

Current sensitive amplifiers for silicon photomultiplier MAPD-1

K. Afanaciev¹, G. D. Alexeev², M. Batouritski¹, O. Dvornikov³, Emeliantchik¹, V. Mikhailov¹, A. Piskun², V. Shevtsov¹, V. Tchekhovski¹, G. Terekhov³, V. Tokmenin²

 ¹ National Centre of Particle and High Energy Physics, BSU, Minsk, Belarus
² Laboratory of Nuclear Problems of Joint Institute for Nuclear Researchs, Dubna, Moscow Region, Russia
³ "MNIPI" Public Joint Stock Company, Minsk, Belarus

Novel type of solid-state detector to replace the conventional photomultiplier at some applications

Developed at Moscow Engineering and Physics Institute Initial production at Pulsar plant, Moscow

At the moment are produced by a lot of manufacturers like SensL, Photonique, Hamamatsu, Voxtel Inc., STMicroelectronics

There is a number of projects which consider application of SiPMs: Super LHC, TESLA/ILC, astronomy, etc.

We are investigating the application of SiPMs for NICA (Nuclotron-based Ion Collider fAcility) in Dubna

Avalanche photo-diode in geiger mode ($V_{Bias} > V_{breakdown}$)

Single photo electron generates an avalanche discharge: Device is sensitive to single photons, have high gain, and have essentially a digital output.

SiPM is a matrix of a lot of such diodes working in parallel

What is SiPM

The diodes are discharging on a common electrode and are decoupled by resistors (~ 100 kOhm).

The avalanche is passively quenched by resistors The single-pixel response is digital, but the device as a whole is analog (sum of single-photon responses).

MAPD-1 SiPM: 1x1 mm^2, 564 pixels, ~10^6 gain

A series of transimpedance amplifiers was designed in NC PHEP BSU To work with MAPD-1 SiPMs on a Master-Slice ABMK-3.

	Ampl-	Ampl-	Ampl-	Ampl
Amplifier	1.14	1.15	1.17	-1.16
Voltage, V	5	5	5	3.5
Input impedance, Ohm	50,0	50,0	50,0	65
Gain diff., mV/mkA	20	10	1	15,6
Bandwidth, MHz	150	170	250	100
ENC at 10 pF input				
load, nA	110	80	170	145

Ampl-1.14 — the amplifier part of IC AD-1.14

23-Oct-14

Ampl-1.15 — the amplifier part of IC AD-1.15

Ampl-1.16 — the amplifier part of IC AD-1.16

Ampl-1.17 — the amplifier part of IC AD-1.17

Experimental setup

Experimental setup

Single-photon spectra

Illumination by short weak light pulses (LED)

Peaks correspond to number of photoelectrons

Easy to calculate gain with calibrated readout system

Pixel recovery time ~ $C_{pixel}R_{pixel}=100-500ns$ SiPM recovery much faster at low occupancy

Gain vs V

Linear $Q = C_{pixel}(V_{bias}-V_{br})$ Ampl 1.17, voltages 33.8 – 34.3 V

23-Oct-14

Ampl 1.14, 34V, temperatures 10, 14 and 21 C

23-Oct-14

Анализ показывает, что значения M_{KD} , измеренные с помощью усилителей, имеющих два больших значения коэффициента преобразования, а именно Ampl-1.14 (K_{IU} =20 мВ/мкА) и Ampl-1.16 (K_{IU} =15,6 мВ/мкА), весьма близки: они отличаются от среднего значения M_{KD} = 3,005 всего лишь на ±0,083 %.

В то же время усилители с двумя меньшими значениями коэффициента преобразования, а именно Ampl-1.15 $(K_{IU}=10 \text{ MB/MkA})$ и Ampl-1.17 $(K_{IU}=1,0 \text{ MB/MkA})$, также показывают близкие значения M_{KD} : среднее значение равно 2,525 с отклонениями ±2,97 %. По всем четырем измерениям среднее значение составляет 2,765 с максимальными отклонениями +8 % и –11,4 %, что может считаться неплохим результатом при разбросе коэффициентов преобразования от 1 мВ/мкА до 20 мВ/мкА.

Low electronic noise (high gain=> high s/n ratio), Dark rate noise is a problem pixels firing due to thermally generated carriers. Unit signals. About a few MHz/mm² at room temp, 1 kHz/mm² at 100K° => Strongly depends on temperature. ($\sim 2x/8^{\circ}$)

MAPD-1 noise level ~ 1 MHz at room temperature

Dynamic range is limited by the number of pixels Linear up to about 0.6 photo electrons per pixel

- Test setup with cooling and temperature control
- Test setup for 9-chip hybrid with cooling
- Better led driver

THANK YOU