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Abstract

The use of a non-one-dimensional distributed feedback, arising through Bragg diffrac-

tion in spatially periodic systems (natural and artificial (electromagnetic, photonic)

crystals), forms the foundation for the development of volume free electron lasers

(VFELs). The present review addresses the basic principles of VFEL theory and

describes the promising potential of VFELs as the basis for the development of

high-power microwave and optical sources.
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1 Introduction

Research and development of microwave generators using radiation from an

electron beam in a periodic slow–wave circuit (traveling–wave tube, backward

wave oscillator, etc.) has a long history (see e.g. [1,2,3]). One of the charac-

teristic features of such generators is the use of distributed feedback (DFB)

where the electromagnetic waves produced by the electron beam are collinear

with the direction of the beam motion (one-dimensional distributed feedback;

see Fig. 1).

It is well known that every radiating system is defined by its eigenmodes and

by the so-called dispersion equation, which describes the relation between the

frequency ω and the wave vector ~k (ω = ω(~k) or ~k = ~k(ω)). A thorough

analysis of the dispersion equation shows that:

(1) dispersion equation for a FEL [4] in the Compton regime coincides with

that for a conventional traveling wave tube amplifier (TWTA);

Email address: bar@inp.bsu.by, v baryshevsky@yahoo.com (V.G.

Baryshevsky).
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Figure 1.

(2) FEL gain (increment of electron beam instability) in the Compton regime

is proportional to n
1/3
0 , where n0 is the electron beam density.

It was first shown in [5,6] that the law of electron beam instability can change

significantly under the conditions of a non-one-dimensional distributed feed-

back formed in a two– or three–dimensional periodic resonator (natural or

artificial (electromagnetic, photonic) crystal); see Fig. 2.

forward
wave
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It was shown that the gain of electromagnetic waves changes sharply in the

vicinity of the points where the roots of the dispersion equation coincide. In

particular, according to [5,6], in the case when the DFB in a spatially periodic

resonator is formed by the two waves participating in the Bragg diffraction,
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Figure 2.

the increment of instability is proportional to n
1/4
0 . If the DFB is formed by N

number of waves (as a result of Bragg diffraction s = N − 1 number of extra

waves are produced (see Fig. 3)), then the increment of instability appears to

be proportional to n
1

3+s

0 , provided that the roots of the dispersion equation

coincide (e.g., for two–wave Bragg diffraction, N = 2 and s = 1, for three–

wave diffraction, N = 3 and s = 2 ). This result is also valid for electron
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Figure 3.

beams moving in vacuum near the surface of a spatially periodic medium,

in a vacuum slot made inside a periodic medium, or between the diffraction

gratings of the resonator. The explicit expressions for the starting current j

were obtained for the conditions of a non-one-dimensional DFB, and it was

shown that the threshold currents in this case can be sharply reduced.

The advantages of VFEL are pronounced in a wide spectral range – from

microwaves to X-rays [5,6,7,8,9,10].

Providing the capabilities for frequency tuning, using wide electron beams
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(several e-beams), and reducing the threshold current density, required to

initiate lasing, VFELs offer a more promising potential for the development

of more compact, high-power and tunable radiation sources than conventional

electron vacuum devices.

In particular, experimental investigation of the properties of electromagnetic

crystals formed by periodically spaced dielectric threads (wires) demonstrates

that the quality factor of such structures can be as high as ∼ 106÷108 [9]. First

experiments have been performed on exciting generation in different types of

periodic structures (resonators made of diffraction gratings with two different

periods, resonators based on a photonic crystal formed by metallic wires and

foils) (for details, see [7]).

Let us note that in [11,12,13], published some years after [5,6], the authors,

considering a particular case of using a two-dimensional DFB for the synchro-

nization of radiation across a wide sheet electron beam, also came to the con-

clusion that such distributed feedback can be used for developing microwave

generators.

Benefits given by VFELs:

(1) volume FELs provide frequency tuning by rotation of the diffraction grat-

ing;

(2) use of a non-one-dimensional DFB reduces the generation threshold and

the size of the generation zone. It appeared that if N = 1 + s number of

waves participate in the formation of a non-one-dimensional DFB, then

there are N number of connected waves propagating in the electromag-

netic (photonic) crystal (see Fig.3 ). This set of N number of connected

waves has N number of stationary states characterized by wave num-
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bers ki(ω), (i = 1, ...N). If the relationship (ki − kj)L = 2πmij (mij are

the integers, which in the general case are not the same) between these

waves holds, then a significant change in the threshold current value is

possible. Let us note that in the case of a one-dimensional DFD (see Fig.

1), these conditions transform into the requirement for the efficiency of a

one-dimensional DFB [15];

(3) VFELs allow the use of a wide electron beam (or several beams) and

diffraction gratings of large volumes. Two- or three-dimensional diffrac-

tion gratings (artificial crystals, now often called the electromagnetic or

photonic crystals) allow distributing the interaction over a large volume

and overcoming the power restrictions on resonators (see Fig. 2);

(4) VFELs can simultaneously generate radiation at several frequencies;

(5) VFELs enable effective mode selection in oversized systems, where the

radiation wave length is significantly smaller than the resonator dimen-

sions;

(6) use of electromagnetic (photonic) crystals with a spatially variable period

allows increasing the efficiency of lasing [7,14].

2 Radiative instability of beams moving in a spatially periodic

non-one-dimensional resonator (two- or three-dimensional elec-

tromagnetic (photonic) crystal)

Let a relativistic electron beam of velocity ~u enter the resonator having a

form of a photonic crystal with length L (the z-axis is perpendicular to the

crystal surface). Let this photonic crystal have infinite transverse dimensions

(crystal plate) and lie in the interval (0 < z < L). The set of equations
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describing the interaction of electromagnetic waves with the ”crystal-beam”

system consists of Maxwell’s equations and the equations of particle motion

in the electromagnetic field. The dielectric susceptibility of a crystal has the

form ε(~r;ω) =
∑

~τ ετ (ω) exp(−i~τ~r), where ~τ is the reciprocal lattice vector, ετ

is the Fourier expansion coefficient of ε(~r, ω) and ε(~r, ω) = 1 + χ(~r, ω), where

χ(~r, ω) is the space-periodic crystal polarizability, χ(~r, ω) =
∑

τ χτe
−i~τ ~r. We

assume here for simplicity that ε(~r, ω) is the scalar function. For concretness,

let us further assume that radiation is excited by quasi-Cherenkov (diffraction)

radiation (for details, see [7,8]). We also let |χτ ≪ 1|. Perturbations of the

current and charge densities in the linear field approximation may be written

in the form:

δ~j(~k;ω) = e
∑

α

exp(−i~k~rα0)
{

δ~vα(ω − ~k~u)− i~u[~kδ~rα(ω − ~k~u)]
}

δn(~k;ω)

= e
∑

α

exp(−i~kδ~rα0)
{

−i[~k~rα(ω − ~k~u)]
}

. (1)

Here δ~j(~k;ω) and δn(~k;ω) are the Fourier transformations of the expressions

~j(~r; t) = e
∑

α

~vα(t)δ[~r − ~rα(t)] and n(~r; t) =
∑

α

δ[~r − ~rα(t)] ;

~u is the unperturbed electron (positron) velocity; δ~vα and δ~rα are pertur-

bations of the velocity and radius vectors, respectively, arising due to the

interaction with the radiation field:

~vα(t) = ~u+ δ~vα(t) ~rα(t) = ~rα0 + ~ut+ δ~rα(t).

The subscript α denotes the number of the particle.

Using the equation of particle motion and formula (1) for current density,

one can obtain a set of Maxwell’s equations that describes the interaction of
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electromagnetic waves and particles in crystals:

k2
τ
~E(~kτ ′, ω)− ~kτ ′[~kτ ′ ~E(~kτ ′, ω)]−

ω2

c2
∑

τ

ετ(~kτ ′ , ~ω) ~E(~kτ+τ ′, ω)

= − ω2
L

γc2
~E(~kτ ′, ω)−





ω2
L
~kτ ′

γc2(ω − ~kτ ′~u)
+

ω2
L(
~kτ ′C

2 − ω2)

γC4(ω − ~kτ ′~u)2





×
[

(~u~E(~kτ ′ , ω))−
(

ω2
L~u

γc2(ω − ~kτ ′~u)

)

(~kτ ′ ~E(~kτ ′, ω))

]

,

~τ ′ = 0, ~τ1, ~τ2, ..., ~kτ = ~k + ~τ . (2)

The set of equations (2) describes a situation when the DFB is formed by

many diffracted waves (note that in the absence of an electron beam, the

case of multi-wave diffraction was studied in detail; see e.g. [16]). However,

the analysis of such a general situation is very complicated, and so here we

consider only a two-wave distributed feedback. This allows us to obtain all the

main characteristics of VFELs analytically and show the advantages of non-

one-dimensional geometry of distributed feedback over the one-dimensional

one.

So let us consider specifically the generation of a σ-polarized wave (the wave

with the polarization vector orthogonal to the diffraction plane, i.e., the plane

where vectors ~k and ~τ lie) for the geometry of the so-called two-beam Bragg

diffraction [17], where two strong waves are excited, and diffraction occurs by

the set of crystallographic planes, determined by the reciprocal lattice vector ~τ

(see Figs 4, 5). In this case, the set of Maxwell’s equations, describing two-wave

diffraction in crystals traversed by the beam, can be written as

(

k2c2 − ω2ε0 +
ω2
L

γ
+

ω2
L

γ

(~u~e ′
σ)

2

c2
k2c2 − ω2

(ω − ~k~u)2

)

Eσ − ω2ετE
τ
σ = 0

−ω2ε−τEσ +

(

K2
τ c

2 − ω2ε0 +
ω2
L

γ
+

ω2
L

γ

(~u~eσ)
2

e2
k2
τc

2 − ω2

(ω − ~kτ~u)2

)

~Eτ
σ = 0.

8



(3)

In equation (3), Eσ = ~E(~k, ω) · ~eσ, Eτ
σ = ~E(~k + ~τ, ω) · ~eσ, ~eσ ‖ [~k~τ ], and ω2

L =

4πe2n0/m, where n0 is the average electron density in the beam. According

to (3), the system ”crystal-particle beam” may be considered as an active

medium with dielectric susceptibility

ε̃0(~k, ω)− 1 = ε0 − 1− ω2
L

γω2
− ω2 − L

γω2

(~u~eσ)
2

c2
k2c2 − ω2

(ω − ~k~u)2
, ε̃τ̃ = ετ = χτ

ε̃0(~kτ , ω)− 1 = ε0 − 1− ω2
L

γω2
− ω2

L

γω2

(~u~eσ)
2

c2

~k2
τc

2 − ω2

(ω − ~kτ~u)2
, ε̃−τ = ε−τ = χ−τ

Further, we shall analyze the generation of a wave with wave vector ~k, making

a small angle with the particle velocity vector ~u. In this case, the wave vector

~kτ = ~k + ~τ is directed at a large angle relative to ~u, and consequently the

magnitude of (ω−~kτ~u) cannot become small. As a result, the terms containing

the expression (ω−~kτ~u) in their denominators will be small and can be ignored.

We shall also neglect the term ω2
L/γ – this is justified for real beam densities.

It is well known that the equation set (3) has nonzero solutions when its

determinant equals zero. This defines the dispersion equation, which can be

written in the form

(ω − ~k~u)2
[

(k2c2 − ω2ε0)(k
2
τc

2 − ω2ε0)− ω4ετε−τ

]

= (4)

−ω2
L

γ

(~u~eσ)
2

c2
(k2c2 − ω2)(k2

τc
2 − ω2ε0).

Dispersion equation (4) yields the relationship for ω = ω(~k) or ~k = ~k(ω).
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3 Generation equations and threshold conditions in the case of

two-wave Bragg diffraction

In order to determine the structure of the fields and describe the instability

evolution in the systems, one needs to know the dispersion equations and their

solutions, as well as the boundary conditions.

Now we shall formulate the boundary problem. Let an electron beam with

mean velocity ~u be incident onto a plane-parallel spatially periodic plate of

thickness L. The electron beam is oriented so that it generates radiation under

Bragg diffraction conditions. Under two-wave diffraction, two fundamentally

different geometries are possible.

In the first case (Laue geometry (see Fig.4), both waves are emitted through

one and the same boundary of the periodic structure (γ0 =
(~k~n)
k

> 0 and

γ1 =
(~kτ~n)

k
> 0, here ~n is the unit normal vector to the entrance surface).

Figure 4. Geometry of two-wave Laue diffraction; ~k,~kτ are the wave vectors of the

incident and diffracted waves, respectively, and ~τ is the reciprocal lattice vector of

the periodic structure. The projections of both wave vectors onto the direction of

the normal to the surface have the same sign.
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In the second case (Bragg geometry, see Fig. 5), the incident and diffracted

waves leave the plate through the opposite surfaces (γ0 > 0 and γ1 < 0).

Figure 5. Geometry of two-wave Bragg diffraction; ~k,~kτ are the wave vectors of the

incident and diffracted waves, respectively and ~τ is the reciprocal lattice vector of

the periodic structure. The projection of the wave vectors onto the direction of the

normal to the surface are opposite in sign.

Let us consider the Bragg case in more detail

The general solution for the field in a crystal is written as

~E =
4
∑

i=1

~eσci exp(i~ki~r)[1 + si exp(i~τ~r)], (5)

where ~ki is the i-th solution to dispersion equation (4) and ~kiτ = ~ki + ~τ , with

~τ being the reciprocal lattice vector corresponding to the planes of diffraction

reflection. In writing (5), we used four roots of dispersion equation (4), instead

of six. Two roots can be discarded because at |χτ | ≪ 1, mirror-reflected waves

can be ignored.

The boundary conditions, necessary for defining the fields in a crystal, may

be written as [7,8]

c1 + c2 + c3 + c4 = 1,
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f1c1 + f2c2 + f3c3 + f4c4 = 0,

g1c1 + g2c2 + g3c3 + g4c4 = 0, (6)

s1c1e
iK1zL + s2c2e

iK2zL + s3c3e
iK3zL + s4c4e

iK4zL = 0,

si =
ω2ε−τ

k2
iτ c

2 − ω2ε0
, fi =

(~u~eσ)
2

(ω − ~ki~u)
, gi =

k2
i c

2 − ω2

(ω − ~ki~u)2
(~u~eσ)

2

c2
.

The first equation in (6) corresponds to the continuity of the incident wave at

the boundary z = 0 (the wave incident on the crystal is assumed to have a unit

amplitude). The last equation in (6) reflects the fact that behind the crystal,

no waves move in the diffraction direction (they appear due to diffraction in

space before the entrance surface of the crystal; the general case, which is true

for both Bragg and Laue geometries, is considered in [7]). Here i = 1 ÷ 4 are

the solutions to dispersion equation (4). The second and the third conditions

correspond to the continuity of the beam density and the beam current density

at the crystal entrance. Here we apply the expressions obtained from the

equations of particle motion and the expression for the particle beam current

δjσ =
ie2n0

mγω

(~u~eσ)
2

c2
k2c2 − ω2

(ω − ~k~u)2
Eσ

jσ = e(~u~eσ)n0 −
ie2n0

mγ

(~u~eσ)
2

c2(ω − ~k~u)
Eσ. (7)

The linear system (6), defining the coefficients ci, has the solution ci = ∆i/∆,

where ∆ is the determinant of the system (6) and ∆i is the i-th minor, obtained
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as a result of replacement of the i-th column by









































1

0

0

0









































.

Hence, at ∆ → 0, the field amplitudes inside the crystal increase, and as a

result, the field in the crystal is nonzero, even when the amplitude of the inci-

dent wave vanishes. The condition ∆ = 0 with ∆i 6= 0 is called the generation

threshold condition [18]. Substituting the expressions

~ki = ~k0 + ~kδi~n, k0z =
ω − ~k⊥~u⊥

uz

,

k = ω/c, δi ≪ 1, (8)

(where ~n is the normal to the crystal surface and ~k0 = (k0z, ~k⊥)) into the

determinant ∆, we can represent the generation threshold condition ∆ = 0 as

(δ1 − δ2)(δ1 − δ3)(δ2 − δ3)

δ21δ
2
2δ

2
3

s4e
ikδ4L − (δ1 − δ2)(δ1 − δ4)(δ2 − δ4)

δ21δ
2
2δ

2
4

s3e
ikδ3L (9)

+
(δ1 − δ3)(δ1 − δ4)(δ3 − δ4)

δ21δ
2
3δ

2
4

s2e
ikδ2L − (δ2 − δ3)(δ2 − δ4)(δ3 − δ4)

δ22δ
2
3δ

2
4

s1e
ikδ1L = 0 .

In eq. (9), the terms containing nonresonant fi and gi (i = 1 ÷ 4) were ne-

glected.

Upon solving (9), one may determine the threshold generation conditions, i.e.,

the values of the electron current and other parameters of the beam, at which

radiation begins to exceed the losses [7,8].
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In the case of low-gain regime, for instance, the formula for the generation

threshold under the conditions of two–wave diffraction was obtained in the

form [8]:

−π2n2

4γ

(

ωL

ω

)2

k3L3
∗

(

χ′
0 + |χτ |/

√

−β − γ−2
)(

χ′
0 + |χτ |/

√

−β
)

sin2 ϕ× f(y)

=
(

γ0c

~u~n

)3 16(−β)π2n2

(k|χτ |L∗)2
+ kχ′′

0L∗

(

1√
−β

− 1

)2

. (10)

Here ω is the radiation frequency; ωL =
√

4πe2n0/me is the Langmuir fre-

quency of the beam; n0 is the average electron density in the beam; e and me

are the electron charge and mass, respectively; γ is the beam Lorentz factor;

L∗ = Lu/(~u~n) is the distance traveled by the beam in the crystal; ~u is the

unperturbed velocity vector of the beam particles; ~n is the unit normal vector

to the crystal surface (directed toward the interior); L is the crystal thickness;

χ0 and χτ are the Fourier expansion coefficients of the crystal dielectric sus-

ceptibility (their real and imaginary parts are denoted by prime and double

prime, respectively); β = γ1/γ0 is the diffraction asymmetry factor; γ0 and γ1

are the cosines of the angles between the normal vector ~n and the wave vectors

of the transmitted ~k and diffracted ~k + ~τ waves, respectively; ϕ is the angle

between the vectors ~k⊥ and ~τ⊥ (here the subscript ⊥ denotes the projection

of the vector on the plane perpendicular to ~u); n is the integer; f(y) is the

spectral function depending on detuning from the synchronism conditions:

f(y) = sin y
(2y + πn) sin y − y(y + πn) cos y

y3(y + πn)3
, (11)

where y = kx′
2L/2 and x2 is the root of the dispersion equation in the absence

of the electron beam:

x1,2 = a±
√
a2 + b . (12)
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Here

a=−1

4
(l/γ0 + lτ/γ1) , b = − 1

4γ0γ1
(llτ − χτχ−τ ) ,

l= θ2 − χ0 + γ−2 , lτ = l + α ,

where θ is the angle between the vectors ~k and ~u and α = ~τ(2~k0 + ~τ)/k2
0

characterizes deviation from the exact Bragg condition.

Let us note that (10) is obtained in the vicinity of the condition imposed on

the phase difference between the waves in the crystal

Re (k1z − k2z)L = 2πn, (13)

which in the considered case has the form

kL
√
a2 + b = πn. (14)

and it is assumed that the following inequalities hold:

k|χτ |L ≫ 1 , |χτ | ≪ 1 , |χ0| ≪ 1 .

The condition (10) has a clear physical meaning: the left-hand side of (10)

contains the term describing generation of radiation by the electron beam, and

the right-hand side includes the terms describing losses at the boundaries (the

first term) and absorption losses (the second term) in the medium. It is obvious

that if the absorption is small, then at fixed values of y (e.g. if y = 0, then

f(y)=1), eq. (10) yields the following dependence of the threshold generation

current on the target length (the left-hand side of (10) is proportional to

15



ω2
L ∼ n0, i.e., ∼ j):

jth ∼ 1

(kL∗)5
. (15)

It also follows from (10) that the value of the threshold current in the case of

a non-one-dimensional DFB depends appreciably on the parameter β and the

effective photon path length L∗ in the resonator (recall that L∗ = Lu/(~u~n)).

4 VFEL based on an electromagnetic undulator

Similar considerations enable finding generation thresholds for the beams mov-

ing in an electromagnetic undulator [19,20,21].

Let an electron beam move with average velocity ~u0 through a two- or three-

dimensional periodic medium (electromagnetic (photonic) crystal) placed in

an external field. Vector potential of the external field can be written as

(1) ~A = Aw~x sin kwz (a magnetostatic wiggler) ,

where Aw = Bw/kw, kw = 2π/λw, and ~x · ~u0 = 0, with Bw being the

magnetic field strength and λw being the wiggler wavelength (~x, ~y, and

~z are the unit vectors of the Cartesian coordinate system)(c = 1);

(2) A = Aem~x sin(~kem~r − ωemt) ,

where Aem = Eem/ωem. Here Eem is the amplitude of the electric field

of the electromagnetic wave and ωem, ~kem are its frequency and wave

vector, respectively. The external field excites oscillations of electrons,

having the transverse velocity ~v⊥ = e ~A/mγ, where γ = (1−v2)−1/2 is the

Lorentz factor of the electron. A moving oscillator emits electromagnetic

radiation, whose frequency ω and wave vector ~k satisfy the condition of

16



synchronism:

ω − ~k~u‖ = Ω,Ω =























































~kw~u‖ (for a magnetic wiggler) ,

ωem − ~kem~u (for an electromagnetic wiggler) ,

(16)

where the longitudinal velocity of the electron u‖ = u0

(

1− a2w
γ2

)

(the

corresponding longitudinal Lorentz factor 1/γ2
‖ = (1 + a2w)/γ

2, aw =

eAw/m is the undulator parameter; k = n(ω)ω, kem = n(ωem)ωem, and

|n(ω)− 1| ≪ 1). We shall further consider the case of forward scattering.

Let us write Maxwell’s equation in the Fourier space in the two-wave ap-

proximation of the dynamical diffraction theory (when the Bragg condition is

satisfied only for one reciprocal lattice vector). For the field of σ-polarization,

we have:

[k2 − ω2(1 + χ0)]E − ω2χ−τEτ = 4πiωj , (17)

− ω2χτE + [k2
τ − ω2(1 + χ0)]Eτ = 4πiωjτ , (18)

where E = ~E(~k, ω) · ~eσ and Eτ = ~E(~kτ , ω) · ~eσ are the Fourier components of

the electromagnetic field of σ-polarization, ~kτ = ~k+ ~τ , ~eσ = ~k×~kτ/|~k×~kτ | is

the σ-polarization unit vector, j = ~j(~k , ω) · ~eσ and jτ = ~j(~kτ , ω) · ~eσ are the

projections of the Fourier components of the current density vector onto the

σ-polarization unit vector, and χ0 and χτ are the Fourier components of the

periodic tensor of crystal polarizability.
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Let us use the linear approximation for solving the equations

∂f

∂t
+ ~v

∂f

∂~r
+

∂~p

∂t

∂f

∂~p
= 0 ,

∂~p

∂t
= e( ~E + ~v × ~B) . (19)

In this case, we can write

f(~r , ~p , t) = f0(~p) + δf(~r , ~p , t), δf ∼ E, δf ≪ f0 . (20)

From (19) and (20) follows

(

∂

∂t
+ ~v

∂

∂~r

)

δf +
∂~p

∂t

∂f0
∂~p

= 0 . (21)

In the equation of motion (21) and the expression ~j = e
∫

~vf(~r , ~p , t)d3p for

the current density, we shall go over to the Fourier components. Let us express

the perturbation of the distribution function in (21) in terms of E(~k , ω) and

then substitute it into (17) and (18). If the beam’s velocity distribution vth

satisfies the relationships ~k · ~vth ≪ Ω and ~k · ~vth ≪ ~τ · ~u, then one can obtain

the dispersion equation in the form:

D0(~k, ω) = −4πe2ω(k2
τ − ω2(1 + χ0))

a2w
γ2

I ,

D0(~k, ω) = (k2 − ω2(1 + χ0))(k
2
τ − ω2(1 + χ0))− ω4χτχ−τ , (22)

I =
∫

df0
dp

dp

~k~u‖ − ω + Ω
, p = ~p · ~s , ~s =

~u‖
u‖

. (23)

Let a crystal have a form of a plane-parallel plate of thickness L, then L∗

denotes the particle path length in the crystal (see Sec. 3). Here we shall

consider only the case of weak amplification, when k′′L∗ ≪ 1, with k′′ being

the imaginary part of the solution to dispersion equation (22). There are two

characteristic limiting cases for which (22) can be reduced to the algebraic

18



equation.

(1) If the inequality

~k~vth ≪ 1/L∗ (24)

is fulfilled, then we can neglect the beam dispersion and set the initial

distribution function to be f0(p) = n0δ(p − p0), where n0 is the beam’s

spatial density. As a result, we can write the dispersion equation for a

cold-beam regime.

D0(~k , ω)(ω − ~k~u‖ − Ω)2 = −2ω4(k2
τ − ω2(1 + χ0))F . (25)

Here F =
ω2
pa

2
w

2γ3γ3

‖
ω2 and ω2

p = 4πe2n0

m
is the plasma frequency of the beam.

(2) If inequality (26), inverse to (24), is fulfilled:

~k~vth ≫ 1/L∗ , (26)

then we can speak of a ”hot” beam regime. To evaluate the integral in

(23), we use the Gaussian distribution function f0(p) =
n0√
πpth

e−(p−p0)2/p2th

and obtain the dispersion equation in the ”hot” beam regime:

D0(~k , ω)=−2ω2(k2
τ − ω2(1 + χ0))

F

v2th

2√
π

(

1 + i
√
π
uf − u‖0

vth

)

, (27)

uf =































ω
k‖+kw

(for a magnetic wiggler) ,

ω−ωem

k‖+kem
(for an electromagnetic wiggler) .

4.1 Boundary Conditions

Let a wave vector of the incident wave be ~k0 = ω~s. From the continuity of

the wave field at the boundary follows that inside the crystal, the wave vector

19



~k = ~k0 + ωδ~n (δ ≪ 1 because |χ0|, |χτ | ≪ 1). Let us introduce the following

notations: γ0 = ~k0 ·~n/ω, γ1 = (~k0+~τ )·~n/ω, β1 = γ0/γ1, α = ((~k0+~τ)2−ω2)/ω2,

χ1 = χ0 −α, ε = γ0δ, and ξ = − 1
2γ2

‖
− F

ω
and recast dispersion equations (25),

(27) in a more convenient form:

(ε− ε
(0)
1 )(ε− ε

(0)
2 )(ε− εk) = −

(

ε+ |β1|
χ1

2

)

F , (28)

(ε− ε
(0)
1 )(ε− ε

(0)
2 ) = −

(

ε+ |β1|
χ1

2

)

F

v2th

2√
π

(

1 + i
√
π
(uf − u0)

vth

)

, (29)

ε
(0)
1 =

1

4

[

χ0 − |β1|χ1 +
√

(χ0 + |β1|χ1)2 − 4|β1|χτχ−τ

]

,

ε
(0)
2 =

1

4

[

χ0 − |β1|χ1 −
√

(χ0 + |β1|χ1)2 − 4|β1|χτχ−τ

]

. (30)

In writing (28) and (29), we have taken into account that in the case of Bragg

geometry considered here (the diffracted wave leaves the crystal through the

entrance surface), β1 < 0. The general solution describing scattering of the

external wave with the field strength ~E = E0~xe
i(~k0~r−ωt) by the system ”crystal-

beam” is as follows:

~E = ~xei(
~k0~r−ωt)

N
∑

j=1

(Ej + ei~τ~rEτj)e
iεjωz/γ0 , (31)

and, according to (18), ~Eτj = ~Ej
χτ

2εj+|β1|χ1
; N = 4 and N = 2 for a ”cold” and

a ”hot” beam, respectively. To determine the amplitudes of the fields inside

the crystal, the boundary conditions must be used. In Bragg geometry, they

are as follows:

(1) the continuity of field E at the entrance boundary

N
∑

j=1

Ej = E0 , (32)
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(2) the continuity of field Eτ at the exit boundary

N
∑

j=1

Eje
iεjωL

εj + |β1|χ1

2

= 0 , (33)

(3) the continuity of the beam’s density at the entrance boundary

∫

δfdp|z=0 = 0 , (34)

(4) the continuity of the beam’s current density at the entrance boundary

∫

uδfdp|z=0 = 0 . (35)

Using the expression for the Fourier components df , which follows from (21),

let us express (34) and (35) in terms of the amplitude Ej in the crystal. It can

be shown that for the case of a ”cold” beam, expressions (34) and (35) yield

the equations:

4
∑

j=1

Ej

ξ − εj
= 0 ,

4
∑

j=1

Ej

(ξ − εj)2
= 0 . (36)

These equations, together with equations (32) and (33), give four independent

conditions that are necessary to define the four amplitudes Ej of the field.

For a ”hot” beam, both of the conditions (34) and (35) can be reduced to

(32), i.e., only the conditions (32) and (33) are independent and sufficient

for defining the two amplitudes of the field. Let gij denote the elements of

the fundamental matrix of the system (32), (33), and (36). The boundary

conditions enable one to determine the field amplitudes, which can be written

in the form Ej = E0ḡj1/G, where ḡj1 is the cofactor of the element gj1, and

G = det ‖gi1‖. If G vanishes, then the amplitudes Ej in the crystal can be

nonzero, even when the amplitude E0 of the external incident field equals zero.

This correlates with the phenomenon of self-excitation (generation), arising

due to the existence of the distributed feedback. On this account, we shall call
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the equation G = 0 the generation condition. Calculating the determinant of

the matrix ‖gij‖, one can reduce the generation condition to the form:

4
∑

j=1

ei(εj−ξ)ωL(εj − ξ)2
(

εj + |β1|χ1

2

)

∏

i 6=j(εi − εj)
= 0 (37)

for a ”cold” beam and

eiε1ωL∗

ε1 + |β1|χ1

2

=
eiε2ωL∗

ε1 + |β1|χ1

2

(38)

for a ”hot” beam.

4.2 Generation Thresholds

Recall that the Fourier components of crystal polarizability have the form:

χ0 = −|χ′
0|+ i|χ′′

0| , χ±τ = −|χ′
±τ |+ i|χ′′

±τ | , |χ′′
0| , |χ′′

±τ | ≪ |χ′
0| , |χ′

τ |.

Now, let us analyze the case when

√

|χ′′
0| |χ′

τ | ≪ ε
(0)
1 − ε

(0)
2 ≪ |χ′

τ | . (39)

As is seen from (30), this occurs at small deviations from α ≃ 1
|β1|(±2

√

|β1||χ′
τ |−

|χ′
0|(1+|β1|)), i.e., in the vicinity of the absorption edges. The solutions to (28)

at Re ε
(0)
1 = ξ or Re ε

(0)
2 = ξ are of particular interest and correspond to the

synchronism between the beam and one of the DFB resonator modes. In Table

I, the possible cases are labelled with numbers and letters for convenience.

In cases 1a) and 2b), equation (37) does not have a solution.
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Table 1

Synchronism condition α = 1

|β1|

(

2
√

|β1||χ′
τ | − |χ′

0
|(1 + |β1|)

)

α = 1

|β1|

(

−2
√

|β1||χ′
τ | − |χ′

0
|(1 + |β1|)

)

Re ε
(0)
1 = ξ 1a) 2a)

Re ε
(0)
2 = ξ 1b) 2b)

The condition (37) can be satisfied when the following equalities hold:

in case 1b)

F (ωL∗)
3

8πn
= ω

(

|χ′′
0|
(1 + |β1|)

2
− |χ′′

τ |
√

|β1|
)

L∗ +
8π2n2

ω2χτL2
∗
; (40)

in case 2a)

F (ωL∗)
3

8πn
= ω

(

|χ′′
0|
(1 + |β1|)

2
+ |χ′′

τ |
√

|β1|
)

L∗ +
8π2n2

ω2χτL2
∗
. (41)

Let us recall that F =
ω2
pa

2
w

2γ3γ3

‖
ω2 . The solutions to (38) in the case of a ”hot”

beam have the form

(1)

ω
F

v3th
(u‖ 0 − uf)L∗ =ω

(

|χ′′
0|
(1 + |β1|)

2
− |χ′′

τ |
√

|β1|
)

L∗ +
8π2n2

ω2χτL2
∗
,

α=
1

|β1|

(

2
√

|β1||χ′
τ | − |χ′

0|(1 + |β1|)
)

,

n=1, 2 ... (42)

(2)

α=
1

|β1|

(

−2
√

|β1||χ′
τ | − |χ′

0|(1 + |β1|)
)

,

ωF

v3th
(u‖ 0 − uf)L∗=ω

(

|χ′′
0|
(1 + |β1|)

2
− |χ′′

τ |
√

|β1|
)

L∗ +
8π2n2

ω2χτL2
∗
,

n=1, 2 ... (43)

23



Since F ∼ ω2
p ∼ n0 ∼ j, the value of the threshold current can be found using

equations (40)–(43).

Again, we have jth ∼ 1
L5
∗
for a ”cold” beam. Equations (40)–(43) are the

amplitude conditions of generation. To satisfy the generation conditions, one

more condition must be fulfilled - the phase condition, common for all the

cases:

Re ε
(0)
1 − ε

(0)
2 = 2πn/ωL∗ . (44)

The condition (44) leads to the fact that the longitudinal structure of the

eigenmodes |E|2 and |Eτ |2 appears to be close in form to a standing wave.

Thus, this condition is similar to a well-known condition of standing wave

formation in a mirror resonator.

Formulas (40)–(43) are similar in form. On the left-hand sides, they contain

the gain of the free electron laser in the appropriate mode. Their right-hand

sides describe the losses related to energy absorption in crystals and its leakage

through the boundaries of a DFD resonator.

It should be noted that in view of the above, the value of the threshold cur-

rent in the case of a non-one-dimensional DFB depends appreciably on the

parameter β1 and the effective photon path length L∗ in the resonator (recall

that L∗ = Lu/(~u~n)).

Let us consider the equation defining the threshold conditions for backward

Bragg diffraction (|β|, |β1| = 1 and ~u ‖ ~n). In this case, we go over to a one-

dimensional DFB. The implicit form of the equation for the threshold current

was obtained in [22] (see eq. (10) in [22]). From this equation, one can also
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derive the expressions for the threshold current. To do this, let us take eqs.

(9) and (10), derived in [22], and substitute eq. (9) for the quality factor Q

into eq. (10). Then we can write

(CL′)3ϕ′(Φ) =
2π2n2

(σL′)2
, (45)

where n is the integer; L′ is the dimensionless length of the structure, e.g.,

the waveguide with shallow corrugations (L′ = ω
c
L); σ is the so-called wave

coupling coefficient due to corrugations, whose physical meaning is similar to

that of the quantity χτ . Here C = (eIκ2µ/mγω2Ns)
1/3 is the generalized Pierce

parameter, where I is the current of the electron beam, κ is the coupling co-

efficient between the direct wave and and the electron beam, µ is the electron

bunching parameter, and Ns is the norm of the wave in a smooth wavequide. In

(45), Φ = −ΓeL
′, where Γe = −(∆+δ). Here ∆ = (ω−ωB)/ωB ≈ (h−hB)/hB

is detuning from the exact Bragg condition; hB = π/d, ωB = c
√

g2 + h2
B, d is

the corrugation period, h and g are the longitudinal and transversal wavenum-

bers, respectively, and δ is the resonance detuning between the synchronous

wave and the electrons.

The function ϕ′(Φ) has the form:

ϕ′(Φ) ≡ d

dΦ

{

2π2n2 1− (−1)n cosΦ

(Φ2 − π2n2)2

}

. (46)

Now let us write the explicit form of the derivative of ϕ′(Φ)

ϕ′(Φ) = 2π2n2 (−1)n sin Φ(Φ2 − π2n2)− 4Φ(1 − (−1)n cosΦ)

(Φ2 − π2n2)3
. (47)

At first glance, the spectral functions in (11) and (46) differ. It can be shown,

however, that virtually they are one and the same function, but of different
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arguments. Indeed, in the case of a symmetric backward Bragg diffraction, we

have β ≈ −1, and the quantity a in (12) is a = α/4 ≈ ∆. Then assuming that

δ = 0 and considering the condition (14), we get 2y ≈ Φ + πn. Substituting

this equality for the arguments into (46), we obtain ϕ′(Φ) = ϕ′(2y + πn) =

−π2n2

4
f(y). Thus the condition (45) takes the form:

− π2n2

4
(CL′)3f(y) =

2π2n2

(σL′)2
, (48)

which is equivalent to (10) (note, however, that in (48), the radiation ab-

sorption is ignored). Recalling that C3 ∼ I, we immediately obtain that the

condition (48) yields the same dependence of the threshold current density on

L as in eq. (10).

We may note in conclusion that in contrast to a one-dimensional case, where

Laue geometry does not occur, in a non-one-dimensional case it occurs along

with the generation in Bragg geometry. A more detailed analysis of the radi-

ation process in Laue geometry can be found in [7] and the references there.

5 Generation equations and threshold conditions in the geometry

of three-wave Bragg diffraction

Above, we have discussed the theory of the volume distributed feedback for-

mation in the geometry of a non-one-dimensional two-wave Bragg diffraction.

Let us proceed now to the consideration of multi-wave DFB in a two(three)-

dimensional periodic resonator. Multi-wave DFB arises when N number of

waves simultaneously satisfy the conditions of Bragg diffraction.

Use of multi-wave Bragg diffraction in a VFEL for the formation of a volume
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distributed feedback enables one, on the one hand, to appreciably reduce the

length of the generation area (at a given operating current) or the operating

current (at a given length of the generation area), and on the other hand, to

apply electron beams with a large transverse cross section (or several electron

beams) for generating radiation, which improves the electrical endurance of

the generator.

Application of multi-wave diffraction for generating in a microwave range has

one more remarkable feature – the possibility of selecting modes in oversized

waveguides and resonators.

Production of high-power microwave pulses requires high electric strength of

the generator and radiation resistance of the output window. To reduce the

load on these elements, the transversal (with respect to the direction of the

electron beam velocity) dimension of the resonator should be large (much

larger than the wavelength). As a rule, this leads to a multi-mode generation

regime and low efficiency. When N number of waves are diffracted, the modes

can be effectively selected due to the requirement to satisfy the Bragg condition

N − 1 .

To illustrate the potential of multi-wave distributed feedback, let us consider

three-wave diffraction in more depth (for details, see Section 13 in [7]). In this

case, the distributed feedback can be realized in three different geometries:

(1) Laue-Laue diffraction when the three waves exit through the same surface

(γ0, γ1, γ2 > 0, here γi is the cosine of the angle between the wave vector ~ki

and the normal to the crystal surface (see e.g. [16]); Fig. 6);

(2) diffraction in Bragg-Bragg geometry when γ0 > 0, while γ1, γ2 < 0;
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Figure 6. Three-wave diffraction in Laue-Laue geometry. Projections of wave vectors

~k,~kτ1, and ~kτ2 onto the surface normal ~n have the same sign; ~τ1 and ~τ2 are the

reciprocal lattice vectors of the periodic structure.

(3) Bragg-Laue diffraction when γ0, γ1 > 0, and γ2 < 0; see Figure 7.

Figure 7. Three-wave diffraction in Laue-Bragg geometry. Projections of wave vec-

tors ~k and ~kτ1 onto the surface normal are opposite in sign to the projection of

vector ~kτ2; ~τ1 and ~τ2 are the reciprocal lattice vectors of the periodic structure.

Similarly to the two-wave case, the problem of the beam interaction with

the resonator (photonic crystal) can be reduced to the problem of three-wave

diffraction of an electromagnetic wave incident onto the active medium. The

active medium here is the system ”spatially–periodic structure + electron

beam”.

The dependence of the threshold conditions on the length of the interaction

area at the point of threefold degeneration changes appreciably

G = Aχ′′
0 +

B

kL

(

2π

klL

)4

. (49)
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Here in the regime of a ”cold” electron beam, G ∼ jL2, with j being the beam

current density. Realization of this regime requires the fulfillment of the phase

condition (k1z − k2z)L = 2πn, (k2z − k3z)L = 2πm, n 6= m. The coefficients

A and B in (49) depend on the diffraction geometry, the value of χτ , and

the indices m and n. According to (49), for a ”cold” electron beam, when

absorption is not important, jthr ∼ 1
(kL)3

(

2π
klL

)4
. Under dynamical diffraction,

when the inequality 4π
klL

≪ 1 holds, this dependence leads to an appreciable

reduction in the threshold current. The analysis shows that when a multi-wave

(N -wave) DFB is excited, the threshold current depends on L as

jthr ∼
1

(kL)3

(

2π

klL

)2s

, (50)

that is,

jth ∼ 1

L3+2s
,

where s = N − 1 is the number of extra waves appearing through diffraction

in the crystal.

So, the transition to multi-wave diffraction enables one to significantly re-

duce the operating current and the longitudinal dimensions of the generating

system.

As follows from the above results, the volume distributed feedback (non-one-

dimensional feedback) has a number of advantages that make its application

beneficial for generating stimulated radiation in a wide spectral range (with

wavelengths from microwave and optical to angström). Moreover, in a short-

wave spectral range, where the requirements for the current density and the

quality of the beam are very strict, it becomes possible to noticeably reduce the
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threshold current for a given beam propagation area. In this case, the VFEL is

a unique system providing lasing at relatively small interaction lengths. When

producing high-power radiation pulses in oversized generators in a microwave

range, VFELs are beneficial for the reduction of the threshold current, gener-

ator size, and for mode selection.

6 Use of a dynamical undulator mechanism to produce short wave-

length radiation in VFELs

Numerous applications can benefit from the development of powerful elec-

tromagnetic generators with frequency tuning in millimeter, sub-millimeter

and terahertz wavelength range, using low-relativistic electron beams. Low-

relativistic electron beams in the undulator system can be used for radiating

in a short-wavelength range, but in this case the undulators period must be

small. For example, to obtain radiation with the wavelength of 0.3 − 1 mm

at the beam energy E = 800 KeV−1 MeV, the undulator period must be

∼ 0.3−1 cm. Development of such undulators is a very complicated task. The

use of a two-stage FEL with a dynamical wiggler generated by the electron

beam [4] is a possible solution to this problem.

The above-described potentialities to significantly reduce the threshold cur-

rents and resonator dimensions by using a non-one-dimensional distributed

feedback, which arises due to Bragg diffraction in a two– or three–dimensional

spatially-periodic resonator (electromagnetic (photonic) crystal) and serves

as a foundation for designing Volume Free Electron Lasers (VFELs), enable

the development of two-stage VFELs with a dynamical wiggler generated by

electron beams. A dynamical wiggler can be created with the help of any
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radiation mechanism: Cherenkov, Smith-Purcell, quasi-Cherenkov [8], or un-

dulator. VFEL principles offer the advantage of a two-stage generation scheme

and, in particular, allow one to smoothly tune the period of the dynamical

wiggler by rotating the diffraction grating. There is a possibility of smooth

frequency tuning for both the pump and the signal waves by either varying

the geometric parameters of the volume diffraction grating or by rotating the

diffraction grating or the beam. Moreover, the VFEL allows one to create a

dynamical wiggler in a large volume, which is hard to achieve with a static

wiggler.

There are two stages in the generation scheme proposed above (see Section

16, Fig. 16 [7]):

(a) creation of a dynamical wiggler in a system with two-dimensional (three-

dimensional) gratings (in other words, during this stage the electromagnetic

field, which exists inside the VEFL resonator, is used to create a dynamical

wiggler). Smoothly varying the orientation of the diffraction grating in the

VEFL resonator, one can smoothly change the dynamical wiggler parameters;

(b) radiation is generated by the electron beam interacting with the dynamical

wiggler, which has been created during the previous stage (stage a).

Both stages evolve in the same volume.

7 Conclusion

Thus,

(1) volume FELs provide frequency tuning by rotation of the diffraction grat-
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ing;

(2) use of a non-one-dimensional DFB reduces the generation threshold and

the size of the generation zone;

(3) VFELs allow the use of a wide electron beam (or several beams) and

diffraction gratings of large volumes. Two- or three-dimensional diffrac-

tion gratings (artificial crystals, now often called the electromagnetic or

photonic crystals) allow distributing the interaction over a large volume

and overcoming the power restrictions on resonators and thus open up the

possibility of developing powerful generators with wide electron beams (or

system of beams);

(4) VFELs enable effective mode selection in oversized systems, where the

radiation wave length is significantly smaller than the resonator dimen-

sions;

(5) principles of VFEL can be used for creation of a dynamical wiggler with

a variable period in a large volume;

(6) two-stage scheme of generation, based on a non-one-dimensional dis-

tributed feedback, can be applied for lasing in the teraHertz frequency

range using low-relativistic beams;

(7) two-stage scheme of generation combined with the volume distributed

feedback can also form the basis for the development of powerful gener-

ators with wide electron beams (or system of beams);

(8) use of a hybrid system composed of several phase-locked vircator arrays

generating modulated beams that enter the VFEL resonator enables fur-

ther increase of the generator’s power output [7,23]. Moreover, a VFEL

resonator composed of periodically-arranged metallic elements aids in

preventing the Coulomb repulsion of electrons. The maximum limiting

current that can be transmitted through such a resonator is greater than
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the limiting current that can be transmitted through a vacuum drift space

of a conventional BWO or TWT (compare with the methods of increasing

the current transmitted through the resonator, suggested in [24,25,26]).

To achieve this, two(three)-dimensional electromagnetic crystals formed

by periodically arranged screens with periodically spaced holes for beam

transmission can also be used along with those formed by periodically

arranged wires, wire arrays and cylinders.

Let us note in conclusion that inverse free electron lasers are known to be

used for particle acceleration. Similarly, VFELs with a non-one-dimensional

distributed feedback, arising in electromagnetic (photonic) crystals, can be

operated in the inverse mode for accelerating particle beams [6]. In this case,

the acceleration rate is appreciably higher than that achieved in conventional

FELs.
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