
ar
X

iv
:1

10
1.

07
83

v1
  [

ph
ys

ic
s.

ac
c-

ph
] 

 4
 J

an
 2

01
1

Spontaneous and Induced Radiation by

Relativistic Particles in Natural and Photonic

Crystals. Crystal X-ray Lasers and Volume

Free Electron Lasers (VFEL)

V.G. Baryshevsky

Abstract

The mechanisms of spontaneous and induced radiation produced by relativistic

particles passing through natural and photonic crystals are reviewed. The theory

of Volume Free Electron Lasers based on spontaneous radiation in natural and

photonic crystals is presented.
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Introduction

Current development of Free Electron Lasers (FELs) operating in various

ranges of wavelengths – from microwave to optical and even X-ray – which is

carried out in some research centers gives reason to return to the problem of

the possibility to design the FEL on the basis of the interaction between rel-

ativistic electron (positron) beams and either natural or artificial (photonic)

crystals. In the X-ray range of wavelengths, operation of this type of crystal

X-ray FELs is based on several spontaneous radiation mechanisms: parametric

X-ray radiation [17,85,123,124,139], diffracted radiation from relativistic chan-

neled particles [17,19,22,139,142,143,144,145,153], generation of X-ray radia-

tion by particles moving in a crystal undulator [13,17,23,139,155,156,157,158].

It was shown that despite serious difficulties, the law of radiative instability

of relativistic beams passing through the crystal, which was discovered in [49],

enables achieving the generation threshold for induced X-ray radiation even at

the beam current density j ∼ 108 A/cm2, while the current density required

for X-ray laser generation in crystals by means of channeling X-ray radiation

or radiation in a crystal undulator is j ∼ 1012 ÷ 1013 [139].

Below, a brief review of the theory of the crystal FEL (based on either a

natural or a photonic crystal) is presented. The review emphasizes the general

significance of the law of radiative instability discovered in [49], which finally

led to formulating the idea of the possibility to develop a new type of FELs,

called Volume Free Electron Lasers [25].
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1 Diffraction phenomena accompanying spontaneous and stimu-

lated radiation from relativistic particles in crystals ([139])

The emission of photons by relativistic particles in media has been calling

attention for a long time. The main reason why this phenomenon arises such

interest is because a wide variety of tasks can be solved by using different

radiation mechanisms, such as bremsstrahlung, transition and Cherenkov ra-

diations and so on. The last decades have seen a growing interest in the study

of radiation by relativistic particles in both natural and artificial (photonic)

crystals. A number of new radiation mechanisms associated with a periodic

structure of crystals have been considered theoretically and confirmed exper-

imentally [9,117,139,140,141].

All characteristic properties of radiation are in this case determined by the

periodic structure of a crystal. The medium can influence radiation processes

under passing of relativistic charged particles through crystals in two ways.

First of all, it is well known that the trajectory of a charged particle inci-

dent on a crystal at a small angle relative to crystallographic planes or axes is

formed by a series of grazing collisions with the atoms of a crystal. As a result,

the particle moves in an averaged potential of crystallographic planes or axes.

In this case we speak about the channeling phenomenon and can consider

the motion of channeled particles as the motion inside a potential well – one-

dimensional (for plane channeling) or two-dimensional (for axial channeling).

According to quantum mechanics a particle moving inside a potential well has

a discrete energy spectrum, which is the spectrum of the particle transverse

motion. Consequently, such particles can be considered as one-dimensional

or two-dimensional atoms (oscillators) characterized by a spectrum of bound
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states (zones) of transverse energy εn, εf . The number of bound states and

their characteristics depend on the longitudinal particle energy. One can con-

clude that many phenomena observed for ordinary atoms will manifest them-

selves when channeled particles pass through crystals. It is obvious that thus

excited atoms should emit photons with the energy equal to the difference be-

tween atomic state energies εn and εf . The frequency of transition Ωnf = εnεf

and depends, in a laboratory frame, on the total particle energy. By analogy

with an ordinary moving oscillator, the frequency of the emitted photons is

evaluated by the Doppler effect and determined by the following expression:

ω =
Ωnf

1− βn(ω) cos θ
, (1)

where θ is the radiation angle, β = u/c, u is the longitudinal particle velocity,

n(ω) is the refraction index of the photon with a frequency ω in the medium.

The relativistic oscillator can be formed not only by an unperturbed crystal

channel, but also by an external ultrasonic or laser wave which propagates in

the crystal, creating a bent crystal channel [13,17,123,139,155,156,157,158]

On the other hand, when the wavelength of the emitted photons is of the or-

der of the interplanar spacing of atoms in the crystal, radiation diffraction can

essentially modify the photon state [123]. In this case the radiation process

is characterized by several indices of refraction ni(ω) dependent on the direc-

tion of the photon momentum, which, in turn, leads to the modification of all

mechanisms of radiation formation by relativistic particles in the X-ray range

of spectrum. For example, radiation at a large angle relative to the direction

of particle motion becomes possible. As a result, the diffraction pattern char-

acterizing a given crystal is formed. The analysis of dielectric properties of a

6



crystal under diffraction conditions shows that at least one of several indices

of refraction ni(ω), characterizing the crystal under this condition, becomes

greater than unity within a frequency interval. As a consequence, the Vavilov-

Cherenkov condition can be fulfilled. In this case spontaneous and induced

X-ray radiation analogous to optical Cherenkov radiation appears as well as

diffracted transition radiation [123]. Spontaneous quasi-Cherenkov radiation,

currently referred to as parametric (quasi-Cherenkov) X-ray radiation (PXR),

is thoroughly investigated both theoretically and experimentally (see [85]).

Under diffraction conditions, the radiation of a relativistic oscillator also mod-

ifies essentially. Now the periodic structure of a crystal affects both the par-

ticle motion and the particle state. This leads to the formation of diffracted

radiation of oscillator (DRO), which cannot be reduced to the sequence of

two independent processes: radiation by oscillator and diffraction of radiated

photons. In this case the process of photon emission and its diffraction are

developing simultaneously and coherently and result in the radiation with

new properties. Radiation produced by channeled particles is often called the

diffracted channeling radiation (DCR).

These types of X-radiation (DRO, DCR), also associated with a change in

the indices of refraction under diffraction conditions, was considered in [19]

and then in [11,12,20]. Currently, there is an increased interest in DCR (see

[142,143,144,145,153]). If, in the absence of diffraction, the X-ray spectrum

of the oscillator is determined by the complex Doppler effect (n(ω) < 1),

then, under diffraction, the index of refraction can become greater than unity

and, consequently, the anomalous Doppler effect is possible. In this case the

photon emitted by the oscillator is accompanied by the excitation of the os-

cillator itself. This is one of the important features of diffracted radiation of
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the oscillator (DRO).

So, the modification of refractive properties in periodic media under diffraction

leads to the appearance of two types of radiation with angular distribution

forming a diffraction pattern determined by the parameters of the periodic

medium. Depending on the excited reflex, the spectrum of PXR and DRO for

crystals with lattice parameters of the order of Å lies in the range of X-ray

and even higher frequencies.

It is well known that in an amorphous medium, the ordinary Cherenkov radia-

tion can be considered as a specific case of radiation of the oscillator with zero

eigenfrequency [18]. Similarly, in a periodic medium, the frequency of PXR can

be expressed by (1) in the specific case of Ωnf = 0, i.e., 1 − βni(ω) cos θ = 0,

where ni(ω) is the refraction index of the crystal under diffraction conditions.

2 Dispersion characteristics of parametric X-ray radiation (PXR)

and diffracted radiation of oscillator (DRO)

Under diffraction the index of refraction depends on the direction of particle

motion and the frequency of radiated photon, therefore equation (1) deter-

mining the radiated photon spectrum is the equation with several solutions

[11,19,20,21,22].

For example, let us consider the case of two-wave diffraction, when the diffrac-

tion condition is fulfilled only for a reciprocal lattice vector ~τ . It means that

two strong waves with wave vectors ~k and ~k~τ = ~k+~τ are excited under diffrac-

tion. For the simplicity of analysis of photon frequencies, let us represent (1)
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in the form:

n(ω) =
ω − Ωnf
ωβ cos θ

, (2)

In this case the index of refraction in a crystal under diffraction conditions is

characterized by two dispersion branches n1,2. Using a well-known expression

for n1,2, one can rewrite (2) as follows:

1

β cos θ
− Ωnf(1− δ)

ωBβ cos θ
(3)

= 1− ω2
L

4/ω2
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δ
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+ 4β1
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for the diffracted radiation of the oscillator (DRO) and

1

β cos θ
(4)

= 1− ω2
L

4/ω2











(1 + β1)−Aβ1
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|g0|
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√
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δ
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for parametric quasi-Cherenkov radiation (PXR), generated by a particle pass-

ing through a crystal at constant velocity.

We have introduced the following notations:

α =
2(~k~τ) + τ 2

ω2/c2
,

is the deviation from the exact Bragg conditions,

α ∼= αωB
+

(

∂α

∂ω

)

ωB

(ω − ωB) =
τ 2c2

ω3
B

(ω − ωB) = −Aδ,

where

A =
τ 2c2

ω2
B

> 0
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δ = ω − ωB/ωB, ωB = τ 2c2/2|~τ ~β| is the Bragg frequency, corresponding to

α = 0, β1 = kz/kz + τz is the geometry factor of diffraction asymmetry, the

z-axis is chosen as a normal to the target surface directed inward the crystal.

Let us assume that the particle with a mean velocity ~u moves along the z-

axis, β = u/c, g0, gτ are the coefficients in a series expansion in terms of

the reciprocal lattice vectors of the crystal susceptibility. For simplicity, we

shall assume that a crystal is center-symmetric and absorption is neglected,

ω2
L = 4πen0/mc is the Langmuir frequency of the medium.

Let us consider in detail the conditions of the existence of parametric X-ray

radiation. Indeed, for the existence of this radiation it is sufficient that relation

(4) be fulfilled at least for one of the two indices of refraction characterizing

the crystal at a given frequency. On the left-hand side of (4), there is a term

greater than unity (β < 1 and | cos θ| < 1). Consequently, for the existence of

the solution of equation (4), the expression between the braces on the right-

hand side of (4) should be less than zero. Far from Bragg conditions δ → ∞,

and we transit to a well-known case of amorphous medium., i.e., to the index of

refraction n(ω) = 1− ω2
L/2ω

2 < 1 for any frequencies within the X-ray range.

As a result, in this range Cherenkov radiation is impossible. The analysis of

(4) near Bragg condition |α| ≤ |g0| shows that the expression between the

braces is always positive for one dispersion branch corresponding to the sign

(−); consequently, the fulfilment of (4) is impossible. For the second branch

corresponding to the sign (+), this expression can be negative at |α| ≥ |g0|.

For example, in the case of

∣

∣

∣

∣

∣

(β1 − 1)− Aβ1
δ

|g0|

∣

∣

∣

∣

∣

≫ 4β1

∣

∣

∣

∣

∣

gτ
g0

∣

∣

∣

∣

∣

2

,
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we can approximately write

1

β cos θ
∼= 1− ω2

L

2ω2
β1

[

1− A
δ

|g0|

]

and, obviously, the fulfilment of the Cherenkov condition is possible for Laue

diffraction case (β1 > 0) at frequencies for which

∣

∣

∣

∣

∣

A
δ

|g0|

∣

∣

∣

∣

∣

> 1.

In Bragg diffraction case (β1 < 0), the Cherenkov condition can be fulfilled not

only for one dispersion branch but even for two branches at the degeneration

point.

Comparison of (4) and (3) shows that the relation (3) can be satisfied for

both dispersion branches at Ωnf > 0, i.e., for radiation accompanied by the

transition of the channeled particle to a lower energy level (εn > εf). This

means that photons with two different frequencies are radiated at a given

angle. In this situation we observe a normal complex Doppler effect. In this

case, equation (3) is satisfied for radiation angles larger than the angle of

parametric (quasi-Cherenkov) radiation. At the same time, the fulfilment of

(3) leads to the strong limitation of the particle energy, the radiation angle

and the value of deviation from the exact Bragg condition α for the radiation

accompanied by the oscillator excitation Ωnf < 0 (εn < εf). In this case,

according to (3), radiation of a photon (anomalous Doppler effect) with the

wave vector directed at a smaller angle relative to the direction of the particle

motion than the angle of parametric (quasi-Cherenkov) radiation is possible

for one of the dispersion branches.
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Equation (3) can be analytically treated for a specific case when

2
ω2
L

Ω2
φ(ω, θ)(1− β cos θ) ≪ 1, (5)

where

φ(ω, θ) =
1

2
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∣
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(6)

Let us represent (3) in the form:

ω =
Ωnf

2(1− β cos θ)



1±
√

1− 2
ω2
L

Ω2
φ(ω, θ)(1− β cos θ)



 (7)

In view of (5), (7) splits into two independent equations corresponding to the

upper and the lower radiation branches in the absence of diffraction.

ωI =
Ωnf

1− β cos θ
− ω2

L

2Ωnf
φ(ω, θ), (8)

ωII =
ω2
L

2Ωnf
φ(ω, θ). (9)

Neglecting the dependence of β1 on ω, one can obtain the frequency solutions

of (8) and (9) as a function of a radiation angle:

ωI±=ωm − ω0

[

1 + β1
2

− x

2

{

1 +
ωm − ωB

ω0

(10)

±
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√
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− 4
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where

ω0 =
ω2
L

2Ω
, ωm =

Ω

1− β cos θ
; B =

τ 2

2

{

|~τ‖| cos θ − |~τ⊥| sin θ cosϕ
}−1

x =
β1
Ω

(

|~τ‖| cos θ − |~τ⊥| sin θ cosϕ
)

,

~τ‖ and ~τ⊥ are the projections of the reciprocal lattice vector onto the direction

of the particle mean velocity and onto the plane perpendicular to particle

velocity, respectively; ϕ is the angle between ~τ⊥ and ~k⊥. The dependence

ω = ω(θ) for the case of symmetric diffraction β1 = 1 is shown in Figure 1

Figure 1. The dependence ω = ω(θ) for the case of symmetric diffraction β1 = 1

According to Figure 1 and (10) and (11), the spectrum of radiated photons

essentially modifies under diffraction. In the absence of diffraction, each ra-

diation branch splits into two subbranches. Thus, diffraction results in the

excitation of an additional branch in the complex Doppler effect with the fre-

quency close to the Bragg frequency ωB, and in the formation of a radiation

non-transparency range in the angular distribution ∆θ = θ+−θ− = 10−5÷10−6

rad. When the angle θ changes, the solution is first realized for one dispersion
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branch and then for the other. Figure 1 shows the angular range in which

|α| ≤ |g0|. It should be noted that the radiation frequency of the additional

diffraction branch changes a little with the change in the radiation angle.

As a result, the angular range, in which |α| ≤ |g0|, may considerably exceed

the ordinary angular interval, characterizing diffraction of an X-ray external

monochromatic wave, when ∆θ is of the order of several angular minutes (in

Figure 1, this is the angular interval ∆θ = ∆θ+ +∆θ−). As it is rather com-

plicated to obtain the analytical solution, the numerical calculation of the

dependence of |α|/|g0| on the radiation angle θ near the Bragg angle θB was

made for the oscillator moving along the crystal direction 〈110〉 and photon

diffraction by crystallographic planes (400) in Si. According to these calcula-

tions, the magnitude of ∆θ weakly depends on the energy and eigenfrequency

of the oscillator and retains within the interval 10−4 − 10−3. In Figure 2, the

magnitude of |α|/|g0| is shown as a function of the angle θ at the following pa-

rameters of the oscillator: Ω = 1 eV, γ = 2 · 103. As one can see, ∆θ− ≈ 4·10−3

rad, ∆θ+ = 5.2 ·10−3 rad and the total interval |α| ≤ |g0|, ∆θ = 9.2 ·10−3 rad.

Figure 2.

The values of the angles θ± at α = 0 are determined from the equation

ωB = ωm − ω0

(

1± gτ
g0

)

. (12)
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A similar picture is also observed for the second branch (see (11)). So, if

ω0 6= ωB, and the second term in the radicand of (11) is negligible, then, for

example, ωII+ = ωB and ωII− = ω0 at ω0 < ωB. This means that, as in the

previous case, we have the excitation of the wave with the frequency close

to the Bragg frequency in addition to the solution far from diffraction at a

given radiation angle θ. As the calculation shows, the magnitude of α does not

depend on the frequency of the diffracted wave and keeps practically constant,

being determined by the oscillator eigenfrequency within the whole interval of

radiation angles corresponding to the fulfilment of the condition (5). Although

the parameter α depends on the eigenfrequency of the oscillator Ω and equals

zero at

Ω± =
ω2
L

2ωB

(

1± gτ
g0

)

, (13)

it remains small (|α| ≤ |g0|) within rather a wide interval of eigenfrequencies.

For example, in the case considered above Ω± = 0.092 eV and |α| ≤ |g0| for

the interval Ω+min = 0.08 eV and Ω+max = 0.15 eV.

It should be noted that the equality (11) also has the solution for the negative

eigenfrequency of the oscillator (at the frequency close to ωB) that corresponds

to the anomalous Doppler effect, i.e., the radiation of the oscillator is accom-

panied by its excitation. Such a process is possible because under diffraction

condition the index of refraction can be greater than unity.

The analysis of the dispersion expression for radiation propagating at a large

angle and for arbitrary geometry was made in [24]. Here we discuss the spectra

of DRO and PXR only in the two-wave diffraction case. However, due to crystal

symmetry, the diffraction condition can be satisfied for many waves, that is,
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the case of multi-wave diffraction can be realized. In this case several indices of

refraction ni(ω) corresponding to different dispersion branches can be greater

than unity. It appears that the possibility of new effects in radiation, such

as the effect of excitation of radiation in a roundabout way takes place. This

means that the PXR intensity in a diffraction peak may differ from zero even in

the case when a given reflection is forbidden because of the lattice symmetry.

The particular properties in the angular distribution of radiation are observed

in the vicinity of the point of degeneration of dispersion branches.

2.1 General expression for spectral-angular distribution of radiation gener-

ated by a particle in a photonic crystal

Both the spectral-angular density of radiation energy per unit solid angleW~nω

and the differential number of emitted photons dN~nωω = 1/~ω ·W~nω can be

easily obtained if the field ~E(~r, ω) produced by a particle at a large distance

~r from the crystal is known [17]

W~nω =
er2

4π2

∣

∣

∣

~E(~r, ω)
∣

∣

∣

2
, (14)

The vinculum here means averaging over all possible states of the radiating

system. In order to obtain ~E(~r, ω), Maxwell’s equation describing the interac-

tion of particles with the medium should be solved. The transverse solution

can be found with the help of Green’s function of this equation, which satisfies

the expression:

G = G0 +G0
ω2

4πc2
(ε̂− 1)G, (15)
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G0 is the transverse Green’s function of Maxwell’s equation at ε̂ = 1. It is

given, for example, in [6].

Using G, we can find the field we are concerned with

En(~r, ω) =
∫

Gne(~r, ~r
′, ω)

iω

c2
j0e(~r, ω)d

3r′, (16)

where n, e = x, y, z, j0e(~r, ω) is the Fourier transformation of the e-th compo-

nent of the current produced by a moving beam of charged particles (in the

linear field approximation, the current is determined by the velocity and the

trajectory of a particle, which are obtained from the equation of particle mo-

tion in the external field, by neglecting the influence of the radiation field on

the particle motion). Under the quantum-mechanical consideration the cur-

rent j0 should be considered as the current of transition of the particle-medium

system from one state to another.

According to [17,85], Green’s function is expressed at r → ∞ through the

solution of homogeneous Maxwell’s equations E(−)
n (~r, ω) containing incoming

spherical waves:

limGne(~r, ~r
′, ω) =

eikr

r

∑

S

esnE
(−)s∗
~ke

(~r′, ω), (17)

r → ∞

where ~es is the unit polarization vector, s− 1, 2, ~e1 ⊥ ~e2 ⊥ ~k.

If the electromagnetic wave is incident on a crystal of finite size, then at r → ∞

~E
s(−)
k (~r, ω) = ~esei

~k~r + const
eikr

r
,
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and one can show that the relation between the solution ~E
s(−)
k and the solution

of Maxwell’s equation ~E(+)(~k, ω) describing scattering of a plane wave by the

target (crystal), is given by:

~E
s(−)∗
~k

= ~E
s(+)

−~k (18)

Using (16), we obtain

En(~r, ω) =
eikr

r

iω

c2
∑

S

esn

∫

E
s(−)∗
~k

(~r, ω)~j0(~r
′, ω)d3r′. (19)

As a result, the spectral energy density of photons with polarization s can be

written in the form:

W s
~n,ω =

ω2

4π2c2

∣

∣

∣

∣

∫

~E
s(−)∗
~k

(~r, ω)~j0(~r, ω)d3r

∣

∣

∣

∣

2

, (20)

~j0(~r, ω) =
∫

eiωt~j0(~r, ω)dt = eQ
∫

eiωt~v(t)δ(~r − ~r(t))dt, (21)

where eQ is the charge of the particle, ~v(t) and ~r(t) are the velocity and the

trajectory of the particle at moment t. By introducing (21) into (20) we get

dN s
~n,ω =

e2Q2ω

4π2~c3

∣

∣

∣

∣

∫

~E
(−)s∗
~k

(~r(t), ω)~v(t)eiωtd
∣

∣

∣

∣

2

t. (22)

Integration in (22) is carried out over the whole interval of the particle motion.

It should be noted that the application of the solution of a homogeneous

Maxwell’s equation instead of the inhomogeneous one essentially simplifies the

analysis of the radiation problem and enables one to consider various cases of

radiation emission taking into account multiple scattering.
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3 Parametric X-ray radiation (PXR)

Using equations (20)–(22), one can easily obtain the explicit expression for the

radiation intensity and that for the effect of multiple scattering on the process

under study [2,17,85].

Consider, for example, the PXR radiation. Let a particle moving with a uni-

form velocity be incident on a crystal plate with the thickness L being L≪ Lc,

where Lc = (ωq)−1/2 is the coherent length of bremsstrahlung q = θ
2
/4 and θ

2

is the mean square angle of multiple scattering. The latter requirement allows

neglecting the multiple scattering of particles by atoms. A theoretical method

describing multiple scattering affect on the radiation process is given in [125].

According to (22), in order to determine the number of quanta emitted by

a particle passing through the crystal plate, one should first find the explicit

expressions for the solutions ~E
(−)s
~k

. As was mentioned above, the field ~E
(−)s
~k

can be found from the relation ~E
(−)s
~k

= ( ~E
(+)s

−~k )∗ if one knows the solution

~E
(+)s
~k

describing the photon scattering by the crystal.

In the case of two strong waves excited under diffraction (the so-called two-

beam diffraction case [3]), one can obtain the following set of equations for

determining the wave amplitudes (see [146]):

(

k2

ω2
− 1− χ∗

0

)

~E
(−)s
~k

csχ
∗
−~τ
~E
(−)s
~kτ

= 0

(

k2

ω2
− 1− χ∗

0

)

~E
(−)s
~kτ

csχ
∗
~τ
~E
(−)s
~k

= 0. (23)

Here ~k~τ = ~k + ~τ , ~τ is the reciprocal lattice vector, χ0, χ~τ are the Fourier

components of the crystal susceptibility. It is well known that the crystal is
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described by a periodic susceptibility (see, for example, [3]:

χ(~r) =
∑

~τ

χ~τ exp(i~τ~r). (24)

cs = ~es~es~τ , ~e
s(~es~τ ) are the unit polarization vectors of the incident and diffracted

waves, respectively.

The condition for the linear system (23) to be solvable leads to a dispersion

equation that determines the possible wave vectors ~k in a crystal. These wave

vectors are convenient to present in the form:

~kµs = ~k + ~κ∗µs ~N, κ∗µs =
ω

cγ0
ε∗µs,

where µ = 1, 2; ~N is the unit vector of a normal to the entrance crystal surface

which is directed into the crystal,

ε1(2)s =
1

4
[(1 + β1)χ0 − β1αB]±

1

4

{

[(1− β1)χ0 + β1αB]
2

+4β1C
2
sχ~τχ ~−τ

}−1/2
. (25)

αB = (2~k~τ + τ 2)k−2 is the off-Bragg parameter (αB = 0 if the exact Bragg

condition of diffraction is fulfilled),

γ0 = ~nγ · ~N, ~nγ =
~k

k
, β1 =

γ0
γ1
, γ1 = ~nγτ · ~N, ~nγτ =

~k + ~τ

|~k + ~τ |
.

The general solution of (23) inside a crystal is:

~E
(−)s
~k

(~r) =
2
∑

µ=1

[

~esAµ exp(i~kµs~r) + ~esτAτµ exp(i
~kµsτ~r)

]

. (26)

By matching these solutions with the solutions of Maxwell’s equations for the

vacuum area, one can find the explicit form of ~E
(−)s
~k

(~r) throughout the space.
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It is possible to discriminate several types of diffraction geometries, namely,

the Laue (a) and the Bragg (b) schemes are most well known.

(a) Let us consider the PXR in the Laue case.

In this case, the electromagnetic waves emitted by a particle in both the

forward and the diffracted directions leave the crystal through the same surface

(kz > 0, kz + τz > 0), the z-axis is parallel to the normal N (where N is the

normal to the crystal surface being directed inside a crystal). By matching the

solutions of Maxwell’s equations on the crystal surfaces with the help of (23),

(25), (26), one can obtain the following expressions for the Laue case:

~E
(−)s
~k

=







~es



−
2
∑

µ=1

ξ0∗µse
−i ω

γ0
ε∗µsL



 ei
~k~r

+es~τβ1





2
∑

µ=1

ξτ∗µse
−i ω

γ0
ε∗µsL



 ei
~kτ~r







θ(−z)

+







~es



−
2
∑

µ=1

ξ0∗µse
−i ω

γ0
ε∗µs(L−z)



 ei
~k~r

+es~τβ1





2
∑

µ=1

ξτ∗µse
−i ω

γ0
ε∗µs(L−z)



 ei
~kτ~r







×θ(L− z)θ(z) + ~esei
~k~rθ(z − L), (27)

where

ξ01,2s = ∓ 2ε2,1s − χ0

2(ε2s − ε1s)
;

ξτ1,2s = ∓ csχ−τ
2(ε2s − ε1s)

. (28)

θ(z) = 1 if z ≥ 0 and θ(z) = 0 if z < 0.

Substitution of (27) into (22) gives for the Laue case the differential number of

quanta of the forward directed parametric X-rays with the polarization vector
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~es:

d2NL
0s

dωdΩ
=
e2Q2ω

4π2~c3
(~es~v)2

∣

∣

∣

∣

∣

∣

∑

µ=1,2

ξ0µse
i ω
cγ0

εµsL





1

ω − ~k~v
− 1

ω − ~k∗µs~v





×[ei(ω−
~k∗µs~v)T − 1]

∣

∣

∣

2
, (29)

where T = L/cγ0 is the particle time of flight; ~e1 ‖ [~k~τ ]; ~e2 ‖ [~k~e1].

One can see that formula (29) looks like the formula which describes the

spectral and angular distribution of the Cherenkov and transition radiations

in the matter with the index of refraction nµs = kzµs/kz = 1 + κµs/kz.

The spectral angular distribution for photons in the diffraction direction ~kτ =

~k + ~τ can be obtained from (29) by a simple substitution

~es → ~esτ , ξ0µs → β1ξ
τ
µs,

ξτ1(2)s = ± χτ cs
2(ε1s − ε2s)

~k → ~kτ , ~kµs → ~kτµs = ~kµs + τ.

(b) Now let us consider PXR in the Bragg case. In this case, side by side with

the electromagnetic wave emitted in the forward direction, the electromagnetic

wave emitted by a charged particle in the diffracted direction and leaving

the crystal through the surface of the particle entrance can be observed. By

matching the solutions of Maxwell’s equations on the crystal surface with the

help of (23), (25), (26), one can get the formulas for the Bragg diffraction

schemes.

It is interesting that the spectral angular distribution for photons emitted in

the forward direction can be obtained from (29) by the following substitution,

ξ0µs → γµs,
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γ01(2)s =
[

2ε2(1)s − χ0

] [

(2ε2(1)s − χ0)− (2ε1(2)s − χ0)

× exp

[

i
ω

γ0
(ε2(1)s − ε1(2)s)L

]]−1

(30)

The spectral angular distribution of photons emitted in the diffracted direction

can be obtained from (29) by substitution

~es → ~esτ , ~k → ~kτ , kµs → ~kµτs,

ξ0µs exp

[

i
ω

γ0
εµsL

]

→ γτµs,

where

γτ1(2)s = −β1[csχτ ]
[

(2ε2(1)s − χ0)− (2ε1(2)s − χ0)

× exp

[

i
ω

γ0
(ε2(1)s − ε1(2)s)L

]]−1

.

The angular distribution for the photons emitted at large angles in the the

Bragg case was derived in [125]. From (29), (30) we can obtain the angular

distribution for the photons emitted in the forward direction:

dNB
0s =

e2Q2

4~c
|β1||rs|2

×
∣

∣

∣

{

(γ−2 + ϑ2 − χ0)
2 − |β1|rs exp

[

−i ωB
2γ0c

(γ−2 + ϑ2 − χ0)
2 − |β1|rs

γ−2 + ϑ2 − χ0
L

]}∣

∣

∣

∣

∣

−2

×
∣

∣

∣

∣

∣

(γ−2 + ϑ2 − χ0)
2 − |β1|rs

(γ−2 + ϑ2 − χ0)2

∣

∣

∣

∣

∣

ωBT

sin2 ϑB
ϑ3dϑ. (31)

According to (31), the PXR angular distribution for this case oscillates as a

function of ϑ, L, ωB. If ϑ
2 ≫ γ−2, χ0, the oscillation period is ϑ0s =

√

c/ωBL0.

For kB = (ωB/c) = 109 cm−1, L0 = L/γ0 = 10−2 cm, we have ϑ0s = 3×10−4.

For low energy electrons, oscillations in NB
0s disappear. Let us note that the

PXR photon number is proportional to Q2. As a result, the PXR intensity is
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very high for heavy nuclei.

For example, for Pb the photon number may be 1 per nucleus for L = 1 cm.

It can be used for the detection of particles and for the precise measurement

of their energy.

4 Surface parametric X-ray (quasi-Cherenkov) radiation (SPXR)

and DRO

When a particle travels in a vacuum near the surface of a spatially peri-

odic medium, new kinds of radiation arise [25,26] – surface parametric (quasi-

Cherenkov) X-ray radiation (SPXR) and surface DRO (see Figure 3). This

phenomenon takes place under the condition of uncoplanar surface diffrac-

tion, first considered in [4].

Figure 3.

The solution of Maxwell’s equation ~E
(+)
~k

(~r) in this case of uncoplanar surface

diffraction was obtained in [4]. It was shown that the surface diffraction in

the two-wave case is characterized by two angles of total reflection (several

angles in the case of multi-wave diffraction [27]). The solution obtained in [27]
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contains the component, which describes the state that damps with growing

distance from the surface of the medium, both within the material and in the

vacuum, and which describes a surface wave, i.e., a wave in which the energy

flux is directed along the boundary of the surface of a spatially periodic target

(see review [28]). According to [4], this solution, which describes scattering

of a plane wave by the target under the surface diffraction geometry, can be

written in the form:

~E
(+)s
~k

= ese
i~k~r + As(~k, ω)e

i~k1~r +Bs(~k, ω)e
i~k2~r, (32)

where the wave vector in a vacuum ~k = (~kt, ~k⊥), ~k1 = (~kt − ~k⊥)|~k2⊥| =
√

k2 − k22t, ~k2 = (~k2t − ~k2⊥), ~k2t = ~kt + 2π~τ , ~kt is the component of the

wave vector that is parallel to the surface, ~τ is the reciprocal lattice vector,

ω is the photon frequency. The amplitudes As and Bs are given in [5,26].

Substituting the solution ~E
(−)s
~k

= ( ~E
(+)s

−~k )∗ into (16), we can find the spectral-

angular distribution of SPXR and DRO. For example, in the case of DRO,

the differential number of emitted photons for a particle moving parallel to

the crystal surface is [25]

d2Ns

dωdΩ
=
e2ωT

2π~c3

∣

∣

∣~u ~Bs(~k, ω)
∣

∣

∣

2
δ(~kt~u+ 2π~τ~u− ω)e−2Imk2⊥|z0|. (33)

Here we assume that a particle moves parallel to the target surface at a dis-

tance Z0 at a constant velocity ~u; T is the flight time. The argument of δ-

function in (33) is equal to zero for the frequencies

ωu =
|2π~τ~u|

1− ~nt~u/c
,

where ~nt is the component of the unit vector in the direction of ~k, which is

parallel to the surface.
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After integrating (33) over the frequencies, the angular distribution of radia-

tion takes the form:

d2Ns

dΩ
=
e2ωuT

2π~c3

∣

∣

∣~u ~Bs(~k, ωu)
∣

∣

∣

2
e−2Imk2⊥|z0|. (34)

The spectral-angular distribution of SPXR generated by a particle incident

on the crystal at a small angle relative to the crystal surface was obtained in

[29,30,31,32].

It should be noted that, according to the analysis made in [25], the formation

of circularly polarized quanta under the surface diffraction is possible and, as

a consequence, such circularly polarized quanta can be produced in the SPXR

process [32].

Let now an oscillator with the vibration frequency Ω in the laboratory system

move along the surface. In this case we also obtain the expression similar

to equation (33) with the following replacements made in the exponent: ω by

ω±Ω and v by the velocity amplitude at frequency Ω. As a result, the integrals

appearing in equation (33) will give δ-functions of the form δ(~kt~v − ω ± Ω),

δ(~k2t~v−ω±Ω). Now all three integrals are non-zero. The first one describes the

normal Doppler effect, the second one, the same effect including the influence

of a mirror reflected wave on radiation. Of greatest interest is the third integral.

In this case the δ-function leads to the equality ω = (2πτt~v±Ω)(1−~nt~v/c)−1.

If 2πτT~v > Ω, then both signs of the frequency Ω are allowed for radiation.

From the quantum viewpoint, one sign corresponds to the emission of quantum

by the oscillator (or atom) when it drops to a lower energy level, and the

opposite sign corresponds to the inverse process: of the quantum emission

when the oscillator (or atom) rises to a higher energy level. In other words,
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the phenomenon of surface diffraction results in the appearance of the vacuum

anomalous Doppler effect [25].

Let now a beam of charged particles (or oscillators) move along the surface of

a natural or a photonic crystal in a vacuum. The phenomenon of spontaneous

radiation causes the beam’s instability relative to the photon emission and

the formation of the charge density wave in the beam. The processes consid-

ered above also leads to the appearance of such instability. According to [25],

multi-wave diffraction of emitted photons in this case also leads to a different

reduction of the generation threshold similar to that appearing when a beam

passes through a crystal [47,48,49,50,51,122].

Due to such instability the beam radiates photons collectively and its lon-

gitudinal energy decreases. The presence of the external field (in our case -

excitation of surface diffraction by the external field) can accelerate the beam.

Note that the instability studied in [47,48,49,50,51,122] is a particular case of

instabilities caused by the processes of the emission of waves (instability may

be caused by, for example, the parametric process of the pump wave splitting

into two waves, the Mandelstam-Brillouin effect, four-wave processes) [159]. In

all these cases, the power of the root dependence of the instability increment

changes in the periodic medium if at least for one of the waves, the diffraction

conditions are chosen according to the requirements of [122] of the coincidence

of the roots of the dispersion equation characterizing the periodic medium.
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4.1 Parametric X-ray radiation in crystals under action of high frequency

ultrasonic waves

According to [5,17], in the presence of an external variable field (for example,

an ultarsonic field), a crystal is characterized by an effective index of refraction,

depending on external field parameters. By varying these parameters, one can

change the properties of parametric radiation.

As the characteristics and yield of PXR depend on the solution ~E(−)(~r, ω)

of the homogeneous Maxwell’s equation describing the diffraction process in

crystals, the investigation of the influence of an external ultrasonic (US) field

on diffraction of X-ray points to the strong influence of a US external field

on the PXR process. In [33] it was pointed to the essential modification of

scattering process and X-ray radiation process under the diffraction condition

in crystals. Due to a dynamical character of PXR formation, according to

[34], the influence of a US wave on this process will be maximum when the

US wavelength coincides with the period of extinction beatings.

The theory of PXR under the action of an external US wave on a crystal target

was derived in [35,36,37,38,39]. The boundary problem of diffraction of X-rays

by a crystal target subjected to an external US wave was solved for the case

of two-wave diffraction in [40,41,42]. Here we do not give the expressions for

photon wave functions ~E(−)(~k,~r) because they are very clumsy. The spectral-

angular PXR distribution in the presence of a US wave was obtained in [36,37]

(for detail see [139]). Experimental observation of the effect of the US wave

on parametric radiation was performed in [160,161]. Experimentally observed

features of the PXR in the US wave were explained in [162].
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5 Diffracted X-ray radiation from channeling particle (DCR)

As we discussed above, the X-ray radiation of a relativistic oscillator in a

crystal essentially modifies under diffraction conditions of emitted photons. A

new diffracted radiation of oscillator (DRO) appears as a result of coherent

summation of two processes – photon radiation and photon diffraction, but it

cannot be reduced to a sequence of these two processes. The relativistic oscilla-

tor itself can be a relativistic atom or a relativistic charged particle channeled

in the potential well of averaged crystallographic potential of axes (planes), or

an oscillator formed by an external electromagnetic field (ultrasonic, laser). It

was shown in [17,19,20,21,22] that the DRO spectrum is rather complex and

is determined by the complex and anomalous Doppler effect (see Sections 1,

2).

It is known that the transverse energy of channeled electrons (positrons) is

discrete and state-to-state transitions result in radiation, i.e., in this case a

channeled particle is like a one-dimensional or two-dimensional oscillator with

the eigenfrequency in the laboratory frame Ωnf = εn − εf , where εn and

εf are the eigenvalues of corresponding one- or two-dimensional Schrödinger

equation, in which the particle rest mass is replaced by the total energy mγ.

For the analysis of DRO characteristics, it is necessary to obtain the spectral-

angular distribution. The description of the channeled particle motion with

the help of one- or two-dimensional Bloch functions was given in [10]. The

expressions for spectral-angular DRO distribution for different cases of photon

dynamical diffraction were obtained in [11,12,20]. For example, in the case of

two-wave Laue diffraction the spectral-angular distribution of DRO can be
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written in the following way [11,12,20]:

d2N τ
s

dωdΩ
=
e2β1ω

π2~c3
∑

nf

Qnn|~e0s~gnf |2
∣

∣

∣

∣

∣

∣

∑

µ=1,2

ζτµs
1− e−iq

µs
znf

L

qµsznf

∣

∣

∣

∣

∣

∣

2

, (35)

where

qµsznf = ω(1− β‖ cos θ)− Ωnf −
ω

γ0
δµs, (36)

θ is the angle between the photon wave vector ~kτ directed at a small angle

relative to the particle velocity and the z-axis. In the dipole approximation,

which is true for the X-ray radiation, we have

~gnf = −i
[

β‖~nz(~k⊥~ρnf ) + Ωnf~ρnf
]

in an arbitrary nondipole case ~gnf is defined in [11,12],

~ρnf =
∫

∆

= ϕn~k(~ρ)ϕ
∗
f~k
(~ρ)d2ρ,

ϕn~k and ϕf~k are the two-dimensional Bloch functions satisfying the equation

similar to the Schrödinger equation (see [11,12,20]), L is the crystal target

length, Qnn is the population probability of the particle transverse energy

state n.

According to (35), the maximum intensity should be observed at the angles

and frequencies that satisfy the equation

ω(1− β‖ cos θ)− Ωnf −
ω

γ0
δµs = 0 (37)

The solutions of this equation were obtained above.
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In the case of rather thick crystals, the angular distribution of DRO was

obtained in [17,12,20]. For example, the angular distribution of radiation gen-

erated by plane-channeled particles can be written as [14]:

dN s
τ

dΩ
=
e2Leffβ

2
1

2π

∑

nf

Qnn|xnf |2
∑

µ

(ωµsnf)
2

Ωnf

∣

∣

∣ζµsτ (ωµsnf)
∣

∣

∣

2

×
[

1− (ωµsnf)
2

γ1Ωnf
Re

(

∂δµs
∂ω

)]−1

ω=ωµs
nf

Fs(θ, ϕ) (38)

for r-polarization:

Fr(θ, ϕ) =

{

β1ω
µσ
nf sin

2 θ cosϕ
τy cosϕ− τx sinϕ

|~τ⊥|
+ Ωnf

τz sin θ sinϕ− τy cos θ

|~τ⊥|

}2

and for π-polarization

Fπ(θ, ϕ) =

[

β1ω
µσ
nf sin θ cosϕ[cos θ(~n, ~τ)− τ2]

|~τ⊥|
+ Ωnf

[sin2 θ cosϕ(~n1~τ )− τx]

|~τ⊥|

]2

where

ωµsnf = Ωnf (1− β cos θ − γ−1
1 Reδµs(ω

µs
nf))

−1,

xnf is the matrix element obtained from one-dimensional Bloch functions, Leff

is the effective length (at L < Labs, Leff = L, L≫ Labs, Leff = Labs, where Labs

is the absorption length). The term in square brackets takes account of the

influence of the dispersion of the medium on the angular distribution. As the

frequency, satisfying dispersion equation (37), goes over from one dispersion

branch to another with changing the radiation angle θ, the summation over

µ means that we select the corresponding root of the dispersion equation for

each definite radiation angle θ; ~n1 is the unit vector directed along the wave

vector of the photon propagating at a small angle relative to the mean velocity

of a channeled particle.

31



Numerical calculation of the angular DCR distribution taking into account

the dispersion characteristics of the medium under diffraction conditions, was

made in [24]. According to Figure 4, the angular distribution has a fine struc-

ture which corresponds to the region of transition from one dispersion branch

to another.

Figure 4.

One can see that the DCR distribution looks like two narrow rings – one of

which corresponds to the solution µ = 2, the other, to µ = 1 (in the case

of PXR generation, only one solution satisfies the Cherenkov condition). The

angular position of the DCR distribution maxima can be estimated in the first

approximation as:

θ1,2 =

√

√

√

√

√

√

θ2D ±
√

βr′s
√

1 + 2 sin2 θB/
Ω
ωB

, (39)

where θD is the angle that satisfies the following equation

θ2 + γ2 +
ω2
L

ω2
B

− 2Ωnf
ωB

= 0

θB and ωB are the angle and the frequency satisfying the exact Bragg con-

dition. For example, according to Figure 4, the values of these angles are
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θ1 = 6.1 · 10−3 rad and θ2 = 6.2 · 10−3 rad. The ratio of the angular width to

the value of the angle θ is about ∆θ/θD ∼= 0.1. The expressions for the an-

gular distribution of radiation are simplified essentially if the particle energy

is rather small (1 − β ≫ 1/γ0,1Reδµs). In this case we can consider that the

frequency corresponding to the maximum intensity does not depend on the

dielectric properties of the crystal, being determined by the radiation angle

alone. The DRO characteristics for this case were considered in [43].

In [44] the possibility of experimental observation of the DRO by measuring

the angular distribution was analyzed. It was shown that for such experiments

particle beams of high quality are required because the radiation characteris-

tics are very sensitive to the parameters of a particle beam. Indeed, the DRO

angular distribution shown in Figure 4 takes place only for a particle beam

whose characteristics satisfy the following inequality:

∆γ

γ
+

(∆θeffγ)
2

2
+

2πγ2

kBL0

<
γ2
√

βr′s

2
, (40)

where γ is the Lorentz factor, ∆θeff is the angular spread, ∆γ/γ is the energy

spread, ∆Ω = 2πc/L is the divergence of the oscillator eigenfrequencies.

In the opposite case, the angular width of the maxima is equal to

∆θ = +
1

γ

(

2∆γ

γ
+ (θeffγ)

2 +
4πγ2

kBL0

)1/2

(41)

As an example, the dependence of DRO angular distribution characteristics

on the energy divergence of the particle beam is shown in Figure 5 one can

see that this dependence is rather sharp indeed.

The dependence of the angular density of radiation on the energy of a rela-
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Figure 5.

tivistic oscillator, which has a ”resonance” character at a given angle of ra-

diation observation, was also considered in [44]. If the observation angle is

equal to zero, the maximum of the angular distribution sharply increases with

γ → γR = (ωB/2Ω)
1/2. When the frequency ωB equals ωB = ωmθx = 2Ωγ2,

the maximum value of the radiation density is observed at γ being a little

larger than γR. The angular distribution in this case looks like a bell and its

width decreases sharply with γ → γR (see Figure 6).

In the range of γ > γR (ωB < ωmax), the single narrow maximum splits into

two peaks (ϕ is fixed), which shift to the range of larger radiation angles θ

with increasing particle energy E. In [44], the relative estimation was given

for the contributions from different radiation mechanisms to the total radi-

ation angular distribution which can be observed in a definite reflex. It was

shown that at ∆γ/γ ∼ 1%, the ratio of the DRO angular density of diffracted
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Figure 6.

bremsstrahlung at θ = 0 is

R1 =
RDRO

IDB
=
Qnnθ

2
L(sin

2 ψ + cos2 2θB cos2 ψ)

(1 + cos2 2θB)4θ2sL(∆γ/γ)
2

, (42)

where the estimation is given for a channeled electron (positron), θL is the

Lindhard angle, ψ is the angle between the particle oscillation plane and the

diffraction plane, θ2s is the mean square angle of multiple scattering per unit

length, 1/4 θ2L is the classical estimation of the magnitude of |xnf |2Ω2c−2. For a

Si crystal and the channeled electron with the energy E = 23.6 MeV (γ ≈ γR;

planes of channeling (100), θ = 0, diffraction plane (220)) the value of the ratio

is R1 = 25, that is, the DRO intensity is 25 times larger than the intensity

of the diffracted bremsstrahlung at ∆γ/γ ∼= 1% and ∆ψ2γ2 < ∆γ/γ. If the

diffracted radiation is observed at the angle θ 6= 0, we should compare it with

the contribution from the parametric (quasi-Cherenkov) radiation. In this case

the analogous ratio is estimated as [44,139]
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R2 =
RDRO

IRxR
∼= Qnn





θL

4∆γ
γ
θD





2

× (1 + θ2Dγ
2 + γ2γ−2

n )2(sin2 ψ + cos2 ψ cos2 2θB)

(sin2 ϕ+ cos2 ϕ cos2 2θB)
, (43)

where ϕ is the angle between the wave vector ~k and the diffraction plane,

γn = ωB/ωL is the Lorentz factor corresponding to the threshold magnitude

of the energy E = mc2(g′0)
−1/2. One can see that this ratio essentially depends

on the value of the azimuthal angle ϕ. For example, for a Si crystal this ratio

is estimated as R2
∼= 5 when the electron with the energy E = 34 MeV is

channeled between the planes (100) and the diffraction plane is (220).

Thus, the experimental observation of the diffracted radiation of oscillator is

possible with the help of the particle beams of high quality.

A relativistic oscillator can be formed not only by an unperturbed crystal

channel but also by an external ultrasonic or laser field [13,25,123]. A more

detailed treatment of particle radiation in crystals under the laser wave was

given in [45]. In [45] the radiation of electrons (positrons) in a crystal subjected

to a laser wave, which forms an oscillator, was considered. The intensity of such

radiation was estimated. A relativistic oscillator can be a channeled particle,

which moves in a plane channel bent by a variable external field (ultrasonic

or laser wave), i.e., in some crystal undulator [13]. In this case, the oscillator

frequency in the laboratory frame is Ω′ = κzu−Ω, where ~κ is the wave vector

of an external wave in a crystal, Ω is its frequency (the z-axis is chosen along

the direction of the average particle velocity ~u). Diffracted radiation of the

oscillator formed by an external ultrasonic wave was considered in [23].

According to [13], the trajectory of a particle moving in the dynamic ultrasonic
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undulator is written in the form (see Figure 7)

~r(t) = ~rch(t) + ~rs(t) = ~rch(t) + ~a cos(Ω′t+ δ), (44)

where ~rch(t) is the radius vector describing the motion of an ordinary high-

frequency channeled particle, and ~rs(t) is the radius vector describing the

motion of a particle in the dynamic undulator.

Figure 7.

Assuming that the frequency of an ultrasonic wave is much smaller than the

frequency of particle oscillations in a crystal channel, we can consider these two

kinds of particle motion independently: the motion of an ordinary channeled

particle and the motion of the equilibrium trajectory center of particle gravity

inside the bent channel formed under the action of the external variable field.

~a and δ are the amplitude and the initial phase of particle oscillation in the

ultrasonic channel. It should be noted that if the amplitude of the ultrasonic

wave satisfies the condition a ≪ uU(Edκ2)−1 (E is the particle energy, d is

the width of the crystal channel, and V is the depth of a potential well for a

crystal channel), then the radius of the crystal curvature due to the action of

the ultrasonic wave is much larger than the radius of the trajectory curvature

for the channeled particle incident on the crystal at the Lindhard angle. In this

case, the equilibrium trajectory of a positively charged particle gravity center
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corresponds to the trajectory of a stable channeling regime, and the curvature

of the crystal channel caused by the action of the ultrasonic wave leads only

to the displacement ∆ of the equilibrium trajectory center of gravity during

the particle passage through the crystal. That is why for positively charged

particles, for which af +∆ ≤ d/2, one can take into account the dechanneling

effect, which is due to the channel curvature, by considering the mean square

angle of multiple scattering in this bent channel in the same way as in an

amorphous medium [23] (af is the amplitude of particle oscillation for the

ordinary channeling regime).

In the case under consideration, an essential difference arises in comparison

with the case of diffracted radiation from the oscillator caused by a channeled

particle. This is that the atomic (nuclear) oscillations, resulting in the for-

mation of the ultrasonic undulator, will simultaneously lead to the dielectric

constant modulation in a crystal and, consequently, can change the diffrac-

tion process itself. As a result, the photon wave function changes. Maxwell’s

equations describing this situation are given in [23]. The case when the influ-

ence of an ultrasonic wave on the X-ray diffraction process can be reduced to

the change of the magnitude of the Fourier components of the crystal dielec-

tric susceptibility alone was considered in detail. The spectral-angular distri-

bution was obtained and the contributions of parametric (quasi-Cherenkov)

radiation and of DRO itself were separated. The spectral and angular charac-

teristics were analyzed and the total number of photons in a diffraction peak

was estimated.

It was shown that if the following inequality (aΩ′)2 > (afΩf )
2 is fulfilled, the

diffracted radiation from a particle in the external field will be more intensive

than the DRO from an ordinary channeled particle (af and Ωf are the am-
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plitude and the frequency of particle oscillations in an unperturbed channel).

According to [13], this inequality can be realized for a standard ultrasonic

field source and, as shown by the estimations, the influence of this wave on

dechanneling process can be ignored in this situation.

In conclusion it should be noted that the diffracted radiation can also be forced

under the motion of the oscillator over the crystal surface, by analogy with the

surface parametric (quasi-Cherenkov) radiation [25]. Radiation from particles

moving in crystal undulators is now being actively studied both theoretically

and experimentally (see [154,155,156,157,158]).

6 X-ray radiation from a spatially modulated relativistic beam in

a crystal ([147])

As was mentioned in the Introduction, in our works we suggested a new type of

the free electron laser based on volume multi-wave distributed feedback. It was

shown that multi-wave distributed feedback enables reducing the generation

threshold from the values of the current densities of a relativistic beam, such

as 1013 A/cm2, which are practically unavailable, to acceptable values, such

as 107 − 108 A/cm2. This reduction can be achieved even in the X-ray range

(10-100 keV).

One of the most important ways of reducing the generation threshold in free

electron lasers consists in prior modulation of the density of a beam of rela-

tivistic particles. In particular, modulation gives rise to radiation coherent to

the beam, which appears alongside with spontaneous radiation of electrons as

the beam gets into the undulator.
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According to [25,49,51,59,119,137], one of the schemes of the X-ray laser is

based on using parametric quasi-Cherenkov radiation, diffracted radiation of

a relativistic oscillator in the crystal (or radiation in a crystal undulator). In

this case the relativistic electrons (positrons) move not in the vacuum, but in

the crystal. Interaction of particles with the atoms of matter result in multiple

scattering, which will apparently diminish the beam’s modulation amplitude

and, hence, the intensity of coherent radiation.

In [147], the spectral angular distribution of the intensity of parametric X-

ray (quasi-Cherenkov) radiation was obtained as well as the radiation of a

relativistic oscillator formed by a spatially modulated beam under multiple

scattering. The conditions were determined under which multiple scattering

does not affect the intensity of coherent radiation. It was shown that the

number of quanta coherently emitted by the beam in the X-ray range with

reasonable requirements to the value of the current density of the beam of

relativistic particles, such as ≈ 108 A/cm2, is too small in comparison with

the number of spontaneously emitted quanta. For this reason, the experimental

observation of the effect of coherent radiation of quanta in the X-ray range

should be carried out in a rather narrow spectral angular range. In this case,

in the wavelength range of 50 – 100 Å, it is possible to observe the effect

when the degree of beam modulation is as small as µ ≃ 10−5.

In our case of relativistic particles, their energy is much greater than the en-

ergy of emitted γ-quanta. So one can consider the radiation process within

the framework of classical electrodynamics. Let a beam of charged particles

(electrons or positrons) traverse the area occupied by matter. The spectral

density W s
~nω of the radiation energy per unit solid angle of photons character-

ized by the polarization vector ~es (~n = ~k/k, ~k is the photon wave vector) can
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be found when one knows the Fourier transform in time of the electric field

strength in the produced electromagnetic wave ~E(~r, ω). According to [7,5], at

long distances from the target

Ei(~r, ω)
eikr

r

iω

c2
∑

i

esi

∫

~E
(−)s∗

~k
(~r′, ω)~(r′, ω)d3r′, (45)

where ~E
(−)s
~k

(~r, ω) is the solution of the homogeneous Maxwell’s equations,

which describes scattering by this wave of the photon with wave vector ~k and

polarization s. The scattering asymptotics has a form of an incident plane

wave plus a converging spherical wave. In this case ~E
s(−)∗
~k

= ~E
s(+)

−~k , where

~E
s(+)

−~k is the ordinary solution of the homogeneous Maxwell’s equations with

asymptotic behavior containing a diverging spherical wave;

~(~r, ω) =
∫

eiωt~(~r, ω)dt

is the Fourier transform of the beam’s current, which equals

~(~r, ω) = e
∑

i

~vi(t)δ(~r − ~r′(t)),

~ri(t) is the coordinate of the i-th particle of the beam at moment t, ~vi(t) is

the particle velocity; e is the particle’s electric charge. Using (45), we obtain

the following expression for spectral-angular energy distribution of radiation

generated by the particle beam in the target:

W s
~nω =

ω2

4π2c3

∣

∣

∣

∣

∫

~E
(−)s∗

~k
(~r, ω)~(~r, ω)d3r

∣

∣

∣

∣

2

. (46)

The vinculum in (46) denotes averaging over the distribution of the coordi-

nates and velocities of the particles in the beam (allowing for multiple scatter-

ing in the target). With the help of the distribution function w(~rl, ~vl, t; ~r
′
m, ~v

′
m, t

′)
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defining the joint probability density of finding in the l-th particle the coor-

dinate ~rl and velocity ~vl at moment t, and finding in the m-th particle the

coordinate ~r′m and velocity ~v′m at moment t′, (46) can be written as follows:

W s
~nω =

e2ω2

4π2c3
∑

l

∑

m

eiωte−iωt
′

~vl ~E
s(−)∗
~k

(~rl, ω)

×~v′m ~E
s(−)
~k

(~r′m, ω)w(~rl, ~vl, t; ~r
′
m, ~v

′
m, t

′)d3rld
3vld

3r′md
3v′mdtdt

′. (47)

According to (47), the spectral-angular distribution of energy W s
~nω can be

represented as follows:

W s
~nω =

∑

l

|µl|2 +
∑

l 6=m
µlµ∗

m, (48)

where

µl =
eω

2πc

∫

~E
s(−)∗
~k

(~rl(t), ω)~βl(t)e
iωtdt

has a meaning of the amplitude of photon emission by the l-electron; ~βl = ~v/c.

In the case when correlations in the positions of different particles can be ne-

glected, w(~rl, ~vl, t; ~rm, ~vm, t
′) = w1(~rl, ~vi, t)w1(~rm, ~vm, t

′) (l 6= m). As a result,

(48) can be recast as

W s
~nω =

∑

l

(|µl|2 − |µl|2) +
∣

∣

∣

∣

∣

∑

l

µ2

∣

∣

∣

∣

∣

2

. (49)

The first sum in (49) describes spontaneous incoherent radiation of photons,

the second one – which is proportional to the squared modulus of the sum

of averaged emission amplitudes – describes coherent across the beam photon

emission. To define the conditions under which the distribution of coordinates

and velocities in the beam has no effect on the process of coherent radia-

tion of a photon, let us take into account that when a photon is emitted
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in a homogeneous medium (e.g., due to the Cherenkov effect), ~E
s(−)
~k

has a

form of a plane wave, while in the case when parametric X-ray radiation or

diffracted radiation of the oscillator is generated in the crystal (in a medium

with spatially-periodic dielectric permittivity), the expression for ~E
s(−)
~k

has a

form of a superposition of plane waves [5,17,20,85]. In particular, in the space

region occupied by the target, ~E
s(−)
~k

can be represented in the form:

~E
s(−)
~k

(~rl(t), ω) =
∑

n

Ane
i~kn~rl(t),

~rl(t) = ~rl0 + ~ult+ δ~rl(t). (50)

Here ~rl0 is the electron coordinate at time t = 0; ~ul is the electron velocity

in a vacuum; δ~rl(t) describes the variation of the electron trajectory under

the action of the forces (in particular, those leading to multiple scattering)

that affect the particle in the area occupied by the target. Let us assume that

~ul = ~u+∆~ul, where ∆~ul ≪ ~u. To be more specific, take the z-axis as directed

along ~u.

Now, let us determine the conditions under which the distribution of the co-

ordinates and velocities in the beam has no effect on the intensity of coherent

radiation.

Let the crystal surface through which the electrons enter the target be located

at point z = 0. At the moment of time t = 0, their coordinates were ~r0l

and were located in the area z < 0. Consequently, the l-electron reaches the

surface z = 0 at time tl = |zl0|/uzl. During this time, the electron will move

over the distance δ~rl⊥ = ~ul⊥|~zl0|/uzl in the transverse direction. As a result,

the electron’s transverse coordinate at entering the target will be

~rl⊥ = ~rl0⊥ + ~ul⊥
|zl0|
uzl

= ~rl0⊥ − ~ul⊥
zl0
uzl

.
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The major contribution to the amplitude µl comes from integration over the

interval corresponding to particle motion inside the target [8]. We shall con-

sider this very contribution. In the integral over time involved in the amplitude

µl, we shall shift the zero-time position corresponding to the particle motion

in the target area to point t = 0.

As a result, the amplitudes µl can be represented in the form:

µl = All
−i~k⊥~rl0⊥e

−i ω
uzl

zl0e
i~k~ul⊥

z
uzl , (51)

where Al is the amplitude of radiation in the crystal of the l-electron, which

entered the target at point r = 0 at time t = 0. If the additional phase shift

occurring during the time T of the electron motion in the crystal is small due

to velocity distribution ∆ul, i.e., ~k~∆~ulT < 1, then multiple scattering has no

effect on the amplitude of radiation. Here, in the case of parametric (quasi-

Cherenkov) radiation, all the amplitudes Al equal one another, while in the

case of diffracted radiation of the oscillator (radiation of channeled particles),

the amplitudes Al depend on the the particle entry point into the channel,

which should be taken into account in averaging the amplitudes. It is known

that the root mean square angle of multiple scattering 〈ϑ2〉 = gE
2
s

E2
l
L
, where

Es =21 MeV, E is the particle energy, l is the traveled path length, L is

the radiation length, g is the coefficient for the difference between 〈ϑ2〉 and

〈ϑ2〉am in an amorphous medium. For positrons moving in the regime of planar

channeling, the magnitude of g can be much less than unity. When e± move at

small angles relative to the axes, the magnitude of g can become much greater

than unity. Two requirements follows from inequality ~k∆~ulT < 1: k⊥
√

〈ϑ2〉,

l < 1 and kl〈ϑ2〉 < 1. The former can always be chosen with the help of the
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observation angle. The latter yields the requirement l < 1√
k〈ϑ2〉1

, where 〈ϑ2〉1 is

the root mean square angle of multiple scattering over the unit length (l ∼ γ,

γ is the particle Lorentz factor). This leads to the fact that even for quite

hard radiation with the quantum energy of the order of 100 keV, the target

thickness required to avoid the effect of multiple scattering on the radiation

process, appears rather large (l ≤ 10−3 cm) for electrons with the energy of

1 GeV. We shall further assume that this condition is fulfilled. So from (49)

we have the following expression for the spectral angular distribution of the

number of emitted quanta d2N/dωdΩ = W s
~nω/~ω:

d2N

dωdΩ
=

d2N1

dωdΩ
Nl +

d2N1

dωdΩ

∑

l 6=m
e−i ~K~rlei ~K∗~rm , (52)

where

~rl =
(

~r0⊥l − ~ul⊥
z0l
uzl

,
u

uzl
z0l

)

, ~K =
(

~k⊥,
ω

u

)

in the case of parametric radiation; if radiation is produced by a relativistic

oscillator (radiation from channeled particles, diffracted radiation of the oscil-

lator) with the vibration frequency Ω in the laboratory system of coordinates,

vector ~K =
(

~k⊥,
ω±Ω
u

)

. From (52) follows that to achieve the conditions under

which the velocity distribution ∆ul in a beam has no effect on (52), the lon-

gitudinal dimensions Lb of the bunch of particles should satisfy the relations:

ω

u

∆uzl
u

Lb < 1 and k⊥
∆u⊥
u

Lb < 1,

i.e.,

Lb <
1

kν2
and Lb <

1

kνγν
,
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where ν is the characteristic angular distribution of particles’ velocities in the

beam; νγ is the quantum emission angle. When the longitudinal dimensions of

the bunch satisfy these conditions, the magnitude of ~rl in (52) can be taken

equal to ~r0l. Now averaging in (52) is easy to perform. Since the double sum

in (52) does not depend on velocities of particles, averaging is reduced to

averaging over the initial distribution of the coordinates of particles in the

beam. Let us introduce the beam density ρ(~r);
∫

Vb
ρ(~r)d3r = Ne (Vb is the

bunch volume, Ne is the number of particles in the bunch). Upon averaging

(52) with the distribution ρ(r), we obtain

d2N

dωdΩ
=

d2N1

dωdΩ
Ne +

d2N1

dωdΩ

∣

∣

∣

∣

∫

e−i
~K~rρ(~r)d3r

∣

∣

∣

∣

2

, (53)

where d2N1/dωdΩ is the spectral angular distribution of quanta formed as a

result of spontaneous radiation by a single electron. Let us consider a beam

modulated as ρ(~r) = ρ0 + ρ1 cos(~τ~r). As a result, (54) will include rapidly

oscillating integrals, which can be replaced by δ-functions with good accuracy.

This enables writing (53) in the form

d2N

dωdΩ
=

d2N1

dωdΩ
Ne +

d2N1

dωdΩ

π

2
Neµ

2ρ0δ( ~K − ~τ ), (54)

where µ = ρ1/ρ0. From (54) follows that the total number of quanta emitted

by the bunch equals

N = Ne

(

N1 + c
d2N1

dωdΩ

∣

∣

∣

∣

∣

~K=~τ

π

2
µ2 ρ0
k20

)

. (55)

Here N1 is the number of quanta of incoherent spontaneous radiation, which

are produced by a single electron traversing the target under study; k0 = |~τ | =
2π
λ0
, λ0 is the radiation wavelength equal to the spatial modulation period d of

the beam.

46



Note that (55) is easy to obtain from the following quantitative considerations:

In performing integration over dωdΩ in (53), the characteristic range of values,

where the second term in (53) is nonzero is: ∆k⊥ ∼ 1/L⊥b for the transverse

dimension and ∆ω/c ∼ 1/Lb, for the longitudinal dimension. As a result, we

have

∫

d2N1

dωdΩ

∣

∣

∣

∣

∫

e−i
~K~rρ(r)d3r

∣

∣

∣

∣

2

dωdΩ ≃ d2N1

dωdΩ

∣

∣

∣

∣

∣

K=τ

N2
eµ

2c
∆2k⊥∆k‖

k20

≃ c
d2N1

dωdΩ

∣

∣

∣

∣

∣

K=τ

N2
e

1

L2
⊥b

1

Lb

µ2

k20
≃ Nec

d2N1

dωdΩ

∣

∣

∣

∣

∣

K=τ

ρ0µ
2

k20
, (56)

i.e., the expression appearing in (55). The ratio of the total number of coher-

ently emitted quanta to that of incoherently emitted quanta is

Ncoh

Nincoh

≃ π

2

µ2ρ0
k20∆k∆Ω

. (57)

Here ∆k(∆Ω) is the characteristic range k (of solid angles), where the quantum

is emitted through incoherent spontaneous radiation; ∆k/k ∼ 1/γ, ∆Ω ∼

1/γ2; γ is the particle Lorentz factor. In obtaining (57), the estimate N1 ≃
d2N1

dkdΩ
∆k∆Ω was used; (57) can also be recast as

Ncoh

Nincoh

≃ µ2ρ0
k30

γ3. (58)

Note that according to [8], in the case of parametric radiation when 1/γ2 <

neff −1 (neff is the effective index of refraction in the radiation area), the char-

acteristic range of radiation angles (the frequency distribution) ∆ϑ, ∆ω/ω ∼
√
neff − 1. As a result, with growing γ, the ratio (58) tends to the limit

Ncoh/Nincoh ≃ (µ2ρ0/k
3
0)(neff−1)−3/2. Recall that in the X-ray range of 10÷100

keV, neff − 1 ≃ 10−5 ÷ 10−7. From (57), (58) follows that with other condi-

tions being equal, the ratio Ncoh/Nincoh decreases rapidly with growing k (with

47



the decrease in the radiation wavelength). Thus for example, even at current

densities in a beam as high as 108 A/cm2, which corresponds to ρ0 ≃ 1017

and at µ = 1, the ratio Ncoh/Nincoh ≤ 10−1 for quantum energy of 10 keV

and γ = 103. At the same time, the ratio of the spectral densities of radia-

tion within the range of the emission angles ∆ϑ ∼ 1/kL⊥b ≪ 1/γ of coherent

radiation is µ2Ne.

Thus, within this range of emission angles, the intensity of coherent sponta-

neous radiation exceeds that of incoherent spontaneous radiation when the

modulation depth is µ ≥ 1
√
Ne. For example, when the number of electron

in the bunch is Ne ≃ 1012, it is sufficient that µ ≥ 10−6, which enables one

to appreciably simplify the problem of experimental observation of coherent

radiation in the X-ray range of 10-100 keV. Note that the formulas derived

here are also applicable when the target is irradiated by the laser pulse of

length greater than Lb. Indeed, let us divide the whole pulse length into the

bunches, each of length Lb, i.e., we have (54), (55), where Ne stands for the

number of electrons in the entire pulse.

Now let us estimate the number of quanta which can be produced coherently,

e.g., in the case of parametric (quasi-Cherenkov) radiation mechanism. From

general formulas (52) for parametric radiation in the Laue case follows the

below expression for spectral-angular distribution of quanta emitted in the

direction of diffraction:

d2N1

dkdΩ

∣

∣

∣

∣

∣

~K=~τ

≃ e2

~cπ2

∣

∣

∣

∣

χτ1
ϑB

∣

∣

∣

∣

2

k0N
2, (59)

where L is the crystal thickness; χτ1 is the Fourier component of the crystal

susceptibility for quantum diffraction by the system of planes defined by the
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crystal reciprocal lattice vector r1, ϑB is the Bragg diffraction angle.

According to (59), (55), for the number of coherently emitted quanta per

electron we have

N1coh ≃ 10−3
∣

∣

∣

∣

χτ1
ϑB

∣

∣

∣

∣

2

µ2ρ0L
2

k0
. (60)

For radiation generated in Si, χτ ∼ 10−5 for (400) plane, k0 = 109, ϑB ≃ 45◦,

ρ0 ≃ 1017, L = 10−1 cm, we have N1coh ≃ 10−7µ2.

In the case of PXR generation in a layered medium (i.e. in NiC) in the range

of wavelengths ≃ 50 ÷ 100 Å, χτ ∼ 10−2, k0 = 107, L ≃ 10−4 cm, we have

N1coh ≃ 10−5µ2. At the same time, in the case of generation of surface PXR,

when the quantum absorption length in the medium does not restrain the

radiation intensity, which is proportional to the path length traveled over the

grating [25], N1coh ≃ 103µ2 for L = 1 cm. When PXR is generated in the

optical range k0 = 105, χτ = 10−1, L ≃ 10−1 cm, we have N1coh ≃ 105µ2. Note

here that the obtained estimates increase by two-three orders of magnitude in

the case of Bragg diffraction because of the increase in d2N1 in narrow spectral

ranges [138].

For the oscillator mechanism of radiation [20]

dN1osc

dkdΩ
≃ e2

~cπ

(

v⊥
c

)2

k0L
2, (61)

v⊥ is the velocity amplitude of the transverse vibrations of the particle. For

this reason, to obtain the estimates, |χτ/ϑB|2 in (60) is replaced by (v⊥/c). In

particular, for positrons channeled in Si, the characteristic values of v⊥/c ≃

10−5 and of dN1osc ≃ dN1PXR.
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Thus, it follows from the above analysis that using a spatially modulated beam,

one can observe coherent parametric X-ray radiation. Moreover, in a soft X-ray

range, under the condition when the surface parametric radiation is generated

[25], coherent radiation can be observed even when the degree of beam modu-

lation is not very high (e.g., for µ ≃ 10−5, we have N1coh ≃ 10−7). As a result,

when the transmitted pulse contains Ne ≃ 1012, we obtain Nγ ≃ 105, which

is quite acceptable. The possibility to use modulated beams for generating

coherent radiation in crystal undulators has recently been considered in [148].

7 Crystal X-ray Free Electron Lasers on the basis of PXR and

DRO (DCR)

High spectral and angular densities of parametric (quasi-Cherenkov) and diffracted

radiation of the oscillator as well as narrow spectral and angular widths of radi-

ation reflex give a basis for application of considered spontaneous mechanisms

of X-ray radiation for the construction of an X-ray coherent radiation source

by using beams of relativistic particles in crystals. Such a system can be con-

sidered as a crystal X-ray free electron laser (FEL). The idea of X-ray FELs

based on spontaneous parametric and DRO (DCR) radiation in crystals was

first expressed in [46,47,48]. In [46,47,48,49,50], the dispersion equation for the

eigenstates of the system consisting of electromagnetic radiation, a beam of

relativistic oscillators and a crystal was obtained. The increment of the beam

instability was also analyzed. The possibility in principle of obtaining X-ray

coherent radiation with the help of a beam of relativistic oscillators in crys-

tals was shown. In [51], the parametric (PXR) relativistic beam instability

in a crystal was considered and the corresponding increment was obtained.
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Radiative instability caused by spontaneous radiation in crystal undulators

and by a laser wave propagating through a crystal was studied in [60]. Thus,

in [46,47,48,49,50,51,60], a new kind of the X-ray FEL – the solid X-ray free

electron laser (SXFEL) was suggested. As we have pointed out above, sev-

eral mechanisms of spontaneous X-ray radiation generated by a relativistic

electron beam in crystals can constitute the basis for such SXFELs: paramet-

ric (quasi-Cherenkov) X-ray radiation and diffracted radiation of oscillators

formed in crystals, for example, by channeling [46,47,48,49,50,56,57,58,59] or

under the action of an external field [58,60].

The main feature of such an X-ray generator is that the crystal target, in this

case, not only forms the mechanism of spontaneous radiation, but also acts

as a three-dimensional resonator for X-ray radiation which produces a dis-

tributed feedback (DFB). The construction of the X-ray generator by using

channeled electron beams in crystals was also considered in [61,62,63,64,65]

and the construction of the X-ray generator on the basis of resonance tran-

sition radiation was discussed in [66,67]. The possibility of using the crystal

as a resonator that produces a one-dimensional distributed feedback for an

X-ray coherent generator was first expressed in [68]. This idea was used for

the formation of a one-dimensional DFB in a solid X-ray FEL on the basis

of channeled particles in [64,65]. However, in all these works, the DFB was

traditionally considered in a one-dimensional geometry when the radiated and

diffracted waves propagate along one line in opposite directions. The authors

of [64,65] obtained a low generation threshold for such a system with a one-

dimensional DFB only due to ignoring the radiation self-absorption inside the

crystal. The correct consideration of absorption, as it was shown in [59], leads

to the threshold beam density of the order of jth ∼ 1012 A/cm2 for this DFB
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geometry.

In the solid X-ray free electron laser, suggested

in [46,47,48,49,50,51,52,53,54,55,56,57,58,59,60], the crystal resonator produces

a three-dimensional DFB that allows one to optimize the system and to essen-

tially decrease the generation threshold. The analysis showed that the process

of amplification and generation in such a crystal (natural or photonic) solid

resonator essentially modifies and, under definite conditions, develops more

intensively. It was shown that the interaction between the particle beam and

the electromagnetic field is the strongest near the region of degeneration of

roots of diffraction dispersion equation, particularly, in the case of multi-wave

diffraction.

Let us consider in detail PXR and DRO (DCR) crystal X-ray FELs

8 Parametric (Quasi-Cherenkov) X-ray FEL

The quasi-Cherenkov instability of a relativistic electron (positron) beam in a

three-dimensional periodic medium in the X-ray range was first considered in

[51,139]. The authors formulated the problem of X-ray parametric radiation

amplification in an infinite medium caused by quasi-Cherenkov instability of a

beam of relativistic particles. The dispersion equation for the case of two-beam

diffraction and the increment of instability was obtained. It was shown that the

strongest interaction between the particle beam and radiation was close to the

region of degeneration of the dispersion equation roots. The boundary problem

of amplification of radiation in a finite parallel-plane crystal target was solved,

and the generation threshold for the particle density was obtained. It was
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assumed that a relativistic particle beam with a mean velocity ~u was incident

at a definite angle ψ0 on the parallel-plane crystal target with the length L. The

orientation of the particle beam relative to crystallographic planes was made in

such a way that spontaneous photons radiated by a particle beam were under

diffraction conditions for planes with low indices. The fulfillment of diffraction

condition not only brings about the possibility of quasi-Cherenkov radiation

in the X-ray range itself but also produces a three-dimensional distributed

feedback.

The closed set of equations describing the interaction of a radiating beam

with a crystal, in the general case, consists of Maxwell’s equations for the

electromagnetic field and the equation for particle motion in the field (for

a ”cold” particle beam, θψ < (kL)−1, where θ is the radiation angle, ψ is

the angular spread of particles in a beam, ~k is the photon vector) or the

equation for the distribution function (in the case of a ”hot” particle beam).

For example, in the case of a ”cold” beam we have:

~∇× ~∇× ~E(~r, ω) =
4πiω

c2
~j(~r;ω) +

ω2

c2
~D(~r, ω),

d~vα(t)

dt
=

e

mγ

{

~E(~rα(t), t) +

[

~vα(t)

c
~H(~rα(t), t)

]

(62)

−~vα(t)
c

(

~vα(t)

c
~E(~rα(t), t)

)}

,

where ~j(~r, t) = e
∑

α
~vα(t)δ(~r − ~rα(t)) is the microscopic current density of

particles in a beam, n(~r, t) = e
∑

α
δ(~r − ~rα(t)) is the corresponding charge

density, ~rα(t) and ~vα(t) are the trajectory and the velocity of the α-th particle

in a beam, ~E(~r, t) and ~H(~r, t) are the electric and magnetic strengths of the

field, ~D(~r, ω) = ε(~r, ω) ~E(~r, ω), ε(~π, ω) =
∑

τ
ετ (ω)e

−i~τ~r is the crystal dielectric

constant, ε0 = 1+g0 ∼= 1−ω2
L/ω

2, ω2
L = 4πe2n0/me, n0 is the electron density
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in a crystal, gτ ≡ ετ is the Fourier component of the dielectric constant, ~τ is

the reciprocal lattice vector.

For the case of two-wave generation, with the trajectory and velocity of a

particle represented as ~rα(t) = ~r0α + ~ut + δ~rα(t) and ~vα(t) = ~u + δ~vα(t),

where ~τ0α is the position of the α-th particle in a beam at the moment of

intersection of the crystal boundary, the system (62) can be written as a

system of Maxwell’s equations for electromagnetic fields ~E(~k, ω) and ~Eτ (~k, ω)

in the following way [52,53,54,55]

(

k2c2 − ω2ε0 +
ω̃2
L

γ
− ω2εb(~k)

)

Eσ − ω2gτE
τ
σ = 0

−ω2g−τEσ +

(

k2τc
2 − ω2ε0 +

ω̃2
L

γ
− ω2εb(~kτ )

)

Eτ
σ = 0, (63)

where ~kτ = ~k + ~τ , Eσ = ~E(~k, ω)~eσ, E
τ
σ = ~E(~kτ , ω)~eσ, ~eσ ‖ [~k~τ ]. The set of

equations (63) is written for σ-polarization of radiation because it is excited

with maximum probability at parametric (quasi-Cherenkov) radiation, ω̃2
L =

4πe2ñ0/me, ñ0 is the mean density of the unperturbed particle beam.

Comparison of (63) and the ordinary set of Maxwell’s equations describing X-

ray dynamical diffraction in a crystal allows one to conclude that the boundary

problem of X-ray amplification (generation) under penetration of a particle

beam through a periodic medium can be reduced to the problem of X-ray

diffraction by an ”active” periodic medium, which consists of the crystal +

radiating particle beam and is characterized by the following dielectric con-

stant:

ε̃0(~kτ , ω) = ε0 −
ω̃2
L

γω2
− ω̃2

L

γω2

(~u~eσ)
2

c2
k2c2 − ω2

(ω − ~k~u)2
,
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ε̃0(~k, ω) = ε0 −
ω̃2
L

γω2
− ω̃2

L

γω2

(~u~eσ)
2

c2
k2τc

2 − ω2

(ω − ~kτ~u)2
. (64)

As the electron density in a beam is much smaller than that in a crystal, the

second term on the right-hand side of (64) can be neglected. The last term has

a resonance behavior under the fulfillment of synchronism condition between

the particle beam and the electromagnetic field ω − ~k~u ∼= 0. In the X-ray

range, the fulfillment of this condition for a diffracted wave is impossible, that

is why it is possible to consider ~ε0(~kτ , ω) ∼= ε0.

In the case of a ”hot” beam, the dielectric constant of such an ”active” medium

is represented as:

ε̃0(~kτ , ω) = ε0 −
ω̃2
L

γω2

xe−x
2
θ2

(ψ1 cosϕ+ ψ2 sinϕ+ ψ‖/γ2θ)2
,

where x = ω − ~k~u, ψ1, ψ2, ψ‖ are the transverse and longitudinal divergences

of the particle velocities in a beam, ϕ is the azimuthal angle of a photon, θ is

the angle between the photon wave vector and the z-axis, directed inside the

crystal as a normal to the crystal surface.

Thus, the reduction of the analysis of amplification and generation processes

in an X-ray FEL to the solution of a boundary problem of X-ray dynamical

diffraction by an ”active” crystal target of length L enables one to find gener-

ation thresholds of such a system for different regimes of FEL operation and

to perform the optimization of parameters [54,55].

The dispersion relation determining the solutions for the electromagnetic wave

vector inside the ”active” medium in the case of two-wave generation is as

follows:
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(ω − ~k~u)2
{

(k2c2 − ω2ε0)(k
2
τc

2 − ω2ε0)− ω4gτg−τ
}

= − ω̃
2
L

γ

(~u~eσ)
2

c2
(k2c2 − ω2)(k2τc

2 − ω2ε0). (65)

and the general solution of the set of equations (63) can be represented in the

form

~E =
4
∑

µ=1

~eσCµe
i~k0~r(1 + Sµe

i~τ~r)eiδµz, (66)

where

Sµ =
ω2g−τ

k2µc
2 − ω2ε0

, ~kµ = ~k0δµ~nz

are the roots of dispersion equation (65). The wave amplitudes Cµ are found

from the matching conditions for the electromagnetic field (66) on the bound-

aries of the crystal target and are given in [55].

As a result, the generation conditions for the case of a two-wave distributed

feedback and different cases of ”cold” and ”hot” beams as well as for different

regimes (weak and high gain regimes) were obtained. It was shown that in

all cases the generation threshold has a simple meaning: on the left-hand side

of equality there is always the term describing the ”production” of radiation

inside the crystal; on the right-hand side, there are two terms describing the

radiation losses. Particularly, the first of these terms refers to the radiation

losses through the crystal boundaries, while the second term corresponds to

self-absorption of radiation inside the crystal.

The analysis showed that the conditions of generation threshold are optimal

near the region of degeneration of roots of dispersion equation (65). This region

corresponds to the edge of a nontransparency region in the dynamical diffrac-
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tion theory, and the interaction of the electromagnetic field with a particle

beam and with a crystal is most effective here.

It should be noted that the condition of the degeneration of dispersion equa-

tion roots leads to the requirement for the photon radiation angle θ2 =

(−β1)−1/2|gτ |−|g′0|−γ2, and this, in turn, gives the restriction for the possible

geometry of Bragg diffraction in the X-ray range − r′

|g′0|+γ2
< β1 < 0, where

r = gτg−τ .

The estimations of the threshold magnitude of the beam current density

showed that the case of a two-wave solid distributed feedback is not an optimal

case for achieving the generation regime in the X-ray range. If for a ”cold”

particle beam in LiH and ψ⊥ < 10−6 rad, ψ‖ < 10−8 rad, the threshold

current is of the order of 109 A/cm2 at l ∼ 0.1 cm, then multiple scattering

of electrons makes the beam ”hot” and leads to the increase in the threshold

density of a particle beam up to jth ≥ 1010 A/cm2.

Because of the destructive influence of multiple scattering process on the qual-

ity of a beam of relativistic particles and, consequently, on the threshold con-

ditions, the crystal target length should be to reduced as much as possible.

As is known from the optical laser theory, the mirror resonator, similar to a

Fabry-Perot resonator, is used for this purpose. In the X-ray range, mirrors can

be replaced by crystal plates that are oriented in such a way that the radiation

wave vector is under the Bragg condition. Due to radiation, the generation pro-

cess takes place in a narrow angular and spectral interval ∆ω/ω ∼ ∆θ ≤ 10−5;

high effectiveness of the radiation reflection under diffraction conditions by an

external crystal resonator can be obtained under the corresponding coordina-

tion of the resonator and the crystal target (”active” medium). This allows
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one to essentially reduce the radiation losses through target boundaries. In

[54], the generation threshold for the system with the external Braggmirrors

was derived, and it was shown that the term connected with losses through

the boundaries could be reduced by a factor of (1 − |R|), where R is the re-

flection coefficient of a Bragg mirror. As a result, we can shorten the crystal

length to the size necessary for achieving the generation threshold. However,

the estimation showed that the threshold magnitude holds rather high.

As the analysis in [54] showed, the transition to the distributed feedback under

the surface uncoplanar diffraction when the radiating particle beam is incident

on a crystal at a small angle ψ ∼
√

g′0 relative to the crystal surface (see

Figure 3), allows one to step down the generation threshold. First of all, the

destructive influence of multiple scattering on the particle beam is suppressed.

Besides, the behavior of dispersion equation roots changes, which modifies the

process of radiation amplification.

The disadvantage of the case of two-wave diffraction distributed feedback is

that the coordination between the degeneration condition of dispersion equa-

tion roots and the requirement of Cherenkov synchronism hardly fixes the ge-

ometry of distributed feedback and leads to small magnitudes of the diffraction

asymmetry factor β1. This, in turn, leads to the enhancement of self-absorption

of radiation inside the crystal target. In [48] was pointed out that the transition

to the multi-wave diffraction allows one to modify the functional dependence

of the increment of the particle beam instability and, consequently, to step

down the threshold density of a beam as well. The dispersion equation for the

three-wave coplanar diffraction geometry of distributed feedback was obtained,

and the rule for writing the dispersion equation for an arbitrary multi-wave

diffraction distributed feedback was formulated. In [54], the expression for the
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generation threshold in the case of three-wave coplanar diffraction was also de-

rived. It was shown that in this case the Cherenkov condition was fulfilled for

two dispersion branches, which provided the possibility of the coincidence of

diffraction roots with Cherenkov synchronism condition near the exact Bragg

condition and, consequently, the possibility of optimization of the threshold

magnitude. In the case of the Laue-Bragg diffraction geometry, the threshold

density of the beam can be reduced to jth ∼ 108 A/cm2, at ψ ∼ 5 ·10−5 rad in

the vicinity of the double degeneration of dispersion equation roots. It should

be noted that even in the case of three-wave generation, it becomes possible

to apply the phenomenon of anomalous X-ray penetration under diffraction

condition and, as a result, to step down self-absorption of radiation inside the

crystal.

Thus, we can conclude that the most suitable geometry for the achievement

of the generation regime of quasi-Cherenkov X-ray radiation with the help of

relativistic electron (positron) beams in crystals is the grazing geometry of the

particle beam incidence on a target with the distributed feedback formed by

multi-wave surface diffraction.

The spectral-angular distribution of the coherent PXR near the generation

threshold was obtained in [55].

In [52], the spectral-angular distribution of coherent radiation far from the

generation threshold was derived within the framework of the perturbation

theory, and the possibility of experimental observation of the coherent PXR in

existing accelerators was analyzed. It was shown that observation of coherent

parametric (quasi-Cherenkov) radiation far from the generation threshold was

a very complicated problem for the X-ray range, but it was possible to observe
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the coherent radiation in an optical range nowadays.

9 The X-ray generator on the basis of diffracted channeling radia-

tion (DCR)

The second type of a crystal generator is based on the application of diffracted

radiation by the oscillator (DRO) as a spontaneous radiation mechanism

[56,57,58,59,60]. As stated above, the radiating oscillator can be formed in dif-

ferent ways. This can be electrons channeled in an averaged crystallographic

potential of planes or axes, or electrons moving in an electrostatic wiggler [58]

or, for example, an oscillator formed by an external ultrasonic (optical) wave

in a crystal [60]. It is obvious that the general approach to the consideration of

the generation problem with the help of a relativistic oscillator beam does not

depend on the formation mechanism of the oscillator itself. Since the oscilla-

tor is a quantum system, it is more accurate to perform the calculation of the

polarizability tensor of a particle beam within the framework of quantum elec-

trodynamics. Reduction of the problem of radiation application (generation)

by a particle beam in a finite crystal target to the problem of diffraction of

X-rays by an ”active” medium, consisting of a crystal and a beam of radiating

oscillator, holds true in this case as well.

The expression for the polarizability of such an ”active” medium in the case

of channeled particles in unperturbed averaged crystal potential was obtained

in [57]:

ε̃0(~k, ω) = ε0 −
ω̃2
L

γω2
− 4πe2n0

ω2
(W2 −W1)

∣

∣

∣~a(~k)21~eσ
∣

∣

∣

2

ω − ~u~k − Ω21 + iΓ
; (67)
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where ~α21(~k) is the matrix element of the operator α̂ exp(i~k~r), which in the

dipole approximation takes the form

~α(~k)21 = −ix21(Ω21~nx + kx~uz).

The axis ~nx is chosen so that it lies along the transverse particle oscillations in a

channel, ~u‖ is the longitudinal velocity parallel to the channeling planes, (kx =

~k~nx, ~u‖~nx = 0), Ω21 is the frequency of the transition, ~eσ ‖ [~k~τ ], W1 and W2

are the population of the states 1 and 2, Γ is the phenomenological constant,

taking into account inelastic oscillations; its order of magnitude estimate gives

(Ld)
−1, where Ld is the dechanneling length. In obtaining (67), it was taken

into account that the synchronism condition could be fulfilled only for the

wave propagating at a small angle relative to the longitudinal velocity of the

particle. The fulfillment of the synchronism condition for the diffracted wave

is impossible in the X-ray range. As the analysis showed [57], although there

were a lot of zones (states) of transverse energy of a channeled particle, the

main contribution to the polarizability tensor was made by a certain transition

with the frequency Ω21. This means that the consideration is reduced to the

two-level problem.

Indeed, the contribution to the beam polarizability from the transition be-

tween the levels m and n is determined by the deviation from the exact syn-

chronism condition of the radiation field with the oscillator, i.e., Re(ω − ~u~k −

Ωmn) = 0. This contribution should be taken into account only if

∣

∣

∣Re(ω − ~u~k − Ωmn) ≤
∣

∣

∣Im(~k~u− ω) + Γmn
∣

∣

∣

∣

∣

∣ (68)

If the magnitudes of Reω and the angle between ~u and ~k are fixed, the number
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of transitions contributing to the polarizability depends on the relationship

between ∆Ω and
∣

∣

∣Im(~k~u− ω) + Γmn
∣

∣

∣, where ∆Ω determines the typical value

of the difference Ωn+1,n − Ωn,n−1 which characterizes the unharmonism of the

averaged potential (for a harmonic potential ∆Ω = 0). The analysis of the

magnitude of ∆Ω for different kinds of averaged crystallographic plane poten-

tials shows that

∆Ω ≫
∣

∣

∣Im(~k~u− ω) + Γmn
∣

∣

∣ ,

and, consequently, the synchronism condition can be fulfilled only for a cer-

tain transition Ω21. Other terms in a polarizability tensor can be neglected as

nonresonant. It was shown that the most effective interaction between the os-

cillator beam and the radiated wave takes place near the degeneration region

of roots of the dispersion equation determining the eigenstates of the field in

an ”active” medium. But, as contrasted to the parametric (quasi-Cherenkov)

generator, for which the radiation condition is realized only at large deviation

from the exact Bragg condition, now there is a possibility to overlap the syn-

chronism condition with the exact diffraction condition. As a result, in the case

under consideration the manifestation of the effect of anomalous X-ray pen-

etration through the resonator under dynamic diffraction (Borman effect) is

possible. This circumstance is very important because of strong absorption of

X-rays inside a crystal target. In [57] the boundary problem of X-ray diffrac-

tion by an ”active” medium of a finite size was solved, and the generation

condition was obtained. It was shown that the beam can be in synchronism

with one of the modes of the ”active” medium. These modes correspond to

the waves with the wave vectors being the roots (δ1 and δ2) of the dispersion

equation. According to [57], the generation condition can be realized in two
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cases: for the wave corresponding to the root δ2 at the positive magnitude of

α = α+ and for the wave corresponding to the root δ1 for the negative devia-

tion from the exact Bragg condition α = α−. It was shown that the solutions

of the generation equation for different modes are identical in structure. All

of them lead to the phase condition

δ
(0)
1 − δ

(0)
2 =

2πn

ωL
(69)

where δ
(0)
1 and δ

(0)
2 are the solutions of the diffraction dispersion equation. The

conditions of generation are written for the case of a channeled particle in [57]

and for the case of electrostatic and magnetostatic wiggler in [58].

If the condition (69) is fulfilled, the longitudinal structure of the modes turns

out to be close to the structure of a standing wave. That is, |E|2 and |Eτ |2 are

proportional to ∼ cos2 2πn
ωL

(z − L). This condition is similar to a well known

phase condition of the stand wave appearance in a mirror resonator of an ordi-

nary laser [60]. The meaning of amplitude conditions is the same as in the case

of the quasi-Cherenkov X-ray generator. The field amplification, due to the

radiation process, should be equal to the radiation losses caused by absorption

inside the crystal and the output of radiation through the boundaries of the

crystal target. Because the gain in the weak-gain regime is proportional to the

current density of a beam, the formula for the threshold gain sets requirements

for the current density. The invariant characteristics of a particle beam are of-

ten used instead of the current density, that is, the current I, the normalized

emittance εn = γr〈ψ〉 and the normalized brightness Bn = I/π2ε2n, where r is

the beam radius, 〈ψ〉 is the angular spread. The angular spread corresponds to

the divergence of the longitudinal velocity σε ∼= u〈ψ2〉/2, and the correspond-

ing divergence of the particle energy is
(

∆γ
γ

)

e
= γ2‖

〈ψ2〉
2
. For a LiH crystal, the
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diffraction plane (220) the values of the threshold normalized brightness of

the beam, which correspond to the generation threshold for magnetic, optical

undulators and channeled particles, are given in Table 1. According to Table

1, the value of brightness in the case of two-wave distributed feedback is rather

high. But, as it was shown for a parametric quasi-Cherenkov generator, using

the surface multi-wave diffraction for the formation of disturbed feedback, one

can decrease the threshold characteristics of a particle beam and provide the

achievement of the generation regime.

In [57] the underthreshold spectral-angular distribution of radiation was an-

alyzed and it was shown that the observation of collective radiation by rela-

tivistic oscillators was a very complicated problem in the X-ray spectral range.

Thus, the parallel consideration of two kinds of crystal three-dimensional X-

ray generators, which are distinguished by the mechanisms of spontaneous

radiation, shows that three-dimensional distributed feedback allows one to

decrease the current density of the particle beam by several orders of magni-

tude in comparison with the results obtained in [61,62,63,64,65]. This enables

one to consider the construction of the FEL in the hard X-ray range as a

scientific problem of nowadays, which can be analyzed both theoretically and

experimentally.

10 Crystal X-ray FEL based on a natural crystal or an electromag-

netic undulator

Crystal X-ray FELs based on a natural crystal and on an electromagnetic

undulator were first considered in [60]. The English version of this paper is
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Table 1

Parameters Magnetostatic Optical Channeled

Wiggler Wiggler Particle

Accelerator

Energy = 5 GeV = 290 MeV = 500 MeV

Normalized brightness = 3.5 · 109 = 1.7 · 1010 = 5 · 109

Energy spread = 2.4 · 10−3 1.2 · 10−5

Density of current = 5.3 · 107 = 1.3 · 106 = 3.3 · 108

Wiggler

Wavelength = 1 mm = 5µm

Magnetic field strength = 17.5 kG

Laser energy = 0.75 gW

Crystal

Wavelength of radiation = 0.05 Å = 0.15 Å = 1 Å

Asymmetry parameter = 9 = 1

Diffraction plane (220) (220) (100)

given below.

Let a relativistic electron (or positron) beam of velocity ~u0 and the beam ve-

locity distribution ∆~u move in a spatially periodic medium (e.g., in a crystal).
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Let a linearly polarized laser pump wave be incident onto the beam along the

direction ~np. Let the wave have the wave vector ~kp = ~kpn, frequency ωp, and

the field strength ~Ep = ~E0
p cos(

~kp~r − ωpt + δ), where δ is the initial vibration

phase. The z-axis is chosen directed along the beam’s average velocity ~u0. The

presence of the electromagnetic pump wave induces radiation leading to vari-

ous sorts of instability. The most known of them is the so-called the three-wave

parametric instability, which emerges due to the conversion of the pump wave

into the Doppler-shifted electromagnetic wave and the charge density wave:

ωp = ω + ωch, ~kp = ~k + ~kch (ω, ~k are the frequency and the wave vector of

the high-frequency wave, respectively, ωch, ~kch are the frequency and the wave

vector of a charge density wave). This process is scrutinized for the case of

homogeneous matter [120].

In the case of a 3 D-periodic medium that we are considering here, the situation

is basically different from that studied earlier because for ω and ~k satisfying

the Bragg condition, the wave scattered by the beam is diffracted.

Maxwell’s equations and the equations of particle motion, which describe the

process under study, have the form:

rot ~H =
1

c

∂ ~D

∂t
+

4π

c
~j, ~D(~r, t) =

∞
∫

−∞
ε(~r, t− t′) ~E(~r, t′)dt′,

rot ~E = −1

c

∂ ~H

∂t
, div ~E = 4πρ,

∂ρ

∂t
+ div~j = 0,

~j(~r, t) = e
∑

i

~vi(t)δ(~r − ~ri(t)), (70)

ρ(~r, t) = e
∑

i

δ(~r − ~ri(t)),

d~vi(t)

dt
=

e

mγi
~E(~ri(t), t) +

e

mcγi

[

~vi(t) ~H(~ri(t), t)
]

− e

mc2γi
(~vi(t)(~vi(t) ~E(~ri(t), t))),

66



where ~E(~ri(t)), t), ~H(~ri(t), t) are the electric and magnetic field strengths at

moment t at the location point of the i-th electron ~ri(t), ~D is the electric

induction, ε(~r, t) is the dielectric permittivity of the crystal at point ~r, ε(~r, t) =

0 at t < 0, ~vi(t) is the velocity of the i-th electron of the beam at time t, ~j(r, t)

is the beam’s current density at point ~r at time t, ρ(~r, t) is the density of the

beam’s electron charge, e is the electron charge of the particle (e = ±|e|),

γi = (1− v2/c2)−1/2 is the particle Lorentz factor, c is the velocity of light.

For the Fourier transforms ~D(~r, ω) and ~E(~r, ω), we have the relation ~D(~r, ω) =

ε(~r, ω) ~E(~r, ω), where the crystal’s spatially periodic dielectric permittivity can

be represented as the Fourier series: ε(~r, ω) =
∑

ετ (ω)e
i~τr, ~τ is the reciprocal

lattice vector. Studying the possibility of occurrence of induced radiation, one

should first of all determine the gain coefficient or, which is the same, the beam

instability increment. To find them, in solving (70) we may confine ourselves to

linear approximation, finding the dielectric permittivity of the beam+crystal

system in the presence of the given pump wave. Take the Fourier transform in

time of (70). To be more specific, let us further consider the case when a single

diffracted wave ~kτ = ~k+~τ appears through diffraction. Let us also assume that

the scattering plane of the wave, i.e., the plane defined by vectors ~kp and ~k

coincides with the diffraction plane defined by ~k, ~kτ . In a similar way as in the

case of dynamical diffraction of X-rays, the generation of π- and σ-polarized

waves in the crystal in the absence of the beam can be considered separately.

Recall that the polarization vector of σ-polarized waves is orthogonal to the

diffraction plane

~eσ ‖ ~e~τ0 ‖ [~k~τ ]

|[~k~τ ]|
.

We also assume that the polarization vector ~ep of the pump wave is parallel
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to ~eσ. In this case, upon taking the Fourier transform, (70) takes the form:























































(k2c2 − ε0ω
2)Eσ(~k, ω)− ετω

2Eσ( ~Kτ , ω) = 4πiωjσ(~k, ω),

(k2τc
2 − ε0ω

2)Eσ(~kτ , ω)− ε−τω
2Eσ(~k, ω) = 0,

ωE‖(~k, ω) = −4πij‖(~k, ω),

(71)

where ‖ denotes the component of the field and current strength parallel to

the wave vector ~k, ~Eσ = ( ~E~eσ). In writing (71), the components jσ(~kτ , ω) and

j‖(~kτ , ω) of the current, for which the synchronism condition does not hold

in the X-ray range and whose contribution is therefore small, are discarded.

Without channeling, the particle velocity in the beam can be represented as

a sum:

~vi(t) = ~ui + ~vpi(t) + δ~viσ(t) + δ~vi‖(t),

where ~ui is the particle’s longitudinal velocity in the absence of the electro-

magnetic wave.

~vpi(t) = − e ~E0
p

mγiωp
sin(~kp~r0i − ωpt + δ) ≡ ~v0p sin(

~kp~r0i − ωpt + δ)

is the velocity of the i-th particle under the external electromagnetic pump

wave, ωp = ωp−(~kp~ui), δ~viσ(t) is the velocity disturbance of the i-th particle in

the field of a transverse scattered electromagnetic wave, δ~vi‖(t) is the velocity

disturbance induced by a longitudinal wave. The position of the i-th particle

at time t is written accordingly ~ri(t) = ~r0i + ~ui(t) + δ~ri(t), where ~r0i is the

position of the i-th particle (e±) in the beam at time t = 0, δ~ri(t) is the time

change of the position of the i-th (e±) in the beam.

68



The Fourier components of the transverse and the longitudinal current in the

linear approximation with respect to perturbation can be presented as follows:

jσ(~k, ω) =
i(~eσ〈~ui〉)

4π
(~k ~E(k, ω)) +

〈

i(~eσ~v
0
p)

4π
((~k − ~kp) ~E(~k − ~kp, ω − ωp))

+e〈
∑

i

δviσ(ω − ~k~ui)e
−i~k~r0i

〉

, (72)

j‖(~k, ω) =
i(~k〈~ui〉)

4π
E‖(~k, ω) + e〈

∑

i

δvi‖(ω − ~k~ui)e
−i~k~r0i〉

+























































e(~v0p~nk)n0, ~k = ~kp,

i(~v0p~nk)

4π
((~k − ~kp) ~E(~k − ~kp, ω − ωp)), ~k 6= ~kp.

(73)

〈 〉 denotes averaging over the velocity distribution in the beam.

To obtain a closed system of equation, let us take the Fourier transform of the

equation of particle motion (70) and separate the transverse components of

the velocity and the perturbation field from the longitudinal ones. The linear

approximation to the disturbance of the particle velocity gives

〈
∑

i

δviσ(ω)e
−i~k~r0i〉 =

〈

ie2n0

mωγi
δEσ(~k, ω)

〉

+

〈

ie2n0

4mωγi

×










(~eσ~kp)

ωp − ω
+ (~v0p~eσ)−

2(~v0p(
~k − ~kp))

ω − ωp



 δEσ(~k − ~kp, ω − ωp) (74)

+2(~v0p~eσ)〈(~nk~vi)〉δE‖(~k − ~kp, ω − ωp)
}

− ie2n0

mc2ωγi

[

(~ui~eσ)
2δEσ(~k, ω)

+(~ui + ~eσ)(~ui~nK)δE‖(~k, ω)
]〉

,
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〈

∑

i

δvi‖(ω)e
−i~k~r0i

〉

=

〈

ien0(1− (~ui~nk)
2)

mωγi
δE‖(~k, ω)

+
ien0

mωγi

[

k

ω
− (~ui~nk)

c2

]

(~ui~eσ)δEσ(~k, ω) +
ien0

mcωγi
(75)

×




~kp − ~k

ωp − ω
− (~ui~nkp−k)

c



 (~v0p~eσ)δEσ(
~k − ~kp, ω − ωp),

where ω = ω − ~k~ui, 〈. . .〉 is averaging over ~u.

Substitution of the obtained expressions for the velocity disturbance into (72),

(73) and then into (71) gives a closed system of equations for transverse and

longitudinal fields under two-wave dynamical diffraction of scattered radiation:

(k2c2 − ε0ω
2 − 〈ω2

p⊥〉)δEσ(~k, ω)− ετω
2δEσ(~kτ , ω)

= G1δEσ(~k, ω) +G2δEσ(~k, ω), (76)

(k2τc
2 − ε0ω

2 − 〈ω2
p⊥〉)δEσ(~kτ , ω)− ε−τω

2δEσ(~k, ω) = 0,

where

〈ω2
p⊥〉 =

ω2
L

〈γ〉 =
4πe2n0

me〈γ〉
, ω2

p‖ =
ω2
L

〈γ〉3 ,

n0 is the unperturbed particle density in the beam, me is the mass of e±,

G1=

〈

ω2
p⊥(~eσ~u)

2

4c2(ω2 − ω2
p‖)

(ω2 − k2c2)

〉

, (77)

G2=

〈

(~v0p~eσ)
2ω2

p⊥((
~k − ~kp)~nk)

4c2[(ω − ωp)2 − ω2
p‖]

[

(~kp~nkp−k)c− ωp(~β~nkp−k)

+(kc− ω(~β~nk))
]〉

.

The determinant of (76) defines the dispersion equation that specifies the

relation between ~k and ω and enables finding the instability increment of the

beam. We shall describe the beam by Maxwell’s velocity distribution f(~u)

with the effective temperatures T1, T2, T3 over the x, y , z axes, respectively
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or, which is the same, with thermal-induced velocity dispersions characterized

by average thermal velocities vαT =
√

2Tα
m

:

f(~u) =
1

π3/2v1T v2Tv3T
e
− (ux−u0x)2

v2
1T e

−
(uy−u0y)2

v2
2T e

− (uz−u0z)
2

v2
3T . (78)

Upon averaging (77) with the function (78), we obtain

G1 = −ω
2
p⊥(~eσ~u0)

2(ω2 − k2c2)

2c2Ω2

{

1 + i

√
πω

Ω
W
(

ω

Ω

)

}

, (79)

G2 = −(~v0p~eσ)
2ω2

p⊥((
~k − ~kp)~nk)

2c2Ω2
1

[

((~kp~nkp−k)c− ωp(~β~nkp−k))

+(kc− ω(~β~nk))
]

{

1 + i

√
π(ω − ωp)

Ω1
W
(

ω − ωp
Ω1

)

}

, (80)

where W (ξ) =

(

1 + 2i√
π

ξ
∫

0
ex

2
dx

)

e−ξ
2
is the Kramp function (it is tabulated

in [121]), ω = ω − ~k~u0, ωp = ωp − ~kp~u0, Ω
2 = k2xv

2
1T + k2yv

2
2T + k2zv

2
3T , Ω

2
1 =

(kx − kpx)
2v21T + (ky − kpy)

2v22T + (kz − kpz)
2v23T .

Equations (76) together with functions (79), (80) determine the parametric

Cherenkov instability and parametric decay instability of the thermal beam.

From (79), (80) follows that in the case when the parameters ω and ~k are such

that ζ ≫ 1, the velocity distribution in the beam appears insignificant, and so

one can analyze an appreciably simpler case of a cold beam. Since in radiation

of a relativistic particle quanta are emitted in a narrow angular range in the

direction of the particle motion, then kx, ky ≪ kz. As a result, at the given

values of Ω and Ω1, the beam’s velocity distribution in transverse direction can

exceed that in the longitudinal direction. Of particular interest is the radiation

pattern for parametric decay instability, in which case there is a possibility in

principle to make the differences k − x − kpx and ky − kyp, appearing in the
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expression for Ω1, go to zero. The transverse velocity distribution in this case

appears to be insufficient at all.

In a real situation, due to the finite dimensions of the system and non-

monochromaticity of radiation, these differences cannot vanish, though they

can be reduced appreciably. Let us estimate the maximum possible magnitude

of the increment. Suppose that the parameter ζ ≫ 1. As stated above, in this

case we go over to the approximation of a cold beam and can use the expres-

sion f(~u) = δ(~u−~u0) for the distribution function. The parametric Cherenkov

instability for this case was considered in [51] (see Section above). The term

proportional to G2 leads to parametric decay instability of the beam in a

periodic medium. In the general case, the Cherenkov and decay instabilities

develop at different frequencies and can therefore be considered separately. So

here we shall focus on the decay instability, omitting the term containing G1

in (76) for corresponding ~k and ω. In the case of a cold beam, using (76), (77),

we have the following equation for decay instability:

[(k2c2 − ω2ε0)(k
2
τc

2 − ω2ε0)− ω4ετε−τ ](ω − ωp)
2 = A2(k

2
τc

2 − ω2ε0), (81)

where A2 is the factor of the term [(ω − ωp)
2 − ω2

p′′]
−1 in G2; ω

2
p′′ is dropped

as it is small for the particle densities n0 ≃ 1015÷ 1017 cm−1 in the beam that

are of interest to us.

The solution of dispersion equation (81) can be found in the weakly-coupled

waves approximation, which is applicable in this case because a non-linear

right-hand side of (81) is small. In this approximation, the solution of disper-

sion equation (81) is sought near the intersection of solutions of the dispersion

equations for coupled waves into which (81) is split when its right-hand side
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equals zero, i.e.,































(k2c2 − ω2ε0)(k
2
τc

2 − ω2ε0)− ω4ετε−τ = D(kz, ~k⊥, ω) = 0,

((ω − ~k~u0)− ωp)
2 = 0.

(82)

Using weakly-coupled waves approximation of the perturbation theory and

assuming that ε0, ε±τ are real values (i.e., neglecting the intrinsic absorption

of the medium), the upper estimate of the increment of the beam’s parametric

decay instability when a pump wave is scattered in a 3D periodic medium can

be obtained from (81):

η ≃ ωB
c

4

√

√

√

√

ω2
p⊥

4ω2
B

|~v0p|2
c2

ωp
ωB

|ετ |, (83)

where |vp|2
c2

=
e2|E0

p |2
m2

ec
2〈γ〉2ω2

p
, ωB is the Bragg frequency. Equation (83) is obtained

in the assumption that the synchronism condition is fulfilled exactly and that

D(kz, ~k⊥, ω) = 0 in the degeneration point of the eigensolutions of the disper-

sion equation of diffraction. In this case the multiplicity of the root, determin-

ing the increment, is greater by one than in the case of modified decay in the

absence of diffraction of a scattered wave. This results in the decrease in the

instability threshold, depending on the beam density and the intensity of the

external electromagnetic pump wave [118,119]. According to (83), the numer-

ical estimate of the maximum increment of the parametric decay instability of

a cold relativistic beam is as follows: η ∼ 0.5 at E0
p ∼ 105 in CGS, γ = 2 · 102,

ωσ = 1.6 ·1019 s−1, ωp = 1014 s−1 n0 ∼ 1015 cm−3, ε0−1 = 5 ·10−6, ετ ≃ 10−6.

In the above theoretical analysis we did not actually use the explicit form of

v0p and the direct relation between ωp and ~kp. This theory is therefore fully ap-
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plicable to the case when, instead of the electromagnetic wave, crystal planes

bent under the ultrasonic wave act as a dynamic wiggler. A detailed treat-

ment of the particle motion in such an ultrasonic wiggler was given in [13].

The corresponding dispersion equation is obtained from (76), (77), (81) by

substituting for v0p the corresponding expression for the case of the ultrasonic

wiggler |~vsp| = (~eσ~r
s
0⊥)Ω

′
s (where Ω′

s = κzu0 − Ωs, ~κ is the wave vector of the

ultrasonic wiggler, Ωs is its frequency, ~rs0⊥ is the amplitude of the particle’s

transverse vibrations in the ultrasonic wiggler [13]) and by substituting ~κ for

kp; Ωs, for ωp; Ω
′
s, for ωp. Upon this substitution, for the instability increment

in an ultrasonic wiggler, we obtain the expression similar to (83). This en-

ables readily obtaining the following ratio of the instability increment in an

ultrasonic wiggler to that in a light wiggler:

R =
ηs
η

=

( |vsp|2Ω′
s

|v0p|2Ωs

)1/4

=

(

(rs0⊥)
2(Ω′

s)
3m2

eγ
3ω3

p

e2E02
p ωp

)1/4

. (84)

The analysis shows that (84) can be greater than unity. In a real situation,

absorption can always reduce by one or two orders of magnitude the upper lim-

iting estimate given above, but the conclusion about a significant magnitude

of the gain coefficient holds true.

11 Volume Free Electron Laser

As has been stated, the features of radiation from relativistic particles in

crystals, which were considered earlier in this review, have a general character

and are also manifested when radiation is generated in artificial crystals (at

present termed ”photonic crystals”) [25,60,87,88,89,117,164,181,176].

74



In contrast to generation in the X-ray range, generation of radiation in mi-

crowave and optical ranges does not require such high particle current densi-

ties. As a result, application of photonic crystals made it possible to develop

a new type of generator, called the Volume Free Electron Laser (VFEL). Its

main features will be considered below.

12 Generation equations and threshold conditions in the case of

two-wave diffraction

Using multi-wave diffraction in a VFEL for the formation of a volume dis-

tributed feedback enables one, on the one hand, to appreciably reduce the

length of the interaction area, and, on the other hand, to employ electron

beams with a large transverse cross-section for pulse generation, which im-

proves the electrical endurance of the generator and prevents burning of the

glass in the discharge tubes during high-power lasing. Besides, multi-wave

diffraction provides the selection of radiation modes in oversized systems [105].

When radiation is generated in an FEL, the electrons interact with the elec-

tromagnetic wave in a finite spatial region, and release energy into the wave.

Depending on the length of the spatial region, different generation regimes are

realized. At |ImkzL| ≫ 1, generation occurs in a strong (exponential) ampli-

fication regime, which is mainly employed in amplifiers. The regime of weak

single-passage amplification (|ImkzL| ≤ 1) is chiefly used in generators. In

order to determine the structure of the fields and to describe the evolution

of instability in such systems, in addition to the knowledge of the dispersion

equations and their solutions, one should match the fields at the boundaries

of the regions (joining solutions). This procedure gives the field distribution
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in the system.

Now we shall formulate the boundary problem. Let an electron beam with

mean velocity ~u be incident onto a plane-parallel spatially periodic plate of

thickness L. The electron beam is oriented so that the radiation generated

by the beam will be under diffraction conditions. Under two-wave diffraction,

two fundamentally different geometries are possible. In the first case (Laue

geometry (see Figure 8) both waves are emitted through one and the same

boundary of the periodic structure (γ0γ1 > 0,where γ0 =
(~k~n)
k

and γ1 =

(~kτ~n)
k

are the cosines made by the wave vectors ~k and ~kτ with the normal

vector to the surface of the periodic medium). In this geometry the amplifying

regime is possible.

Figure 8. The geometry of two-wave Laue diffraction ~k,~kτ are the wave vectors of

the incident and diffracted waves, ~τ− is the reciprocal lattice vector of the periodic

structure. The projections of both wave vectors onto the direction of the normal to

the surface have the same sign.

In the latter case (Bragg geometry (see Figure 9)), the incident and diffracted

waves leave the plate through the opposite surfaces (γ0γ1 < 0), when the

electron current emits photons, positive feedback appears, and the generation

regime is available.

Let us write the expression for the fields appearing in the system described

here
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Figure 9. The geometry of two-wave Bragg diffraction. ~k,~kτ are the wave vectors of

the incident and diffracted waves, respectively; ~τ is the reciprocal lattice vector of

the periodic structure. The projection of the wave vectors onto the direction of the

normal to the surface are opposite in sign.

a~e exp
(

i~k0~r
)

+ b~eτ exp
(

i~k0τ~r
)

(I)
∑

i

ci exp
(

i~ki~r
)

(~e+ si~eτ exp (i~τ~r)) (II)

f~e exp
(

i~k0~r
)

exp (−ik0zL) + ~eτ exp
(

i~k0τ~r
)

exp (−ik0τzL) (III) ,

(85)

a~e exp
(

i~k0~r
)

+ g~eτ exp
(

i~k
(−)
0τ ~r

)

(I)
∑

i

ci exp
(

i~ki~r
)

(~e+ si~eτ exp (i~τ~r)) (II) (86)

f~e exp
(

i~k0~r
)

exp (−ik0zL) + b~eτ exp
(

i~k
(−)
0τ ~r

)

exp (ik0τzL) (III)

In (85), (86) (I) and (III) denote the fields before and after the periodic

structure. In Laue geometry (85), in the general case two waves with specified

amplitudes are incident on the system: one along the direction with the wave

vector ~k and amplitude b and the other one along the direction with the wave

vector ~kτ and amplitude b. They propagate from one side (in this case to the

surface z = 0). In Bragg diffraction geometry (86), the waves are incident on

the system from opposite sides (the incident wave of amplitude a falls onto

the surface z = 0, and the diffracted wave with amplitude b, onto the surface

z = L). Wave vectors ~k0 and ~k0r satisfy the standard dispersion equation

describing propagation of electromagnetic waves in vacuum (k2c2 − ω2 = 0).

77



(II) denotes the field in a periodic medium. The dispersion relation in the

medium is defined by (100).

si =
ω2χ−τ

[

(

~ki + ~τ
)2
c2 − ω2ε0

]

is the coupling coefficient between the diffracted and the incident waves for

the i-th mode determined from equations (85), (86) and dispersion equation

(100).

In the case of a ”cold” electron beam, dispersion equation (100) takes the

form:

(

ω − ~k~u
)2 {(

k2c2 − ω2ε
(1)
0

) (

k2τc
2 − ω2ε

(2)
0

)

− ω4r
}

= −ω
2
l

γ

(

~u~e

c

)2
(

k2c2 − ω2
) (

k2τc
2 − ω2ε

(2)
0

)

(87)

As a result, sum (II) consists of six terms because equation (86) is of the sixth

order with respect to kz. But if the radiation geometry is not plane and the

dielectric susceptibility is small, then the two waves mirror-reflected from the

target surface may be ignored. In the case of a ”hot” electron beam dispersion

equation (100) reads:

(

k2c2 − ω2ε
(1)
0

) (

k2τc
2 − ω2ε

(2)
0

)

− ω4r

= −
√
πω2

l

δ
(i)
0 γ

(

~u~e

c

)2

xi exp
(

−x2i
) (

k2c2 − ω2
) (

k2τc
2 − ω2ε

(2)
0

)

(88)

Sum (II) now contains only four terms because the corresponding dispersion

equation is of the fourth order. With the mirror-reflected waves being ne-

glected, only two terms remain, and the system of the boundary conditions

for defining the unknown coefficients takes a very simple form: the field in the

periodic structure is completely determined by the two boundary conditions
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for the fields of the incident and diffracted waves at the boundaries of the

periodic structure.

a = c1 + c2

b = s1c1 + s2c2

(89)

a = c1 + c2

b = s1c1 exp (ik1zL) + s2c2 exp (ik2zL) .

(90)

Equation (89) gives the continuity conditions for the incident and diffracted

waves at the boundary z = 0 for the Laue diffraction case. For the case of Bragg

diffraction, equation (90) gives the boundary conditions for the incident and

diffracted waves, respectively when z = 0 and z = L. In the regime of a ”cold”

electron beam, provided the mirror-reflected waves are neglected, dispersion

equation (86) has four solutions. To define the structure of the field appearing

in a periodic plate, four boundary conditions should be used. Two of them

have the same form as those in the case of a ”hot” beam: the continuity of

the incident and diffracted waves at the target boundaries. Two additional

conditions are the continuity of the charge and current densities at the input

boundary. As a result, the system of equations defining the fields in this case
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has the form















































































4
∑

i=1
ci = a

4
∑

i=1

ci
δi
= 0

4
∑

i=1

ci
δ2i

= 0

1 )
4
∑

i=1
sici = b or 2 )

4
∑

i=1
sici exp{ikizL} = b.

(91)

The first equation in (91) expresses the continuity of the incident wave at the

front boundary, the third and second ones describe the continuity of the charge

and current densities at the front boundary, δi =
~ki~u−ω
kuz

. The fourth equation

expresses the continuity of the diffracted wave value at the front boundary in

Laue geometry (denoted by figure 1 in line four of (91) or at the back boundary

in the case of Bragg geometry (figure 2 in line 4 of (91)). It is easy to see (see

(89), (91)) that in Laue diffraction geometry, the electromagnetic field in the

interaction area will also be absent if the amplitudes of the incident waves

equal zero.

The situation is different in Bragg geometry. From (90), (91) follows that in

this case, under certain conditions it is possible that the field in the medium

exists at nonzero amplitudes of the incident fields. The generation equations

defining these conditions are obtained by equating the determinants of the

systems (90) and (91) to zero. For a ”hot” electron beam, the generation

equation takes the form:

s2 exp (ik2zL)− s1 exp (ik1zL) = 0. (92)

A similar equation for a ”cold” electron beam reads
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s1 exp{ik1zL}δ21 (δ2 − δ3) (δ2 − δ4) (δ3 − δ4)

−s2 exp{ik2zL}δ22 (δ1 − δ3) (δ1 − δ4) (δ3 − δ4)

+s3 exp{ik3zL}δ23 (δ1 − δ2) (δ1 − δ4) (δ2 − δ4) (93)

−s4 exp{ik4zL}δ24 (δ1 − δ2) (δ1 − δ3) (δ2 − δ3) = 0.

Upon solving these equations, one may determine the threshold generation

conditions, i.e., the electron current and other parameters of the beam, mark-

ing the starting point from which radiation prevails over the losses. Besides,

radiation generation takes place when some phase relations are fulfilled: phase

shift between the two diffraction modes traversing the interaction area should

be a multiple of 2π (the field at the output should be similar to that at the

input):

Re (k1z − k2z)L = 2πn. (94)

In the region, where these conditions are fulfilled, the solution of (93), (94)

has the form:

ω′′ =
ω

2 (1− β)

{

G(b) − χ′′
0

(

1− β ∓
√
−βr′′

|χτ |χ′′
0

)

−
(

γ0c

~n~u

)3 16π2n2

−β (kχτL∗)
2 kL∗

}

.(95)

ω′′ in (95) is the increment of absolute instability, which describes the increase

of the field amplitude in time in the field linear regime,

G(b) =























































−
√
π
γ

ω2
l

ω2
(~u~e)2

u2
k2c2−ω2

δ20
x(t) exp(−x(t)2) for a ”hot” beam

π2n2

4γ

(

ωl

ω

)2 (~u~e)2

u2
(k2c2 − ω2)k2L2

∗f(y) for a ”cold” beam

f (y) = sin y
(2y + πn) sin y − y (y + πn) cos y

y3 (y + πn)3
(96)
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is the profile function depending on the detuning from synchronism conditions

y = δω
2uz
L∗.

-6 -4 -2 2 4 6

y

-0.03

-0.02
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0.01
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f

Figure 10. The profile generation function in the root degeneration region versus

the detuning from synchronism conditions y

The profile function of detuning is plotted in Figure 10. As follows from (96)

and Figure 10, one of the peculiarities of generation in the region of degen-

eration of the roots of the diffraction equation is that stimulated radiation

is nonzero at zero detuning. This peculiarity appears due to the interference

of contributions to radiation coming from the two branches of the diffraction

equation. In a standard classical FEL, generation does not occur at the exact

fulfillment of the synchronism condition. This is due to the fact that the gain

coefficient is proportional to the difference between spontaneous radiation and

absorption. In the case when these branches overlap each other, the gain co-

efficient becomes proportional to the derivative of the spectral function, while

at zero detuning from synchronism conditions the spectral intensity of sponta-

neous radiation reaches its maximum, and the derivative at this point equals

zero.
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Equation (95) has an obvious physical meaning: the first term between the

braces is proportional to the intensity of radiation produced by the electron

beam (in the unit length). The next two terms describe losses of radiation

appearing through absorption and due to the fact that radiation leaves the area

of interaction with electrons. The values of the electron beam parameters, at

which the radiation generation equals radiation losses (ω′′ ) mark the starting

point for the generation process. From the obtained expression (95) follows

that at given values of the size of the interaction area and absorption, there

is an optimal diffraction geometry in which the losses Γloss are minimum. In

the general case, the optimal geometry is not at all plane. Figure 11 plots the

relation Γloss (β) /Γloss (β = −1) against the asymmetry factor for diffraction

in the millimeter wavelength range (λ ∼ 4 mm).

Figure 11. The relation Γloss (β) /Γloss (β = −1) as a function of the asymmetry

factor of diffraction for λ ∼ 4 mm and L = 10 cm
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13 Generation equations and threshold conditions in the geometry

of three-wave Bragg diffraction

Above we have considered the theory of a volume distributed feedback genera-

tor in the geometry of two-wave Bragg diffraction. It has been shown that the

transition to a volume distributed feedback opens up wider perspectives for

the optimization of the system. Transition to a multi-wave distributed feed-

back provides additional possibilities. Here we shall mention some of them. For

example, in a hard X-ray range, where the susceptibility has a negative value

χ′
0 < 0, the condition of fulfillment of Cherenkov synchronism imposes restric-

tions on the asymmetry factor of diffraction |β| >
(∣

∣

∣χ
/
0

∣

∣

∣+ γ−2
)

/ |χτ |2. In the

X-ray spectral range, where the absorption is large, radiation losses under the

condition of two-wave dynamical diffraction will be rather large at such values

of the asymmetry factor. Moreover, strict requirements are set for the param-

eters of the starting generation current. One of the ways to diminish the losses

is using supplementary external mirrors. Transition to multi-wave diffraction

also enables one to reduce losses because the parameters of the system re-

quired to initiate the generation process change due to the rearrangement of

the field structure in the interaction area. Synchronism conditions in this case

contain additional parameters as compared to the two-wave dynamical diffrac-

tion, which enables one to match the Cherenkov conditions to the parameters

corresponding to the regions with smaller absorption of radiation.

The possibility of generation at the point of degeneration of several diffraction

roots is another important feature of multi-wave diffraction. At this point the

functional change of the threshold characteristics occurs (e.g., the coincidence

of the two roots gives the doubly degenerate case and s = 2) and, as a result,
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it becomes possible to reduce the length of the generation area (at a given

operating current) or the operating current (at a given length of the generation

area).

Application of multi-wave diffraction for generating in a microwave range has

one more remarkable feature – the possibility of selecting modes in oversized

waveguides and resonators. Production of microwave power pulses requires

high electric strength of the generator and radiation resistance of the output

window. To reduce load on these elements, the transversal (with respect to the

direction of the electron beam velocity) dimension of the resonator should be

large (much larger than the wavelength). As a rule this leads to a multi-mode

generation regime and low efficiency. In the presence of n-wave diffraction,

selection of modes can be effectively carried out due to the requirement of

fulfillment of n− 1 Bragg condition.

Figure 12. Figure Three-wave diffraction in Laue-Laue geometry. Projection of wave

vectors ~k,~kτ1, ~kτ2 onto the normal to the surface have the same sign. ~τ1, ~τ2 are the

reciprocal lattice vectors of the periodic structure.

To illustrate the potential of the multi-wave distributed feedback, we shall give

a more detailed consideration of three-wave diffraction. In this case, volume

distributed feedback (VDF) can be realized in three different geometries:
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(1) Laue-Laue diffraction, when the three waves exit through the same surface

(γ0, γ1, γ2 > 0, Figure 12;

(2) diffraction in Bragg-Bragg geometry, when γ0 > 0, while γ1, γ2 < 0. That

is, the wave vector satisfying the synchronism condition is directed along the

normal to the surface of the slow-wave structure, and the two vectors corre-

sponding to diffracted waves point in the opposite direction;

(3) Bragg-Laue diffraction, when γ0, γ1 > 0, γ2 < 0. Vector ~k corresponding to

the synchronous wave and one of the vectors ~k1 = ~k+~τ1 corresponding to the

diffracted wave point in the same direction, while vector ~k2 = ~k+ ~τ2 points in

different direction (see Figure 13).

Figure 13. Figure Three-wave diffraction in Laue-Bragg geometry. The projection

of wave vectors ~k,~kτ1 onto the surface normal and the projection of vector ~kτ2 are

opposite in sign. ~τ1, ~τ2 are the reciprocal lattice vectors of the periodic structure.

Similarly to the two-wave case, the problem of the beam interaction with the

target field may be reduced to the problem of three-wave diffraction of an

electromagnetic wave incident onto the active medium. The active medium

here is the system ”spatially-periodic structure + electron beam”.

The system of equations describing the process of three-wave coplanar diffrac-

tion by such an active medium takes the form:
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D(0)
σ E(0)

σ − ω2χ1E
(1)
σ − ω2χ2E

(2)
σ = 0

−ω2χ−1E
(0)
σ +D(1)

σ E(1)
σ − ω2χ2−1E

(2)
σ = 0 (97)

−ω2χ−2E
(0)
σ − ω2χ1−2E

(1)
σ +D(2)

σ E(2)
σ = 0,

where the terms

D(i) = k2i c
2 − ω2ε

(i)
0 +

ω2
l

γ
+ Γi

(

(

~ki − ~ko
)2
c2 − (ω − ωo)

2
)

(98)

that contain the contributions due to resonance interaction of electrons with

the wave,

Γi =























































ω2
l

γ
Ω2

(ω−~ki~u−ωo)2
in the case of a ”cold” electron beam

√
πω2

l

γ
Ω2

δ
(i)
0

xi exp(−x2i ) in the case of a ”hot” electron beam

(99)

The values of Γi in equation (99) are given for two generation regimes: in the

regime of a ”cold” electron beam all the electrons have the same velocity and

the velocity spread is small (
~k∆~u
∆ω

≪ 1, where ∆~u is the thermal straggling

of the electron beam, ∆ω is the width of the emission line). In this case all

the electrons participate in the interaction with the electromagnetic wave. In

the regime of a ”hot” electron beam the relation
~k∆~u
∆ω

≥ 1 is fulfilled. In this

case only a part of the electron beam participates in the interaction process.

The explicit form of Ω and ω0 depends on the generation mechanism. For the

Cherenkov mechanism Ω =
(

~u~ei
c

)2
, where ~ei is the polarization vector, ωo = 0.

In (97)–(99)

ω2
l =

4πne
me

, xi =
ω − ~ki~u− ωo√

2δ
(i)
0

, δ
(i)2
0 = ki1ψ

2
x + k2iyψ

2
y + k2izψ

2
z , ψi
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are the thermal straggling for a ”hot” electron beam in the distribution func-

tion:

f(0) =
ne

(2π)3/2 ψ1ψ2ψ3

exp

{

− v21
2u2ψ2

1

− v22
2u2ψ2

2

− v23
2u2ψ2

3

}

is the distribution function describing the velocity spread of the electrons in

a beam before the interaction with the electromagnetic wave.

In the case of two-wave Bragg diffraction, when only two wave vectors sat-

isfy the Bragg condition [3] and two strong waves are excited, the dispersion

equation for Cherenkov instability takes the form

(

k2c2 − ω2ε
(1)
0 +

ω2
l

γ
+ Γ1

(

k2c2 − ω2
)

)

×
(

k2τc
2 − ω2ε

(2)
0 +

ω2
l

γ
+ Γτ

(

k2τc
2 − ω2

)

)

− ω4r = 0. (100)

Here r = χτχ−τ

As it was noted in [49,50], the functional relationship between the imaginary

part of the solution kz and the electron beam density may change apprecia-

bly at the points of degeneration of roots kz of the diffraction equation (the

dispersion equation without the electron beam describing the dispersion of

electromagnetic waves in a periodic medium). This occurs, in particular, at

the point of s-fold degeneration of roots: Imkz ∼ n1/(2+s)
e . In the Compton

generation regime, this quantity significantly exceeds in magnitude a similar

parameter for Imkzz ∼ n1/3
e beyond the root degeneration region. From this

fact the authors of [49,50] concluded that the instability increment in the

degeneration region grows sharply.

The dispersion equation corresponding to the system (97) for the three-wave
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case of coplanar diffraction reads:

F (3)
σ

(

~k,~k1, ~k2
)

= −ΓF (2)
σ

(

~k1, ~k2
)

, (101)

where

F (3)
σ

(

~k,~k1, ~k2
)

=
(

k2c2 − ω2ε0
) (

k21c
2 − ω2ε0

) (

k22c
2 − ω2ε0

)

−ω4
(

k2c2 − ω2ε0
)

χ1−2χ2−1 − ω4
(

k21c
2 − ω2ε0

)

χ2χ−2

−ω4
(

k22c
2 − ω2ε0

)

χ1χ−1 − ω6 (χ1χ−2χ2−1 + χ2χ−1χ1−2) ,

F (2)
σ

(

~k1, ~k2
)

=
(

k21c
2 − ω2ε0

) (

k22c
2 − ω2ε0

)

− ω4χ1−2χ2−1.

In deriving (101), we based on the assumption that the electrons are syn-

chronous to the wave with wave vector ~k. The field in the three-wave system

is written as follows:

(1) in Laue-Laue geometry

a(0)~e exp
(

i~k0~r
)

+ a(1)~e1 exp
(

i~k01~r
)

+ a(2)~e2 exp
(

i~k02~r
)

∑

i

ci exp
(

i~ki~r
)

(~e+ si~eτ exp (i~τ~r))

b~e exp
(

i~k0~r
)

exp (−ik0zL) + b(1)~e1 exp
(

i~k01~r
)

exp (−ik01zL)
+b(2)~e2 exp

(

i~k02~r
)

exp (−ik02zL) ,

(2) in Bragg-Bragg geometry

a(0)~e exp
(

i~k0~r
)

+ b(1)~e1 exp
(

i~k
(−)
01 ~r

)

+ b(2)~e2 exp
(

i~k
(−)
02 ~r

)

∑

i

ci exp
(

i~ki~r
)

(~e+ si~eτ exp (i~τ~r))

b~e exp
(

i~k0~r
)

exp (−ik0zL) + a(1)~e1 exp
(

i~k
(−)
01 ~r

)

exp (ik01zL)

+a(1)~e1 exp
(

i~k
(−)
01 ~r

)

exp (ik01zL) ,
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(3) in Bragg-Laue geometry

a(0)~e exp
(

i~k0~r
)

+ a(1)~e1 exp
(

i~k01~r
)

+ b(2)~e2 exp
(

i~k
(−)
02 ~r

)

∑

i

ci exp
(

i~ki~r
)

(~e+ si~eτ exp (i~τ~r))

b~e exp
(

i~k0~r
)

exp (−ik0zL) + b(1)~e1 exp
(

i~k01~r
)

exp (ik01zL)

+a(1)~e1 exp
(

i~k
(−)
01 ~r

)

exp (ik01zL) ,

In the above expressions the waves incident on the structure have the am-

plitudes a(i), while the exit waves have the amplitudes b(i). In the expression

for the field in a periodic structure, summation is made over the diffraction

modes. In the case of a ”cold” beam, the sum contains five terms, and in the

case of a ”hot” beam, three terms.

s
(1)
i =

λiλi2 − r2
λi2χ1 + χ2χ1−2

and s
(2)
i =

λiλi1 − r1
λi1χ2 + χ1χ2−1

are the coupling coefficients between the diffracted waves and the incident

wave; their form is obtained by the system of equations (97), λiα = {
(

~ki + ~τα
)2
c2−

ω2ε0}/ω2, rα = χαχ−α.

By analogy with a two-wave case, we shall join the fields at the system bound-

aries and write the system of equations defining the field in the interaction

area:

(1) in the case of Laue-Laue geometry:

5
∑

i=1

ci= a
5
∑

i=1

s
(1)
i ci = a1

5
∑

i=1

s
(2)
i ci = a2

5
∑

i=1

ci
δi
=0

5
∑

i=1

ci
δ2i

= 0, (102)
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(2) for Bragg-Bragg geometry

5
∑

i=1

ci= a
5
∑

i=1

s
(1)
i ci exp (ikizL) = a1

5
∑

i=1

s
(2)
i ci exp (ikizL) = a2

5
∑

i=1

ci
δi
=0

5
∑

i=1

ci
δ2i

= 0, (103)

(3) for Bragg-Laue geometry

5
∑

i=1

ci= a
5
∑

i=1

s
(1)
i ci = a1

5
∑

i=1

s
(2)
i ci exp (ikizL) = a2

5
∑

i=1

ci
δi
=0

5
∑

i=1

ci
δ2i

= 0. (104)

In all three of these systems (102)–(102) the first three equalities are obtained

from the requirement of the continuity of fields at the boundary. In the Laue-

Laue case the boundary conditions are written for the boundary z = 0. In

Bragg-Bragg geometry one condition for the incident wave is written for the

boundary z = 0, two others, for diffracted waves for the boundary z = L. In

Laue-Bragg geometry two conditions are defined at z = 0, and one, at z = L.

The last two equations of the obtained systems follow from the requirement of

continuity of the current and charge densities at the boundary z = 0. In the

three-wave case of Laue geometry, as well as in the case of a two-wave VDF,

only the amplification regime is possible. In Bragg-Bragg and Bragg-Laue ge-

ometry both the amplification regime and the generation regime accompanied

by radiation from spontaneous noise at zero amplitude of the incident field are

possible. Using the systems (103) and (104), write the generation equations

for these two geometries.

Bragg-Bragg geometry
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(

s
(1)
1 s

(2)
2 − s

(1)
2 s

(2)
1

)

δ1δ2 (δ3 − δ4) exp{i (k1z + k2z)L}
−
(

s
(1)
1 s

(2)
3 − s

(1)
3 s

(2)
1

)

δ1δ3 (δ2 − δ4) exp{i (k1z + k3z)L}
+
(

s
(1)
1 s

(2)
4 − s

(1)
4 s

(2)
1

)

δ1δ4 (δ2 − δ3) exp{i (k1z + k4z)L} (105)

+
(

s
(1)
2 s

(2)
3 − s

(1)
3 s

(2)
2

)

δ2δ3 (δ1 − δ4) exp{i (k2z + k3z)L}
−
(

s
(1)
2 s

(2)
4 − s

(1)
4 s

(2)
2

)

δ2δ4 (δ1 − δ3) exp{i (k2z + k4z)L}
+
(

s
(1)
3 s

(2)
4 − s

(1)
4 s

(2)
3

)

δ3δ4 (δ1 − δ2) exp{i (k3z + k4z)L} = 0.

Bragg-Laue geometry

s
(2)
1 exp (ik1zL) δ1{s(1)2 δ2 (δ4 − δ3)− s

(1)
3 δ3 (δ4 − δ2) + s

(1)
4 δ4 (δ3 − δ2)}

−s(2)2 exp (ik2zL) δ2{s(1)1 δ1 (δ4 − δ3)− s
(1)
3 δ3 (δ4 − δ1) + s

(1)
4 δ4 (δ3 − δ1)}

+s
(2)
3 exp (ik3zL) δ3{s(1)1 δ1 (δ4 − δ2)− s

(1)
2 δ2 (δ4 − δ1) + s

(1)
4 δ4 (δ2 − δ1)}

−s(2)4 exp (ik4zL) δ4{s(1)1 δ1 (δ3 − δ2)− s
(1)
2 δ2 (δ3 − δ1) + s

(1)
3 δ3 (δ2 − δ1)} = 0

(106)

Similar generation equations in these geometries may be written for a ”hot”

electron beam [105].

Before we proceed to the analysis of generation equations, let us examine the

behavior of the roots of the dispersion equation for three-wave diffraction. It is

known that the most effective interaction of the electron beam and the electro-

magnetic wave takes place at the root degeneration point when the synchro-

nism condition is fulfilled. Thus, the parameters for the generation threshold

can be determined by the weakly-coupled mode method [106]. According to

this method, we first find the solutions of the dispersion equation without

the electron beam, then the additional synchronism condition is imposed on

these solutions. To complete the procedure, one should substitute the value of

~k = ~k0 that satisfies the condition ω − ~k0~u = 0 into the dispersion equation

describing three-wave diffraction. Making use of the form of F (3)
σ

(

~k,~k1, ~k2
)

in
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(101), we get:

ll1l2 − lr12 − l1r2 − l2r1 − f = 0

β1β2l1l2 + l (β1l1 + β2l2)− β1β2r12 − β1r1 − β2r2 = 0. (107)

In (106)

l =
(

k20c
2 − ω2ε0

)

/ω2 = sin2 θ +

(

c

uγ

)2

− χ0,

l1,2 = l + α1,2, α1,2 =
2~k0~τ1,2 + τ 21,2

ω2/c2

are the two parameters of deviation from Bragg diffraction conditions, f =

χ1χ−2χ2−1+χ2χ−1χ1−2, β1,2 = γ0/γ1,2 are the asymmetry factors of diffraction,

γ0, γ1, γ2 are the direction cosines of diffraction. In (107) the first equation is

the requitement for simultaneous fulfillment of the synchronism conditions and

the dispersion equation of diffraction F (3)
σ

(

~k,~k1, ~k2
)

= 0. The second equation

in (107) appears due to the requirement for root degeneration of the diffraction

equation. Introducing new variables z1 = l1/l and z2 = l2/l, we obtain from

(107):

z1z2 −
r2z1 + r1z2

l2
− r12

l2
− f

l3
= 0 (108)

β1β2z1z2 + β1z1 + β2z2 − β1β2
r12
l2

− β1r1 − β2r2
l2

= 0.

Solve (108) for zi:

z1 =
r1 − β2χ1χ2

χ1−2

l
± χ1−2

(

1 + χ1χ2

χ1−2l

)√

−β2
β1

(l2 + β1r1 + β2r2)

l2 + β2r2

z2 =
r2 − β1χ1χ2

χ1−2

l
∓ χ1−2

(

1 + χ1χ2

χ1−2l

)√

−β1
β2

(l2 + β1r1 + β2r2)

l2 + β1r1
.

(109)
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Thus, at the point of intersection of roots, the parameters of deviation from

the Bragg conditions a1,2 appear to be expressed in terms of the angle of

the radiation wave vector with respect to the velocity vector (recall here that

l = sin2 θ + (c(uγ))2 − χ0), the asymmetry factors of diffraction (βi) and

the polarizability (χi) of the periodic structure. From (109) follows that at

the point of degeneration of diffraction roots and simultaneous fulfillment of

Cherenkov synchronism, the following condition should hold:

β1β2
(

l2 + β1r1 + β2r2
)

< 0. (110)

From (110) follows that there are no degeneration points in Laue geometry

(r1, r2 > 0, while for the Laue case doth asymmetry factors β1 and β2 are

positive values). In Bragg-Bragg geometry, a critical angle exists:

sinθthr =

√

√

√

√

√

−β1r1 − β2r2 + χ0 −
(

c

uγ

)2

. (111)

The degeneration region occurs at radiation angles θ < θthr. So, in the X-ray

spectral range in Bragg-Bragg geometry at least one of the asymmetry factors

should be large. In Bragg-Laue geometry there is the opposite situation, when

the degeneration region occurs at θ > θthr. In three-wave geometry there

is a possibility of threefold degeneration of roots. At the point of threefold

degeneration, there is a strong relationship among the direction of the photon

emission, asymmetry factors, and the polarizabilities of the periodic structure.

The conditions for the threshold current values are obtained by through solv-

ing equations (105) and (106). In a weak single-stage amplification regime

(|ImkzL| ≪ 1), this conditions in the region of two-fold degeneration have the

94



form:

G(b) = |a|χ′′
0 +

16

|β1β2|

(

γ0c

~n~u

)3 π2n2

(klL∗)
2 kL∗

|ηBL(BB.)| (112)

In (112) the following notations are used:

a =
z1z2 + z1 + z2 − r1+r2+r12

l2
+

r12+z1r′′2+z2r
′′

1

lχ′′

0
+ f”

l2χ′′

0

z1z2 − r12
l2

,

a =
z1z2 + z1 + z2 − r1+r2+r12

l2
+

r12+z1r
//
2 +z2r

//
1

lχ
//
0

+ f”

l2χ
//
0

z1z2 − r12
l2

,

ηBL = X

(

s
(1)
3 − s

(2)
1

)

ς1 + s
(2)
1 ς2 − s

(2)
3 ς2cos{k

(

δ
/
1 − δ

/
3

)

L}
s
(2)
1

(

s
(1)
3 − s

(1)
1

) (

z1z2 − r12
l2

) ,

ηBB = X
s
(1)
3 ς1 − s

(2)
3 ς2 +

(

s
(1)
2 ς1 − s

(2)
1 ς2

)

cos{k
(

δ
/
1 − δ

/
3

)

L}
(

s
(2)
3 s

(1)
1 − s

(1)
3 s

(2)
1

) (

z1z2 − r12
l2

) ,

ς1 =
(1 + β1z1)

(

z1χ2

l
+ χ1χ2−1

l2

)

−
(

z1 − r1
l2

)

χ2

l

β1
(

z1χ2

l
+ χ1χ2−1

l2

)2 ,

ς2 =
(1 + β2z2)

(

z2χ1

l
+ χ2χ1−2

l2

)

−
(

z2 − r2
l2

)

χ1

l

β2
(

z2χ2

l
+ χ2χ1−2

l2

)2 .

G(b) is defined in (95), (96).

The threshold condition in equation (112) holds true in the region of the two-

fold degeneration of roots k1z, k2z, and as the modes corresponding to these

roots pass through the interaction area, their relative phase shift should satisfy

the condition (k1z − k2z)L = 2πn (here the roots are ”almost” degenerated

if (2πn)/k|χτ |L) ≪ 1). The third diffraction root is located at a distance

|k3z − k1z| ∼ |χτ |, |k3z − k2z| ∼ |χτ | from the degenerated roots.

The dependence of the threshold conditions on the length of the interaction
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area at the point of three-fold degeneration changes appreciably:

G = Aχ′′
0 +

B

kL

(

2π

klL

)4

. (113)

Realization of this regime requires that the following phase conditions be ful-

filled: (k1z − k2z)L = 2πn, (k2z − k3z)L = 2πm, n 6= m. The coefficients A, B

in (113) depend on the polarizabilities, z1, z2 and the indices m, n. Since they

are awkward, they are dropped here. From (113) follows that in the region of

three-fold degeneration of roots, the functional dependence of the losses at the

boundaries on L changes significantly. According to (113), for a ”cold” elec-

tron beam, when absorption is not important, jthr ∼ 1
(kL)3

(

2π
klL

)4
(it would be

recalled here that in the regime of a ”cold” electron beam G ∼ jL2 (see (96)).

Under dynamical diffraction, when inequality 4π
klL

≪ 1 holds, this dependence

leads to an appreciable reduction of the threshold current. Under multi-wave

(s-wave) VDF, the threshold current depends on L as

jthr ∼
1

(kL)3

(

2π

klL

)2(s−1)

, (114)

so the transition to multi-wave diffraction enables one to significantly reduce

the longitudinal dimension of the generating system.

As follows from the above results, the volume distributed feedback (VDF) has

a number of advantages that make its application beneficial for generating

stimulated radiation in a wide spectral range (with the wavelengths from cen-

timeters and millimeters to angströms). Moreover, in a short-wave spectral

range, the size of the radiating system reduces appreciably due to the change

of the functional dependence under multi-wave VDF. A short-wave spectrum

corresponds to greater values of the wave number k, so at a given operating
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current, due to the presence of the factor
(

2π
klL

)2(s−1)
, L can be appreciably

reduced. In optical and X-ray ranges, where the requirements for the current

density and the quality of the beam are very strict, there appears the pos-

sibility to noticeably reduce the threshold values of the current for a given

beam propagation area. In this case the VFEL is a unique system providing

lasing at relatively small interaction lengths. In a microwave range, VFELs are

beneficial for both the reduction of the generator size and selection of modes

when producing high-power radiation pulses in oversized generators.

14 Application of volume diffraction gratings for terahertz lasing

in Volume FELs (VFELs)

Generation of radiation in millimeter and far-infrared range with nonrela-

tivistic and low-relativistic electron beams is a complicated task. Gyrotrons

and cyclotron resonance facilities are used as sources in millimeter and sub-

millimeter range, but for their operation a magnetic field of several tens of

kiloGauss
(

ω ∼ eH
mc
γ
)

is necessary. Slow-wave devices (TWT, BWT, orotrons)

in this range require application of dense and thin (< 0.1 mm) electron

beams because only electrons passing near the slowing structure at distance

d ≤ λβγ/(4π) can effectively interact with electromagnetic waves. It is dif-

ficult to guide thin beams near a slowing structure with desired accuracy.

And electrical endurance of resonator limits radiation power and density of

the acceptable electron beam. Conventional waveguide systems are essentially

restricted by the requirement for transverse dimensions of a resonator, which

should not significantly exceed the radiation wavelength. Otherwise, the gen-

eration efficiency decreases abruptly due to the excitation of plenty of modes.
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u

d

Figure 14. General view of Volume Free Electron Laser formed by metal threads

with several sheet electron beams.

Most of the above problems can be overcome in Volume Free Electron Lasers

(VFEL)

In volume FELs, the greater part of the electron beam interacts with an elec-

tromagnetic wave due to volume distributed interaction. Transverse dimen-

sions of a VFEL resonator could significantly exceed radiation wavelength

D ≫ λ. In addition, the electron beam and the radiation power are distributed

over the whole volume, which is beneficial for electrical endurance of the sys-

tem. Multi-wave Bragg dynamical diffraction provides mode discrimination in

VFELs.

14.1 Amplification and generation in a photonic crystal

Let us consider an electron beam with velocity ~u passing through a periodic

structure composed of either dielectric or metal threads (see Figure 14) Fields,

appearing while an electron beam passes through a volume spatially periodic

medium, are described by the set of equations given in [105] Instability of

electron beam is described by the dispersion equation [105]:

(k2c2 − ω2ε)(k2τc
2 − ω2ε+ χ(b)

τ )− ω2χτχ−τ = 0. (115)
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~kτ = ~k + ~τ is the wave vector of the diffracted photon, ~τ =
{

2π
a
l; 2π

b
m; 2π

c
n
}

are the reciprocal lattice vectors, a, b, c are the translation periods, χ(b)
α is the

part of dielectric susceptibility caused by the presence of the electron beam.

As synchronism conditions are incompatible with those of Bragg, in the in-

stability range k2 6= k2τ . At the same time, two different types of instability

exist, depending on radiation frequency. Amplification takes place when the

electron beam is in synchronism with the electromagnetic component ~k + ~τ ,

which has a positive projection kz. If the projection kz is negative and gener-

ation threshold is reached, then generation evolves. In the first case, radiation

propagates along the transmitted wave which has positive projection of group

velocity vz =
c2k

(0)
z

ω
(k(0)z =

√

ω2ε− k2⊥), and beam disturbance moves along

it. In the second case, the group velocity has negative projection vz = − c2k
(0)
z

ω
,

and radiation propagates along the back-wave and the electromagnetic wave

comes from the range of the greatest beam disturbance to the place, where

electrons come into the interaction area. For a one-dimensional structure such

a mechanism is realized in a backward-wave tube. In amplification case, equa-

tion (115) gives for the increment of instability: Imk′z = −
√
3
2
f , where

f = 3

√

√

√

√

hω2
L(~u~e

τ )2ω4r

2k
(0)
z c4u2z (k

2
τc

2 − ω2ε0)
,

if the condition 2k′zf ≫ ω2χ0”
c2

is fulfilled. Here r = χτχ−τ , h(~u~e
τ )2/c2 = 1/γ3

if the electron beam propagates in a strong guiding magnetic field, otherwise,

h = 1/γ. In case 2k′zf ≪ ω2χ0”
c2

a dissipative instability evolves. Its increment

is

Imkz = − c

ω

√

√

√

√

k
(0)
z f 3

χ0
.
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If inequalities k‘2z ≫ 2kzk
‘
z and k

‘2
z ≫ ω2χ0”

c2
are fulfilled, the spatial increment

of instability can be expressed as

Imk‘z = −
(

hω2
L(~u~e

τ )2ω4r

c4 (k2τc
2 − ω2ε0) u2z

)1/4

,

but the parameters providing such dependence correspond to the conversion

from the amplification to the generation regime (for the Compton instability

this situation takes place at k(0)z ≈ 0). The frequency of amplified radiation is

defined as:

ω =
~τ~u

1− βxηx − βyηy − βz
√

ε− η2x − η2y
. (116)

The instability in the generation regime is described by the temporal incre-

ment and cannot be described by the spatial increment. The increment of ab-

solute instability can be found by solving the equation Imk(+)
z (ω) = Imk(−)

z (ω)

with respect to the imaginary part of ω. Calculated dependence of temporal

increment on the parameter of detuning is presented in Figure 15.

-0.4 -0.2 0.2
d

0.75

0.8

0.85

0.9

0.95

n

Figure 15. Calculated dependence of temporal increment on tuning out parameter

Axes in Figure 15are denoted as:

d =
a1 + k(0)z

f
, n =

ω”
uz

+ 2ωω”ε0+ω2χ0”

c2k
(0)
z

f
.
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It follows from Figure 15 that at a certain value of the parameter of detuning:

a1 + k(0)z
f

≈ −0.3 (117)

the increment of instability has a maximum

ω”
uz

+ 2ωω”ε0+ω2χ0”

c2k
(0)
z

f
≈ 0.98. (118)

The increment of absolute instability can be found from (118). The absolute

instability can evolve if current exceeds start value, which is determined by

dissipation. The amplification regime has no threshold and decisive influence

of dissipation causes dissipative instability. Frequencies, corresponding to the

generation regime, are defined by an expression different from (116):

ω =
~τ~u

1− βxηx − βyηy + βz
√

ε− η2x − η2y
. (119)

Thus, it follows from (116), (119) that the change of a radiation angle causes

smooth frequency tuning. As a result, the generation frequencies are less than

those corresponding to the amplification regime. Hence, using the system as

an amplifier, one should add dispersion elements in it to raise dissipation in

the frequency range, where generation occurs.

The use of Bragg multi-wave distributed feedback increases generation effi-

ciency and provides discrimination of generated modes. If the conditions of

synchronism and Bragg conditions are not fulfilled simultaneously, photonic

crystals (diffraction structures) with different periods can be applied [107].

One of them provides the synchronism of the electromagnetic wave with the

electron beam ω − ~k~u = ~τ1~u. The second photonic crystal (diffraction struc-

ture) evolves distributed Bragg coupling |~k| ≈ |~k + ~τj |, ~τj (j = 2 ÷ n) are
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the reciprocal lattice vectors of the second structure. Threshold conditions for

s-wave diffraction are converted to:

G(s) =
a3s

(kχL∗)2skL∗
+ χ′′

0bs. (120)

For dynamical diffraction, when k|χ|L∗ ≫ 1, either the generation start cur-

rent or the length of the generation zone at certain current value can be

reduced.

Each Bragg condition holds one of free parameters. For example, for certain

geometry and electron beam velocity, two conditions for three-wave diffraction

entirely determine transverse components of wave vectors kx and ky, and there-

fore generation frequency (see (116), (119)). Hence, volume photonic crystal

(diffraction system) provides mode discrimination due to multi-wave diffrac-

tion.

The above results affirm that a photonic crystal (volume diffraction struc-

ture) provides both amplification and generation regimes even in the absence

of dynamical diffraction. In the latter case, generation evolves with backward

wave, similar to the backward-wave tube. The frequency in such structures is

changed smoothly either by a smooth variation of the radiation angle (varia-

tion of kx and ky) or by the rotation of the diffraction grating or the electron

beam (change of ~τ~u) (see (116)). For certain geometry and reciprocal lat-

tice vector, amplification corresponds to higher frequencies than generation.

Rotation of either the diffraction grating or the electron beam also changes

the value of the boundary frequency, which separates generation and ampli-

fication ranges. The use of multi-wave distributed feedback owing to Bragg

diffraction allows one either to increase the generation efficiency or to reduce
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the length of the interaction area (120). In this case, generation is available

with both backward and following waves. In particular, the proposed volume

structure can be used for generation of sub-millimeter radiation by accelerator

LIU-3000. The parameters of this setup are: electron beam energy E = 800

keV, beam current I = 100 ÷ 200 A. To generate radiation with wavelength

of 0.3 mm in such a system, a volume structure composed of strained threads

should have a period ∼ 2 mm, and a period of diffraction grating providing

Bragg coupling ∼ 0.16 mm. Generation of radiation in the terahertz range can

also be obtained in a photonic crystal using higher harmonics of the Fourier

expansion of the dielectric permittivity of the crystal [163].

15 Dependence of VFEL threshold conditions on undulator pa-

rameters

A sharp increase of amplification caused by volume distributed feedback (VDFB)

yields a noticeable reduction of threshold currents necessary for the lasing

start. This fact is particularly important for lasing in sub-millimeter and vis-

ible ranges and for shorter wavelengths. Explicit expressions of the VFEL

threshold currents were obtained in [105]. Here we shall consider the depen-

dence of VFEL starting current on the undulator parameters [149].

The set of equations describing the interaction of a relativistic electron beam,

which propagates in the spatially periodic structure of the undulator is [105]:

DE − ω2χ1E1 − ω2χ2E2 − ... = 0

−ω2χ−1E +D1E1 − ω2χ2−1E2 − ... = 0 (121)

−ω2χ−2E − ω2χ1−2E1 +D2E2 = 0− ...,

(122)
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where Dα = k2αc
2 − ω2ε + χ(b)

α , ~kα = ~k + ~τα are the wave vectors of photons

diffracted by the crystal planes with corresponding reciprocal vectors ~τα, ε0 =

1+χ0 , χα are the dielectric constants of a periodic structure; χ(b)
α is the part

of dielectric susceptibility appearing from the interaction between an electron

beam propagating in the undulator and radiation. Setting the determinant of

the linear system (121) equal to zero, one can obtain the dispersion equation

for the system ”electromagnetic wave + undulator + electron beam + periodic

structure”. In the case of two-wave dynamical diffraction, this equation has

the following form:

DD1 − ω4χ1χ−1 = 0 (123)

For the system with finite interaction length, the solution of the boundary

problem can be presented as a sum:

~E + ~E1 =
∑

i

ci exp{i~ki~r}(~e+ ~e1s
(i)
1 exp i~τ~r) (124)

In (124) s
(i)
1 = (k2i c

2−ω2ε0)/(ω
2χ1) and ~ki are the coupling coefficients between

the diffracted and transmitted waves and the solutions of dispersion equation

(123), respectively. The coefficients ci are defined by boundary conditions at

the system ends z = 0 and L. The part of the electron beam energy converting

into radiation can be expressed by:

I ∼ γ0|E(z = L)|2 + |γ1||E1(z = 0)|2 (125)

= (γ0|a|2 + |γ1||b|2)
(

γ0c

~n~u

)3 16π2n2

−β(k|χ1|L∗)2kL∗(Γstart − Γ)
,

where L is the length of interaction in the undulator

Γstart=
(

γ0c

~n~u

)3 16π2n2

−β(k|χ1|L∗)2
− χ′′

(

1− β ± r′′
√
−β

|χ1|χ′′

)
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Γ=
π2n2

4

πΘ2
sj0c

2

γ2zγIAω
2
k2L2

∗f(y),

f(y) is the function describing the dependence of generation on detuning from

the synchronism condition, y = (ω − ~k~vw − Ω)L/(2uz) is the detuning factor,

β = γ0/γ1 is the diffraction asymmetry factor, γ0, γ1 are diffraction cosines,

χ′′ = Imχ0, Θs = eHw/(mc
2γkw), γ

−2
z = γ−2 + Θ2

s, kw = 2π/λw, λw is the

undulator period, Hw is the undulator field. It follows from (125) that:

1. the starting current in the case of two-wave diffraction is proportional to

jstart ∼ (kL)−1(kχ1L)
−2;

2. the non-one dimensional VDFB provides the possibility to decrease the

starting current of generation by varying the angles between the waves.

3. if the electron beam current is less than the starting value j < jstart, the

energy of the electromagnetic wave at the system entrance can be written in

the form:

E/(γ0|a|2 + |γ1||b|2) = 1− β
π2n2

4

πΘ2
sj0c

2

γ2zγIAω
2
(kL)3

(

kχτL

4π

)2

f(y) (126)

The conventional FEL gain is proportional to (kL)3 [104], but as follows from

(126) in the case of two-wave diffraction, the gain gets an additional factor

∼
(

kχτL
4π

)2
, which noticeably exceeds unity in conditions of dynamical diffrac-

tion. Such an increase of the radiation output at the degeneration point can

be explained by the reduction of the wave group velocity, which can be written

as:

vg = −
(

∂D

∂kz

)

/

(

∂D

∂ω

)

∼
∏

i<j

(kzi − kzj) (127)
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It follows from (127) that for multi-wave dynamical diffraction at the s-fold-

degeneration point vg ∼ v0/(kL)
s, the starting current jstart ∼ (kL)−3(kχ1L)

−2s

and the amplification are proportional to (kL)3(kχ1L)
2s. It should be noted

that the considered effects take place in a wide spectral range for wavelengths

from centimeters to X-ray, and the influence of the effect increases with fre-

quency growth.

The generation threshold in the undulator VFEL in the case of VDFB can be

achieved at a lower electron beam current and a shorter undulator length when

special conditions of degeneration of roots are fulfilled. Changing the VDFB

conditions by varying the volume geometry parameters (for example, the angle

between the wave vectors) gives the possibility to increase the Q-factor and to

decrease the starting current (see Figure ??). Hence, the generation efficiency

can be increased.

16 Use of a dynamical undulator mechanism to produce short

wavelength radiation in VFELs

Here we shall consider VFEL lasing in a system with a dynamical undulator

[150]. In this system radiation of long wavelengths creates the undulator for

lasing at a shorter wavelength. Two diffraction gratings with different spatial

periods form a VFEL resonator. The grating with longer period pumps the

resonator with the long wavelength radiation to provide the necessary ampli-

tude of the undulator field. The grating with the shorter period is used to

select the mode for the short wavelength radiation. Lasing of such a system

in the terahertz frequency range is discussed below.
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Numerous applications can benefit from the development of powerful elec-

tromagnetic generators with frequency tuning in millimeter, sub-millimeter

and terahertz wavelength range using low-relativistic electron beams. One of

the ways to create such generators is to use VFEL principles. The main dis-

tinction of VFEL in comparison with the traditional FEL is the use of the

non one-dimensional distributed feedback, which allows wide range tuning of

frequency, decreases starting currents of generation, and allows one to use a

wide electron beam (or several beams) [55,105]. In the VFEL the generation

evolves in a large volume, which increases the electrical strength of the res-

onator (the electromagnetic power and electron beam are distributed over a

greater volume). This peculiarity of the VFEL is essential for generation of

power and super-power electromagnetic pulses. The mode discrimination in

such an oversized system is carried out by multi-wave dynamical diffraction

[105]. Low relativistic electron beams in the undulator system can be used

for radiation of short wavelength radiation, but it requires manufacturing of

undulators with a small period. For example, to obtain radiation with the

wavelength of 0.3 − 1 mm at the beam energy E = 800 KeV−1 MeV an

undulator with the period ∼ 0.3 − 1 cm is necessary. This is an extremely

complicated problem. The use of a two-stage FEL with the dynamical wiggler

generated by an electron beam [104] is a possible solution to this problem.

The dynamical wiggler can be created with the help of any radiation mecha-

nism: Cherenkov, Smith-Purcell, quasi-Cherenkov [55], undulator. VFEL prin-

ciples provide advantages of the two-stage generation scheme and, in partic-

ular, allow one to smoothly tune the period of dynamical wiggler by rotating

the diffraction grating. There is the possibility of smooth frequency tuning

for both the pump wave and the signal wave either by variation of geometric
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parameters of the volume diffraction grating or by their rotation. Moreover,

the VFEL allows one to create the dynamical wiggler in a large volume, that

is a great problem for a static wiggler.
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Figure 16. The schemes of dynamic wiggler. Rotation of diffraction grating (schemes

a). and c).) changes the period of dynamic wiggler

There are two stages in the generation scheme proposed above:

(a) creation of the dynamical wiggler in a system with two-dimensional (three-

108



dimensional) gratings (in other words, during this stage, the electromagnetic

field, which exists inside the VEFL resonator, is used to create the dynamical

wiggler). Smooth variation of the orientation of the diffraction grating in the

VEFL resonator provides means for a smooth change of the dynamical wiggler

parameters;

(b) radiation is generated by an electron beam interacting with the dynamical

wiggler, which is created during the previous stage (stage a).

Both stages evolve in the same volume.

The idea of a two-stage tunable VFEL described above can be realized in

different ways. Let us consider some examples (Figure 16a-c). Figure 16 a

displays the two-stage device in which the dynamical wiggler is realized on

the basis of a VEFL generator using the Smith-Purcell radiation mechanism.

This generation scheme was considered in [107], when experimentally realized,

first lasing of a VFEL was observed [181]

In this case only a part δlx of an electron beam participates in the generation

process during the first stage: δlx
lx

∼ λwβγ/(4πlx), here δlx is the transverse

size of the part of the electron beam participating in the interaction, lx is the

transverse size of the electron beam, λw is the wavelength, β = u/c, u is the

electron velocity, γ is the Lorentz factor. The resonator in Figure 16a consists

of two diffraction gratings [164,181]. The lower grating provides the Smith-

Purcell generation mechanism. The period d1 of this grating is determined by

d1 ∼ βγ2λw cosϕ (d1 is the period of the Smith-Purcell grating, ϕ is the angle

between the direction of the electron velocity and the direction of the grat-

ing periodicity). The upper grating provides the distributed feedback [55,105]

by multi-wave dynamical diffraction. The conditions of dynamical diffraction
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|~kw| ≈ |~kw + ~τi| are fulfilled in this case (~τi are the reciprocal wave (lattice)

vectors of this grating). It should be noted that the period of the upper grat-

ing does not coincide with that of the lower one. Radiation accumulated in

the resonator during the described first stage creates the dynamical wiggler.

Beam electrons oscillate in this electromagnetic wiggler and radiate just as

in a conventional FEL (this is not necessarily the same electron beam that

participates in the first stage. It can be another beam of higher energy). The

field inside the resonator is a standing wave. Traveling waves, which form this

standing wave are actually the pump waves. They are scattered by the electron

beam according to the synchronism condition ω − (~k~u) ≈ ωw − (~kw~u). The

resulting wave has the wavelength λ ∼ 1−β
1+β

λw (in the last estimation it is sup-

posed that the wave vector ~kw of the pump wave is antiparallel to the velocity,

and the wave vector ~k is parallel to it. For a relativistic beam, this relation

has the form λ ∼ λw/(4γ
2). It should be emphasized that in this case there is

one more possible way to create the dynamical wiggler in the resonator shown

in Figure 16a. It is based on the excitation of a slow wave, which is diffracted

by the lower grating (surface VFEL). The electron beam oscillates in this wig-

gler and radiates. In this case the upper grating forms the distributed feedback

which provides VFEL lasing at shorter wavelength. The change of the radiated

frequency is provided by the rotation of both the upper and lower gratings.

Figure 16b presents the variant of the volume diffraction grating which can

provide the generation mechanism and distributed feedback simultaneously

[55,105]. Let us note that in these examples the generation mechanism during

the first stage is based on the slowing of the electromagnetic wave and only a

part of the electron beam participates in the creation of the dynamical wig-

gler. The whole electron beam participates in the generation process during
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the second stage. The larger the part of the beam that does not participate in

the the first stage interaction, the more unperturbed electrons appear during

the second stage and, therefore, they radiate more effectively. The dynamical

wiggler in Figure 16c uses the undulator radiation mechanism during the first

stage. In this case the dynamical wiggler is formed during the first stage due

to the interaction between the electron beam and a conventional magneto-

static undulator. The frequency of the pump wave is ωw ∼ 2πβ
du(1−β cos(θ))

, where

du is the period of the magnetostatic undulator. During this stage the lower

diffraction grating is used to provide the distributed feedback for the wave

with frequency ωw and operation of the VFEL at this frequency. During the

second stage, electrons oscillate in the field of this wave, which plays the role of

the dynamical wiggler. As a result, during the second stage of the process the

wave with the frequency ω ∼ 4γ2ωw is generated and the distributed feedback

is provided by the upper grating, the period of which corresponds to the wave

with the frequency ω. The rotation of diffraction gratings provides frequency

tuning.

It is clear that the time τw of the dynamical wiggler creation is a very important

characteristic of the proposed system. This time is determined by τw ∼ Q/ωw,

where ωw is the frequency of the pump wave.

The Q factor of resonator for the frequency ωw should be sufficient to create

a magnetic field amplitude of about 100 G - 1 kG. It follows from the energy

balance equation in the resonator, (ωw/Q)V (H2
m/8π) = W0, (W0 is the power

of the pump wave formed by the electron beam) thatQ = (ωw/W0)V (H2
m/8π),

where V is the cavity volume, Hm is the amplitude of the magnetic field of

the dynamical wiggler. It follows from the above that to create the magnetic

field of about 100 − 1000 G, the time τw ∼ 10−10 − 3× 10−9 s is necessary
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(V = 30 cm3, W ∼ 30 MW). As one can see, this time is small enough for the

wiggler to evolve while the electron beam passes through the system. When

the pump field achieves the necessary magnitude, stage (b) begins.

Dynamics of the signal electromagnetic wave and the electron beam in the

system (volume diffraction grating + pump electromagnetic wave) in this case

is described by equations

D0 E−ω2χ1E1 − ω2χ2E2 − ω2χ3E3 − . . . = 0

−ω2χ−1E +D1E1 − ω2χ2−1E2 − ω2χ3−1E3 − . . . = 0, (128)

−ω2χ−2E−ω2χ1−2E1 +D2E2 − ω2χ3−2E3 − . . . = 0.

In (128)Dα = k2αc
2−ω2ε+χ(b)

α , ~kα = ~k+~τα is the vector of the diffracted wave,

χ(b)
α is the part of the dielectric susceptibility corresponding to the interaction

of the electron beam with radiation

χ(b)
α =

q(w)α
{

ω − (~kα~vw)∓ (ωw − (~kw~v))
}2

q(w)α =
a2w
4γ3

ω2
L

(kwv)2

{[

(~u~eα)

c(kwv)
(ωw~u− ~kwc

2)(~kα − ~kw)

−(~kα~ew)c
] (~u~eα)

c
− (~kw~eα)(~u~ew)− (~eα~ew)(kwv)

2

}2

×
{

(~kα − ~kw)
2c2 − (ω − ωw)

2
}

,

~k, ω, ~e and ~kw, ωw, ~ew are the wave vectors, frequencies and polarization vectors

of both the signal and pump waves, respectively, v = (c, ~u), kw = (ωw/c,~kw),

aw = eHw/mcωw. The dispersion equation corresponding to equation (128)

has the following schematic form

F (n) = −χ(b)
α F

(n−1), (129)
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where the term F (n) on left-hand side of (129) corresponds to the n-wave Bragg

dynamical diffraction (equation F (n) = 0 is the dispersion equation defining

diffraction modes in the n-wave case). The continuity of the current densities,

charge densities, and transverse components of fields on the boundaries and

dispersion equation (129) give the equation for the generation threshold [105].

From (128) we obtain that for the n-fold degeneration point of the roots of the

dispersion equation (when n+ 1 roots of the equation D(m) = 0 at m ≥ n+ 1

coincide), the equation for the generation threshold has the following form

1

γ3

(

ωL
ω

)2

a2wk
3L3

∗ =
an

(k|χ|L∗)2n
+ bnkχ

′′L∗. (130)

In (130) k = ω/c, L∗ is the length of the interaction area of the electron

beam with electromagnetic radiation, χ′′ is the imaginary part of the dielectric

susceptibility, which describes absorption, an, bn are the parameters depending

on the geometric parameters of the system (except L∗). The equality (130)

has an obvious physical meaning: the left-hand side of (130) contains the term

describing generation of radiation by the electron beam, and the right-hand

side includes the terms describing losses on the boundaries (the first term) and

absorption losses (the second term) in the medium. One of the peculiarities of

the VFEL with multi-wave distributed feedback is the possibility of a sharp

decrease of losses at the boundaries (the first term on the right-hand side

of (130) decreases with the increase of s due to the condition k|χ|L∗ ≫ 1

under dynamical diffraction). Let us express the synchronism condition for

the above generation mechanism ω − ~k~v = Ωw, where Ωw = ωw − ~v~kw. Then,

the frequency of the signal wave is equal to (if the pump wave is oncoming)

ω =
2ωw(~τ1, . . . ~τn, ~nu, S)(1− β cos(Θw))

1− β cos(Θ)
. (131)
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In (131) the explicit dependence of the pump wave frequency on the geometry

of the multi-wave diffraction (~τ1, . . . ~τn) and the set of resonator parameters

S is marked out (if a resonator is not oversized, then the dependence on S

disappears). Smooth change of the VFEL geometry also varies the Q factor

and, therefore, varies the generation efficiency. For example the dependence of

Q on the diffraction asymmetry factor f = γ0/γ1 is shown in Figure 17 (γ0, γ1

are diffraction cosines [55]).

-20 -15 -10 -5
f

5000

10000

15000

20000
Q

Figure 17. Calculated dependence of Q factor on diffraction asymmetry factor f

It should be noted that the distributed feedback can be used for both the first

and the second stages. To optimize the resulting radiation output, Q factor

can be controlled at both stages. Thus, for radiation angle Θ = 0 the frequency

ω ∼ 4γ2ωw, even the moderately relativistic electron beam (E ∼ 1 MeV) gives

a frequency multiplication ∼ 35 times. If during the first stage the undulator

mechanism is used (undulator period ∼ 8 cm), then the wavelength of the

pump wave is λw ∼ 1 cm. Thus the signal wave is generated in the teraHertz

range (Figure 17).

Thus,

(1) the principles of VFEL can be used for creation of a dynamical wiggler

with variable period in a large volume,
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(2) the two-stage scheme of generation can be used for lasing in the teraHertz

frequency range using low-relativistic beams,

(3) the two-stage scheme of generation combined with the volume distributed

feedback opens up the possibility of creating powerful generators with wide

electron beams (or system of beams).

17 Formation of distributed feedback in a FEL under multi-wave

diffraction

We shall further consider the boundary problem for a quasi-Cherenkov FEL

for the case in which a distributed feedback is provided by three-wave copla-

nar diffraction of the emitted photons [105]. As compared with a two-wave

distributed feedback, in the three-wave case the appropriate choice of param-

eters enables reducing the interaction region between a particle beam and the

electromagnetic wave necessary to reach the oscillation threshold as well as ra-

diation losses inside the medium. For example, it allows a reduction in the size

of an FEL and the construction of more compact coherent radiation sources

in any spectral range.

Here we show that the two-wave DFB (in which only two waves are strongly

excited) is not optimal because the region of root degeneration often coincides

with the region of strong radiation absorption inside the medium. This is es-

pecially important for solid FELs. The most effective resonator is one with

a multi-wave DFB, where the distributed feedback is formed by multi-wave

dynamical diffraction. The advantages of a multi-wave DFB are analyzed in

detail for the solid quasi-Cherenkov FEL with three-wave coplanar DFB be-

cause this analysis can be conducted analytically. Consider, for example, the
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specific case of a solid X-ray quasi-Cherenkov FEL where the crystal medium

provides both a spontaneous radiation mechanism in the X-ray spectral range

[8] and diffraction of the emitted X-rays by the crystal forming the three-

dimensional distributed feedback. For the X-ray spectral range, the crystal

target is a radiator and a resonator simultaneously. It should be mentioned

that the analysis derived below will be appropriate for other spectral ranges

as well. For example, a three-dimensional optical grating can be formed inside

a solid target by a laser. Moreover, a multi-wave distributed feedback can be

formed by surface dynamical diffraction if a particle beam moves over a three-

dimensional periodic structure at a distance not larger than λγ (where λ is

the radiation wavelength, γ is the Lorentz factor). In this way the multi-wave

DFB can be used with an ordinary undulator FEL.

Let a relativistic particle beam be incident on a crystal plate (0 ≤ z ≤ L)

at an arbitrary angle Ψ0. The set of Maxwell’s equations which describes the

interaction of an electromagnetic wave with a crystal and with a particle beam

passing through a crystal target can be written in the following form [55]:

D(0)
σ E(0)

σ − ω2χ1E
(1)
σ − ω2χ2E

(2)
σ = 0,

−ω2χ−1E
(0)
σ +D(1)

σ E(1)
σ − ω2χ2−1E

(2)
σ = 0, (132)

−ω2χ−2E
(0)
σ − ω2χ1−2E

(1)
σ +D(2)

σ E(2)
σ = 0,

where D(α)
σ = k2αc

2 − ω2ε
(α)
0 + χ

(α)
b . We assume that a particle beam and a

crystal plate are oriented so that the three-wave coplanar diffraction condition

is satisfied for emitted photons. In this case only three strong waves with the

σ-polarization are excited inside the crystal medium. (see [55] for two-wave

diffraction geometry). The subscript α (α = 0 − 2 ) labels the transmitted

wave (α = 0) and diffracted waves (α = 1, 2); E(α)
σ are the σ components

of the amplitudes of electromagnetic waves, ~k1 = ~k0 + ~τ1, ~k2 = ~k0 + ~τ2 are
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the wave vectors of photons diffracted by crystal planes with corresponding

reciprocal vectors ~τ1 and ~τ2; ǫ
(α)
0 = 1 + χα are the dielectric constants of a

crystal for transmitted and diffracted waves.

χ
(α)
b =

1

γ
(ωL/ω

2)(~u~eσ/c)
2 k2αc

2 − ω2

(ω − ~kα~u)2 − ~2

4m2c4γ2
(k2c2 − ω2)2

(133)

for the ”cold” beam limit and

χ
(α)
b = −i

√
π

γ
(ωL/ω)

2(~u~eσ/c)
2k

2
αc

2 − ω2

δ2α
xtα exp[−(xtα)

2]

for the ”hot” beam limit. χb represents the part of the dielectric susceptibility

produced by the interaction of a particle beam with radiation, xtα = (ω −
~kα~u)/

√
2δα, δ

2
α = (k2α1Ψ

2
1+k

2
α2Ψ

2
2+k

2
α3Ψ

2
3)u

2, and Ψ = ∆V /|V | is the velocity

spread. As was shown in [55], comparison of a standard equation of X-ray

dynamical diffraction with (132) leads to the conclusion that the combination

of a crystal and a particle beam may be considered as an ”active” medium with

dielectric susceptibility equal to χα + χ
(α)
b . It permits the boundary problem

of X-ray amplification (lasing) due to the passage of a particle beam through

a periodic medium to be reduced to the problem of X-ray diffraction by an

”active” periodic medium consisting of a crystal plus radiating particle beam.

The geometry of three-wave diffraction is shown in Figure 18, where ~V is the

mean particle beam velocity, z = 0 and z = L are the two surfaces of a crystal

plate.

The dispersion equation determining the electromagnetic modes inside the

”active” medium can be represented in the following form:

F (3)
σ (~k0;~k1;~k2) = −iχ(0)

b F (2)
σ (~k1;~k2), (134)
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Figure 18. Figure The geometry of three-wave diffraction. ~V is the mean particle

beam velocity, and z = 0 and z = L are two surfaces of a crystal plate

where

F (3)
σ (~k0;~k1;~k2) = (k2c2 − ω2ǫ

(0)
0 )(k21c

2 − ω2ǫ
(1)
0 )(k22c

2 − ω2ǫ
(2)
0 )−

−ω4(k2c2 − ω2ǫ0)χ1−2χ2−1 − ω4(k21c
2 − ω2ǫ

(1)
0 )χ2χ−2

−ω4(k22c
2 − ω2ǫ

(2)
0 )χ1χ−1 − ω6(χ1χ−2χ2−1 + χ2χ−1χ1−2);

F (2)
σ (~k1;~k2) = (k21c

2 − ω2ǫ
(1)
0 )(k22c

2 − ω2ǫ
(2)
0 )− ω4χ1−2χ2−1

.

From (134) follows that the root degeneration (the strongest interaction is in

the root degeneration region) and the fulfillment of the Cherenkov condition

are possible simultaneously only under the following conditions:

l0l1l2 − l0r12 − l1r2 − l2r1 − f = 0,

β1β2l1l2 + l0(β1l1 − β2l2)− β1β2r12 − β1r1 − β2r2 = 0, (135)

where l0 = θ2 − χ0 + γ−2, l1,2 = l0 + αB1,2; αB1,2 = (2~k~τ1,2 + ~τ 21,2)/k
2.

It is straightforward to show that for the fulfillment of (135), the system
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parameters should satisfy the following relationship:

β1β2(l
2
0 + β1r1 + β2r2) < 0, (136)

where f = χ1χ−2χ2−1 + χ2χ−1χ1−2, β1,2 = γ0/γ1,2 are the asymmetry factors

of diffraction γα = (~k0~n)/|~kα|, r1 = χ′
1χ

′
−1 and r2 = χ′

2χ
′
−2. Expression (136)

is more restrictive than the equivalent relation for the two-wave case [55].

In the case of Bragg-Bragg diffraction in the X-ray spectral range there is a

restriction on the radiation angle

θmax
B−B = (

√

−β1r1 − β2r2 + χ′
0 − γ−2)1/2. (137)

This relation leads to a large value of the diffraction asymmetry factor, which,

in turn, leads to strong radiation absorption inside the medium in the vicinity

of the root degeneration point – just as in the two-wave DFB case [55]. The

situation changes in the Bragg-Laue geometry. In this case the inequality (136)

can be satisfied at angles θ ≥ θB−B , which makes it possible to reduce the

asymmetry factors β1 and β2 and, consequently, radiation absorption inside

the crystal.

The solution of the corresponding boundary problem is presented as a sum:

~E =
∑

i

ci exp i~ki~r(~e0 + ~e1s
(1)
i exp i~τ1~r + ~e2s

(2)
i exp i~τ2~r), (138)

where s(1) = (λλ2 − r2)/(λ2χ1 + χ2χ1−2), s
(2) = (λλ1 − r1)/(λ1χ2 + χ1χ2−1),

and ~ki are the solutions of the dispersion equation and the coefficients of

coupling between the transmitted and diffracted waves, E(1) = s(1)E, E(2) =

s(2)E , λα = [(~k + ~τ )2c2 − ω2ǫ0]/ω
2. To determine the unknown coefficients,
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it is necessary to solve the boundary conditions for the waves on the crystal

surfaces. These can be written in the following form for the Bragg-Laue case:

3
∑

i

ci = 1,
3
∑

i

s
(1)
i ci = 0,

3
∑

i

s
(2)
i cili = 0. (139)

The condition (139) is written for the ”hot” beam limit. For the ”cold” beam

limit the corresponding expression can be found in [54].

It is well known [116] that the oscillation threshold can be determined from

the condition that ∆ = 0, where ∆ is the determinant of the system (139).

Solving the equation ∆ = 0, we obtain the threshold in the form

G = aχ′′
0 +

16

|β1β2|

[

γ0c

~n~u

]3 π2n2

(kl0L∗)2kL∗
ηB−L (140)

with the phase condition (k1z−k2z)L = 2πn (n is an integer), r12 = χ1−2χ2−1,

where

G=−π
2n2

4γ

{

ωL
ω

}2

k2L2
∗(χ

′
0 ±

√

−β|χτ | − γ−2)(χ′
0 ±

√

−β|χτ |) sinφ2

× sin y[(2y + πn) sin y − y(y + πn) cos y]y3(y + πn)−3

for the ”cold” beam limit and

G=−
√
π
ω2
L

γω2

(l0 + χ′
0 − γ−2)(l0 + χ′

0) sinφ
2

δ20/k
2

xte−(xt)2

for the ”hot” beam limit. a and ηBL are smooth functions depending on the

diffraction geometry and usually are of the order unity, y = kδL/2 and δ is

the deviation from the exact Cherenkov synchronism condition.

The analysis shows that in the coplanar Bragg-Laue diffraction geometry of

DFB radiation, absorption inside the medium can be reduced in the region of
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root degeneration. For example, under dynamical diffraction by the (111) and

(111) planes with a symmetry factor β1 = −β2 = β = 0.16, the current density

required to achieve the threshold can be reduced by approximately one order

of magnitude in comparison with a two-wave DFB FEL using LiH and an

electron energy of 750 MeV with a transverse angular spread Ψ⊥ = 5 × 10−6

rad [55].

18 Distributed feedback under the multi-wave diffraction

In principle, in the general case of the n-wave diffraction DFB, it is possible

to achieve the degeneration of n roots. In this case the threshold condition

has the form:

G =
an

(k|χ′
τ |L)2(n−1)kL

+ bnχ
′′
0, (141)

where an and bn are the functions weakly dependent on the diffraction type.

The energy loss through target surfaces can be reduced due to the fulfillment

of the inequality k|χτ |L ≫ 1 under dynamical diffraction. As the degree of

dispersion root degeneration increases, radiation remains inside the target

longer because the group velocity decreases and is proportional to ∼ Ln−1,

where n is the degree of dispersion root degeneration. As a result, the region

of interaction between the particle beam and the emitted radiation can be

reduced. This leads to the possibility of reducing the FEL’s dimensions, i.e.,

of constructing a compact source of coherent radiation.
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19 Parametric X-ray FEL operating with external Bragg reflectors

This section is devoted to the application of external Bragg reflectors in a

volume parametric X-ray FEL [151]. It is shown that external Bragg reflectors

permit not only a reduction of electromagnetic energy losses through target

boundaries but also a reduction of the radiation self-absorption inside the

target by modifying radiation modes excited in the active medium containing

a particle beam plus a crystal. As a result, the starting beam current can be

reduced by more than a factor of ten. It is also shown that the best conditions

for lasing are realized when the diffracted wave is reflected by the external

Bragg reflector.

19.1 Generation threshold for parametric X-ray FEL with external reflectors

The scheme of an X-ray volume FEL using spontaneous X-ray parametric

radiation has been considered in [55]. Following the remarks mentioned above,

the scheme under consideration differs from the case described in [55] by the

addition of external Bragg reflectors which can be placed in the direction of

both transmitted and diffracted waves. For example, in the case of a three-

crystal scheme of diffracted wave reflection, the geometry of a volume FEL

can be represented in the following way:

Here ~V is the mean velocity of electrons, ~k and ω are the wave vector and the

frequency of the emitted photon, ~k and ω are the wave vector and the frequency

of the diffracted photon, a, b, c, d are the crystal targets. We assume that the

crystal (a) in Fig.19 is oriented relative to the particle beam so that only

two strong waves are excited inside the crystal under diffraction (two-wave
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diffraction).

Figure 19.

The closed system of Maxwell’s equations, including the equation describing

the motion of electrons, and the method of its solution were described in [55].

The introduction of external Bragg reflections modifies only the boundary con-

ditions where the reflection coefficients for diffracted and transmitted waves

appear. Besides, the analysis shows that there appears the possibility of real-

ization of lasing regime under a Laue diffraction scheme (see Figure 19) which

is impossible, in principle, without external Bragg reflectors.

Let us restrict ourselves to the analysis of Laue geometry for distributed feed-

back. Solving the boundary conditions while taking into account the phase

relation for the main crystal target (a) and for the external reflectors we can

obtain the generation equations for two cases.

Case (1) The ”cold” beam limit and weak amplification:
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G =































(1− |α|)(1− βl′1
l′0
)γ0V
Vz

+ k[x′′1 +
βl′1
l′0
x′′2]L∗ = Γ

(1)
th , (1)

(1− |α|)(1− βl′0
l′1
)γ0V
Vz

+ k[x′′1 +
l′0
βl′1
x′′2]L∗ = Γ

(2)
th , (2)

(142)

where

G =
β

4γ
k2L3

∗

(

ωL
ω

)2

(l′0 + χ′
0 − γ−2)(l′0 + χ′

0)l
′
1(l

′
0 + βl′1)

−1 sin2Φf(χ),

f(x) =
sin x

x

x cos x− sin x

x2
, (143)

l′0 = 1/2[−αB ±
√

α2
B + 4r], l′1 = 1/2[+αB ±

√

α2
B + 4r],

x′′1(2) =
1

4
χ′′
0

{

1 + β ± (l′0 − βl′1)(β − 1) + 2βr′′/χ′′
0

[(l′0 − βl′1)
2 + 4βr]1/2

}

,

the prime means the real part of the magnitude and the double prime means

its imaginary part; equation (1) of the system (142) describes the case of

diffracted wave reflection, and equation (2) corresponds to the case of trans-

mitted wave reflection. The quantity α = |α| exp iφ is the reflection coefficient

for transmitted (2) or for diffracted (1) waves respectively.

The value of (1−|α|) can be very small for a narrow interval of angles (1−|α|) =

−χ′′
0|χτ |−1(1− exp(−W )), where W is the Debye-Waller factor. For example,

for a LiH crystal (1− |α|) < 10−3 at ∼ 1− 10 keV photoenergies.

As a result, the radiation losses through crystal boundaries can be essentially

reduced. This means that the threshold condition will be determined mainly

by radiation absorption. In this case (142) can be represented in the form:

(1) jth =
4

β

(

Λ′′
2 +

b0
βb1

Λ′′
1

)

b0 + βb1

(b0 − aF )(b0 − a
(1)
F )b1

=
mγc3

b0eL2
∗

χ′′
0

|χτ |2 g1(a, β),

(2) jth =
4

β

(

Λ′′
1 +

b0
βb1

Λ′′
2

)

b0 + βb1

(b0 − aF )(b0 − a
(1)
F )b1

mγc3

b0eL2
∗

χ′′
0

|χτ |2 g2(a, β),

(144)
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here b0(1) = ∓a+[a2+1]1/2, a = αB

2|χτ | , Λ
′′
1(2) =

x′′
1(2)

χ′′

0
, aF =

(|χ′

0|+γ−2)

|χτ | , a
(1)
F =

|χ′

0|
|χτ | .

The dependence of g1 and g2 on the parameter of deviation from the exact

Bragg condition is shown in Figure 20 (a) and (b) for a LiH crystal, the (111)

diffraction plane, E = 700 MeV, β = 1, ω = 3 × 10−18 c−1 and the angular

divergence of electrons in the beam ∆Ψ⊥ = 10−6 rad.

Figure 20.

From Figure 20 (a) it can be seen that g2(a) has a minimum of ∼ 200 at

a definite deviation parameter a = −2. At the same time, g1(a) does not

have a definite optimal value. It depends weakly on the asymmetry factor and

approaches 2 as the absolute value of the deviation parameter a increases.

A detailed comparative analysis of these figures shows that under the same

conditions, the threshold current in the first case is 100 times larger than in

the second case. It follows from Figure 20 (b) and (144) that

joptth ≃ 2
mγc3

b0eL2
∗

χ′′
0

|χτ |2 .

This can be explained by the fact that the growth rate of the electromagnetic

field is maximum at the deviation parameter αB/2|χτ | ∼ −10. The analysis

shows that in this case the main part of radiated electromagnetic energy turns
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out to be accumulated in the diffracted wave. This means that for achieving the

best condition for lasing, the Bragg reflector should be placed in the direction

of the diffracted wave.

Case(2). The ”hot” beam limit.

The boundary condition in this case is simpler, and for the diffracted wave

reflection we can obtain the dispersion equation in the form:

Γt

4

(

1− (l′0 − βl′1)

[(l′0 − βl′1)
2 + 4βr]1/2

)

= Γ
(1)
th , (145)

where

Γt=−
√
π
ω2
L

γ

(l0 + χ′
0 − γ−2)(l0 + χ′

0) sin
2 φ

δ20
xt exp(−(xt)

2),

xt=
(ω − k′U)√

2δ0
, l0 = Θ2 − χ0 − γ−2, δ0 = ωΘ∆Ψ⊥, (146)

Θ is the radiation angle, ∆Ψ⊥ is the transverse angular divergence of electron

velocities in the beam.

At a small value of (1−|α|), when the threshold condition is determined by the

radiation absorption, the relation analogous to (144) for the ”cold” particle

beam can be represented as: jth ∼ Ag3(a, β), where a is the function similar to

that in (144). It weakly depends on the asymmetry factor, the particle energy,

and the crystal parameters. The dependence of g3 on the deviation parameter

a is shown in Figure 21.

We can see that in this case there is an optimal value of αB at which the

magnitude of g3 is minimum. At the same parameters as in the case of a

”cold” particle beam and at ∆Ψ⊥ = 5 · 10−6 rad jth = 2 · 109 A/cm2.
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Figure 21.

So, from the above analysis we can conclude that the application of exter-

nal Bragg reflectors allows one to lower the threshold electron beam current

density of the electron beam necessary for achieving lasing in the X-ray spec-

tral range by more than a factor of ten. The best situation is realized when

the Bragg reflector is placed in the direction of the diffracted wave. In this

case the value of the starting beam current can be jth ≃ 2 · 109 A/c for the

”hot” particle beam and jth ≃ 108 A/c for the ”cold” particle beam and the

generation frequency ω ≃ 3 · 1018 c−1 in LiH , E = 700 MeV, β = 1 and

L∗ ≤ 5 · 10−3 cm.

20 Theory of induced PXR in a crystal plate (general formulas)

([55])

Let an ultra-relativistic electron (positron) beam of velocity ~u enter, at a cer-

tain angle, a crystal plane-parallel plate with length L (the z-axis is perpen-

dicular to the crystal surface, and the plate lies in the interval (0 < z < L).

The set of equations describing the interaction of an electromagnetic wave

with the ”crystal-beam” system consists of Maxwell’s equations and those of
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particle motion in the electromagnetic field. The dielectric susceptibility of a

crystal has the form ε(~r;ω) =
∑

~τ ετ(ω) exp(−i~τ~r), where ~τ is the reciprocal

lattice vector. Perturbations of the current density and charge density in the

linear field approximation may be written in the form:

δ~j(~k;ω) = e
∑

α

exp(−i~k~rα0)
{

δ~vα(ω − ~k~u)

−i~u[~kδ~rα(ω − ~k~u)]
}

δn(~k;ω) (147)

= e
∑

α

exp(−i~kδ~rα0)
{

−i[~k~rα(ω − ~k~u)]
}

,

where δ~j(~k;ω) and δn(~k;ω) are the Fourier transformations of the expressions

~j(~r; t)= e
∑

α

~vα(t)δ[~r − ~rα(t)]

n(~r; t)=
∑

α

δ[~r − ~rα(t)].

~u is the unperturbed electron (positron) velocity; δ~vα and δ~rα are perturba-

tions of the velocity and radius vectors, respectively, due to the interaction

with the radiation field:

~vα(t)= ~u+ δ~vα(t)

~rα(t)=~rα0 + ~ut + δ~rα(t).

The subscript α denotes the number of the particle.

Deriving the perturbations of velocity and radius vectors by the particle mo-

tion equation and using (147) for the current density, one can obtain a set

of Maxwell’s equations, which describes the interaction of an electromagnetic

wave with a crystal, and a particle beam penetrating through it, in the fol-

lowing form:

k2τ
~E(~kτ ′, ω)− ~kτ ′[~kτ ′ ~E(~kτ ′, ω)]−

ω2

c2
∑

τ

ετ(~kτ ′ , ~ω) ~E(~kτ+τ ′, ω)
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= − ω2
L

γc2
~E(~kτ ′, ω)−





ω2
L
~kτ ′

γc2(ω − ~kτ ′~u)
+
ω2
L(
~kτ ′C

2 − ω2)

γC4(ω − ~kτ ′~u)2



 (148)

×
[

(~u~E(~kτ ′ , ω))−
(

ω2
L~u

γc2(ω − ~kτ ′~u)

)

(~kτ ′ ~E(~kτ ′, ω))

]

,

~τ ′ = 0, ~τ1, ~τ2, . . ..

The set of equations (148) describes the situation when a distributed feedback

is formed by many diffracted waves (it is the analogy of the case of multi-

wave X-ray diffraction in crystals [3]). However, the analysis of such a general

situation is very complicated. So we only consider here a two-wave distributed

feedback. This allows us to obtain all the main characteristics of X-ray FELs

analytically and also to show the advantages of three-dimensional geometry

of distributed feedback in comparison with the one-dimensional case.

So, let us consider specifically the generation of a σ-polarized wave, i.e., the

wave polarized in the diffraction plane. For the geometry of the so-called two-

beam diffraction [190], where two strong waves are excited and diffraction

occurs by the set of crystallographic planes, determined by a reciprocal lattice

vector. In this case one can obtain a set of Maxwell’s equations describing

two-wave diffraction in a crystal, having a beam penetrating through it, in

the following way:

(

k2c2 − ω2ε0 +
ω2
L

γ
+
ω2
L

γ

(~u~e′σ)
2

c2
k2c2 − ω2

(ω − ~k~u)2

)

Eσ − ω2ετE
τ
σ = 0

−ω2ε−τEσ +

(

K2
r c

2 − ω2ε0 +
ω2
L

γ
+
ω2
L

γ

(~u~eσ)
2

e2
k2τc

2 − ω2

(ω − ~kτ~u)2

)

~Eτ
σ = 0.

(149)

In (149) Eσ = ~E(~k, ω) · ~eσ, Eτ
σ = ~E(~k + ~τ, ω) · ~eσ, ~e ‖ [~k~τ ], ω2

L = 4πe2n0/m,

where n0 is the average electron (positron) density in a beam. Comparing
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(149) with the standard equation of X-ray dynamical diffraction, one can see

that the system of a crystal and particle beam may be considered as an active

medium with dielectric susceptibility:

ε̃0(~k, ω)− 1 = ε0 − 1− ω2
L

γω2
− ω2 − L

γω2

(~u~eσ)
2

c2
k2c2 − ω2

(ω − ~k~u)2
, ε̃τ̃ = ετ

ε̃0(~kτ , ω)− 1 = ε0 − 1− ω2
L

γω2
− ω2

L

γω2

(~u~eσ)
2

c2

~k2τc
2 − ω2

(ω − ~kτ~u)2
, ε̃−τ = ε−τ

Further, we shall analyze the generation of the wave with a wave vector ~k,

which makes a small angle with the particle velocity vector ~u. In this case

the wave vector ~kτ = ~k + ~τ is directed at a large angle relative to ~u, and

consequently the magnitude of (ω−~kτ~u) cannot become small. As a result, the

terms containing the expression (ω−~kτ~u) in their denominators will be small

and can be ignored. We shall also neglect the term ω2
L/γ – this is justified

for real beam densities. It is well known that in order to provide non-zero

solutions for the equation set (149), its determinant should be equal to zero.

This also defines the dispersion equation, and for the σ-polarized wave it can

be written in the form:

(ω − ~k~u)2
[

(k2c2 − ω2ε0)(k
2
τc

2 − ω2ε0)− ω4ετε−τ
]

= (150)

−ω
2
L

γ

(~u~eσ)
2

c2
(k2c2 − ω2)(k2τc

2 − ω2ε0).

The dispersion equation in such a form was derived in [51]. To solve the bound-

ary problem, we use field continuity, the beam density and the beam current

density at the boundaries. For the last two conditions we apply the following

expressions, obtained from the equations of particle motion and the expression

for the particle beam current
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δjσ =
ie2n0

mγω

(~u~eσ)
2

c2
k2c2 − ω2

(ω − ~k~u)2
Eσ

jσ = e(~u~eσ)n0 −
ie2n0

mγ

(~u~eσ)
2

c2(ω − ~k~u)
Eσ. (151)

The dispersion equation (150) is sixth-order and, hence six solutions corre-

spond to it. However, the two solutions corresponding to mirror reflected

waves can be neglected due to the small value of ετ (ω) in the X-ray range,

ε0 − 1 ≡ g0; ετ ∼ 10−5. Small values of ετ and g0 will also be utilized when

performing joining (we only join electric field strengths at boundaries).

The general solution for the field in a crystal is written as

~E =
4
∑

i=1

~eσci exp(i~ki~r)[1 + si exp(i~τ~r)], (152)

where ~ki is the i-th solution of the dispersion equation (150) and ~kiτ = ~ki+ ~τ ;

~τ is the reciprocal lattice vector corresponding to the planes of diffraction

reflection.

Taking into account the remarks made, the boundary conditions may be writ-

ten as:

c1 + c2 + c3 + c4 = 1,

f1c1 + f2c2 + f3c3 + f4c4 = 0,

g1c1 + g2c2 + g3c3 + g4c4 = 0, (153)

s1c1e
iK1zL + s2c2e

iK2zL + s3c3e
iK3zL + s4c4e

iK4zL = 0,

si =
ω2ε−τ

k2iτ c
2 − ω2ε0

, fi =
(~u~eσ)

2

(ω − ~ki~u)
, gi =

k2i c
2 − ω2

(ω − ~ki~u)2
(~u~eσ)

2

c2
.

In (153), only those boundary conditions are written that determine the field

inside a crystal. The first equation corresponds to the continuity of an incident

wave at the boundary z = 0; the second and the third conditions correspond

to vanishing of the beam density and the beam current density at the crystal
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entrance. The last condition corresponds to the vanishing of the diffracted

wave at the exit boundary z = L (we consider Bragg diffraction geometry),

~ki and kiz (i = 1 ÷ 4) are the solutions of the dispersion equation (150). The

linear system (153), defining the coefficients ci placed ahead of i-modes in

(152), has the solution ci = ∆i/∆, where ∆ is the determinant of the system

(153), ∆i is the i-th minor, obtained as a result of replacement of the i-th

column by









































1

0

0

0









































.

Hence, at ∆ → 0, the field amplitudes inside a crystal will increase, and thus

a condition occurs when the field is nonzero though the incident wave is equal

to zero. The condition ∆ = 0 with ∆i 6= 0 is called the generation threshold

condition [116]. Substituting the expressions

~ki = ~k0 + ~kδi~n, k0z =
ω − ~k⊥~u⊥

uz
,

k = ω/c, δi ≪ 1, (154)

(where ~n is the normal to the crystal surface, ~k0 = (k0z, ~k⊥)) into the deter-

minant ∆, we can represent the generation threshold condition ∆ = 0 as

(δ1 − δ2)(δ1 − δ3)(δ2 − δ3)

δ21δ
2
2δ

2
3

s4e
ikδ4L − (δ1 − δ2)(δ1 − δ4)(δ2 − δ4)

δ21δ
2
2δ

2
4

s3e
ikδ3L (155)

+
(δ1 − δ3)(δ1 − δ4)(δ3 − δ4)

δ21δ
2
3δ

2
4

s2e
ikδ2L − (δ2 − δ3)(δ2 − δ4)(δ3 − δ4)

δ22δ
2
3δ

2
4

s1e
ikδ1L = 0
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In (155), the terms containing nonresonance fi and gi (i = 1 ÷ 4) were ne-

glected.

Further investigation will be based on a common consideration of (150) and

(155). We substitute (154) into (150) and transform the dispersion equation

as follows:

(~u~n)2

c2
δ2[4γ0γ1δ

2 + 2(γ1l + γ0lτ )δ + llτ − τ ] =

−1

γ

(

ωL
ω

)2

θ2 sin2 ϕ(l + g0)lτ . (156)

In (156) θ is the angle between ~k and ~u; ϕ is the angle between ~k⊥u and ~τ⊥u ,

where the symbol ⊥u denotes the projection onto a plane perpendicular to the

velocity, r = ετε−τ ; l = θ2 + g0 + γ−2; lτ = l + α; α = (2~k0~τ + τ 2)/k2 is the

departure from the Bragg condition.

γ0 =
(~k0~n)

K
, γ1 = −(~k0τ~n)

K

are the cosines of the angles, made by the wave vectors of the transmitted and

diffracted waves with the normal vector.

21 Spontaneous and induced parametric and Smith-Purcell radia-

tion from electrons moving in a photonic crystal built from the

metal threads ([117])

Research and development of microwave generators using radiation from an

electron beam in a periodic slow-wave circuit (traveling wave tubes, backward

wave oscillators, etc.,) has a long history [69,70]. First generators operated in

the centimeter wavelength range.
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In 1953 Smith and Purcell [71] made the next step and observed generation of

incoherent radiation at visible wavelengths by using a finely-focused electron

beam propagating close to the surface of a metal diffraction grating (at the

distance δ ≤ λβγ
4π
, δ is the so-called beam impact parameter, λ is the radia-

tion wavelength, β = v/c , v is the electron beam velocity, γ is the electron

Lorentz-factor). Beam current densities were insufficient to produce signifi-

cant amplification of the spontaneous emission. However, as it was shown in

[72,73], to change this spontaneous radiation process into a stimulated one,

the generator should be supplied with a feedback cavity formed by a pair of

reflectors.

After the discovery of the Smith-Purcell effect, it soon became clear that it

might be used as a radiation source in the millimeter to visible range, for

which tunable sources were hardly or not available at that time [74,75].

The Smith-Purcell effect belongs to the general class of diffracted radiation

effects induced by electron interaction with a medium. Diffraction of waves

associated with the electromagnetic field of the electron by an obstacle leads

to the so-called diffracted radiation [76]. Diffracted radiation in periodical

structures is in the basis of operation of traveling wave tubes [69,70] and such

devices as the orotron [77,78,79] and the ledatron [80] (see also [81,82,83,84]).

All the above devices use feedback, which is formed by either two parallel

mirrors placed on both sides of the working area or a one-dimensional diffrac-

tion grating, in which incident and diffracted (reflected) waves move along the

electron beam (one-dimensional distributed feedback).

The conception of volume distributed feedback [49] was first originated in view

of prediction and experimental study of spontaneous parametric and diffracted
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transition X-ray radiation from charged particles in crystals (PXR) [85]. The

detailed analysis of the induced PXR and channeling radiation revealed unique

possibilities provided by volume distributed feedback [49]. It was shown that

dynamical diffraction in a volume spatially periodic medium evokes the pecu-

liar conditions, corresponding to degeneration of the eigenmodes that results

in a new law of electron beam instability. Within these peculiar conditions the

electron beam interacts with the electromagnetic wave more effectively [49].

Thus, for example, even in the X-ray range the electron beam current den-

sity necessary for running up to the generation threshold in conditions of

non-one-dimensional distributed feedback [49,25] appears significantly reduced

(108 A/cm2 for LiH crystal against 1013 A/cm2 required in [86]) that even

makes possible to reach generation threshold for the induced X-ray radiation

in crystals i.e. to create an X-ray laser.

Moreover, all the conclusions are valid for a beam moving in vacuum close to

the surface of the periodic medium either in the presence or absence of the

undulator [25].

The originated law is universal and valid for all wavelength ranges (from X-ray

to microwave) regardless the spontaneous radiation mechanism

[25,49,55,87,88,105,110,181,182]. Radiation generators using non-one-dimensional

distributed feedback, which is created with the aid of either natural or artificial

(photonic) crystals, is called Volume Free Electron Laser (VFEL).

Use of the volume distributed feedback makes available:

1. frequency tuning at fixed energy of the electron beam in the significantly

wider range than conventional systems can provide;
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2. significant reduction of the threshold current of the electron beam due to

more effective interaction of the electron beam with the electromagnetic wave

allows and, as a result, miniaturization of generators;

3. reduction of limits for the available output power by the use of wide electron

beams and diffraction gratings (photonic crystals) of large volumes;

4. simultaneous generation at several frequencies;

5. effective modes selection in oversize systems, in which the radiation wave-

length is significantly smaller than the resonator dimensions.

Studies of the two-dimensional distributed feedback application in millimeter-

wave FEL-oscillators began in the 90s in [94,95,96,97,98].

One of the VFEL types uses a ”grid” volume resonator (”grid” photonic crys-

tal) that is formed by a periodic structure built from either dielectric or metal

threads (see Figure 22) [89,110,112].

waveguide

Figure 22. VFEL ”grid” resonator (”grid” photonic crystal)

The ”grid” structure formed by periodically strained dielectric threads was ex-

perimentally studied in [110], where it was shown that ”grid” photonic crystals

have sufficiently high Q factors (104−106). Lasing from VFELs with the ”grid”
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resonator formed by periodically strained metal threads was observed in [112].

Propagation of waves through a photonic crystal is the subject of numerous

theoretical and experimental studies [90,91,92,93].

In [117] the properties of a ”grid” photonic crystal built from metal threads

were considered along with its frequency characteristics in view of their im-

portance for VFEL lasing. A challenge, which appears when considering inter-

action of an electromagnetic wave with such a photonic crystal, is as follows.

In contrast to the case of wave interaction with a thin dielectric thread, the in-

teraction of the electromagnetic wave with a single metal thread of the ”grid”

(i.e., the diffraction grating unit cell) cannot be described in terms of the

perturbation theory.

The approach developed in [117] provides the description of diffraction in a

”grid” grating in terms of the amplitude of the wave scattering by a single

thread. Methods for calculation of scattering amplitudes are well-developed [100,101].

This approach enables developing the theory of diffraction in a ”grid” photonic

crystal similar to the dynamical theory of diffraction for X-rays [3,15] and us-

ing the results obtained therein. The equations describing lasing of VFEL with

such a resonator have been obtained.

22 Scattering by a set of metal threads in free space

Suppose a plane electromagnetic wave ~E = Ψ0~e = ei
~k~r~e falls onto a metal

thread. Here ~e is the polarization vector of the wave, ~k is the wavevector, ~r

is the coordinate. Suppose the wave falls perpendicular to the cylinder axis

i.e. along OZ. The metal thread looks like a cylinder placed into the origin of
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coordinates and the cylinder axis coincides with the axis x Figure (23).

Figure 23. Coordinates and vectors

Two orientations of ~e should be considered: ~e is parallel to the cylinder axis x

and ~e is perpendicular to the cylinder axis x. The solution of the problem of

the wave scattered by a cylinder is well-known [100,101]. Below the case when

the radiation wavelength λ exceeds the thread radius R (λ≫ R) is considered.

For clarity, suppose that ~e ‖ 0x. In this case the expression, which describes

the wave appearing due to scattering, can be expressed as a superposition of

the incident Ψ0 and scattered Ψsc waves as follows [100,101]:

Ψ = Ψ0 +Ψsc = eikz + a0H
(1)
0 (kρ), (157)

here ρ is the transverse coordinate ρ = (y, z), H
(1)
0 is the Hankel function of

zero order, k is the wave number, a0 is the amplitude of the scattered wave.

a0(‖) =
−J0(ktR)J ′

0(kR) +
√
εtJ

′
0(ktR)J0(kR)

J0(ktR)H
(1)′
0 (kR)−√

εtJ ′
0(ktR)H

(1)
0 (kR)

, (158)

a0(⊥) =
−J0(ktR)J ′

0(kR) +
1√
εt
J ′
0(ktR)J0(kR)

J0(ktR)H
(1)′
0 (kR)− 1√

εt
J ′
0(ktR)H

(1)
0 (kR)

, (159)

where εt is the dielectric permittivity of the thread material, kt =
√
εtk. Note

that for λ≫ R the amplitude a0 does not depend on the scattering angle.
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Let us now consider a wave, which is scattered by a set of threads placed

at the points with the coordinates ρn = (yn, zn). The scattered wave can be

expressed as a superposition of waves scattered by separate threads:

Ψ = eikz + a0ΣnH
(1)
0 (k |~ρ− ~ρn|)eikzn (160)

or, using the integral representation for the Hankel function, H
(1)
0 (kρ)

Ψ = eikz + A0Σn

∞
∫

−∞

eik
√

|~ρ−~ρn|2−x2
√

|~ρ− ~ρn|2 − x2
dxeikzn , (161)

where A0 = − ia0
π
, |~ρ− ~ρn|2 = (y − yn)

2 + (z − zn)
2.

Note that in (161) we neglected the contributions from rescattered waves.

Let us consider a wave passing through a layer of cylinders whose axes are

distributed in the plane x0y with the distance dy between them. Suppose

that the transversal size of the layer L⊥ is much larger than both dy and

the radiation wavelength (L⊥ ≫ dy and L⊥ ≫ λ). This assumption enables

considering the ideal case when the layer is supposed to have an infinite size

in the plane x0y. In this case summation over the coordinates yn provides the

following expression for Ψ:

Ψ = eikz +
2πiA0

kdy
eikz = (1 +

2πiA0

kdy
)eikz. (162)

This expression reflects a well-known fact that a plane wave scattered by a

plane layer of the scatterers is expressed as a plane wave with the modified

amplitude.

Thus, after passing m planes spaced dz apart from each other, the scattered
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wave can be expressed as:

Ψ =







√

√

√

√

(

1− 2π ImA0

k dy

)2

+

(

2π ReA0

k dy

)2






m

eiϕmeikz, (163)

where

ϕ = arctg







2π ReA0

k dy

1− 2π ImA0

k dy





 ,

m = Lz/dz inside the photonic crystal formed by threads and Lz is the length

of the photonic crystal. This expression can be easily converted to the form

Ψ = eiknz, where n is the index refraction defined as

n = n′ + in′′ =

(

1 + λ
2πdz

arctan

(

λ
dy
ReA0

1− λ
dy
ImA0

))

−

−i λ
2πdz

ln

(

√

(

λ
dy
ReA0

)2
+
(

1− λ
dy
ImA0

)2
)

,

(164)

here λ = 2π/k is used, n′ and n′′ denotes the real and imaginary parts of n,

respectively, ReA0 and ImA0 are the real and imaginary parts of A0.

Let us consider now the parameter | λ
dy
A0| and suppose it to be small. When

| λ
dy
A0| ≪ 1, (164) can be rewritten as:

n = 1 +
2π

dydzk2
A0. (165)

The same expression can also be obtained for the index of refraction of the

wave with polarization orthogonal to the thread axis (~e ⊥ 0x).

When the parameter | λ
dy
A0| grows with the growth of the density of scatterers

(i.e., with decreasing dy), the rescattered waves become important and the

difference between the mean and local fields should be considered similarly to
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Clausius-Mossoti (Lorentz-Lorenz) relation [99]. Calculations show that the

parameter | λ
dy
A0| behaves differently for different polarizations (see Figure 24)

and for the wave with polarization parallel to the threads, this parameter can

appear greater than 1. In this case formula (165) for parallel polarization is

not valid and the expressions considering wave rescattering should be applied

(see [117]).
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Figure 24. Dependence of parameter | λdyA0| on kR for parallel and orthogonal po-

larizations (dy = 0.5 cm, dz = 1.6 cm)

It is important to remind that the conception of the refraction index is appli-

cable even to considering waves of different types (X-rays, particles) passing

through matter when the distance between scatterers exceeds many times the

wavelength, i.e., kd ≫ 1 [1]. At that, if the wavelength is either comparable or
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smaller than the size of the scatterer, then the refraction index is determined

by the amplitude of the wave scattering at zero angle. In the considered case

of the wave scattering by the thread the amplitude A0 in (165) should be re-

placed by the amplitude of forward scattering of the wave by the thread. The

explicit expression for this amplitude see in [100,101].

Radiation wavelengths of our interest are λ ≤ 3 cm. In this wavelength range,

the skin depth δ is about 1 micron for most metals (for example, δCu = 0.66

µm, δAl = 0.8 µm, δW = 1.16 µm, and so on). Thus, in this wavelength range

the metal threads can be considered as perfectly conducting.

From (158), (159) follows that the amplitude A0 for a perfect conducting

cylinder for polarization of the electromagnetic wave parallel to the cylinder

axis can be expressed as:

A0(‖) =
1

π

J0 (kR)N0 (kR)

J2
0 (kR) +N2

0 (kR)
+ i

1

π

J2
0 (kR)

J2
0 (kR) +N2

0 (kR)
. (166)

Using the asymptotic values for these functions for kR = 2πR
λ

≪ 1

J0 (x→ 0) ≈ 1, N0 (x→ 0) ≈ − 2
π
ln 2

1.781·x ,

J ′
0 (x→ 0) = −J1 ≈ −x

2
, N ′

0 (x→ 0) = −N1 ≈ 2
π
1
x
,

(167)

one can obtain:

ReA0(‖) ≈ −1

π

2
π
ln( 2

1.781·kR)

1 + (ln( 2
1.781·kR))

2
, ImA0(‖) ≈

1

π

1

1 + (ln( 2
1.781·kR))

2
, (168)

From (168) it can be seen that for kR ≪ 1, the values ReA0(‖) < 0, therefore,
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the real part of the index of refraction in this limit can be expressed as:

n′
(‖) = 1− 2π

dydzk2
|ReA0(‖)|, (169)

From (169) follows that the growth of the wavelength (reduction of k) makes

n′
‖ → 0, and n′

‖ can even become negative. However, it should be reminded that

(169) is valid only when |n′
‖−1| ≪ 1 (i.e 2π

dydzk2
|ReA0(‖)| ≪ 1). It is interesting

to compare n′
‖ calculated by formulas (164) and (169): in the range of large

wavelength they yield different results because the condition |n′
‖ − 1| ≪ 1 is

violated. In this case the expressions given in [117] should be applied. Note

also that n′
‖ = 0 corresponds to the threshold of the wave total reflection from

the medium surface.

Let us consider a particular example: suppose the radiation wavelength is

λ = 3 cm and the thread radius R = 50 µm, then

ReA0(‖) = −0.096, ImA0(‖) = 0.032, (170)

Suppose dy = 0.5 cm, dz = 1.6 cm, therefore, the parameter | λ
dy
A0| ≪ 1 for

both polarizations and (165) gives:

n‖ = 0.828 + i · 0.058, (171)

The above analysis does not include the contribution to the index of refraction

from rescattered waves. Their contribution was investigated in

[89,103,112,117,152,165]. It was shown, in particular, that the the index of

refraction n⊥ for a wave with the polarization vector orthogonal to the threads

can be greater than unity, i.e., in such photonic crystals, the Cherenkov effect

is possible.
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23 Complex anomalous Doppler effect in the ”grid” photonic crys-

tal

Let us now study Smith - Purcell (diffracted) radiation in a photonic crystal

when an electron beam of velocity ~v passes through the ”grid”.

The radiation condition can be expressed as

ω − ~kn(k)~v = ~τ~v , (172)

where ~τ is the reciprocal lattice vector and n(k) is the index of refraction.

Suppose the electron beam velocity is directed along the axis OZ, then (172)

can be presented in the form:

k − τzβ = k n(k) β cos θ, (173)

where β = v
c
, the angle between ~k and the electron beam velocity is denoted

by θ and τz =
2πmh

dz
, where mh = 1, 2, ... is the harmonic number. From (173)

follows the equation

(
k − τzβ

β cos θ
)2 = k2 + η , (174)

which is similar to the equation for the complex and anomalous Doppler effect

[18].

The roots of this equation give the spectrum of frequencies of diffracted

(Smith-Purcell) radiation, which is induced by a particle moving in the above

volume ”grid” structure. In the case under consideration η
τ2z

≪ 1. For β pro-

viding η
τ2z β

2 ≪ 1, the roots of (174) can be easily found:
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k1 =
τzβ

1− (β cos θ)2



1− β cos θ

√

√

√

√1 +
η

τ 2z

1− (β cos θ)2

β2



 ,

(175)

k2 =
τzβ

1− (β cos θ)2



1 + β cos θ

√

√

√

√1 +
η

τ 2z

1− (β cos θ)2

β2



 ,

where η is taken at k = τzβ
1−(β cos θ)2

.

It should be reminded here that τz =
2πmh

dz
, where mh = 1, 2, ... is the harmonic

number. From (176) follows that higher harmonics provide getting radiation

with higher frequencies. For example, for the electron beam with the energy

200 keV, considering θ ∼ 20◦ and dz = 1.6 cm, the first harmonic (mh = 1)

gives radiation frequencies ∼ 10 GHz and ∼ 40 GHz for the roots 1 and 2 of

equation (173), respectively, the 30-th harmonic (mh = 30) provides ∼ 230

GHz and ∼ 1 THz.

Let us now study diffracted radiation in a metal waveguide of rectangular

cross-section with the ”grid” structure (”grid” photonic crystal) placed inside

it (see Figure 22). Suppose that the lateral dimensions a and b of the waveguide

noticeably exceed the distance between the next threads of the ”grid” photonic

crystal (a, b ≫ dy, dz). This makes possible to consider a waveguide with

the ”grid” photonic crystal inside as a waveguide filled with matter with the

effective dielectric permittivity ε = n2.

Remember that in the waveguide with the axis parallel to OZ, the x and y

components of the wavevector are not continuous, but quantized. And only

the wavenumber kz changes continuously. The wave field inside the waveguide

represents a wave standing in the transversal directions (OX and OY ), but

traveling along OZ.
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In the waveguide there is the discrete set of the waves with the eigenval-

ues κmn determined by the waveguide transverse dimensions (width a and

height b) [16,100,101]

κ2mn = (
πm

a
)2 + (

πn

b
)2 . (176)

Therefore, in the waveguide the radiation frequency ω is related to the wavenum-

ber kz as follows [16]:

k2z(m,n) = (
ω

c
)2ε− κ2mn . (177)

Remembering that n2 = ε = 1 + χ (ε is the permittivity of the ”medium”

formed by the metal threads and χ is its susceptibility) one can rewrite (177)

as follows:

k2z(m,n) = (
ω

c
)2 − (κ2mn − η) , (178)

here η = ω2

c2
χ. According to the previous section n < 1, therefore both χ and

η are negative.

Therefore, addition of the described volume structure to the waveguide ”re-

places” their own eigenvalues by some effective Kmn (K2
mn = κ2mn − η). It is

interesting to note here that, as η < 0, the addition of the volume grid to

the waveguide increases the waveguide limiting frequency (i.e., the effective

waveguide appears as though having smaller transversal dimensions).

Let us now consider the spontaneous Smith-Purcell radiation from a parti-

cle moving along the waveguide axis. The radiation condition for the Smith-
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Purcell radiation (172) converts to

ω − kzv = τzv . (179)

Combination of (178) and (179) enables one to find the equation for radiation

frequencies similar to (174):

(
ω − τzv

v
)2 = (

ω

c
)2 − (κ2mn − η) . (180)

The roots of this equation for η
τ2z β

2 ≪ 1 can be obtained similarly (176):

ω1 (m,n) =
τzv

1− β2



1− β

√

√

√

√1− (κ2mn − η)

τ 2z

1− β2

β2



 ,

(181)

ω2 (m,n) =
τzv

1− β2



1 + β

√

√

√

√1− (κ2mn − η)

τ 2z

1− β2

β2



 .

For a detailed treatment of the theory of VFEL lasing using electron beam

radiation in a ”grid” photonic crystal, see [117].

24 Generation of radiation in Free Electron Lasers with photonic

crystals (diffraction gratings) with the variable spatial period

In this section the equations providing the description of the generation pro-

cess in FEL with varied parameters of a photonic crystal (diffraction grating)

are obtained [152]. It is shown that applying photonic crystals (diffraction

gratings) with the variable period, one can significantly increase the radiation

output. It is mentioned that photonic crystals (diffraction gratings) can be

used for creation of the dynamical wiggler with variable period in the system.
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This makes possible to develop double-cascaded FEL with variable parame-

ters changing, which efficiency can be significantly higher that of conventional

system.

Generators using radiation from an electron beam in a periodic slow-wave

circuit (traveling wave tubes, backward wave oscillators, free electron lasers)

are now widespread [111].

Diffracted radiation [76] in periodical structures is in the basis of operation of

traveling wave tubes (TWT) [69,70], backward wave oscillators (BWO) and

such devices as Smith-Purcell lasers [71,72,73,74,75] and volume FELs using

two- or three-dimensional distributed feedback [87,88,181,182].

The analysis shows that during the operation of such devices electrons lose

their energy for radiation, therefore, the electron beam slows down and gets

out of synchronism with the radiating wave. These limits the efficiency of the

generator, which usually does not exceed ∼ 10%.

During the first years after the creation of the traveling wave tube, it was

demonstrated [70] that synchronism between the electron beam and the elec-

tromagnetic wave in a TWT can be retained by changing the phase velocity

of the wave. Application of systems with variable parameters in microwave

devices significantly increases their efficiency [70,114].

The same methods are widely used for increasing the efficiency of undulator

FELs [115].
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24.1 Lasing equations for the system with a photonic crystal (diffraction grat-

ing) with changing parameters

In the general case the equations, which describe lasing process, follow from

the Maxwell equations:

rot ~H =
1

c

∂ ~D

∂t
+

4π

c
~j, rot ~E = −1

c

∂ ~H

∂t
,

div ~D = 4πρ,
∂ρ

∂t
+ div~j = 0, (182)

here ~E and ~H are the electric and magnetic fields, ~j and ρ are the current

and charge densities, the electromagnetic induction Di(~r, t
′) =

∫

εil(~r, t −

t′)El(~r, t
′)dt′ and, therefore, Di(~r, ω) = εil(~r, ω)El(~r, ω), the indices i, l =

1, 2, 3 correspond to the axes x, y, z, respectively.

The current and charge densities are respectively defined as:

~j(~r, t) = e
∑

α

~vα(t)δ(~r − ~rα(t)), ρ(~r, t) = e
∑

α

δ(~r − ~rα(t)), (183)

where e is the electron charge, ~vα is the velocity of the particle α (α numerates

the beam particles),

d~vα
dt

=
e

mγα

{

~E(~rα(t), t) +
1

c
[~vα(t)× ~H(~rα(t), t)]−

~vα
c2
(~vα(t) ~E(~rα(t), t))

}

, (184)

here γα = (1 − v2α
c2
)−

1
2 is the Lorentz-factor, ~E(~rα(t), t) ( ~H(~rα(t), t)) is the

electric (magnetic) field at the point of location ~rα of the particle α.

It should be reminded that (184) can also be written as [187]:

d~pα
dt

= m
dγαvα
dt

= e
{

~E(~rα(t), t) +
1

c
[~vα(t)× ~H(~rα(t), t)]

}

, (185)
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where pα is the particle momentum.

Combining the equations in (182), we obtain:

−∆ ~E + ~∇(~∇ ~E) +
1

c2
∂2 ~D

∂t2
= −4π

c2
∂~j

∂t
. (186)

The dielectric permittivity tensor can be expressed as ε̂(~r) = 1 + χ̂(~r), where

χ̂(~r) is the dielectric susceptibility. When χ̂≪ 1, (186) can be rewritten as:

∆ ~E(~r, t)− 1

c2
∂2

∂t2

∫

ε̂(~r, t− t′) ~E(~r, t′)dt′ = 4π

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

.(187)

When the grating is ideal χ̂(~r) =
∑

τ χ̂τ (~r)e
i~τ~r, where ~τ is the reciprocal lattice

vector.

Let the photonic crystal (diffraction grating) period be smoothly varied with

distance, which is much greater then the diffraction grating (ptotonic crystal

lattice) period. It is convenient in this case to present the susceptibility χ̂(~r)

in the form, typical of the theory of X-ray diffraction in crystals with lattice

distortion [113]:

χ̂(~r) =
∑

τ

eiΦτ (~r)χ̂τ (~r), (188)

where Φτ (~r) =
∫

~τ (~r ′)d~l′, ~τ(~r ′) is the reciprocal lattice vector in the vicinity of

the point ~r ′. In contrast to the theory of X-rays diffraction, in the case under

consideration χ̂τ depends on ~r. Moreover, χ̂τ depends on the volume of the

lattice unit cell Ω, which can be significantly varied for diffraction gratings

(photonic crystals), as distinct from natural crystals. The volume of the unit

cell Ω(~r) depends on coordinate and, for example, for a cubic lattice it is

determined as Ω(~r) = 1
d1(~r)d2(~r)d3(~r)

, where di are the lattice periods. If χ̂τ (~r)
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does not depend on ~r, the expression (188) converts to that usually used for

X-rays in crystals with lattice distortion [113].

It should be reminded that for an ideal crystal without lattice distortions, the

wave, which propagates in the crystal can be presented as a superposition of

plane waves:

~E(~r, t) =
∞
∑

~τ=0

~A~τe
i(~kτ~r−ωt), (189)

where ~kτ = ~k + ~τ .

Let us now use the fact that in the case under consideration the typical length

for the change of the lattice parameters significantly exceeds the lattice pe-

riod. Then the field inside the crystal with lattice distortion can be expressed

similarly to (189), but with ~A~τ depending on ~r and t and changing noticeably

at the distances much greater than the lattice period.

Similarly, the wave vector should be considered as a slowly changing function

of a coordinate.

According to the above, let us find the solution of (187) in the form:

~E(~r, t) = Re

{ ∞
∑

~τ=0

~A~τe
i(φτ (~r)−ωt)

}

, (190)

where φτ (~r) =
∫ ~r
0 k(~r)d

~l+Φτ (~r), where k(~r) can be found as a solution of the

dispersion equation in the vicinity of the point with the coordinate vector ~r,

integration is made over the quasiclassical trajectory, which describes motion

of the wavepacket in the crystal with lattice distortion.

Now let us consider the case when all the waves participating in the diffraction
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process lie in a plane (coupled wave diffraction, multiple-wave diffraction), i.e.,

all the reciprocal lattice vectors ~τ lie in one plane [3,15]. Suppose the wave

polarization vector is orthogonal to the plane of diffraction.

Let us rewrite (190) in the form

~E(~r, t) = ~eE(~r, t) = ~eRe
{

~A1e
i(φ1(~r)−ωt) + ~A2e

i(φ2(~r)−ωt) + ...
}

, (191)

where

φ1(~r) =

~r
∫

0

~k1(~r
′)d~l, (192)

φ2(~r) =

~r
∫

0

~k1(~r
′)d~l +

~r
∫

0

~τ (~r ′)d~l. (193)

Then multiplying (187) by ~e, one can get:

∆E(~r, t)− 1

c2
∂2

∂t2

∫

ε̂(~r, t− t′)E(~r, t′)dt′ = 4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

.(194)

Applying the equality ∆E(~r, t) = ~∇(~∇E) and using (191), we obtain

∆( ~A1e
i(φ1(~r)−ωt)) = ei(φ1(~r)−ωt)[2i~∇φ1

~∇A1 + i~∇~k1(~r)A1 − k21(~r)A1], (195)

Therefore, substitution of the above expression into (194) gives the following

system:

1

2
ei(φ1(~r)−ωt)[2i~k1(~r)~∇A1 + i~∇~k1(~r)A1 − k21(~r)A1

+
ω2

c2
ε0(ω,~r)A1 + i

1

c2
∂ω2ε0(ω,~r)

∂ω

∂A1

∂t
+
ω2

c2
ε−τ (ω,~r)A2

+i
1

c2
∂ω2ε−τ (ω,~r)

∂ω

∂A2

∂t
]

+ conjugated terms = 4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

,
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1

2
ei(φ2(~r)−ωt)[2i~k2(~r)~∇A2 + i~∇~k2(~r)A2 − k22(~r)A2

+
ω2

c2
ε0(ω,~r)A2 + i

1

c2
∂ω2ε0(ω,~r)

∂ω

∂A2

∂t
+
ω2

c2
ετ (ω,~r)A1

+i
1

c2
∂ω2ετ (ω,~r)

∂ω

∂A1

∂t
]

+ conjugated terms = 4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

, (196)

where vector ~k2(~r) = ~k1(~r)+~τ , ε0(ω,~r) = 1+χ0(~r), here the notation χ0(~r) =

χτ=0(~r) is used, ετ (ω,~r) = χτ (~r). Note here that for a numerical analysis of

(196), if χ0 ≪ 0, it is convenient to take vector ~k1(~r) in the form ~k1(~r) =

~n
√

k2 + ω2

c2
χ0(~r).

For better understanding, let us suppose that the diffraction grating (photonic

crystal lattice) period changes along one direction and define this direction as

axis z.

Thus, for a one-dimensional case, when ~k(~(r)) = (~k⊥, kz(z)), the system (196)

converts to the following:

1

2
ei(

~k⊥~r⊥+φ1z(z)−ωt)[2ik1z(z)
∂A1

∂z
+ i

∂k1z(z)

∂z
A1 − (k2⊥ + k21z(z))A1

+
ω2

c2
ε0(ω, z)A1 + i

1

c2
∂ω2ε0(ω, z)

∂ω

∂A1

∂t
+
ω2

c2
ε−τ(ω, z)A2

+i
1

c2
∂ω2ε−τ (ω, z)

∂ω

∂A2

∂t
]

+ conjugated terms = 4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

,

1

2
ei(

~k⊥~r⊥+φ2z(z)−ωt)[2ik2z(z)
∂A2

∂z
+ i

∂k2z(z)

∂z
A2 − (k2⊥ + k22z(z))A2

+
ω2

c2
ε0(ω, z)A2 + i

1

c2
∂ω2ε0(ω, z)

∂ω

∂A2

∂t
+
ω2

c2
ετ(ω, z)A1

+i
1

c2
∂ω2ετ (ω, z)

∂ω

∂A1

∂t
]

+ conjugated terms = 4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

, (197)
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Let us multiply the first equation by e−i(
~k⊥~r⊥+φ1z(z)−ωt) and the second by

e−i(
~k⊥~r⊥+φ2z(z)−ωt). This procedure enables neglecting the conjugated terms,

which appear fast oscillating (when averaging over the oscillation period they

become zero).

Considering the right-hand side of (197), let us take into account that micro-

scopic currents and densities are the sums of terms, containing delta-functions,

therefore, the right-hand side can be rewritten as:

e−i(
~k⊥~r⊥+φ1z(z)−ωt)4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

(198)

= −4πiωe

c2
~e
∑

α

~vα(t)δ(~(r)−~(r)α(t))e−i(~k⊥~r⊥+φ1z(z)−ωt) θ(t− tα) θ(Tα − t)

here tα is the time of entrance of particle α to the resonator, Tα is the time of

particle leaving the resonator, θ−functions in (199) indicate that for the time

moments preceding tα and following Tα, the particle α does not contribute to

the process.

Let us suppose now that a strong magnetic field is applied for beam guid-

ing through the generation area. Thus, the problem appears one-dimensional

(components vx and vy are suppressed). Averaging the right-hand side of (199)

over the particle positions inside the beam, points of particle entrance to the

resonator r⊥0α and time of particle entrance to the resonator tα one can obtain:

e−i(
~k⊥~r⊥+φ1z(z)−ωt)4π~e

(

1

c2
∂~j(~r, t)

∂t
+ ~∇ρ(~r, t)

)

= −4πiωρ ϑ1 u(t) e

c2
1

S

∫

d2~r⊥0
1

T

t
∫

0

e−i(φ1(~r,~r⊥,t,t0)+
~k⊥~r⊥0−ωt)dt0

= −4πiωρ ϑ1 u(t) e

c2
〈〈e−i(φ1(~r,~r⊥,t,t0)+~k⊥~r⊥0−ωt)dt0〉〉, (199)
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where ρ is the electron beam density, u(t) is the mean electron beam velocity,

which depends on time due to energy losses, ϑ1 =
√

1− ω2

β2k21c
2 , β

2 = 1 − 1
γ2
,

〈〈 〉〉 indicates averaging over the transversal coordinate of the point of particle

entrance to the resonator r⊥0α and time of particle entrance to the resonator tα.

According to [102], the averaging procedure in (199) can be simplified, when

consider that random phases, appearing due to random transversal coordi-

nate and time of entrance, presents in (199) as differences. Therefore, double

integration over d2~r⊥0 dt0 can be replaced by single integration [102].

The system (197) in this case converts to:

2ik1z(z)
∂A1

∂z
+ i

∂k1z(z)

∂z
A1 − (k2⊥ + k21z(z))A1

+
ω2

c2
ε0(ω, z)A1 + i

1

c2
∂ω2ε0(ω, z)

∂ω

∂A1

∂t
+
ω2

c2
ε−τ(ω, z)A2

+i
1

c2
∂ω2ε−τ (ω, z)

∂ω

∂A2

∂t
= i

2ω

c2
J1(k1z(z)), (200)

2ik2z(z)
∂A2

∂z
+ i

∂k2z(z)

∂z
A2 − (k2⊥ + k22z(z))A2

+
ω2

c2
ε0(ω, z)A2 + i

1

c2
∂ω2ε0(ω, z)

∂ω

∂A2

∂t
+
ω2

c2
ετ(ω, z)A1

+i
1

c2
∂ω2ετ (ω, z)

∂ω

∂A1

∂t
= i

2ω

c2
J2(k2z(z)),

where the currents J1, J2 are determined by the expression

Jm = 2πjϑm

2π
∫

0

2π − p

8π2
(e−iφm(t,z,p) + e−iφm(t,z,−p)) dp, m = 1, 2

(201)

ϑm =

√

√

√

√1− ω2

β2k2mc
2
, β2 = 1− 1

γ2
,

j = en0v is the current density, A1 ≡ Aτ=0, A2 ≡ Aτ , ~k1 = ~kτ=0, ~k2 = ~k1 + ~τ .

The expressions for J1 and k1 independent on z was obtained in [102].
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When more than two waves participate in the diffraction process, the system

(201) should be supplemented with equations for waves Am, which are similar

to those for A1 and A2.

Now we can find the equation for the phase. From (192), (193) follows that

d2φm
dz2

+
1

v

dv

dz

dφm
dz

=
dkm
dz

+
km
v2
d2z

dt2
, (202)

Let us introduce a new function C(z) as follows:

dφm
dz

= Cm(z)e
−
∫ z

0
1
v

dv
dz′

dz′ =
v0
v(z)

Cm(z), (203)

φm(z) = φm(0) +

z
∫

0

v0
v(z′)

Cm(z
′)dz′

Therefore,

dCm(z)

dz
=
v(z)

v0

(

dkm
dz

+
km
v2
d2z

dt2

)

. (204)

In a one-dimensional case, equation (185) can be written as:

d2zα
dt2

=
eϑ

mγ(zα, t, p)
ReE(zα, t), (205)

therefore,

dCm(z)

dz
=
v(z)

v0

dkm
dz

+
km

v0v(z)

eϑm
mγ3(z, t(z), p)

Re{Am(z, t(z))eiφm(z,t(z),p)}, (206)

dφm(t, z, p)

dz
|z=0 = kmz −

ω

v
, φm(t, z, p)|z=0 = p,

A1|z=L = E0
1 , A2|z=L = E0

2 ,

Am|t=0 = 0, m = 1, 2,
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t > 0, z ∈ [0, L], p ∈ [−2π, 2π], L is the length of the photonic crystal.

These equations should be supplied with the equations for γ(z, p). It is well-

known that

mc2
dγ

dt
= e~v ~E. (207)

Therefore,

dγ(z, t(z), p)

dz
=
∑

l

eϑl
mc2

Re{
∑

l

Al(z, t(z))e
iφl(z,t(z),p)}. (208)

The above obtained equations (201), (204), (206), (208) enable describing

the generation process in a FEL with varied parameters of diffraction grat-

ing (photonic crystal). The analysis of the system (206) can be simplified by

replacement of the γ(z, t(z), p) with its averaged by the initial phase value

< γ(z, t(z)) >=
1

2π

2π
∫

0

γ(z, t(z), p) dp.

Note that the law of parameters change can be both smooth and stair-step.

Using photonic crystals provide the development of different VFEL arrange-

ments (see Figure 25).

It should be noted that, for example, in the FEL (TWT, BWO) resonator

with changing in space parameters of grating (photonic crystal), the electro-

magnetic wave with a spatial period depending on z is formed. This means

that the dynamical undulator with a period depending on z appears along the

whole resonator length, i.e., a tapering dynamical wiggler becomes settled. It

is well known that a tapering wiggler can significantly increase the efficiency
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Figure 25. An example of photonic crystal with the thread arrangement providing

multi-wave volume distributed feedback. Threads are arranged to couple several

waves (three, four, six and so on), which appear due to diffraction in such a structure,

in both the vertical and horizontal planes. The electronic beam takes the whole

volume of photonic crystal.

of the undulator FEL. The dynamical wiggler with varied period, which is

proposed, can be used for development of double-cascaded FEL with param-

eters changing in space. The efficiency of such a system can be significantly

higher that of a conventional system. Moreover, the period of a dynamical

wiggler can be made much shorter than that available for wigglers using static

magnetic fields.

It should also be noted that the compression of the radiation pulse in such

a system is possible because the phase velocity of the electromagnetic wave

depends on time.

Thus, the equations providing the description of the generation process in

FEL with varied parameters of diffraction grating (photonic crystal) are ob-

tained. It is shown that applying diffraction gratings (photonic crystal) with

the variable period one can significantly increase radiation output. It is men-

tioned that diffraction gratings (photonic crystal) can be used for creation of

the dynamical wiggler with variable period in the system. This makes possible
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to develop double-cascaded FEL with variable parameters changing, which

efficiency can be significantly higher that of conventional system.

In conclusion, it should be noted that in the photonic crystals built from metal

(or dielectric) threads, waves are effectively diffracted even when their lengths

are much smaller than the distance between the threads. That is why it is

possible to generate radiation in the terahertz range using diffraction gratings

with a millimeter period alone.

Above, we have studied the features of generation for the sources with trans-

verse dimensions much greater than the radiation wavelength. In the case

when the finite dimensions of a resonator should be taken into account, it is

necessary to follow the rules given in [87,117,152,163].

24.2 Radiative instability of a relativistic electron beam moving in a finite-

dimensional photonic (or natural) crystal

According to the analysis given in [163], the first and most important step in

describing the generation process in VFELs (FELs and so on) is the analysis of

the problem of the electron beam instability in the resonator. The theoretical

study of the instability of electron beams moving in natural and artificial

(photonic) crystals was carried out above for the ideal case of an infinite

medium (see the review in [87] and [49,102,117,152,181]). The question arising

in this regard is how the finite dimensions of the photonic crystal placed

inside the resonator affect the law of electron beam instability. It is known, for

example, that the discrete structure of the modes in waveguides and resonators

is crucial for effective generation in the microwave range [83,84,183,184,185].
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In present section the radiative instability of a beam moving in a photonic

crystal is studied. The dispersion equation describing instability in this case

is obtained. It is shown that the law Γ ∼ ρ1/(s+3) is also valid and caused by

the mixing of the electromagnetic field modes in the finite volume due to the

periodic disturbance from the photonic crystal.

The system of equations describing generation of induced radiation in pho-

tonic (and natural) crystals can be obtained similarly to those in section 24.1

(equations (182)-(187)).

In the general case, the susceptibility of the photonic crystal reads χ̂ (~r) =

∑

i
χ̂cell (~r − ~ri), where χ̂cell (~r − ~ri) is the susceptibility of the crystal unit cell.

The susceptibility of an infinite perfect crystal χ̂ (~r) can be expanded into the

Fourier series as follows: χ̂ (~r) =
∑

~τ
χ̂~τe

i~τ~r, where ~τ is the reciprocal lattice

vector of the crystal.

To be more specific, let us consider in details a practically important case

when a photonic crystal is placed inside a smooth waveguide of rectangular

cross-section.

The eigenfunctions and the eigenvalues of such a waveguide are well-studied

[16,188].

Suppose the z-axis to be directed along the waveguide axis. Make the Fourier

transform of (186) over time and longitudinal coordinate z . Expanding thus

obtained equation for the field ~E (~r⊥, kz, ω) over a full set of vector eigenfunc-

tions of a rectangular waveguide ~Y λ
mn (~r⊥, kz) (where m,n = 1, 2, 3...., while λ
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describes the type of the wave [6], one can obtain for the field ~E the equality

~E (~r⊥, kz, ω) =
∑

mnλ

Cλ
mn (kz, ω)

~Y λ
mn (~r⊥, kz) . (209)

As a result, the following equation can be written

[

(k2z + κ2mnλ)− ω2

c2

]

Cλ
mn (kz, ω)−

−ω2

c2
1
2π

∑

m′n′λ′

∫ ~Y λ∗

mn (~r⊥, kz) χ̂ (~r)
~Y λ′

m′n′ (~r⊥, k
′
z) e

−i(kz−k′z)z d2r⊥C
λ′

m′n′ (k′z, ω) dk
′
zdz =

= 4πiω
c2

∫ ~Y λ∗

mn (~r⊥, kz)
{

~j (~r⊥, z, ω) +
c2

ω2
~∇
(

~∇~j (~r⊥, z, ω)
)}

e−ikzzd2r⊥dz

(210)

where κ2mnλ = k2xmλ + k2ynλ.

The beam current and density appearing on the right-hand side of (210) are

complicated functions of the field ~E. To study the problem of the system

instability, it is sufficient to consider the system in the approximation linear

over perturbation, i.e., one can expand the expressions for ~j and ρ over the

field amplitude ~E and abridge oneself with the linear approximation.

As a result, a closed system of equations comes out. For further consideration,

one should obtain the expressions for the corrections δ~j and δρ due to beam

perturbation by the field. Considering the Fourier transforms of the current

density and the beam charge ~j
(

~k, ω
)

and ρ
(

~k, ω
)

, one can obtain from (183)

that

δ~j
(

~k, ω
)

= e
N
∑

α=1

e−i
~k~rα0







δ~vα
(

ω − ~k~uα
)

+ ~uα

~kδ~vα
(

ω − ~k~uα
)

ω − ~k~uα







, (211)

where ~rα0 is the original coordinate of the electron, ~uα is the unperturbed

velocity of the electron.
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For simplicity, let us consider a cold beam, for which ~uα ≈ ~u, where ~u is the

mean velocity of the beam. The general case of a hot beam is obtained by

averaging δ~j
(

~k, ω
)

over the velocity ~uα distribution in the beam.

According to (184), the velocity δ~vα is determined by the field ~E (~rα, ω) taken

at the electron location point ~rα. The Fourier transform of the field ~E (~rα, ω)

has a form

~E (~rα, ω) =
1

(2π)3

∫

~E
(

~k′, ω
)

ei
~k′~rαd3k′.

As a result, the formula for δ~j
(

~k, ω
)

includes the sum
∑

α
e−i(

~k−~k′)~rα over the

particle distribution in the beam. Suppose that the electrons in an unperturbed

beam are uniformly distributed over the area occupied by the beam. Therefore

∑

α

e−i(
~k−~k′)~rα = (2π)3 ρ0 δ

(

~k − ~k′
)

,

where ρ0 is the beam density (the number of electrons per 1 cm3).

As a result, the following expression for δ~j
(

~k, ω
)

can be obtained [51,60]:

δ~j
(

~k, ω
)

=
i~ue2ρ

(

k2 − ω2

c2

)

(

ω − ~k~u
)2
mγω

~u~E
(

~k, ω
)

. (212)

Using the continuity equation, one immediately obtains the expression for

ρ
(

~k, ω
)

. Expression (212), the inverse Fourier transform of ~E
(

~k, ω
)

, and the
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expansion (209) enable writing the system of equations (210) as follows:

[

(k2z + κ2mnλ)− ω2

c2

]

Cλ
mn (kz, ω)−

−ω2

c2
1
2π

∑

m′n′λ′

∫ ~Y λ∗

mn (~r⊥, kz) χ̂ (~r)
~Y λ′

m′n′ (~r⊥, k
′
z) e

−i(kz−k′z)z d2r⊥C
λ′

m′n′ (k′z, ω) dk
′
zdz =

= −ω2
L(k2mnc

2−ω2)
γc4(ω−~kmn~u)

2

{

1
2π

∣

∣

∣

∫

~u ~Y λ
mn

(

~k⊥, kz
)

d2k⊥
∣

∣

∣

2
}

Cλ
mn (kz, ω) ,

(213)

where ~Y λ
mn

(

~k⊥, kz
)

=
∫

e−i
~k⊥~r⊥ ~Y λ

mn (~r⊥, kz) d
2r⊥.

Note that within the limit where the transverse dimensions of a photonic

crystal tend to infinity, the expression between the braces takes the form

(~e~u)2, where ~e is the unit polarization vector of the wave emitted by the beam

[51,60].

Now let us consider the integrals on the left-hand side of equation (213).

Note that according to [6,16,188], the eigenfunctions ~Y λ
mn (~r⊥, kz) of a rect-

angular waveguide include the combinations of sines and cosines of the form

sinπm
a
x, cosπm

a
x (sinπn

b
y, cosπn

b
y), i.e., in fact, the combinations ei

πm
a
x, ei

πn
b
y.

Hence, the left-hand side of the equation includes the integrals of the type

I =
∫

e−i
πm
a
x
∑

i

χ̂cell (x− xi, y − yi, z − zi) e
iπm′

a
xdx.

The substitution of variables x− xi = η gives the sums of the form

Sx =
∑

i

e−i
π
a
(m−m′)xi

where xi = dxf1, where dx is the period of the photonic crystal along the

x-axis, f1 = 1, 2, ...Nx, where Nx is the number of cells along the x-axis.

163



The above-mentioned sum

Sx =
∑

i

e−i
π
a
(m−m′)xi = ei

π
2a

(m−m′)(Nx−1)dx
sinπ(m−m′)dxNx

2a

sinπ(m−m′)dx
2a

. (214)

If m−m′ = 0, then Sx = Nx.

Let us now discuss what this sum is equal to when m − m′ = 1. In the

numerator dxNx = a, hence, the nominator is equal to 1 (sinπ
2
= 1), while in

the denominator sinπdx
2a

≈ π
2Nx

. As a result, the relation Sx(m−m′=1)
Sx(m−m′=0)

= 2
π
≈ 0.6.

With growing difference m−m′, the contribution to the sum of the next terms

diminishes until the following equality is fulfilled

π (m−m′) dx
2a

= πP, (215)

where P = ±1,±2... In this case the sum Sx = Nx.

The similar reasoning is valid for summation along the y-axis.

It follows from the aforesaid that if the equalities like (214), (215) are fulfilled,

that is, the equalities kxm−k′xm′ = τx are fulfilled (i.e., k′xm′ = kxm−τx), where

τx = 2π
dx
F is the x-component of the reciprocal lattice vector of the photonic

crystal, F = 0,±1,±2... and kyn − k′yn′ = τy (i.., k′yn′ = kyn − τy), where τy =

2π
dy
F ′ is the y-component of the reciprocal lattice vector of the photonic crystal,

F ′ = 0,±1,±2...), then the major contribution to the sums comes from the

amplitudes Cλ′

m′n′ (k′z, ω) ≡ Cλ′
(

~k⊥mn − ~τ⊥, kz − τz, ω
)

= Cλ′
(

~kmn − ~τ, ω
)

.

In describing the system we shall further consider only those modes that satisfy

the equalities of the type (214), (215). As stated above, the contribution of

other modes is suppressed.
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As a result, one can rewrite the system of equations (213) as

(

~k2mn − ω2

c2

)

Cλ
(

~kmn, ω
)

− ω2

c2
∑

λ′τ
χλλ

′

mn (~τ)C
λ′
(

~kmn − ~τ, ω
)

=

−ω2
L(k2mnc

2−ω2)
γc4(ω−~kmn~u)

2

{

1
2π

∣

∣

∣

∫

~u ~Y λ
mn

(

~k⊥, kz
)

d2k⊥
∣

∣

∣

2
}

Cλ
(

~kmn, ω
)

,

(216)

i.e.,

(

~k2mn − ω2

c2

(

1 + χλλmn (0)−
ω2
L(k2mnc

2−ω2)
ω2γc2(ω−~kmn~u)

2

{

1
2π

∣

∣

∣

∫

~u ~Y λ
mn

(

~k⊥, kz
)

d2k⊥
∣

∣

∣

2
}

))

Cλ
(

~kmn, ω
)

−ω2

c2
∑

λ′τ
χλλ

′

mn (~τ)C
λ′
(

~k − ~τ, ω
)

= 0

(217)

where χλλ
′

mn (τ) =
1
dz

∫ ~Y λ∗
mn (~r⊥, kz) χ̂ (~r⊥, τz)

~Y λ′

m′n′ (~r⊥, kz − τz) d
2r⊥, χ̂ (~r⊥, τz) =

∑

xi,yi

∫

χ̂cell (x− xi, y − yi, ζ) e
−iτzζdζ ,m′ and n′ are found by the conditions like

(215), ωL is the Langmuir frequency, ω2
L
= 4πe2ρ0

m
.

This system of equations coincides in form with that describing the instability

of a beam passing through an infinite crystal [51,60]. The difference between

them is that the coefficients appearing in these equations are defined differ-

ently and that in the case of an infinite crystal, the wave vectors ~kmn have a

continuous spectrum of eigenvalues rather than a discrete one.

These equations enable one to define the dependence k (ω), thus defining the

expressions for the waves propagating in the crystal. By matching the incident

wave packet and the set of waves propagating inside the photonic crystal using

the boundary conditions, one can obtain the explicit expression describing the

solution of the considered equations.

The result obtained is formally analogous to that given in [55].

According to (217), the expression between the square brackets acts as the

165



dielectric permittivity ε of the crystal under the conditions when diffraction

can be neglected:

ε0 = n2 = 1 + χλλmn (0)−
ω2
L (k

2
mnc

2 − ω2)

ω2γc2
(

ω − ~kmn~u
)2

{

1

2π

∣

∣

∣

∣

∫

~u ~Y λ
mn

(

~k⊥, kz
)

d2k⊥

∣

∣

∣

∣

2
}

,

n is the refractive index.

As is seen, in this case the contribution to the refractive index comes not only

from the scattering of waves by the unit cell of the crystal lattice, but also

from the scattering of waves by the beam electrons (the term proportional to

ω2
L): the photonic crystal penetrated by a beam of electrons is a medium that

can be described by a ceratin refractive index n (or the dielectric permittivity

ε0).

According to (217), the beam contribution increases when ω → ~k~u.

Since this system of equations is homogeneous, its solvability condition is the

vanishing of the system determinant.

In the beginning, let us assume that the diffraction conditions are not fulfilled.

Then the amplitudes of diffracted waves are small. In this case the sum over

τ can be dropped, and the conditions for the occurrence of the wave in the

system is obtained by the requirement that the expression between the square

brackets equal zero.

This expression can be written in the form (the velocity ~u||oz)

(ω − kzu)
2

(

k2mn −
ω2

c2
n2
0

)

= −ω
2
L (k

2
mnc

2 − ω2)

γc4

{

1

2π

∣

∣

∣

∣

∫

~u ~Y λ
mn

(

~k⊥, kz
)

d2k⊥

∣

∣

∣

∣

2
}

,

where n0 is the refractive index of the photonic crystal in the absence of the
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beam ε0 = n2
0 = 1 + χλλmn (0),

i.e.,

(

k2z −
(

ω2

c2
n2
0 − κ2mn

))

(ω − kzu)
2 = −ω

2
L (k

2
mnc

2 − ω2)

γc4

{

1

2π

∣

∣

∣

∣

∫

~u ~Y λ
mn

(

~k⊥, kz
)

d2k⊥

∣

∣

∣

∣

2
}

(218)

Since the nonlinearity is insignificant, let us consider as the zero approximation

the spectrum of the waves of equation (218) with zero right-hand side.

Let us concern with the case when ω− kzu→ 0 (i.e., the Cherenkov radiation

condition can be fulfilled) and
(

k2z −
(

ω2

c2
n2
0 − κ2mn

))

→ 0, i.e, the electromag-

netic wave can propagate in a photonic crystal without the beam. With zero

right-hand side the equation reads

(

k2z −
(

ω2

c2
n2
0 − κ2mn

))

= 0, (ω − kzu) = 0 (219)

As a consequence, in this case the roots of the equation are

k1z =
ω

c

√

n2
0 −

κ2mnc
2

ω2
, k′1z = −k1z, k2z =

ω

u
. (220)

Since k2z =
ω
u
> 0 in view of the Cherenkov condition, we are concerned with

the propagation of the wave with k1z > 0 in the photonic crystal. In this case

in the equation for kz, one can take (kz − k1z) (kz + k1z) ≈ 2k1z (kz − k1z) and

rewrite equation (218) as follows:

(kz − k1z) (kz − k2z)
2 = −ω

2
Lω

2 (n2
0 − 1)

2k1zu2γc4

{

1

2π

∣

∣

∣

∣

∫

~u ~Y λ
mn

(

~k⊥, kz
)

d2k⊥

∣

∣

∣

∣

2
}

(221)

i.e.,

(kz − k1z) (kz − k2z)
2 = −A (222)
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where A is real and A > 0 (as for the occurrence of the Cherenkov effect, it

is necessary that n2
0 > 1). We have obtained the cubic equation for kz. Let us

consider the case when the roots k1z and k2z coincide k1z = k2z. It is possible

when the particle velocity satisfies the condition

u =
c

√

n2
0 − κ2mnc

2

ω2

. (223)

Introduction of ξ = k − k1z gives for k1z = k2z

ξ3 = −A. (224)

The solution of equation (224) gives three roots ξ1 = − 3
√
A, ξ2,3 =

1
2

(

1± i
√
3
)

3
√
A.

As a consequence, the state corresponding to the root ξ2 = 1
2

(

1 + i
√
3
)

3
√
A

grows with growing z, which indicates the presence of instability in a beam

[189]. In this case Imkz = Im ξ2 ∼ 3
√
ρ.

Note here that the photonic crystal built from metallic threads has the re-

fractive index n0 < 1 for a wave with the electric polarizability parallel to the

threads, i.e., in this case the Cherenkov instability of the beam does not exist

[87] (but if the electric vector of the wave is orthogonal to the metallic threads,

the refractive index is n0 > 1 , so for such a wave the Cherenkov instability

exists [165]).

It should be pointed out, however, that, unlike an infinite photonic crystal, the

field in the crystal placed into the waveguide has a mode character, and so the

presence of κ2mn in the denominator of equation (223) results in reduction of

the radicand in (223) to the magnitude smaller than unity even when n2
0 > 1.

Hence, u > c, which is impossible. Consequently, the radiative instability of

168



the above type in the waveguide can arise under the condition n2
0 − κ2mnc

2

ω2 > 1

rather than n2
0 > 1.

Suppose now that in the photonic crystal the conditions can be realized under

which the wave amplitude Cmn
(

~kmn + ~τ
)

is comparable with the amplitude

Cmn
(

~kmn
)

. By analogy with the standard diffraction theory for an infinite

crystal [165,15], in the case under consideration, when χ << 1, it is sufficient

that only the equations for these amplitudes remain in (217).

To be specific, let us further consider a photonic crystal formed by parallel

threads. Also assume that they are parallel to the waveguide boundary (y, z).

Analysis of diffraction of a λ-type wave with the electric vector in the plane

(y, z) (a TM-wave) gives

[

k2mn −
ω2

c2
ε

]

Cλ
(

~kmn, ω
)

− ω2

c2
χλλmn (−~τ )Cλ

(

~kmn + ~τ , ω
)

= 0 (225)

[

(

~kmn + ~τ
)

− ω2

c2
ε0

]

Cλ
(

~kmn + ~τ, ω
)

− ω2

c2
χλλmn (~τ )C

λ
(

~kmn, ω
)

= 0.

Since the term containing
(

ω −
(

~k + ~τ
)

~u
)−1

is small when
(

ω − ~k~u
)

vanishes,

in the second equation it is dropped.

The dispersion equation defining the relation between kz and ω is obtained by

equating to zero the determinant of the system (225) and has a form:

[

(

k2mn − ω2

c2
ε0
)

(

(

~kmn + ~τ
)2 − ω2

c2
ε0

)

− ω4

c4
χτχ−τ

]

(ω − kzu)
2 =

− ω2
L

γc4

{

1
2π

∣

∣

∣

∫

~u ~Y λ
mn

(

~k⊥, kz
)

d2k⊥
∣

∣

∣

2
}

(k2mnc
2 − ω2)

(

(

~kmn + ~τ
)2 − ω2

c2
ε0

)

.

(226)

Because the right-hand side of the equation is small, one can again seek the

solution near the points where the right-hand side is zero that corresponds
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the condition of occurrence of the Cherenkov radiation and excitation of the

wave which can propagate in the waveguide:

(

k2z −
(

ω2

c2
ε0 − κ2mn

)) (

(kz + τ )2 −
(

ω2

c2
ε0 − (~κmn + ~τ⊥)

2
))

− ω4

c4
χτχ−τ = 0

(

kz − ω
u

)2
= 0

(227)

The roots of equations are sought near the conditions k2mn ≈
(

~kmn + ~τ
)

,

kz = kz0 + ξ, k2z = k2z0 + 2kz0ξ + ξ2, k2z0 =
ω2

c2
ε0 − κ2mn; kz0 =

ω

c

√

ε0 −
κ2mnc

2

ω2
(228)

(kz + τz)
2 = [(k0z + τz) + ξ]2 = (k0z + τz)

2 + 2 (k0z + τz) ξ + ξ2

Hence,

(k0z + τz)
2 + (~κmn + ~τ⊥)

2 + 2 (k0z + τz) + 2 (k0z + τz) ξ + ξ2 =

(

~kmn + ~τ
)2

+ 2 (k0z + τz) ξ + ξ2 = k20mn + 2~k0mn~τ + τ 2 + 2 (k0z + τz) ξ + ξ2.

(229)

And one can get

2k0zξ
(

2 (k0z + τz) ξ +
(

2~k0mn~τ + τ 2
))

− ω4

c4
χτχ−τ = 0

4k0z (k0z + τz) ξ
2 + 2k0z

(

2~k0mn~τ + τ 2
)

ξ − ω4

c4
χτχ−τ = 0 (230)

ξ2 +

(

2~k0mn~τ + τ 2
)

(k0z + τz)
ξ − ω4

c4
χτχ−τ

4k0z (k0z + τz)
= 0

ξ1,2 = −
(

2~k0~τ + τ 2
)

4 (k0z + τz)
±

√

√

√

√

√





2~k0~τ + τ 2

4 (k0z + τz)





2

+
ω4

c4
χτχ−τ

4k0z (k0z + τz)

If (k0z + τz) = − |k0z + τz|, the root can cross the zero point. At the same
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time, the second equation should hold

ω − kzu = ω − k0zu− ξu = 0.

Consequently,

ξ =
ω − k0zu

u
=
ω

u
− k0z =

ω

u
− ω

c

√

ε0 −
κ2mnc

2

ω2
.

If ε0 < 1, then ξ = ω
u

(

1− β
√

ε0 − κ2mnc
2

ω2

)

> 0, ξ = ω
u
− k0z

Let the roots ξ1 and ξ2 coincide (ξ1 = ξ2). This is possible at point

2~k0~τ + τ 2

4 (k0z + τz)
= ±ω

2

c2

√
χτχ−τ

√

4k0z |k0z + τz|
,

here k0z + τz < 0.

The roots coincide when the following equality is fulfilled

ω

u
− k0z = ∓ω

2

c2

√
χτχ−τ

√

4k0z |k0z + τz|
,

i.e.,

ω

u
= k0z ∓

ω2

c2

√
χτχ−τ

√

4k0z |k0z + τz|
and k0z =

ω

c

√

ε0 −
κ2mnc

2

ω2

Let ε0 < 1, then ω
u
> k0z (since u < c), the situation for the solution ω

u
=

k0z − ω2

c2

√
χτχ−τ√

4k0z |k0z+τz |
gets complicated and the Vavilov-Cherenkov condition is

not fulfilled.

Now let us consider the solution ω
u

= k0z +
ω2

c2

√
χτχ−τ√

4k0z |k0z+τz |
. At τz < 0 the

difference k0z + τz can be reduced so that the sum on the right would appear

to become equal to ω
u
, and so one could obtain 4 coinciding roots.
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Interestingly enough, for backward diffraction, which is a typical case of fre-

quently used one-dimensional generators with a corrugated metal waveguide

(the traveling-wave tube, the backward-wave tube), such a coincidence of roots

is impossible.

Indeed, let the roots ξ1 and ξ2 coincide. In this case for the backward Bragg

diffraction |τz| ≈ 2k0z, τz < 0. Then by substituting the expressions for

k0z = ω
c

√

ε0 − κ2mnc
2

ω2 and ε0 = n2
0 = 1 + χλλmn (0) and retaining the first-order

infinitesimal terms, the relation ω
u
≈ k0z +

ω2

c2
|χτ |
2k0z

can be reduced to the form

ω
u
≈ ω

c

(

1− |χλλ
mn(0)|
2

− κ2mnc
2

2ω2 + ω
c
|χτ |
2

)

< ω
u
, i.e., the equality does not hold and

the four-fold degeneracy is impossible. Only ordinary three-fold degeneration

is possible.

However, if ε0 > 1 and is appreciably large, then in a one-dimensional case,

the four-fold degeneracy of roots is also possible in a finite photonic crystal 1 .

Thus, the left-hand side of equation (226) has four roots ξ1, ξ2, and a double

degenerated root ξ3. Hence, equation (226) can be written as follows:

(ξ − ξ1) (ξ − ξ2) (ξ − ξ3)
2 = B.

If the roots coincide (ξ1 = ξ2 = ξ3), one obtains (ξ − ξ1)
4 = B,, i.e., ξ − ξ1 =

4
√
B.

The fourth root of B has imaginary solutions depending on the beam density

as Imkz ∼ ρ
1/4
0 (the parameter B ∼ ω2

L, i.e., B ∼ ρ0, see the right-hand side

1 The authors are grateful to K. Batrakov, who drew our attention to the fact

that for an infinite crystal with ε0 > 1, the intersection of roots is possible in a

one-dimensional case.
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of (226)). This increment is larger than the one we obtained for the case of

the three-fold degeneracy.

The analysis shows that with increasing number of diffracted waves, the law

established in [25,49,186] is valid: the instability increment appears to be pro-

portional to ρ
1

s+3 , where s is the number of waves emerging through diffraction.

As a result, the abrupt decrease in the threshold generation current also re-

mains in this case (the threshold generation current jth ∼ 1
(kL)3(kχτL)

2s , where

L is the length of the interaction area).

It is interesting that according to [117], for a photonic crystal made from

metallic threads, the coefficients χ (τ), defining the threshold current and the

growth of the beam instability, are practically independent on τ up to the

terahertz range of frequencies because the diameter of the thread can easily

be made much smaller than the wavelength. That is why photonic crystals

with the period of about 1 mm can be used for lasing in terahertz range at

high harmonics (for example, photonic crystal with 3 mm period provides the

frequency of the tenth harmonic of about 1 terahertz (λ=300 micron).

The analysis of laser generation in VFEL with a photonic crystal when the

beam moves in an undulator (electromagnetic wave) located in a finite crystal,

made similarly to the above analysis, shows that in this case the dispersion

equation and the law of instability also have the same form as in the case

of an infinite crystal. The procedure for going from the dispersion equations

describing instability in the infinite case (217) is similar to that discussed

earlier in this paper. It consists in replacing the continuous ~k by the quantified

values of ~kmn and redefining the coefficients appearing in equations like (217).

It is important to emphasize the general character of the rules found in this
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paper for obtaining dispersion equations that describe the radiative instability

of the electron beam in a finite photonic crystal. In particular, they are valid

for describing the processes of instability of an electromagnetic wave in finite

nonlinear photonic crystals.

25 Hybrid systems with virtual cathode for high power microwaves

generation ([166])

The interest for high power microwave (HPM) sources has emerged in re-

cent years due to revealing new applications and offering novel approaches to

existing ones.

Vacuum electronic sources, which convert the kinetic energy from an electron

beam into the electromagnetic field energy, are a natural choice for generating

HPM.

The high current density electron beam, once generated, propagates through

an interaction region, which converts the beam’s kinetic energy to HPM. It

is the particular nature of the interaction that distinguishes various classes of

sources.

High power HPM sources generating high electromagnetic power density re-

quire the high power densities in the electron beams, where space-charge effects

are essential.

When the magnitude of the current Ib of an electron beam injected into a

drift tube exceeds the space-charge-limiting current Ilimit, an oscillating virtual

cathode (VC) is formed [167,168].
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According to [167], the following formula gives a good approximation for the

space-charge-limiting current:

Ilimit(kA) =
mc3

e
G(γ2/3 − 1)3/2 (231)

where m and e are the mass and the charge of an electron, c is the speed

of light, γ is the Lorentz factor of the electron beam and G depends on the

geometry [167,169]. For example, for an annular electron beam in a cylindrical

drift tube G reads as follows [169]:

G =
1

(
rb−rinb
rb

+ 2 ln R
rb
)(1− sechµ1L

2R
)
, (232)

where rb and r
in
b are the outer and inner radius of the electron beam, R and L

are the radius and length of the cylindrical drift tube and µ1 is the first root

of the Bessel function J0(µ) = 0.

When the oscillating virtual cathode is formed, two types of electrons exist:

those oscillating in the vircator potential well and passing through the vircator

area (see Figure 26).

cathode
virtual

cathode

anode

passed
electron beam

microwave
radiation

oscillating
electron beam

Figure 26. An oscillator with virtual cathode

For electrons oscillating in the area ”cathode-anode-virtual cathode”, two ra-

diation mechanisms provide a radio-frequency signal [172]:
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1. one radiation mechanism originates from the oscillations of the reflected

electrons about the anode foil (electron oscillations in the potential well ”cathode-

anode-virtual cathode”). A microwave signal is generated at a frequency of

roughly c
2dd

, where dd is the anode-to-cathode spacing.

2. The other radiation mechanism is the oscillation of the virtual cathode at

a frequency near the plasma frequency ωp of the space charge density that is

formed. That is

ωp =

√

4πnee2

m
(233)

where ne is the number density of the electrons in the space charge configu-

ration (in the plane of the anode grid) [172].

The essence of the above radiation mechanisms is bremsstrahlung radiation

ensuing from electron deceleration.

It should be emphasized that bremsstrahlung radiation from electrons oscillat-

ing in an electron beam with a virtual cathode is accompanied by transition

radiation, which is originated by electron velocity rather than acceleration.

Use of a photonic crystal enables one to construct several types of hybrid

systems with a virtual cathode, which could radiate due to different radia-

tion mechanisms (bremsstrahlung and diffraction (transition) radiation) with

different frequencies.

In vircator systems, a grid cathode and anode (or anodes) are commonly used

[169,170,171,173]. The electron beam oscillates, making electrons periodically

cross the grid anodes and cathode (see, for example [171]). It is transition ra-

diation that occurs when electrons pass through a border between two media
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with different indices of refraction. It is worth noting that periodical excite-

ment of transition radiation from electrons oscillating in vircator is similar to

diffracted radiation from a charged particle in a periodic structure. As a result,

in a system with oscillating virtual cathode, the vircator radiation, which is

actually the electron beam bremsstrahlung, is accompanied by radiation ex-

cited by the additional mechanism due to transition (diffraction) radiation

from oscillating current passing through the grid anodes (cathode).

Let us turn to that part of the beam, which passes through the virtual cathode

area. Recall that the oscillation of the virtual cathode can produce a highly

modulated electron beam, and, as a result, the energy from the bunched trans-

mitted beam can be recovered using slow-wave structures [174].

slow-wave
structure

Figure 27. Hybrid system ”vircator + travelling wave tube” [174]

Interaction of the electron beam with the slow-wave structure in, for instance,

a conventional TWT poses special challenges: interaction is sufficiently effec-

tive only for electrons moving at the distance δ from the slow-wave structure

surface

δ ≤ λβγ

4π
, (234)

δ is the so-called beam impact parameter, λ is the radiation wavelength, β =
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v/c , v is the electron beam velocity, γ is the electron Lorentz-factor. For

example, for electrons with the energy of 250 keV (β = 0.74 and γ = 1.49)

and the radiation wavelength λ = 10mm (frequency 30 GHz), the impact

parameter δ ≈ 0.9mm. It means that for efficient radiation generation by the

annular electron beam with the thickness ∆ ≤ δ only a part of the beam would

contribute to radiation.

As we showed in [87,89,103,112,117,175,176,177], this challenge can be over-

come by applying a photonic crystal, formed by metal grids (grid traveling

wave tube (grid TWT), grid volume free electron laser(grid VFEL)).

What is more, in accordance with [178,179,180], the application of metal in-

serts (meshes, grids and so on) inside a resonator enables increasing the elec-

tron beam limit current.

Therefore, in the grid TWT (grid VFEL), the presence of the metal grid

(photonic crystal) serves both for forming the resonator, where interaction

of the beam and radiation occurs, and for potential balancing that makes it

possible to increase the beam vacuum limit current.

And for the grid TWT (grid VFEL) with the supercritical current, the elec-

tron beam executes compound motion exciting two radiation mechanisms con-

tributing to radiation: bremsstrahlung of oscillating electrons and diffraction

(transition) radiation from downstream electrons interacting with the periodic

grid structure(photonic crystal).

This means that the hybrid system ”vircator + grid TWT (grid VFEL)” arise

by analogy with the system described in [174], where several vircators could

appear due to the presence of several anode grids (see also [169]). But in
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contrast to the system [169], the hybrid system ”vircator + grid TWT (grid

VFEL)” uses periodically placed grids with either constant [112,175,176] or

variable period [177].

The frequency of diffracted radiation excited by an electron beam in a periodic

structure with the period d is determined by the condition

ω − ~kn(k)~v = ~τ~v , (235)

where ~v is the electron beam velocity, ~τ is the reciprocal lattice vector (|~τ | =
2πp
d
), n(k) is the refraction index of a periodic structure, p is an integer number

(p = 1, 2, 3, ...).

When the electron beam velocity ~v is parallel to the reciprocal lattice vector

~τ , (235) reads [117]

ω =
2πp · v

d(1− βn(ω, k) cos θ)
(236)

Essentially, a photonic crystal in the grid TWT (grid VFEL) is transparent

to radiation as well as to an electron beam (see Figure 28). Moreover, several

diffracted waves could exist in a photonic crystal (see Figure 28)d, which

makes it possible to introduce a feedback in such a system at the frequency

of diffracted radiation and, hence, to couple several hybrid ”vircator + grid

TWT (VFEL)” generators making a phase-locked source, in which diffracted

waves from one photonic crystal (grid resonator) excites oscillations in the

neighbor resonators.

The proposed grid systems drastically differ from the system described in

[169], where several grids serve only for forming several vircators (see Figure
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electron beam
periodical “grid”

from metallic threads

six-wave diffractionthree-wave diffraction four-wave diffraction

a b

c d

grid photonic crystal

Figure 28. Grid TWT (grid VFEL) and photonic crystal arrangement

29).

drift tubes

grid anodes

Figure 29. Several vircators [169]

Of course, radiation from a hybrid generator ”vircator + grid TWT (VFEL)”

can be excited by several electron beams similar to a phase-locked array.

The bunched electron beam, which has passed through the virtual cathode

area, can also be used for excitation of free electron laser (ubitron) (see Figure

30) oscillation contributing to the radiation power.

Thus, the use of a photonic crystal enables one to construct several types
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undulator

Figure 30. Hybrid system ”vircator + undulator FEL”

of hybrid systems with virtual cathode, which could radiate due to different

radiation mechanisms (bremsstrahlung and diffraction (transition) radiation)

with different frequencies. The photonic crystal makes it possible to create a

phase-locked array of generators.

26 Volume Free Electron Laser (VFEL) as a new trend in devel-

opment of high-power tunable radiation sources: review of the-

oretical background and experiments in millimeter range

To conclude, let us mark the most important results obtained in investiga-

tion of the VFEL. Use of non one-dimensional distributed feedback in vacuum

electronic devices enables frequency tuning in a wide range and removes limits

for available output power. It also solves a problem of development of highly

stable mode-selective overmoded resonators, which open up new avenues for

extending the operating frequencies of all classes of microwave vacuum elec-

tronic devices.

New advances in different areas require the development of tunable, wide-

band, high-power sources of coherent electromagnetic radiation in gigahertz,

terahertz and higher frequency ranges. Conventional electron vacuum devices
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have restricted the possibility of frequency tuning (usually it does not exceed

5-10%) for the certain carrier frequency at certain e-beam energy. They also

have power limits because high levels of power density inside the system cause

sparkovers and damage of mirrors.

Volume free electron laser (VFEL) [25,87,181] was proposed as a new type of

a tunable high-power source of electromagnetic radiation.

The most essential feature of the FEL and other types of generators is a feed-

back, which is formed by a system of mirrors, or distributed feedback based

on diffraction in a spatially periodic medium, when wave vectors of transmit-

ted and reflected waves are colinear. The distinction of volume FEL (VFEL)

is non-one-dimensional multi-wave volume distributed feedback (VDFB). Use

of a non one-dimensional distributed feedback in vacuum electronic devices

gives the possibility of frequency tuning in a wide range and removes limits

for available output power. It also solves a problem of development of highly

stable mode-selective overmoded resonators, which open up new avenues for

extending the operating frequencies of all classes of microwave vacuum elec-

tronic devices.

It is well known that each radiative system is defined by its eigenmodes and

by the so-called dispersion equation, which in the case of small perturbations

(linear regime) describes possible types of waves in a system and relation

between frequency and wave number of the system eigenmodes. Thorough

analysis of FEL dispersion equation [108] shows that:

1. dispersion equation for FEL in collective regime coincides with that for

conventional traveling wave tube amplifier (TWTA) [109];

2. FEL gain (increment of electron beam instability) is proportional to ρ1/3,
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where ρ is the electron beam density.

But the law of instability of the electron beam can essentially change at passing

through a spatially periodic medium. This fact was first indicated in [49]. Dis-

persion equations were obtained and investigated for conditions of multi-wave

diffraction. It was shown that there is a new law of electron beam instability at

the points of diffraction roots degeneration. The amplification and generation

gain of the electromagnetic wave are sharply changed at these points.

This result is also valid for an electron beam, which moves in vacuum close

to the surface of a spatially periodic medium [25] (or in a vacuum slot made

inside a periodic medium).

First lasing of the VFEL was reported at FEL 2001 [181].

26.1 Volume FEL distinctive features

The advantages of VFEL are exhibited in a wide spectral range from mi-

crowaves to X-rays [55,87,110]. Frequency tuning, possibility to use wide elec-

tron beams (several e-beams) and reduction of threshold current density nec-

essary for the start of generation provided by VFEL, make it a basis for

development of more compact, high-power and tunable radiation sources than

conventional electron vacuum devices could let.

Benefits given by VFEL:

1. Volume FEL provides frequency tuning by rotation of diffraction grating;

2. Use of multi-wave diffraction reduces generation threshold and the size of
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the generation zone. The starting current j depends on interaction length L as

[55]: jstart ∼ 1/{(kL)3(kχτL)2s}, s is the number of surplus waves appearing

due to diffraction (for example, in the case of two-wave Bragg diffraction s = 1,

for three-wave diffraction s = 2, and so on).

3. Wide electron beams and diffraction gratings of large volumes can be used in

VFEL. Two or three-dimensional diffraction gratings allow one to distribute

the interaction over a large volume and to overcome power restrictions in

a resonator. Volume distributed feedback provides mode discrimination in a

VFEL resonator.

4. VFEL can simultaneously generate radiation at several frequencies.
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