Ac-236	2 мин	(5/2)	236,055	51,398	1783,8050
Торий	90-Th-209	3.8 мс +69-15	(5/2-) 0+	210.016	0,000 14,001	1610 5650
	90-Th-210	9 мс +17-4	0+	210,015		1610,5650 1618,7980
	90-Th-211	37 MC +28-11	0.1	211,015	13,840	
1	90-Th-212	30 мс +20-10	0+	212,013	12,032	1628,6770
	90-Th-213	140 мс		213,013	12,074	1636,7060
	90-Th-214	100 мс	0+	214,011	10,666	1646,1850
	90-Th-215	1.2 c	(1/2-)	215,012	10,923	1653,9993
	90-Th-216	0.028 c	0+	216,011	10,294	1662,7000
	90-Th-217	0.252 мс	(9/2+)	217,013	12,171	1668,8942
	90-Th-218	109 нс	0+	218,013	12,359	1676,7777
	90-Th-219	1.05 мкс		219,016	14,458	1682,7499
	90-Th-220	9.7 мкс	0+	220,016	14,655	1690,6239
	90-Th-221	1.68 мс	(7/2+)	221,018	16,927	1696,4239
	90-Th-222	2.8 мс	0+	222,018	17,190	1704,2319
	90-Th-223	0.60 с	(5/2)+	223,021	19,371	1710,1226
	90-Th-224	1.05 c	0+	224,021	19,989	1717,5753
1	90-Th-225	8.72 мин	(3/2)+	225,024	22,301	1723,3345
	90-Th-226	30.57 мин	0+	226,025	23,186	1730,5216
	90-Th-227	18.72 дн.	(1/2+)	227,028	25,801	1735,9772
	90-Th-228	1.9116 лет	0+	228,029	26,763	1743,0867
	90-Th-229	7340 лет	5/2+	229,032	29,580	1748,3412
II .	90-Th-230	7.538е+4 лет	0+	230,033	30,857	1755,1352
		II.		II '	20.000	1500 5500
	90-Th-231	25.52 ч 100%	5/2+	231,036	33,810	1760,2533

	ı	Ш	1			
	90-Th-233	22.3 мин	1/2+	233,042	38,729	1771,4778
l l	90-Th-234	24.10 дн.	0+	234,044	40,609	1777,6688
	90-Th-235	7.1 мин	(1/2+)	235,048	44,250	1782,0990
l i	90-Th-236	37.5 мин	0+	236,050	46,305	1788,1160
1	90-Th-237	5,0 мин	(5/2+)	237,054	50,202	1792,2900
	90-Th-238	20 мин	0+	238,056	52,390	1798,1730
Протакти-	01 D- 212	5.1 Mc +61-19		1	0,000	
ний	91-Pa-212	1	(0/2)	212.021	1 ′	1629 2666
	91-Pa-213	5.3 мс +40-16 17 мс	(9/2-)	213,021	19,732	1628,2656
	91-Pa-214	17 MC 15 MC	(0/2)	214,021	19,318 17,789	1636,7505
	91-Pa-215	105 MC	(9/2-)	215,019	,	1646,3509
	91-Pa-216	2.3 MC +5-3	(0/2)	216,019	17,801 17,036	1654,4110
	91-Pa-217		(9/2-)	217,018	,	1663,2472
	91-Pa-218	0.11 MC	9/2-	218,020	18,637	1669,7170
	91-Pa-219	53 нс		219,020	18,518	1677,9071
	91-Pa-221	4.9 мкс	9/2-	221,022	20,366	1692,2022
	91-Pa-222	3.3 мс		222,024	22,100	1698,5390
	91-Pa-223	5 MC		223,024	22,322	1706,3887
	91-Pa-224	0.85 c		224,026	23,860	1712,9221
	91-Pa-225	1.7 c		225,026	24,326	1720,5274
l l	91-Pa-226	1.8 мин	(5/2)	226,028	26,019	1726,9056
1	91-Pa-227	38.3 мин	(5/2-)	227,029	26,821	1734,1755 1740,1567
	91-Pa-228	22 ч 1.50 дн.	_	228,031 229,032	28,911 29,890	1740,1307
	91-Pa-229	1.30 дн. 17.4 дн.	(5/2+)	230,035	32,167	1753,0432
1	91-Pa-230 91-Pa-231	32760 лет	(2-) 3/2-	231,036	33,421	1759,8604
	91-Fa-231 91-Pa-232	1.31 дн.	(2-)	232,039	35,939	1765,4141
	91-Pa-232	26.967 дн.	3/2-	232,039	37,484	1771,9405
	91-Pa-234	6.70 ч	4+	234,043	40,336	1777,1595
	91-Pa-235	24.5 мин	(3/2-)	235,045	42,324	1783,2426
1	91-Pa-236	9.1 мин	1(-)	236,049	45,341	1788,2974
	91-Pa-237	8.7 мин	(1/2+)	237,051	47,636	1794,0733
İ	91-Pa-238	2.3 мин	(3-)	238,054	50,764	1799,0170
	91-Pa-239	106 мин	(1/2+)	239,057	53,216	1804,6360
	91-Pa-240	2 мин	(1/21)	240,061	56,802	1809,1210
Уран	92-U-218	1.5 Mc +73-7	0+	218,023	21,878	1665,6940
, p	92-U-219	42 MKC +34-13	(9/2+)	219,025	23,209	1672,4346
	92-U-220	60 нс	0+	220,025	23,019	1680,6960
	92-U-221	0.7 мкс	-	221,026	24,546	1687,2400
	92-U-222	1.0 MKC +10-4	0+	222,026	24,284	1695,5730
	92-U-223	55 мкс	(7/2+)	223,028	25,824	1702,1047
	92-U-224	0.9 мс	0+	224,028	25,700	1710,2998
	92-U-225	60 мс		225,029	27,371	1716,6998
	92-U-226	0.35 c	0+	226,029	27,330	1724,8126
	92-U-227	1.1 мин	(3/2+)	227,031	29,007	1731,2070
	92-U-228	9.1 мин	0+	228,031	29,218	1739,0675
	92-U-229	58 мин	(3/2+)	229,033	31,201	1745,1550
	92-U-230	20.8 дн.	0+	230,034	31,603	1752,8246
	92-U-231	4.2 дн.	(5/2-)	231,036	33,803	1758,6959
	92-U-231	4.2 дн.	(3/2+,5/2+)	231,036	33,803	1758,6959
	92-U-232	68.9 лет	0+	232,037	34,602	1765,9688
	92-U-233	1.592е+5 лет	5/2+	233,040	36,913	1771,7283

	160	0.0054%		A 1		
	92-U-234	2.455е+5 лет	0+	234,041	38,141	1778,5724
)L 0 L5 .	0.7204%		',- '-	,	
	92-U-235	703.8е+6 лет	7/2-	235,044	40,914	1783,8703
	92-U-236	2.342е+7 лет	0+	236,046	42,441	1790,4150
	92-U-237	6.75 дн.	1/2+	237,049	45,386	1795,5409
	72-0-257	99.2742%	1.2	251,012	,	, , , , , , , , ,
	92-U-238	4.468е+9 лет	0+	238,051	47,304	1801.6947
	92-U-239	23.45 мин	5/2+	239,054	50,569	1806,5009
	92-U-240	14.1 4	0+	240,057	52,709	1812,4317
	92-U-241	5 мин	Ŭ.	241,060	56,197	1817,0150
	92-U-242	16.8 мин 5	0+	242,063	58,614	1822,6690
Нептуний	93-Np-225	2 MKC	(9/2-)	225,034	31,577	1711,7114
нешунии	93-Np-225	35 MC	(3/2-)	226,035	32,723	1718,6380
		0.51 c		227,035	32,563	1726,8680
	93-Np-227	61.4 c		228,036	33,701	1733,8010
	93-Np-228			229,036	33,764	1741,8103
	93-Np-229	4.0 мин 4.6 мин		230,038	35,704	1748,4232
	93-Np-230		(5/2)	231,038	35,614	1756,1027
	93-Np-231	48.8 мин	(4+)	232,040	37,352	1762,4360
	93-Np-232	14.7 мин	(5/2+)	232,040	37,942	1762,4300
	93-Np-233	36.2 мин		234,043	39,950	1775,9802
	93-Np-234	4.4 дн.	(0+) 5/2+	235,044	41,038	1782,9642
	93-Np-235	396.1 дн.	8	235,044	43,370	1788,7032
	93-Np-236	154е+3 лет	(6-) 5/2+	237,048	44,868	1795,2771
	93-Np-237	2.144е+6 лет	2+	237,048	47,451	1800,7652
	93-Np-238	2.117 дн. 2.3565 дн.	5/2+	239,053	49,305	1806,7632
	93-Np-239	7.22 мин	1(+)	240,056	52,321	1812,0377
	93-Np-240	61.9 мин	(5+)	240,056	52,321	1812,0377
	93-Np-240	13.9 мин	(5/2+)	241,058	54,256	1818,1739
	93-Np-241	1.85 мин	(5/2-)	243,064	59,870	1828,7030
	93-Np-243	2.29 мин	(7-)	244,068	63,202	1833,4420
Плутоний	93-Np-244 94-Pu-228	0.2 c	0+	228,039	36,075	1730,6458
Тыугонии	94-Pu-229	2 MKC	(3/2+)	229,040	37,389	1737,4025
		200 c	0+	230,040	36,930	1745,9334
	94-Pu-230	8.6 мин	(3/2+)	231,041	38,432	1752,5030
	94-Pu-231	34.1 мин	0+	232,041	38,358	1760,6473
	94-Pu-232	20.9 мин	01	233,043	40,043	1767,0343
	94-Pu-233	8.8 ч	0+	234,043	40,338	1774,8103
	94-Pu-234	о.о ч 25.3 мин	(5/2+)	235,045	42,179	1781,0402
	94-Pu-235		0+	235,045	42,179	1788,3975
	94-Pu-236	2.858 лет	7/2-	237,048	45,088	1794,2745
	94-Pu-237	45.2 дн.	0+	238,050	46,159	1801,2749
	94-Pu-238	87.7 лет	1/2+	239,052	48,583	1806,9215
	94-Pu-239	24110 лет	0+	240,054	50,121	1813,4549
	94-Pu-240	6564 лет 14.290 лет	5/2+	240,034	52,951	1818,6965
	94-Pu-241		0+	242,059	54,713	1825,0059
	94-Pu-242	3.733е+5 лет	7/2+	242,039	57,750	1830,0404
	94-Pu-243	4.956 ч 8.00е+7 лет	0+	244,064	59,800	1836,0618
	94-Pu-244	10.5 ч	(9/2-)	244,004	63,098	1840,8347
	94-Pu-245 94-Pu-246	N .	0+	245,008	65,389	1846,6148
		10.84 дн.	0,	247,074	68,996	1851,0800
	94-Pu-247	2.27 дн.		24/,0/4	00,770	1 1021,0000

Америций	95-Am-231	10 c		231,046	42,439	1747,7130
1	95-Am-232	79 c		232,047	43,398	1754,8250
	95-Am-233	2 мин		233,046	43,289	1763,0060
	95-Am-234	2.32 мин		234,048	44,520	1769,8460
	95-Am-235	15 мс		235,048	44,739	1777,6980
	95-Am-236	4.4 мин		236,050	46,174	1784,3350
1	95-Am-237	73.0 мин	5/2(-)	237,050	46,547	1792,0325
1	95-Am-238	98 мин	1+	238,052	48,417	1798,2342
	95-Am-239	11.9 ч	(5/2)-	239,053	49,386	1805,3362
	95-Am-240	50.8 ч	(3-)	240,055	51,500	1811,2936
	95-Am-241	432.2 лет	5/2-	241,057	52,930	1817,9350
1	95-Am-242	16.02 ч	1-	242,060	55,464	1823,4726
	95-Am-243	7370 лет	5/2-	243,061	57,168	1829,8396
1	95-Am-244	10.1 ч	(6-)	244,064	59,876	1835,2033
	95-Am-245	2.05 ч	(5/2)+	245,066	61,893	1841,2570
	95-Am-246	39 мин	(7-)	246,070	64,989	1846,2330
	95-Am-247	23.0 мин	(5/2)	247,072	67,148	1852,1460
	95-Am-248	10 мин	(5.2)	248,076	70,556	1856,8080
	95-Am-249	2 мин	í	249,078	73,104	1862,3320
Кюрий	96-Cm-232	1 мин?	0+		0,000	
l dobini	96-Cm-233	1 мин		233,051	47,320	1758,1920
	96-Cm-234	2 мин	0+	234,050	46,798	1766,7850
1	96-Cm-235	5 мин		235,052	48,057	1773,5980
	96-Cm-236	10 мин	0+	236,051	47,883	1781,8430
	96-Cm-237	20 мин		237,053	49,268	1788,5300
Ř	96-Cm-238	2.4 ч	0+	238,053	49,384	1796,4845
	96-Cm-239	2.9 ч	(7/2-)	239,055	51,186	1802,7540
i .	96-Cm-240	27 дн.	0+	240,056	51,716	1810,2959
}	96-Cm-241	32.8 дн.	1/2+	241,058	53,698	1816,3853
	96-Cm-242	162.8 дн.	0+	242,059	54,799	1823,3550
	96-Cm-243	29.1 лет	5/2+	243,061	57,177	1829,0483
	96-Cm-244	18.10 лет	0+	244,063	58,448	1835,8490
	96-Cm-245	8500 лет	7/2+	245,065	60,999	1841,3687
	96-Cm-246	4760 лет	0+	246,067	62,613	1847,8267
	96-Cm-247	1.56е+7 лет	9/2-	247,070	65,528	1852,9832
	96-Cm-248	3.48е+5 лет	0+	248,072	67,386	1859,1958
	96-Cm-249	64.15 мин	1/2(+)	249,076	70,744	1863,9092
	96-Cm-250	9700 лет	0+	250,078	72,983	1869,7416
	96-Cm-251	16.8 мин	(1/2+)	251,082	76,641	1874,1548
	96-Cm-252	2 дн.	`0+´	252,085	79,056	1879,8120
Берклий	97-Bk-235	20 c		235,057	52,704	1768,1690
	97-Bk-236	1 мин		236,057	53,403	1775,5410
	97-Bk-237	1 мин		237,057	53,214	1783,8020
	97-Bk-238	144 c		238,058	54,274	1790,8120
1	97-Bk-239	3 мин	(7/2+)	239,058	54,364	1798,7940
	97-Bk-240	4.8 мин	` ′	240,060	55,656	1805,5740
	97-Bk-241	3 мин	(7/2+)	241,060	56,098	1813,2030
	97-Bk-242	7.0 мин	` ′	242,062	57,799	1819,5730
	97-Bk-243	4.5 ч	(3/2-)	243,063	58,686	1826,7576
	97-Bk-244	4.35 ч	(1-)	244,065	60,703	1832,8110
	97-Bk-245	4.94 дн.	3/2-	245,066	61,810	1839,7762
	97-Bk-247	1380 лет	(3/2-)	247,070	65,483	1852,2458
		-				

	97-Bk-248	9 лет		248,073	68,074	1857,726
	97-Bk-249	330 дн.	7/2+	249,075	69,843	1864,027
	97-Bk-250	3.217 ч	2-	250,078	72,946	1868,996
	97-Bk-251	55,6 мин	(3/2-)	251,081	75,221	1874,792
	97-Bk-252	2 мин		252,084	78,528	1879,557
	97-Bk-253	10 мин		253,087	80,929	1885,228
	97-Bk-254	2 мин	(a)	254,091	84,393	1889,834
Калифор-						
ний	98-Cf-237	2.1 c		237,062	57,818	1778,415
	98-Cf-238	21. мс	0+	238,061	57,203	1787,101
	98-Cf-239	39 c +37-12		239,063	58,292	1794,084
	98-Cf-240	1.06 мин	0+	240,062	58,027	1802,420
	98-Cf-241	3.78 мин		241,064	59,351	1809,167
	98-Cf-242	3.4 мин	0+	242,064	59,326	1817,263
	98-Cf-243	10,7 мин	(1/2+)	243,065	60,939	1823,722
	98-Cf-244	19.4 мин	0+	244,066	61,470	1831,262
	98-Cf-245	45.0 мин	(5/2+)	245,068	63,378	1837,425
	98-Cf-246	35.7 ч	0+	246,069	64,086	1844,789
	98-Cf-247	3.11 प	(7/2+)	247,071	66,129	1850,817
	98-Cf-248	333.5 дн.	0+	248,072	67,233	1857,784
	98-Cf-249	351 лет	9/2-	249,075	69,719	1863,369
	98-Cf-250	13.08 лет	0+	250,076	71,166	1869,994
	98-Cf-251	898 лет	1/2+	251,080	74,128	1875,103
	98-Cf-252	2.645 лет	0+	252,082	76,028	1881,274
	98-Cf-253	17.81 дн.	(7/2+)	253,085	79,295	1886,079
	98-Cf-254	60.5 дн.	0+	254,087	81,335	1892,110
	98-Cf-255	85 мин	(7/2+)	255,091	84,803	1896,714
	98-Cf-256	12.3 мин	0+	256,093	87,039	1902,549
Эйнштей-	00 5 041	0 164	(2.12.)	241.000	63.959	1803,777
ний	99-Es-241	8 c +6-4	(3/2-)	241,069	64,924	
	99-Es-242	23.9 c		242,070	. ,	1810,883
	99-Es-243	19 c		243,070	64,861	1819,018
	99-Es-244	37 c	(2/2)	244,071	66,107	1825,843
	99-Es-245	1.1 мин	(3/2-)	245,071	66,432	1833,589
	99-Es-247	4.55 мин	(7/2+)	247,074	68,604	1847,560
	99-Es-248	27 мин	(2-,0+)	248,075	70,289	1853,946
	99-Es-249	102.2 мин	7/2+	249,076	71,170	1861,136
	99-Es-250	2.22 ч	1(-)	250,079	73,266	1867,112
	99-Es-250	8.6 ч	(6+)	250,079	73,266	1867,112
	99-Es-251	33 ч	(3/2-)	251,080	74,504	1873,944
	99-Es-252	471.7 дн.	(5-)	252,083	77,288	1879,232
	99-Es-253	20.47 дн.	7/2+	253,085	79,007	1885,584
	99-Es-254	275.7 дн.	(7+)	254,088	81,986	1890,670
	99-Es-255	39.8 дн.	(7/2+)	255,090	84,083	1896,651
	99-Es-256	25.4 мин	(1+,0-)	256,094	87,180	1901,626
	99-Es-257	7.7 дн.		257,096	89,403	1907,474
Фермий	100-Fm-242	0.8 мс	0+	242,073	68,400	1806,623
	100-Fm-243	0.18 c +8-4		243,075	69,406	1813,69
1						1 1000 124
111	100-Fm-244	3.3 мс	0+	244,074	69,002	
11		3.3 мс 4.2 с 1.1 с	0+	244,074 245,075 246,075	70,212 70,124	1822,165 1829,027 1837,185

E	100-Fm-248	36 c	0+	140.077	71.007	1051 5550
Ì	100-Fm-248	2.6 мин	(7/2+)	248,077	71,897	1851,5559
	100-Fm-250	33 мин	0+	249,079 250,080	73,611 74,068	1857,9130 1865,5279
	100-Fm-251	5.30 q	(9/2-)	251,082	75,979	1871,6880
	100-Fm-251	25.39 ч	0+	252,082	76,811	1878,9270
	100-Fm-253	3.00 дн.	(1/2)+	253,085	79,341	1884,4682
	100-Fm-253	3.240 ч	0+	253,083	80,898	1890,9825
	100-Fm-255	20.07 ч	7/2+	255,090	83,793	1896,1590
ļ	100-Fm-256	157.6 мин	0+	256,092	85,480	1902,5433
	100-Fm-257	100.5 дн.	(9/2+)	257,095	88,584	1907,5108
	100-Fm-258	360 мкс	0+	258,097	90,419	1913,7470
	100-Fm-259	1.5 c		259,101	93,697	1918,5400
1	100-Fm-260	4 MC	0+	237,101	0,000	1710,5400
Менделе-						
вий	101-Md-245	900 мкс	(1/2-)	245,081	75,467	1822,9890
ŀ	101-Md-247	0.38 c		247,082	76,200	1838,3990
	101-Md-248	7 c		248,083	77,229	1845,4410
	101-Md-249	24 c		249,083	77,316	1853,4260
	101-Md-250	52 c		250,084	78,700	1860,1130
	101-Md-251	4.0 мин		251,085	79,101	1867,7830
	101-Md-252	2.3 мин		252,087	80,695	1874,2600
	101-Md-253	6 мин +12-3	(1/2-)	253,087	81,301	1881,7260
1	101-Md-254	10 мин		254,090	83,578	1887,5200
	101-Md-255	27 мин	(7/2-)	255,091	84,836	1894,3336
	101-Md-256	77 мин	(1-)	256,094	87,610	1899,6314
	101-Md-257	5.52 ч	(7/2-)	257,096	88,990	1906,3223
	101-Md-258	51.5 дн.	(8-)	258,098	91,683	1911,7010
	101-Md-259	96 мин		259,101	93,617	1917,8370
	101-Md-260	31.8 дн.		260,104	96,545	1922,9810
Нобелий	102-No-249			249,088	81,807	1848,1530
1	102-No-250	0.25 мс	0+	250,087	81,499	1856,5310
	102-No-251	0.8 c	(7/2+)	251,089	82,866	1863,2360
	102-No-252	2.27 c	0+	252,089	82,871	1871,3021
	102-No-253	1.62 мин	(9/2-)	253,091	84,439	1877,8060
	102-No-254	54 c	0+	254,091	84,718	1885,5977
	102-No-255	3.1 мин	(1/2+)	255,093	86,845	1891,5418
	102-No-256	2.91 c	0+	256,094	87,817	1898,6412
	102-No-257	25 c	(7/2+)	257,097	90,218	1904,3121
	102-No-258	1.2 мс	0+	258,098	91,473	1911,1280
	102-No-259	58 мин	0.1	259,101	94,103	1916,5690
	102-No-260	106 мс	0+	260,103	95,605 98,499	1923,1390 1928,3170
#	102-No-261	5 мс	0+	261,106 262,108	100,154	1928,3170
Лоуренсий	102-No-262 103-Lr-251	J MC	UT	251,094	87,896	1857,4240
Лоуренсии	103-LF-251 103-LF-252	0.36 c+11-7		252,095	88,799	1864,5920
	103-L1-252 103-Lr-254	13 c		254,097	89,971	1879,5630
	103-L1-254	22 c		255,097	90,140	1887,4650
	103-Lr-256	27 c		256,099	91,997	1893,6790
	103-Lr-257	0.646 c		257,100	92,782	1900,9650
	103-Lr-258	3.9 c		258,102	94,903	1906,9160
	103-Lr-259	6.2 c		259,103	95,935	1913,9550
	103-Lr-260	180 c		260,106	98,340	1919,6210

103-Lr-261	39 мин		261,107	99,615	1926,4180
	1 1			102,177	1931,9270
	0.0.				1938,4130
	23 мкс	0+			1875,4470
		-			1882,2840
	1	, ,	1 '		1890,645
				96,011	1896,9540
	l h	0+		96,473	1904,563
	3.2 c		259,106	98,392	1910,716
	21 MC	0+	260,106	99,142	1918,037
				101,302	1923,949
	1	0+		, ,	1930,934
	1			'	1936,563
	10	0+	11 "		1943,295
	16c +6-4				1876,000
					1883,407
			1 '		1891,713
					1898,313
	4.4 6 1 5-0				1906,121
	1520				1912,603
			4 1	,	1920,042
				,	1926,206
					1933,417
	276 +10-7				1939,257
	1				1946,224
	2010 + 127	0+			1894,073
		•			1900,745
	1	` /			1909,018
		0+		,	1915,447
_	0.23 6	0+	11 '		1923,259
_	100	0+		· '	1929,620
_	1.0 0	0+			1927,020
_					1943,199
				,	
	1	0+	200,122		1950,468
	1		260 122		1001 272
	10 150		, ,	,	1901,373
			II '	'	1909,447
	102 MC		W ,		1916,393
			1 '		1924,336
	0.44 c +60-16				1930,932
					1938,568
					1944,952
					1918,371
		0+			1926,723
	2.0 мс +3-2		n '		1933,311
					1941,345
108-Hs-267		, ,			1947,803
108-Hs-269		(3/2+)	269,134		1961,765
108-Hs-273			1 104		
108-Hs-277			266,138	0,000 128,490	1933,205
109-Mt-266	0.8 мс				
	103-Lr-262 103-Lr-263 104-Rf-254 104-Rf-255 104-Rf-255 104-Rf-257 104-Rf-258 104-Rf-259 104-Rf-260 104-Rf-261 104-Rf-263 104-Rf-263 104-Rf-263 105-Db-255 105-Db-255 105-Db-256 105-Db-259 105-Db-259 105-Db-261 105-Db-263 105-Db-263 105-Db-263 105-Db-263 105-Db-263 105-Db-263 105-Db-263 105-Db-263 105-Db-263 105-Db-263 105-Db-263 105-Db-263 105-Db-263 105-Db-265 106-Sg-263 106-Sg-263 106-Sg-263 106-Sg-266 106-Sg-266 106-Sg-266 106-Sg-266 106-Sg-266 106-Sg-266 106-Sg-266 106-Sg-266 107-Bh-263 107-Bh-263 107-Bh-264 107-Bh-263 107-Bh-264 107-Bh-265 107-Bh-263 107-Bh-266 108-Hs-263 108-Hs-263 108-Hs-264 108-Hs-266 108-Hs-266 108-Hs-266 108-Hs-266 108-Hs-269 108-Hs-269	103-Lr-262 3.6 ч 104-Rf-254 23 мкс 104-Rf-255 1.5 с 104-Rf-256 6.4 мс 104-Rf-257 4.7 с 104-Rf-258 12 мс 104-Rf-258 12 мс 104-Rf-260 21 мс 104-Rf-261 65 с 104-Rf-262 2.1 с 104-Rf-263 10 мин 104-Rf-264 105-Db-255 105-Db-255 1.6 с +6-4 105-Db-256 1.9 с +5-3 105-Db-257 0.76 с +15-11 4.4 с +9-6 105-Db-258 105-Db-259 1.52 с 105-Db-260 1.8 с 105-Db-261 1.8 с 105-Db-263 105-Db-264 105-Db-263 105-Db-264 105-Db-263 105-Db-263 105-Sg-258 2.9 мс +13-7 106-Sg-258 2.9 мс +13-7 106-Sg-261 0.23 с 106-Sg-262 1.0 с 106-Sg-263 1.0 с 106-Sg-264 10 c 10	103-Lr-262 3.6 ч 104-Rf-254 23 мкс 0+ 104-Rf-255 1.5 с (9/2-) 104-Rf-256 6.4 мс 0+ 104-Rf-256 6.4 мс 0+ 104-Rf-257 4.7 с (1/2+) 104-Rf-258 12 мс 0+ 104-Rf-259 3.2 с 0+ 104-Rf-260 21 мс 0+ 104-Rf-261 65 с 0+ 104-Rf-262 2.1 с 0+ 104-Rf-263 10 мин 0+ 105-Db-255 1.6 с +6-4 0+ 105-Db-256 1.9 c +5-3 0.76 c +15-11 105-Db-257 1.76 c +15-11 0+ 105-Db-258 1.9 c +5-3 0.5-Db-261 105-Db-259 1.52 c 1.52 c 105-Db-261 1.8 c 34 c 105-Db-262 34 c 0+ 105-Db-263 27 c +10-7 0+ 106-Sg-258 2.9 мc +13-7 0+ 106-Sg-258 2.9 мc +13-7 0+ 106-Sg-261 0.23 c 0+ 106-Sg-263	103-Lr-262	103-Lr-262 3.6 \(\pi \)

Таблица 3. Характеристики элементарных частиц

Таблица элементарных частиц состоит из двух частей:

ЛЕПТОНЫ — бесструктурные частицы со спином J=1/2, которые не участвуют в сильных взаимодействиях;

АДРОНЫ - частицы, участвующие в сильных взаимодействиях.

В таблице для лептонов приведены их символы, массы в $M \ni B$, времена жизни τ , лептонные заряды L_e , L_μ , L_τ , и основные моды распада.

Адроны подразделяются на **мезоны** — частицы с целым спином и нулевым барионным зарядом B=0 и **барионы** — частицы с полуцелым спином и барионным зарядом B=1.

В таблице для адронов приведены их общепринятые символы, кварковый состав, масса в $M \ni B$, времена жизни τ или ширины резонансов $\Gamma = \sum \Gamma_i = \hbar / \tau$ относительно распадов по всем каналам, спин с четностью J^F , изоспин I и основные моды распада частиц.

В таблицу не включены частицы-резонансы и обменные частицы-переносчики взаимодействия.

Таблица составлена О.Ю. Панищевым на основе данных из интернет-сайта

http://nuclphys.sinp.msu.ru/introduction/particltab.html.

Работа частично поддержана грантом РНП.2.1.1.741.

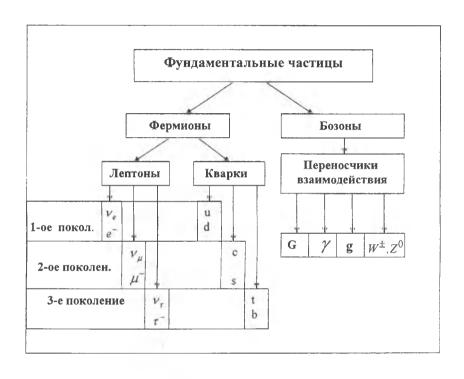
ЛЕПТОНЫ (J=1/2)

Частица	Macca,	Время жизни	Леп	гонны ряд	й за-	Основные моды	
5 1	MIJB		L_e	Lμ	L_{τ}	распада	
Ve	< 7.10-6	Стабильно	+1	0	0		
ν_{μ}	< 0.17	Стабильно	0	+1	0	To and its aid tracing that several and the sales	
ν_{τ}	< 18	Стабильно	0	0	+1		
e ⁻	0.511	> 4.3·10 ²³ лет	+1	0	0		
μ-	105.66	2.2·10 ⁻⁶ c	0	+1	0	e ⁻ VV	
τ-	1777	2.9·10 ⁻¹³ c	0	0	+1	адроны $+ \nu$, $\mu \nu ar{ u}$	

АДРОНЫ: Мезоны (B=0, L=0)

Частица	Кварко- вый со- став	Macca, Mc ² (МэВ)	Время жизни (c) или ширина	Спин- четность, изоспин Ј ^Р (I)	Основные моды рас- пада
π+, π-	นซี, dนิ	139.7	2.6-10-8	0-(1)	νμ⁺, υ μ-
π^0	นนิ-dินิ	134.98	8.4·10 ⁻¹⁷	0*(1)	2"Y
K ⁺ ,K	us, sī	494	1.2·10 ⁻⁸	0 (1/2)	νμ ⁺ , νμ·, π ⁰ π [±]
TZ 0 == 0	4- 47	498	0.89 · 10 -10 KS	0-(1/2)	$\pi^{+}\pi^{-},\pi^{0}\pi^{0}$
K^0, \overline{R}^0	d s̄, s d̄	498	$\begin{cases} 0.89 \cdot 10^{-10} \text{ K}_{S}^{0} \\ 5.2 \cdot 10^{-8} \text{ K}_{L}^{0} \end{cases}$	0 (1/2)	πεν, πμν, 3π ⁰ , π ⁰ π ⁺ π ⁻
η	นน+dd̄, sō	547	1.2 кэВ	0-(0)	2γ, 3π ⁰ , π ⁰ π ⁺ π ⁻
ηι	uū+dd, ss	958	0.20 МэВ	0-(0)	ηπ ⁺ π ⁻ ,ρ ⁰ γ,π ⁰ π ⁰ η
P [±]	1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	7 7 0	151 МэВ	17(1)	πχ
ట	u u +da	782	8.4 МэВ	1-(0)	π+π-π0
φ	S	1020	4.4 МэВ	1-(0)	Κ'Κ', π' π' π' ο

D±	cd, dc	1869	1.1-10-12	0 (1/	(2)	К + др.,
$D^{\circ}, \overline{D}^{\circ}$	cū, uč	1865	4.2·10 ⁻¹³	0 (1/2)		е + др., µ + др.
D _S [±]	Cs, sc	1969	4.7·10 ⁻¹³		0-(0)	К + другие
в±	นษี, ๒๔)	6070	1 < 10-12	1	0 (1/2)	D ⁰ +др, D*+др
B^0, \overline{B}^0	$\{\bar{b}d, \bar{d}b\}$	5279	1.6·10 ⁻¹²	1	0-(1/2)	v+др, D ⁺ +др, D*+др
J/ψ	CĒ	3097	87 кэВ		1-(0)	адроны, е ⁺ е ⁻ ,µ ⁺ µ ⁻
Y	<u>d</u> d	9460	53 кэВ		1-(0)	τ ⁺ τ ⁻ ,e ⁺ e ⁻ ,μ ⁺ μ ⁻


АДРОНЫ: Барионы (B = 1, L = 0)

Частица	Кварковый со- став	Macca, mc² (MэB)	Время жиз- ни (c) или ширина (МэВ)	Спин- четность, изоспин Ј ^P (I)	Основные моды рас- пада
р	uud	938.27	>10 ³¹ лет	1/2+(1/2)	
n	udd	939.57	887 <u>+</u> 2	1/2+(1/2)	pe v̄
Λ	uds	1116	2.6-10 ⁻¹⁰	1/2+(0)	pπ, nπ ⁰
Σ+	uus	1189	0.80-10-10	1/2+(1)	$p\pi^0, n\pi^+$
Σ^{0}	uds	1193	7.4-10 ⁻²⁰	1/2+(1)	٨٧
Σ-	dds	1197	1.5·10 ⁻¹⁰	1/2+(1)	nπ
Ξ°	uss	1315	2.9·10 ⁻¹⁰	1/2+(1/2)	Λπ°
Ē.	dss	1321	1.6-10-10	1/2+(1/2)	Λπ
Ω-	sss	1672	0.82·10 ⁻¹⁰	3/2+(0)	ΛK-, Ξ ⁰ π

△ ⁺⁺ △ ⁺ △ ⁰	ddd uud uud		1230- 1234	113-1/3		3/2+(3/2)	(n,p) + π	
Δ			1202			the foresteening white registrate size registrated is a statement on an average about 3 miles.		
Σ*(1385)	uus		1383	36)			
$\Sigma^{0}(1385)$	uds		1384	36	}	3/2+(1)	Απ, Σπ	
Σ (1385)	dds		1387	39				
°(1530)	uss		1532	9.1	}	3/2+(1/2)	Ξπ	
Ξ (1530)	dss		1535	9.1	*** 1-1- 1 1455-11 1 5-			
N(1440)	N ⁺ uud	}	1430-	250-4	50	1/2*(1/2)	$n(p)+\pi 2\pi$	
11(1110)	Nº udd	J	1470	200 .		1 (1.1)	-(P)	
N(1520)	N⁺ uud	}	1515-	110-1	35	3/2-(1/2)	$n(p)+\pi(2\pi)$	
1.(1020)	Nº udd	J	1530			()		
$\Lambda_{\rm C}^{+}$	udc		2285	2.0.10	13	1/2+(0)	(n,p)+др.	
Σ(++	uuc		2453)			
Σ_{C}^{+}	udc		2454		}	1/2*(1)	Λ ⁺ _c π	
Σ_{c}^0	ddc		2452		,			

K. Hagiwara et al., Phys. Rev. D66, 010001 (2002)

Таблица 4. Фундаментальные частицы

ПЕРИОДИЧЕСКАЯ СИСТЕМА

157,25

151,96

Пери- оды	ряды	I	and the proof complete	II		III			IV	
1	1	1 Н Водород 1,0079	to be a supplied to the summary of the					The state of the s		
2	2	3 Li Литий 6,941	1 4	Г Бериллий 9,01218	Be	5 Бор 10,81	В	6 Уг 1	леро, 2,011	C
3	3	11 Na Натрий 22,98977	a 1	2 I Магний 24,305	Mg	13 Алюмині 26,9815	АІ ий 4	14 Kp 28	емни 8,0855	Si й
4	4	Натрии 22,98977 19 К Калий 39,0983	2	20 Кальций 40,08	Ca	21 Сканди 44,9559	Sc й	22 T	ътан 17,88	Ti
4	5	29 Си Медь 63,546	1 13	(() 2	n	13.1	(ya	132		Ge
	6	Рубилий	- 1	Стронций		Иттрий	r	llи	nkoht	ŧЙ
5	7	85,4678 47 A Cepeбpo 107,868	g 4	18 Кадмий 112,41	Cd	49 Индий 114,82	In	50 C	лово 18,69	Sn
6	8	55 Ся Цезий 132,9054	s p	о Барий	Ба	Лантан	l ITSI	Γε	фний	i
0	9	79 А я Золото 196.9665	u 8	80 I Ртуть 200.59	Hg	81 Таллий 204.383	TI	82 C	винец 207,2	Pb
7	10	87 F Франций [223]		Радий 226,0254		Актини 227,027	Ас й 8	104 Резе	рфорд 261]	Rf ций
	METALIN PERSON PRESON Proprietable del	*	Лан	таноиды						
58 Цери	Се 59 ій Пра	Pr 60 N зеодим Неоди	d	61 Pm	62	2 Sm	Евро	Eu	Гадо	линий

 Церий
 Празеодим
 Неодим
 Прометий

 140,12
 140,9077
 144,24
 [145]

 **Актиноиды

90	Th	91 P a	92	U	93	Np	94	Pu	95	Am	96	Cm
		Протактин							Ам	ериций	Kı	юрий
232	,0381	231,035	9 238	3,0389	23	7,0482	[2	44]	[243]	[247]

150,36

ЭЛЕМЕНТОВ Д.И. МЕНДЕЛЕЕВА

V	VI	VII		VIII			
			2 Н е Гелий 4,0026				
Азот	8 О Кислород 15,9994						
15 Р Фосфор 30,97376	16 S Cepa 32,06	17 CI Хлор 35,453	18 Аг Аргон 39,948				
23 V	24 Cr Xnow	25 Mn Mangaheu	26 Fe Железо	27 Со 28 М Кобальт Никель 58,9332 58,69			
Мышьяк	34 Se Селен 78,96	35 Вг Бром 79,904	36 Kr				
Ниобий	Молибден	43 Тс Технеций	44 Ru Рутений	45 Rh 46 P Родий Паллади 102,9055 106,42			
Сурьма	Те Теллур 127,60	53 І Иод	54 Хе Ксенон				
Тантал	74 W Вольфрам 183,85		Осмий	77 Ir 78 F Иридий Платин: 192,22 195,08			
Висмут	84 Ро Полоний [209]	Астат	Радон				
Дубний	106 Sg Сиборгий [263]	Борий	Хассий	109 Mt 110 Uu Майтнерий [266] [?]			

*Лантаноиды

1	65 Tb	66 D y	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
	Тербий	Диспрозий	Гольмий	Эрбий	Тулий	Иттербий	Лютеций
	158,9254	162,50	164,9304	167,26	168,9342	173,04	174.967

**Актиноиды

97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr
Берклий	Калифорний	Эйнштейний	Фермий	Менделевий	Нобелий	Лоуренсий
[247]	[251]	[252]	[257]	[258]	[255]	[260]

Литература

- 1. Наумов А.И. Физика атомного ядра и элементарных частиц. М.: Просвещение, 1984.
- 2. Ишханов Б.С. Субатомная физика. МГУ, 1994.
- 3. Широков Ю.М., Юдин Н.П. Ядерная физика. М.: Наука, 1972.
- 4. Сивухин Д.В. Атомная и ядерная физика. Часть 2. Ядерная физика. М.: Наука, 1989.
- 5. Мухин К.Н. Экспериментальная ядерная физика. Т.1, Т.2. Энергоатомиздат, 1983.
- 6. Иродов И.Е. Сборник задач по ядерной физике. М.: Госатомиздат, 1960.
- 7. Храмов Ю.А. Физики. Биографический справочник. М.: Наука, 1983.

Оглавление

Часть І. Физика атомного ядра Глава І. Свойства атомных ядер
Глава 2. Ядерные силы и модели
Глава 3. Радиоактивные превращения ядер
Часть II. Ядерные излучения и их воздействие на вещество
Глава 4. Ядерные реакции90

Глава 5. Деление ядер. Ядерная энергетика105
5.1 Механизмы деления ядер (105). 5.2 Деление ядер под действием нейтро-
нов. Цепная реакция (108). 5.3 Ядерные реакторы на тепловых и быстрых
нейтронах (112). 5.4. Реакции синтеза. Проблема управляемого термоядерно-
го синтеза. Критерий Лоусона. Токамаки (115). Вопросы для закрепления
знаний (119). Примеры решения задач (120). Задание для самостоятельной
работы (124).

Часть III. Элементарные частицы

приложения

Таблица 1.Значения некоторых физических величин	208
Таблица 2. Характеристики атомных ядер	210
Таблица 3. Характеристики элементарных частиц	
Таблица 4. Фундаментальные частицы	
Периодическая система элементов Д.И.Менделеева	274
Литература	
Оглавление	

Рафкат Хабибуллаевич САФАРОВ

ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

(Сприложениями к живым системам)

Лицензия № 0209 от 06.10.97

Подписано к печати 30.10.2008. Формат $60x84^{1/16}$. Бумага офсетная. Гарнитура «Таймс». Печать ризографическая. Усл. печ. л. 17,5. Тираж 100 экз. 3akas K-225.

Министерство образования и науки РТ Редакционно-издательский центр «Школа». 420111, Казань, Дзержинского, 3. Тел. 292-24-76 Отпечатано с готового оригинал-макета на множительном участке центра.