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Abstract

The electrodynamic properties and lasing in Volume
Free Electron Laser with a ”grid” resonator (”grid” pho-
tonic crystal) with changing in space parameters are con-
sidered. The equations describing lasing of VFEL with
such a resonator are obtained. It is shown that use of
diffraction gratings (photonic crystal) with variable period
increases radiation intensity and provide to create the dy-
namical wiggler with variable period. This makes possible
to develop a double-cascaded FEL with variable parame-
ters, which efficiency can be significantly higher then that
of conventional system.

INTRODUCTION

Diffraction radiation [1] in periodical structures is in the
basis of operation of travelling wave tubes (TWT) [2, 3],
backward wave oscillators (BWO) and such devices as
Smith-Purcell lasers [4, 5, 6] and volume Free Electron
Lasers [7, 8, 9] (see also [10]).

Volume Free Electron Laser (VFEL) is a radiation gen-
erator using non-one-dimensional distributed feedback,
which is created with the aid of Bragg diffraction gratings
or photonic crystals.

One of the VFEL types uses a ”grid” volume resonator
(”grid” photonic crystal) that is formed by a periodically
strained either dielectric [11] or metallic threads [12, 13,
14, 15].

In the present paper the electrodynamic properties and
lasing in Volume Free Electron Laser with a ”grid” res-
onator (”grid” photonic crystal) with changing in space pa-
rameters are considered. The equations describing lasing
of VFEL with such a resonator are obtained. It is shown
that use of diffraction gratings (photonic crystal) with vari-
able period provide to create the dynamical wiggler with
variable period. This makes possible to develop a double-
cascaded FEL with variable parameters changing, which
efficiency can be significantly higher that of conventional
system.

THEORY OF LASING FOR VFEL WITH A
”GRID” PHOTONIC CRYSTAL WITH

VARIABLE PERIOD

To obtain equations, which describe VFEL lasing in the
”grid” photonic crystal (see Fig.1), the Maxwell equations
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and motion equations for a particle in an electromagnetic
field should be considered:

rot �H =
1
c

∂ �D

∂t
+

4π

c
�j, rot �E = −1

c

∂ �H

∂t
,

div �D = 4πρ,
∂ρ

∂t
+ div�j = 0, (1)

here �E and �H are the electric and magnetic fields, �j and
ρ are the current and charge densities, the electromagnetic
induction Di(�r, t′) =

∫
εil(�r, t− t′)El(�r, t′)dt′ and, there-

fore, Di(�r, ω) = εil(�r, ω)El(�r, ω), the indices i, l = 1, 2, 3
correspond to the axes x, y, z, respectively. The current and
charge densities are respectively defined as:

�j(�r, t) =e
∑

α

�vα(t)δ(�r−�rα(t)), ρ(�r, t) =e
∑

α

δ(�r−�rα(t)),

where e is the electron charge, �vα is the velocity of the
particle α (α numerates the beam particles),

d�vα

dt
=

e

mγα

{
�E(�rα, t) +

1
c
[�vα× �H(�rα, t)]−�vα

c2
(�vα

�E(�rα, t))
}

,

here γα = (1 − v2
α

c2 )−
1
2 is the Lorentz-factor, �E(�rα, t) and

�H(�rα, t) are the electric and magnetic field in the point of
location �rα = �rα(t) of the particle α.

front view side view

Figure 1: A ”grid” photonic crystal.

The dielectric permittivity tensor can be expressed as
ε̂(�r) = 1+ χ̂(�r), where χ̂(�r) is the dielectric susceptibility.
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When χ̂ � 1 the system (1) can be rewritten as:

Δ �E(�r, t) − 1
c2

∂2

∂t2

∫
ε̂(�r, t − t′) �E(�r, t′)dt′ = (2)

= 4π

(
1
c2

∂�j(�r, t)
∂t

+ �∇ρ(�r, t)

)

.

When the grating is ideal χ̂(�r) =
∑

τ χ̂τ (�r)ei�τ�r, where �τ
is the reciprocal lattice vector [16, 17].

Let the diffraction grating (photonic crystal) period is
smoothly varied with distance, which is much greater then
the diffraction grating (ptotonic crystal lattice) period. It is
convenient in this case to present the susceptibility χ̂(�r) in
the form, typical for theory of X-ray diffraction in crystals
with lattice distortion [18]:

χ̂(�r) =
∑

τ

eiΦτ (�r)χ̂τ (�r), (3)

where Φτ (�r) =
∫

�τ(�r ′)d�l′, �τ(�r ′) is the reciprocal lattice
vector in the vicinity of the point �r ′. The expressions for χ̂
for the ”grid” photonic crystal were obtained in [12, 14]:

χ‖(⊥) =
4π

Ω2k2

A0‖(⊥)

1 + iπA0‖(⊥) − 2CA0‖(⊥)
, (4)

the symbols ‖ and ⊥ indicate the waves with polarization
parallel and perpendicular to the thread axis, respectively,
k = 2π/λ is the wave number, R is the thread radius, C =
0.5772 is the Eiler constant, Ω2 = dy · dz , where dy and
dz are the photonic crystal periods along the axis y and z,
respectively. The values A0(‖) and A0(⊥) for the threads
with finite conductivity are defined as[14]:

A0(‖) = i
π

J0(ktR)J′
0(kR)−√

εtJ
′
0(ktR)J0(kR)

J0(ktR)H
(1)′
0 (kR)−√

εtJ ′
0(ktR)H

(1)
0 (kR)

,

A0(⊥) = i
π

J0(ktR)J′
0(kR)− 1√

εt
J ′
0(ktR)J0(kR)

J0(ktR)H
(1)′
0 (kR)− 1√

εt
J ′
0(ktR)H

(1)
0 (kR)

,

where εt is the dielectric permittivity of the thread material,
kt =

√
εtk, H

(1)
0 is the Hankel function of the zero order,

J0 and J ′
0 are the Bessel functions and their derivatives,

respectively.
In contrast to the theory of X-rays diffraction, in the case

under consideration χ̂τ depends on �r. It is to the fact that
χ̂τ depends on the volume of the lattice unit cell Ω2, which
can be significantly varied for diffraction gratings (pho-
tonic crystals), as distinct from natural crystals.

It should be reminded that for an ideal crystal without
lattice distortions, the wave, which propagates in crystal
can be presented as a superposition of the plane waves:

�E(�r, t) =
∞∑

�τ=0

�A�τei(�kτ�r−ωt), (5)

where �kτ = �k + �τ .
In the case under consideration the solution of (2) can be

written in the form (compare with [18]):

�E(�r, t) = Re

{ ∞∑

�τ=0

�A�τei(φτ (�r)−ωt)

}

, (6)

where φτ (�r) =
∫ �r

0
k(�r)d�l + Φτ (�r) and k(�r) can be found

as solution of the dispersion equation in the vicinity of the
point with the coordinate vector �r, integration is done over
the quasiclassical trajectory, which describes motion of the
wavepacket in the photonic crystal with lattice distortion.

Let us consider now case when all the waves partici-
pating in the diffraction process lays in a plane (coupled
wave diffraction, multiple-wave diffraction [17, 16]) i.e. all
the reciprocal lattice vectors �τ lie in one plane. Suppose
the wave polarization vector is orthogonal to the plane of
diffraction.

Let us rewrite (6) in the form �E(�r, t) = �e E(�r, t), where

E(�r, t) = Re
{

�A1e
i(φ1(�r)−ωt) + �A2e

i(φ2(�r)−ωt) + ..
}

,(7)

φ1(�r) =
∫ �r

0

�k1(�r ′)d�l, (8)

φ2(�r) =
∫ �r

0

�k1(�r ′)d�l +
∫ �r

0

�τ(�r ′)d�l. (9)

Then multiplying (2) by �e one can get:

ΔE(�r, t) − 1
c2

∂2

∂t2

∫
ε̂(�r, t − t′)E(�r, t′)dt′ = (10)

= 4π�e

(
1
c2

∂�j(�r, t)
∂t

+ �∇ρ(�r, t)

)

. (11)

Substitution of (7) to (11) gives the following system:

1
2
ei(φ1(�r)−ωt)[2i�k1(�r)�∇A1 + i�∇�k1(�r)A1 − k2

1(�r)A1 +

+
ω2

c2
ε0(ω,�r)A1+i

1
c2

∂ω2ε0(ω,�r)
∂ω

∂A1

∂t
+

ω 2

c2
ε−τ (ω,�r)A2+

+i
1
c2

∂ω2ε−τ (ω,�r)
∂ω

∂A2

∂t
] + conjugated terms =

= 4π�e

(
1
c2

∂�j(�r, t)
∂t

+ �∇ρ(�r, t)

)

, (12)

1
2
ei(φ2(�r)−ωt)[2i�k2(�r)�∇A2 + i�∇�k2(�r)A2 − k2

2(�r)A2 +

+
ω2

c2
ε0(ω,�r)A2+ i

1
c2

∂ω2ε0(ω,�r)
∂ω

∂A2

∂t
+

ω2

c2
ετ (ω,�r)A1+

+i
1
c2

∂ω2ετ (ω,�r)
∂ω

∂A1

∂t
] + conjugated terms =

= 4π�e

(
1
c2

∂�j(�r, t)
∂t

+ �∇ρ(�r, t)

)

,

where the vector �k2(�r) = �k1(�r)+�τ , ε0(ω,�r) = 1+χ0(�r),
here notation χ0(�r) = χτ=0(�r) is used, ετ (ω,�r) = χτ (�r).
Note here that for numerical analysis of (12), if χ0 � 0, it
is convenient to take the vector �k1(�r) in the form �k1(�r) =

�n
√

k2 + ω2

c2 χ0(�r).
For better understanding let us suppose that the diffrac-

tion grating (photonic crystal lattice) period changes along
one direction and define this direction as axis z.
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Considering the right part of (2) let us take into account
that microscopic currents and densities are the sums of
terms, containing delta-functions, therefore, the right part
can be rewritten as:

e−i(�k⊥�r⊥+φ1z(z)−ωt)4π�e

(
1
c2

∂�j(�r, t)
∂t

+ �∇ρ(�r, t)

)

=

= −4πiωe

c2
�e

∑

α

�vα(t)δ(�r − �rα(t))e−i(�k⊥�r⊥+φ1z(z)−ωt)×

× θ(t − tα) θ(Tα − t), (13)

here tα is the time of entrance of particle α to the res-
onator, Tα is the time of particle leaving from the resonator,
θ−functions in (13) image the fact that for time moments
preceding tα and following Tα the particle α does not con-
tribute in process.

Let us suppose now that a strong magnetic field is ap-
plied for beam guiding though the generation area. Thus,
the problem appears one-dimensional (components vx and
vy are suppressed). Averaging the right part of (13) over
the particle positions inside the beam, points of particle en-
trance to the resonator r⊥0α and time of particle entrance
to the resonator tα we can obtain:

e−i(�k⊥�r⊥+φ1z(z)−ωt)4π�e

(
1
c2

∂�j(�r, t)
∂t

+ �∇ρ(�r, t)

)

=

= −4πiωρϑ1 u(t) e

c2

1
S

∫
d2�r⊥0

1
T

× (14)

×
∫ t

0

e−i(φ1(�r,�r⊥,t,t0)+�k⊥�r⊥0−ωt)dt0 =

= −4πiωρϑ1 u(t) e

c2
〈〈e−i(φ1(�r,�r⊥,t,t0)+�k⊥�r⊥0−ωt)dt0〉〉,

where ρ is the electron beam density , u(t) is the mean elec-
tron beam velocity, which depends on time due to energy

losses, ϑ1 =
√

1 − ω2

β2k2
1c2 , β2 = 1 − 1

γ2 , 〈〈 〉〉 indicates

averaging over transversal coordinate of point of particle
entrance to the resonator r⊥0α and time of particle entrance
to the resonator tα.

According to [19] averaging procedure in (14) can be
simplified, when consider that random phases, appearing
due to random transversal coordinate and time of entrance,
presents in (14) as differences. Therefore, double inte-
gration over d2�r⊥0 dt0 can be replaced by single integra-
tion [19].

The system (12) in this case converts to:

2ik1z(z)
∂A1

∂z
+ i

∂k1z(z)
∂z

A1 − (k2
⊥ + k2

1z(z))A1 +

+
ω2

c2
ε0(ω, z)A1 + i

1
c2

∂ω2ε0(ω, z)
∂ω

∂A1

∂t
+

+
ω2

c2
ε−τ (ω, z)A2 + i

1
c2

∂ω2ε−τ (ω, z)
∂ω

∂A2

∂t
=

= i
2ω

c2
J1(k1z(z)), (15)

2ik2z(z)
∂A2

∂z
+ i

∂k2z(z)
∂z

A2 − (k2
⊥ + k2

2z(z))A2 +

+
ω2

c2
ε0(ω, z)A2 + i

1
c2

∂ω2ε0(ω, z)
∂ω

∂A2

∂t
+

+
ω2

c2
ετ (ω, z)A1 + i

1
c2

∂ω2ετ (ω, z)
∂ω

∂A1

∂t
=

= i
2ω

c2
J2(k2z(z)),

where the currents J1, J2 are determined by the expression

Jm= 2πjϑm

∫ 2π

0

2π − p

8π2
(e−iφm(t,z,p)+ e−iφm(t,z,−p))dp,

ϑm =

√

1 − ω2

β2k2
mc2

, m = 1, 2, β2 = 1 − 1
γ2

, (16)

j = en0v is the current density, A1 ≡ Aτ=0, A2 ≡ Aτ ,
�k1 = �kτ=0, �k2 = �k1 + �τ . The expressions for J1 for k1

independent on z was obtained in [19].
When more than two waves participate in diffraction

process, the system (15) should be supplemented with
equations for waves Am, which are similar to those for A1

and A2.
Now we can find the equation for phase. From the ex-

pressions (8,9) it follows that

d2φm

dz2
+

1
v

dv

dz

dφm

dz
=

dkm

dz
+

km

v2

d2z

dt2
, (17)

Let us introduce new function C(z) az follows:

dφm

dz
= Cm(z)e−

∫ z

0
1
v

dv
dz′ dz′

=
v0

v(z)
Cm(z), (18)

φm(z) = φm(0) +
∫ z

0

v0

v(z′)
Cm(z′)dz′

Therefore,

dCm(z)
dz

=
v(z)
v0

(
dkm

dz
+

km

v2

d2z

dt2

)

. (19)

In the one-dimensional case the motion equation can be
written as:

d2zα

dt2
=

eϑ

mγ(zα, t, p)
ReE(zα, t), (20)

therefore,

dCm(z)
dz

=
v(z)
v0

dkm

dz
+ (21)

+
km

v0v(z)
eϑm

mγ3(z, t(z), p)
Re{Am(z, t(z))eiφm(z,t(z),p)},

dφm(t, z, p)
dz

|z=0 = kmz − ω

v
, φm(t, z, p)|z=0 = p,

A1|z=L = E0
1 , A2|z=L = E0

2 , Am|t=0 = 0, m = 1, 2,

t > 0, z ∈ [0, L], p ∈ [−2π, 2π],

L is the length of the photonic crystal.
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These equations should be supplied with the equations
for γ(z, p). It is well-known that

mc2 dγ

dt
= e�v �E. (22)

Therefore,

dγ(z, t(z), p)
dz

=
∑

l

eϑl

mc2
Re{

∑

l

Al(z, t(z))eiφl(z,t(z),p)}.

The above obtained equations (15,18,21,22) provide to
describe generation process in FEL with varied parame-
ters of diffraction grating (photonic crystal). Analysis of
the system (21) can be simplified by replacement of the
γ(z, t(z), p) with its averaged by the initial phase value

〈γ(z, t(z))〉 =
1
2π

∫ 2π

0

γ(z, t(z), p) dp.

Note that the law of parameters change can be both smooth
and stepped.

Analysis of such a system shows that its efficiency sig-
nificantly exceeds efficiency of a system with constant pa-
rameters. Use of photonic crystals provide to develop dif-
ferent VFEL arrangements (see Fig.2). It should be noted

k
��

k
��

k

k

k
�

k
��

k
��

k

k
��

e-beam

photonic crystal

Figure 2: An example of photonic crystal with the
thread arrangement providing multi-wave volume dis-
tributed feedback. Threads are arranged to couple several
waves (three, four, six and so on), which appear due to
diffraction in such a structure, in both the vertical and hori-
zontal planes. The electronic beam takes the whole volume
of photonic crystal.

that, for example, in the FEL (TWT,BWO) resonator with
changing in space parameters of grating (photonic crystal)
the electromagnetic wave with depending on z spatial pe-
riod is formed (see eq. (6)). This means that the dynamical
undulator with depending on z period appears along the
whole resonator length i. e. tapering dynamical wiggler
becomes settled. It is well known that tapering wiggler can
significantly increase efficiency of the undulator FEL. The
dynamical wiggler with varied period, which is proposed,
can be used for development of double-cascaded FEL with
parameters changing in space. The efficiency of such sys-
tem can be significantly higher that of conventional system.
Moreover, the period of dynamical wiggler can be done
much shorter than that available for wigglers using static
magnetic fields. It should be also noted that, due to depen-
dence of the phase velocity of the electromagnetic wave on
time, compression of the radiation pulse is possible in such
a system.

CONCLUSION
The electrodynamic properties and lasing in Volume

Free Electron Laser with a ”grid” resonator (”grid” pho-
tonic crystal) with changing in space parameters are con-
sidered. The equations describing lasing of VFEL with
such a resonator are obtained. It is shown that use of
diffraction gratings (photonic crystal) with variable period
increases radiation intensity and provide to create the dy-
namical wiggler with variable period. This makes possible
to develop a double-cascaded FEL with variable parame-
ters, which efficiency can be significantly higher then that
of conventional system.
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